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Preface

Scorpions (Arachnida: Scorpiones) have been slowly emerging since the 1950s as the excellent and exotic
animal model group, not only to be feared due to their high mammal-specific toxicity but also exhibiting a veritable
smorgasbord of unique features—such as true viviparity, blatant cannibalism, unbelievably high densities, amazing
chemosensory systems and circadian clocks, amorous square dancing, etc. etc., topped by the psychedelic
fluorescence under UV light. This list undoubtedly can, and will, be continued.

I.

The first idea to host a symposium specifically dedicated to scorpions came to Dr. Jerry Rovner who suggested,
in his letter to Gary A. Polis dated 30 July 1984, that such a symposium could be a part of the (ninth) Annual
Meeting of the American Arachnological Society (AAS) in 1985. Rovner wrote:

“…My hope is to have much or all of one afternoon of papers at the Los Angeles meeting
next year devoted to scorpions. This may well be identified as the first such symposium on the
biology of scorpions in the U.S.A….”

In his reply, Gary Polis confirmed: “This will indeed be the first formal symposium on the biology of
scorpions”. The enthusiastic response from Dr. Polis, and his great organizational and interpersonal skills, resulted
in the first “Scorpion Symposium” held in Los Angeles County Museum of Natural History, on June 25, 1985.
Foreign scientists were represented by Wilson Lourenço (France) and Guenther Fleissner (Germany).

Here is the list of presentations at the Los Angeles symposium (12 talks by 12 authors):

Due, D. The biology of Vaejovis littoralis Williams, an intertidal scorpion from Baja California, Mexico.
Farley, R.D. Innervation and pharmacology of the heart of the desert scorpion, Paruroctonus mesaensis

Stahnke.
Fleissner, G.  The circadian clock of the scorpion: a challenge to neurobiology.
Francke, O.F. Life history strategies: inter- and intraspecific trends.
Hadley, N.F. Scorpion cuticle: a structure-function analysis.
Lourenço, W.R. Systematics and biogeography of some Neotropical scorpions.
Myers, C. A. Burrowing biology and spatial distribution of desert scorpions.
Polis, G.A. Competition and predation among desert scorpions.
Root, T.M. The neural control of scorpion locomotion.
Sissom, W.D. Phylogeny of the Vaejovidae (Arachnida: Scorpiones): preliminary synthesis.
Stockwell, S.A. & O.F. Francke. The scorpions of Costa Rica.
Toolson, E.C. Reproductive biology of scorpions.

Abstracts of this symposium were published in American Arachnology newsletter No. 32 (October 1985). It has
to be noted that some of the scorpion scientists presented at the first (Los Angeles scorpion symposium were
authored of the chapters in the famous 1990 book, edited by Gary A. Polis, The Biology of Scorpions. (Stanford,
California: Stanford University Press, 587 pp.).

II.

The second symposium devoted to scorpions was organized in 1991 by Gary Polis and Philip Brownell under
the title “Scorpions as Model Biological Systems”. It was, however, not affiliated with AAS but instead was a part
of the Annual Meeting of the American Society of Zoologists (now Society of Integrative and Comparative Biology)
in Atlanta, on December 28, 1991. Five foreign zoologists were represented: Locket (Australia), Lourenço (France),
Mahsberg, and Gerta and Günther Fleissner (Germany). The following 14 talks and posters by 15 authors were
presented:

Brownell, P.H.  Sensory specialization of a nocturnal predator.
Brownell, P.H.  Organized central mapping of chemosensory systems in two arachnid orders (Scorpionida,

Solpugida) (poster)
Gaffin, D.D. Scorpion pectines: a model system for physiological studies of olfaction and taste.
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Farley, R.D. Regulation of internal organs and tissues.
Fet, V. Molecular approaches to biogeography.
Fleissner, G. & G. Fleissner. What scorpions tell us about the organization of circadian rhythms.
Hadley, N. Scorpions as experimental models for studies of water and metabolic relations.
Gaffin, D.D., L.L. Wennstrom & P.H. Brownell. Water detection in the desert sand scorpion Paruroctonus

mesaensis (poster).
Locket, A. Scorpion eyes.
Lourenço, W.R. Scorpion species biodiversity in tropical South America and its application in conservation

programs (poster).
Mahsberg, D. Scorpion sociobiology and the evolution of sociality in arthropods.
Polis, G.A. Scorpions as model vehicles to advance theories of population and community ecology.
Root, T.M. Scorpion locomotion as a model system (poster).
Sissom, W.D. Scorpions as tools in historical biogeography.

