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Abstract

“* Gravitational waves carry information about
their source, and their detection will uncover
facets of our universe, otherwise invisible.

*Recently, we made publicly available a
waveform computation tool, the PITT code, as
part of the Einstein Toolkit open software for
relativistic astrophysics. The code implements
the “characteristic method,” which computes
the gravitational waves infinitely far from their
source in terms of compactified light cones.

“*We proved that our code produces
waveforms that satisfy the demands of next
generation detectors. However, the main
problem is that the well-posedness of the
Einstein equations in characteristic formulation
IS not proven.

Here we present our progress towards
developing and testing a new computational
evolution algorithm based on the well-
posedness of the characteristic evolution.

* We analyze the well-posedness of the
problem for quasi-linear scalar waves
propagating on an asymptotically flat curved
space background with source, in null Bondi-
Sachs coordinates.

* We design a new numerical boundary and
evolution algorithm, and proved that is
stable both numerically and analytically.

* We built and run numerical tests to confirm
the well-posedness and stability properties of
the new algorithm.

The knowledge gained from the model
problems considered here should be of benefit
to a better understanding of the gravitational
case. A new characteristic code based upon
well-posedness would be of great value.

Jeff Winicour, University of Pittsburgh, Pittsburgh, PA, United States

g’V VW =8®,0W,x),r->x=r/(R+r)
g dxdx" = —(e*’W —r?h, W'W")dt*
2e*Pdtdr - 2h, W dtdx" +r°h ,dx" dx"

1 dimensional case

WELL-POSEDNESS OF CHARACTERISTIC EVOLUTION IN BONDI COORDINATES
Maria Babiuc, Marshall University, Huntington, WV, United States

Periodic boundary conditions allow The effectofthe a-term: damping at the peak, and tail during decay
characteristics to form closed timelike curves

The simulations show that signal propagates
instantaneously back to the source
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We developed computational evolution
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algorithms and proved the numerical stability
by the Fourier-Laplace and the energy method.
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We design two numeric Fourier algorithms:
* the double-null case, with both t and x
directions as characteristics
(9, D +ad)=(9; +9,)P-2bd
* the null-timelike case, with the t direction
timelile, and the x-direction characteristic
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Strip Problem Simulations

“* The lack of periodicity in the characteristic
x-direction makes the Fourier approach unusable.
“* The method of lines for time is not applicable. t
“*We construct a marching algorithm along the
outgoing characteristics, obtained from the integral
identity satisfied by a scalar wave at the cornersofa 4
characteristic parallelogram
“* The matching algorithm proceeds as follows: d(t,0)
¢ With @" given on time level t,, ®"™* and O™,
given on time level t_,_,
stepping forward @™, @™, QM
* No boundary condition is needed at infinity
points x=1, they are on an ingoing characteristic
7+ The initial data ®° is supplied by the
s characteristic initial data ®(o,x)
* The boundary data O®" is supplied by the
Dirichlet boundary data O(t,0).
A start-up algorithm is used to obtain @™
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2 dimensional case
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Convergence test
y and the shape is frozen.
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Robust Stability test
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Conclusions

¢ The main result is that numerical stability is
controlled by the condition a>0, an important

feature which had been overlooked in

treatments of the characteristic initial value

problem for the wave equation. We tested the
finite difference code for the whole space and
for the initial-boundary value problem in a strip.

“*The pure Cauchy problem was implemented
with periodic boundary conditions so that
characteristics formed closed timelike curves.
This gave rise to a signal that propagates
well-posed instantaneously back to the source.

¢ The null evolution code for the strip problem,
with timelike inner boundary and characteristic
outer boundary, implements the marching
algorithm to integrate on the characteristics.

Future Plans

“* Next step is to extend this treatment to the
simulation of gravitational waves in the full
nonlinear context of general relativity.
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