Many of the studies by those who presented at the 1991 Atlanta symposium or attended it were published in
2001 as chapters in another scorpion book, edited by Philip H. Brownell and Gary A. Polis, Scorpion Biology and
Research. (Oxford, UK: Oxford University Press, 448 pp.).
   Tragically, Gary did not live to see this book. His marvelous personality and rich ideas, however, continued to
inspire the next generation of scorpion scientists.

III.

Almost 12 years after the second scorpion symposium, an opportunity for the third one emerged. It was
organized by Douglas D. Gaffin and held on June 24, 2004 at the University of Oklahoma (Norman, Oklahoma,
USA) as a part of the 28th Annual Meeting of the American Arachnological Society. This symposium (addressed in
the program of the meeting as a “Scorpiology Symposium”), included 19 talks and posters by 27 authors, which
made it the most representative symposium on scorpions ever conducted.  The majority of the authors were from the
USA, with four foreign collaborators: Gantenbein (Switzerland), Gromov (Kazakhstan), Grothe (Germany), and
Stathi (Greece).

The abstracts of all presentations of this AAS meeting are to be published online in  American Arachnology,
No. 70 (http://www.americanarachnology.org/AAS_AA.html).

Below follows the list of the presentations of the 2004 symposium, which we suggest to designate, for
preservation of continuity, as the “3d Scorpiology Symposium”:

Bost, K.C. & D. D. Gaffin. Proposal: behavioral assay to identify the important sensory cues involved in sand
scorpion navigation to their home burrows.

Brown, C.A. Compensatory growth in the scorpion Centruroides vittatus.
Brownell, P.H. & B. Grothe. Vibration sensing in sand scorpions, slit by slit to the CNS.
Farley, R.D.  A comparison of ventral mesosomal changes in scorpion embryos.
Formanowitz, D.R., Jr. The adaptive value of the scorpion’s sting.
Fet, V., M.E. Soleglad, D.P.A. Neff & I. Stathi. Tarsal armature in the superfamily Iuroidea (Scorpiones:

Iurida) (poster).
Fet, V., M.E. Soleglad & B. Gantenbein. The Euroscorpion: genus Euscorpius (Scorpiones: Euscorpiidae).  
Fet, V., M.E. Soleglad, B. Gantenbein & E.V. Fet. Systematics and molecular phylogeny of Euscorpius from

the Julian Alps of Slovenia (Scorpiones: Euscorpiidae) (poster).  
Fet, V., M.E. Soleglad & A.V. Gromov. The platypus of a scorpion: genus Pseudochactas (Scorpiones:

Pseudochactidae).
Habibulla, M. Studies on the brain modulation of circadian rhythms in the scorpion Heterometrus

swammerdami.
Henson, R. Scorpion diversity of two desert islands in the Northern Chihuahuan Desert.
Porterfield, J.Z. & D.D. Gaffin & C. Porterfield. Screening for scorpions: a non-invasive approach to

tracking the movements of arachnids in sand.
Santiago-Blay, J.A., V. Fet, M. E. Soleglad & S.R. Anderson. A new genus and subfamily of scorpions from

Cretaceous Burmese amber (Scorpiones: Chaerilidae) (poster).
Shultz, J.  New perspectives on the skeletomuscular anatomy of the scorpion prosoma.
Gaffin, D.D., P. McGowan & M.E. Walvoord. Scorpion peg sensilla: are they the same or are they different?

http://www.americanarachnology.org/AAS_AA.html
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Miller, A. Genetic variation in Paruroctonus boreus and data suggesting the possible sister taxa.
McKee, R. & D.D. Gaffin. Non-visual orientation of sand scorpions (poster).
McReynolds, C.N. Temporal patterns and microhabitat use for the scorpion Centruroides vittatus.
Yamashita, T. Surface activity, biomass, and phenology of the striped scorpion, Centruroides vittatus in

Arkansas.

A selection of seven papers, based on some of the talks presented at Norman, is published on the following
pages as the “Proceedings of the 3d Scorpiology Symposium”. We hope that both the Symposium and these
Proceedings will serve to further promote the study of various aspects of scorpion biology, and collaboration among
the world’s scorpion scientists. We thank everybody who contributed to this Symposium and the Proceedings. We
also thank Jerry Rovner for sharing with us the historical documents of his correspondence with Gary Polis.

Victor Fet, Douglas D. Gaffin
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Sand scorpion home burrow navigation in the laboratory
Karen C. Bost1 and Douglas D. Gaffin1

1Department of Zoology, University of Oklahoma, Norman, OK 73019-0235, USA

Summary
Many organisms can navigate their return to a previously experienced location. This ability is beneficial and often a
necessary component of an organism’s life strategy. Sand scorpions (Paruroctonus utahensis, Vaejovidae)  typically
leave their home burrows at night and subsequently return, suggesting navigational capabilities. Sand scorpions
present an ideal system for navigational study in that they exist in ecologically simple dune environments, are
abundant, are easily obtained, are easily maintained in the laboratory, and fluoresce under ultraviolet light.
Additionally, behavior observed in the laboratory is generally consistent with that observed in the field, allowing
comparable laboratory and field study. The work presented in this paper is a laboratory setup in which scorpions
successfully navigate to their established home burrow. The ability to induce scorpion navigation in a laboratory
setting will be useful in future study. Using this design, scorpion navigation can be assessed when navigational cues
are present absent or manipulated.

Introduction

Navigation to a previously experienced location is an
ability that has independently evolved throughout the
zoological taxa. Convergent behavioral evolution across
phylogenetically distinct taxa suggests an associated
selective advantage. Undoubtedly, the ability to return to
a desirable location such as a good food source, a
successful mating location, or a site of refuge is
advantageous.

Several different navigational mechanisms have been
described in a variety of organisms. Many of these
studies have focused on various arthropods owing to
their large radiation and consequent, diversity of
navigational abilities (for review see Wehner, 1992).
Arthropods are model organisms for study in that they
offer a variety of mechanisms to study in nearly every
habitat.

Psammaphilic scorpions are ideal for navigational
study in that they are abundant, easy to obtain, and
easily maintained in the laboratory, and they live in
environments which are comparatively ecologically
simple. Among their most spectacular features is that
they fluoresce under ultraviolet light, providing a built-
in tracking mechanism for these nocturnal animals.

Although behavioral studies of scorpions are rare, the
desert scorpion Smeringurus mesaensis (Stahnke, 1957)
(Vaejovidae) occurring in the Mojave Desert of southern
California has been the focus of several behavioral
studies. These scorpions leave their home burrows at
night to forage and subsequently return to the same

burrow, suggesting navigational capabilities (Polis et al.,
1985). Females and immature males use the same home
burrow for long periods and may travel several meters
away, although they typically remain within a meter of
their burrow (Polis et al., 1985).

The sand scorpion Paruroctonus utahensis (Williams,
1968) (Vaejovidae)  is a related species with a largely
similar niche. These scorpions live in sandy burrows in
shifting sand environments throughout Chihuahua
(Mexico), northern Arizona, New Mexico, Utah, and
western Texas (Sissom, 2000). Numerous field
observations have indicated that P. utahensis scorpions
exhibit similar homing behavior (Gaffin, pers. comm.,
pers. obs.).  Following a disturbance, scorpions usually
remain motionless for a brief period of time and then
move short distances with intermittent pauses and
frequent directional changes. This behavior occurs for a
brief period of time (30 sec-5 min) and is followed by a
rapid movement to the burrow with only minor
deviations from a direct path. Complementing its
homing ability, prior study of sand scorpion behavior
has shown that behavior observed in the laboratory is
generally consistent with that observed in the field,
allowing comparable laboratory and field study (Gaffin
& Brownell, 2001). These characteristics make P.
utahensis a model organism for navigational study.

To understand how sand scorpions navigate to their
home burrow, we must determine which environmental
cue(s) they exploit for directional information in their
home bound journey. We aim to design in a system in
which scorpion navigation can be successfully induced
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in the laboratory. Once such a system is established,
navigational ability can be reassessed with manipulated
and/or deleted sensory cues. A loss of navigational
ability in the absence or manipulation of a particular
environmental cue will suggest dependence.

Methods

Scorpion collections and care

Paruroctonus utahensis specimens were collected
from Winkler County Park northeast of Kermit, Texas,
in fall of 2003 and summer of 2004. Scorpions were
maintained in the laboratory with temperature ranging
from 78-86°C with relative humidity ranging from 35%-
45% and a light-dark phase of 2000-0700 h dark and
0700-2000 h light. Scorpions were housed in 3.8 L glass
jars containing approximately 4 cm sand from their
collection site and a broken piece of flowerpot clay.
Scorpions were routinely fed crickets and given water in
the form of a diffuse spray which lightly moistened the
sand surface.

Home burrow navigation experiments

Experimental arenas: Experiments were conducted
using 15 individual circular arenas, each with a diameter
of 76 cm and a height of 30.5 cm. Arena bottoms were
constructed of medium density fiberboard, and the sides
were composed of translucent acrylic. Each arena floor
was covered with 4 cm sand from the collection site. A
hanging 20-watt 120-volt halogen light was positioned
60 cm above the center of each arena. The lights were
set to a light-dark phase of 1700-0400 h dark and 0400-
1700 h light. A cylinder (15 cm diameter and 8 cm tall)
was positioned at random along the outer wall of each
arena (Fig. 1). These cylinders were used to confine
scorpions to a small portion of the larger arena. A
broken piece of flowerpot was placed in the middle of
each cylinder to encourage scorpion burrow formation.

Experimental preparations: Six days prior to each
experimental trial, a recently fed scorpion was placed
inside each home cylinder and allowed to form a home
burrow. Two days prior to each trial, the cylinders were
removed, allowing the scorpion to explore the remainder
of each arena at will. Each afternoon before the burrow
lights turned off, the sand within each burrow arena was
lightly sprayed with water, providing the surface texture
conductive to burrow formation.

Experimental procedure: Experiments occurred in the
laboratory at the University of Oklahoma in summer   of
2004. Prior to trial, scorpions were removed from each
arena  and  placed  individually  in  black  film canisters.

Each canister was rotated 360° five times and placed in
the middle of each respective arena for at least 5
minutes. Arena sand was not disturbed, allowing any
potential visual or chemical cues to remain, but arena
lights were dimmed to encourage scorpion movement.
Trials began immediately after film canisters were
removed, leaving scorpions in the center of each arena.
Scorpion activity was videotaped using a Sony Digital
Video Camera Recorder (DCR-TRV 120) suspended
from the ceiling on a rope pulley system in nine separate
filming sessions, each session filming the activity in one
or two arenas at a time. The camera's infrared Night
Shot capability was used during recording due to the dim
lighting. The camera was connected to a color television
monitor in the adjacent room for immediate viewing by
the experimenters. Scorpion directional choice was
observed when the animal crossed an imaginary line
delimiting a circle, 46 cm in diameter, in the center of
each arena (Fig. 1). Trials ended as this line was crossed.

Analysis: Scorpion directional choice was quantified
using a Batschelet test for circular uniformity (Zar,
1999). This test was used to determine if the initial
chosen walking direction was uniform about the arena or
if there was a bias in the mean walking direction in
relation to the home burrow. Direction was quantified by
comparing the center of the cylinder area (normalized to
0°) with the position that the scorpion crossed the

15cm

76cm

Burrow
arena

Trial
Initiation
 site

Line of
determination

Fig. 1: Circular test arena including the removable burrow arena,
site of trial initiation, and line of determination marking directional
choice.
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circular line of determination. Scorpions that crossed the
line of determination within 22.5° of the cylinder area
center (1/8 of the total arena circumference) were
considered to be within the burrow area.

Results

Thirteen of fifteen scorpions formed burrows within
the cylinders (or within the area of the cylinders after
day four after cylinder removal) during the six allotted
days prior to trial. These observations were made each
afternoon while spraying the cylinder areas with water
(arena lights were on). Scorpions that did not form
burrows were consistently found on top of the piece of
flowerpot in the cylinder area throughout the six-day
period. Two days prior to trial, all scorpions were found
within the burrow-cylinder area, including those that did
not form burrows.

Trials were run to elicit home burrow navigation after
displacement to the center of the arena. Upon trial
initiation, most scorpions remained motionless in the
center of their arena for one minute to two hours. Two
scorpions quickly ran to the side of the arenas as soon as
the film canisters were lifted. These trials were removed
from the analysis because the rapid movement was a
presumed panic response and not a reliable measure of
directed movement. Two scorpions did not move after
two hours and were also removed from the analysis.
Upon the initiation of movement, the remaining
scorpions crossed the line of determination within 43 s.
Two basic movement patterns were observed (Fig. 2).
Some scorpions initiated a series of turns and pauses
before making a more directed movement across the line
of determination, whereas others initiated movement
with one directed movement that took them across the
line of determination.

Eleven legitimate trials yielded five scorpions that
crossed the line of determination within 22.5° of the
cylinder center (0°, the center of the home cylinder).
Batschelet test for circular uniformity indicated that
directional choice is not uniformly distributed about the
circle and that it is concentrated around 0° (V=0.007,
(n=11) (Fig. 3).

Discussion

This design evolved from several preliminary
experiments. Initially, directional choice was obtained
using rectangular choice chambers. Trials were initiated
by placing the scorpion in the center of the rectangular
chamber and observing their directional choice, toward
or away from the side with their given burrow. The
series of turns and pauses associated with movement
onset coupled with the thigmotaxic nature of the
scorpion rendered inconclusive directional choice.

Scorpions commonly hit the arena wall while turning
and followed the edge to the corner.

In preliminary tests using circular arenas with a
diameter of 76 cm, scorpions were able to make multiple
turns in the center of the arenas without hitting the walls.
Consequently, scorpions commonly moved toward their
burrow after a series of uninterrupted turns and pauses.
Additionally, behavior observed during preliminary tests
suggested that scorpions may be more loyal to their
burrow if they are self-made rather than provided. It was
also determined that the burrow forming cylinder must
be  clear  and  at  least  ten  cm in  diameter,  otherwise

Fig. 2: Typical scorpion movements during trials. Black dots
represent scorpion position at five-second intervals. (a) A series of
turning and pausing before a seemingly directed movement across
the line of determination (b) An initial seemingly directed
movement across the line of determination.

1

54
3

2
1

6
7

(a)

(b)
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most scorpions were not stimulated to form their own
burrow.

In this study, P. utahensis scorpions exhibited
nonrandom directional choice. Furthermore, directional
choice was concentrated near the region of the
established home burrow. Available cues including light,
the Earth's magnetic field, chemical gradients, and
humidity gradients may have influenced directional
choice. These cues were provided to aid scorpion
navigation in attempt to establish a system where it can
be observed in the laboratory. These data suggest that
scorpions were able to orient themselves in their arenas
and navigate towards their home burrows using one or
more sensory cues available in the laboratory. These
data do not imply that any specific cue or cues present
facilitate navigation.

The mechanisms underlying scorpion navigation are
currently in the beginning stages of study, thus
hypotheses must be formed from information obtained
from taxonomically close organisms and from what is
known about scorpion sensory systems.

Vision is a likely sensory mechanism used in
navigation. Scorpions may use vision to observe
landmarks, follow footsteps to retrace their outbound
journey, or to potentially use light polarization patterns
in navigation. The median and lateral eyes are ocelli
bearing a single lens with a few photoreceptors (Locket,
2001). Ocelli are effective in determining light intensity
but less capable of allowing shape determination,
especially at greater distances. Thus, scorpions may be
able to use nearby landmarks or visual cues such as

footprints in navigation, but the use of distant landmarks
is unlikely. Many arthropods are able to detect light
polarization patterns, most notably bees and ants (for
review see Wehner, 1997). It has been observed that the
microvilli within the rhabdoms are arranged uniformly,
and some rhabdomeres occur with differential
microvilliar orientation (Locket, 2001). These structures
may allow scorpions to exploit polarized light as a
navigational tool (Brownell, 2001).

Scorpions possess several sensory structures receptive
to chemosensory stimuli, most notably the pectines,
which hold many pore-tipped peg sensilla (Gaffin &
Brownell, 2001). The ventromedial position of these
pectines facilitates contact, and therefore direct
chemoreception, between the sensilla and the substrate.
Additional chemoreceptive pore-tipped sensilla are
common to the mouthparts, chelicerae and distal regions
of appendages in arachnids (Foelix, 1985). Contact
chemoreception of female chemical deposits has been
observed in males of scorpion Centruroides vittatus
(Buthidae) (Krapf, 1986; Gaffin & Brownell, 1992;
Steinmetz et al., 2004). Perhaps similar detection of
chemical deposits laid in the sand substrate on the
outbound journey provide a chemical trail that the
scorpion can follow home.

Detection of moisture and humidity is crucial to desert
dwelling sand scorpions. Gaffin et al. (1992) provided
evidence that chemoreceptive tarsal hairs detect
substrate moisture. Additionally, Abushama (1964)
concluded that organs on scorpion tarsi detect humidity.
This humidity detection has been associated with the
tarsal organ of scorpions, similar to the spider tarsal
organ (Foelix & Schabronath, 1983). Prior to
experimental trials, scorpion burrows areas were sprayed
with water daily. The burrows were sprayed for the last
time 24 hours before trial initiation. After trial
completion, a HOBO Pro Series device was placed in
the burrow area to monitor the level of humidity about
the burrow. The HOBO was placed in the burrow for 24
hours, sprayed with the normal amount of water, and
removed 24 hours later. Data recorded from the HOBO
indicated that relative humidity about the burrow area
returned to the initial burrow area humidity (42% RH)
within three hours of spraying water (97% RH). These
data indicate that a potential humidity gradient
established from burrow area moistening had dissipated
well before trial initiation, thus it is unlikely that
scorpions followed a humidity gradient to their burrows.

It is possible that scorpions are using other
environmental cues, including the Earth’s magnetic
field, which may aid path integration. Evidence exists
for magnetic orientation in several arthropod species,
although it has not been shown to be a useful cue in path
integration (Nørgaard et al., 2003).

The laboratory design presented here provides a
controlled system that can be used to isolate and

Fig. 3: Circular test arena divided into 45° sections with the burrow
cylinder section outlined. The black dots indicate the positions where
scorpions crossed the line of determination during experimental trials.
The number in each section represents the frequency of scorpion
crossing. Note that five of the eleven tested scorpions crossed the line of
determination in the section containing the burrow and four additional
scorpions crossed in adjacent sections.
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manipulate potential navigational cues. For instance,
controlling the presence, intensity, polarization and
wavelength of available light, or providing a fresh sand
substrate, or locally disrupting the magnetic field in
future trials will provide evidence for the use (or lack
thereof) of specific environmental cues in navigation.
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Scorpion peg sensilla: are they the same or are they 
different? 
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Summary 
Thousands of peg sensilla adorn the ground-facing surfaces of the elaborate chemosensory organs of scorpions 
called pectines. From external appearances, these sensilla appear identical, however, it is not known if they are 
functionally the same. The answer to this question will influence our thinking on the organization and function of 
the pecten chemosensory system. Identical sensilla would suggest a parallel sampling scheme, lending support to an 
“information enhancement” hypothesis. Conversely, functionally distinct sensilla would support a “segmentation” 
hypothesis similar to the decomposition of sensory elements in the well-studied mammalian visual processing 
system. We are using a newly developed chemical delivery approach to test peg response patterns to consistent, 
repeatable stimulation. We report our findings based on electrophysiological recordings of stimulated peg sensilla of 
desert scorpions Paruroctonus utahensis (Vaejovidae). We also report on other relevant characteristics, including 
the nature and time course of a typical pecten “sniff” and the density of peg sensilla relative to substrate particle size 
from the animals’ natural sand habitat. 

 
 
 
Introduction 
 

Scorpion pectines are featherlike, mid-ventral 
appendages that form the largest sensory input to the 
scorpion brain. The pectines are important in guiding 
males to prospective mates (Gaffin & Brownell, 1992, 
2001) and perhaps in spermatophore exchange 
(Alexander, 1957, 1959) and in relocating stung prey 
(Krapf, 1986; Skutelsky, 1995). Each pecten is 
composed of a flexible spine and a series of movable 
teeth (Fig. 1 A-C; Cloudsley-Thompson, 1955). On the 
ground-facing surface of each tooth are dense patches of 
peg-shaped sensilla (Carthy, 1966, 1968; Ivanov & 
Balashov, 1979; Foelix & Müller-Vorholt, 1983). The 
peg sensilla are the main chemosensitive elements of the 
pectines, and previous studies have established their 
responsiveness to a range of organic molecules (Gaffin 
& Brownell, 1997a, b). Externally, the pegs appear 
identical, with their pores directed at the same angle 
relative to the ground (Gaffin, 2002). 

Here we ask the question: are the pegs functionally the 
same or different? The answer to this question will affect 
how we think about this organ and its functional 
organization. In one case, we might find a distinct 
partitioning of the real world geometrically, where 
individual pegs contain distinct elements that respond 
differently to specific chemicals. We term this the 

Information Segmentation Hypothesis (Fig 2A). An 
example of this type of model is the cochlea in the inner 
ear, where receptors tuned to different frequencies 
distribute in an ordered manner along the length of the 
organ. 

A second possibility is that the pegs are essentially 
repeated units, each possessing the same types of 
chemosensitive neurons (Fig 2B). This type of 
arrangement might be useful as a parallel sampling 
system, amplifying the amount of information received. 
We term this the Information Enhancement Hypothesis. 
Mammalian taste buds appear to be such a model. Each 
taste bud contains units that respond to various tastants, 
and these buds distribute across the tongue.  

Initial accounts of peg chemosensitivity have 
suggested a segregated pattern of responsiveness (Gaffin 
& Brownell, 1997a). Pegs were stimulated by blowing 
volatile organic molecules from a syringe tip about a 
centimeter away as diagramed in Figure 1D. The 
response pattern for a given peg was consistent within a 
given stimulant series and orientation, whereas the 
response patterns for other pegs appeared different 
(Gaffin & Brownell, 1997a). Still, these results need to 
be approached with caution since the blowing of 
stimulant from a distance may have delivered an 
inconsistent stimulus concentration to different peg tips. 



                   Euscorpius — 2004, No. 17 
           

 
 

 

8 

While previous studies were important in establishing 
the chemosensitive nature of peg sensilla, they do not 
address the functional organization of chemosensitive 
elements among the peg population. In this study, we 
investigate this question by using a new method of peg 
stimulation that depends on stimulant diffusion from a 
pipette tip within a few microns of the peg pore rather 
than forceful delivery of stimulant from a distance 
(Gaffin & Hines, 2003). This method delivers a more 
controllable and consistent stimulant dose to the pore 
and allows for better comparison of responses between 
pegs. 

Here, we first describe and characterize this new 
method of chemical delivery. Next, we use this method 
to test the sensitivity of adjacent peg sensilla to the 
identical chemostimulants. In addition, we use high-
speed videography to characterize the time course of a 
typical pectinal brushing (“sniff”) of the substrate. 
Finally, we calculate the density of pegs relative to a 
sand particle from the scorpions’ environment. We use 
these data to argue that the pegs appear to be 
functionally redundant, supporting the Information 
Enhancement Hypothesis. 
 

C 

A B

Fig. 1: Diagram of scorpion pectines and previous recording and stimulation 
configuration. A: The pectines are large, featherlike appendages located midventrally on 
all scorpions. B,C: Pectines are composed of a series of ground-directed teeth that extend 
from the posterior margin of the flexible spine (Sp). D: Previous configuration of 
chemical stimulation. An electrolytically carved tungsten recording electrode (Vm) is 
inserted through flexible cuticle at the base of a peg sensillum to record extracellular 
potentials from sensory neurons. Chemical stimuli (st) are blown across peg fields from a 
distance of about 1 cm (drawing not to scale). A reference electrode (Vref) is placed in 
contact with hemolymph at some distance from the recording electrode.  
 

D

s

V

Vref
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Methods 
 
Animals 
 

Mature Paruroctonus utahensis (Williams, 1968) 
(Scorpiones: Vaejovidae) obtained from sandy regions 
near Kermit, Texas, were the subjects of these 
experiments. We housed animals individually in 3.8 L 
clear glass jars containing 250 ml of sand collected from 
the scorpions’ natural habitat. The jars were kept in a 
room with consistent temperature (22° C). The room 
lighting alternated between periods of light (0730-2000 
h) and dark (2000-0730 h). Each week, we fed each 
scorpion one cricket and misted each with 10 ml of 
deionized water. 
 
Electrophysiology and chemical stimulation 
 

Scorpions used for electrophysiology were 
immobilized ventral side up in modeling clay on a glass 
microscope slide. An indifferent silver electrode was 
inserted between metasomal segments until contact was 
made with hemolymph. The pectines were then attached 
to a glass cover slip using double-sided adhesive tape; 
the individual “teeth” of the pectines were straightened 

and aligned to facilitate recording. The prepared 
scorpion was then fastened to the microscope stage and 
pegs were located using a high-powered (500-1000x) 
compound microscope (Olympus BX-50WI) equipped 
with epi-illumination and long working distance 
objectives. 

Extracellular recordings were obtained by inserting an 
electrolytically sharpened tungsten electrode (tip 
diameter about 1 µm) into the cuticle at the base of the 
desired peg (Fig. 3). Electrodes were maneuvered into 
place using a Leitz mechanical micromanipulator. After 
insertion, the peg was allowed several minutes to 
recover to a consistent baseline activity. Electrical 
signals detected by the electrode were amplified 1000 to 
10,000 times over a bandwidth of 1-3 kHz, displayed on 
an oscilloscope, and relayed through digitizing hardware 
(1401-plus, CED, Cambridge, England) at 20 kHz 
sampling rate to a computer for storage and analysis. 
Acquired records were further filtered with a digital high 
pass filter and analyzed using a spike recognition and 
analysis program (Spike 2, CED). Spiking events were 
traced using 100 samples spread evenly across the spike 
wave (100 points at 20 kHz sampling frequency gives 5 
ms between point). Events with peak amplitude above 
background noise were isolated from the record and 
categorized to discrete classes using a spike recognition 
algorithm in the Spike 2 program. 

The chemical delivery device consisted of a glass 
pipette with a tip pulled to a diameter of about 5 µm. 
The pipette was formed from a glass capillary tube 
(World Precision Instruments 1.00 mm OD, 0.58 mm 
ID, 152 mm length, with filament) pulled in a glass 
micropipette puller (Sutter Instrument Co. Model P-87). 

Stimulant pipettes were backfilled by immersing the 
pipette tip into a vial containing the pure substance to a 
depth of about 1 cm for 2 hours. This method allowed 
enough chemical to backfill into the pipette tip to allow 
several hours of experimentation. We used pure 1-
hexanol as the stimulant chemical in this study. 

The stimulant pipette was attached to a glass electrode 
holder and affixed to the head of an electronically 
controlled micromanipulator (Burleigh step driver PZ-
100). The electronic head was mounted to a mechanical 
micromanipulator for movement of the pipette to within 
100 microns of a recorded peg. The left-to-right and up-
and-down positioning of the pipette tip was also adjusted 
using the fine controls of the mechanical 
micromanipulator. The electronic micromanipulator 
produced precise in-and-out movements, which allowed 
us to control the distance of the pipette tip from the tip 
of the recorded peg. The distance of travel of the pipette 
tip was monitored by reading the output from the 
electronic manipulator. This information was sampled at 
100 Hz on a second channel of the digitizer and stored 
on a separate channel in the Spike 2 program. 

Fig. 2: Alterative hypotheses on the functional neural
organization of peg sensilla. A: Information Segmentation
Hypothesis. In this arrangement, chemical sensitivity is parsed
to distinct peg sensilla. B: Information Enhancement 
Hypothesis. In this arrangement, each peg sensillum contains a
similar complement of chemically sensitive neurons.  

B. Information Enhancement Hypothesis 
•Identical sensillar responses 
•Parallel sampling scheme 

A. Information Segmentation Hypothesis 
•Differential sensillar responses 
•Feature detection spatially 

1 1 1 2 2 2 3 3 3

1 2 3 1 2 3 1 2 3
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Once precisely positioned within microns of the peg 
tip, our experiments consisted of using the electronic 
manipulator to move the pipette tip close to a recorded 
peg, away, close, etc. while monitoring the neural 
response and the position of the pipette as shown in 
Figure 3. 

 
Videography of a pecten “sniff” 

 
We filmed individual Paruroctonus utahensis during 

the day in a dark room by placing them into a clear, 
rectangular, Plexiglas container elevated above an 
infrared (IR) spotlight (Ultrak, model UL-IR-50-FL 12 
V, 50 W). This box was 37 cm long, 5.5 cm wide, and 7 
cm tall to give enough space for scorpion movement. An 
IR-sensitive camera (Panasonic CCTV camera model 
WV-BP314) was focused on the center of the Plexiglas 
floor through the side of this box. We placed a female 
scorpion into this box, covered the box with black paper 
to reduce glare, turned off room lights, and began 
recording onto a videotape in a time-lapse video 
recorder (Panasonic model AG-RT600P) set to 8-hour 
mode. This allowed us to capture sixty frames/second. 
Video recording took place for approximately 2 hours at 
a time, before stopping the tape to check for footage of 
the scorpion traversing in front of the camera. 

We reviewed all taped trials, and the single pecten 
lowering sequence with the clearest view was used in 
this paper. This trial took place on 20 May 2004 from 

1025–1152 hours at 22°C and approximately 78% 
relative humidity. 
 
Calculation of peg density vs. sand particle size 

 
We directly counted and calculated the density of peg 

sensilla on tooth 17 of the right pecten of a female P. 
utahensis. We did this by snapping an overlapping series 
of digital photos using a digital camera (Flexcam 
Teaching NTSC Rev. 3.0, Videolabs Inc., USA) 
connected to a frame grabber (Snappy Video Snapshot, 
Play Inc.) for computer manipulation and analysis. 
Photos were taken directly from one of the eyepieces on 
the light microscope used for electrophysiology under 
high power. We used a similar approach to determine 
the area of a “typical” grain of sand retrieved from the 
scorpions’ native habitat. Peg density was calculated by 
dividing the number of pegs on a tooth by the surface 

Fig. 3: Recording and stimulation configuration of new static 
odorant method. Tungsten microelectrode is inserted through 
flexible base of individual peg sensillum. A glass pipette with 
tip diameter of about 5 microns is backfilled with a pure 
substance and maneuvered via an electronically controlled 
manipulator to within microns of the peg tip. The travel of the 
stimulant pipette tip is monitored relative to distance from the 
peg tip while the neural response is recorded. 

Vref 

Vm 

Fig. 4: Stimulus pipette relative to peg and recording 
electrode. A: A pectinal tooth (T) is shown with recording 
electrode (RE) in place as the stimulus pipette (SP) approaches 
the recorded peg. B: Close up view of tungsten microelectrode 
inserted in base of peg sensillum (PS) and tip of stimulant 
pipette manuevered within microns of the peg tip. Scale bars: 
A: 10 microns; B: 5 microns. 

A

SP 

RE

B

PS

T
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area of the peg field in square microns.  
 

Results 
 

Our extracellular recordings were stable for tens of 
minutes to hours with little reduction in signal-to-noise 
ratio. With practice, the recording electrode and stimulus 
pipette could be configured to avoid crossing each other. 
We found that the response of peg neurons was highly 
sensitive to the distance between the pipette and peg 
tips. Because of this, it was important to move the 
stimulus pipette as close to the peg tip as possible 
without making contact. Contact of the tip to the peg 
usually resulted in flooding of chemical across the peg 
fields, causing intense firing of peg neurons and several 
minutes of sensory adaptation. Figure 4 shows the 
relationship of the recording electrode and stimulus 
pipette in a typical recording configuration. Figure 5 
shows an experimental control recording. Moving an 
empty pipette tip near to the peg tip had no effect on the 
spiking activity of the peg neurons. 

 
 
 

 
 
Spontaneous spiking activity 

 
We recorded spontaneous spiking activity from seven 

adjacent peg sensilla on a single pectinal tooth (Fig. 6). 
The baseline spiking frequencies of these samples 
ranged from 7.18 Hz to 13.10 Hz. All seven records 
contained two large biphasic waveforms, which appear 
similar to the A1 and A2 waveforms reported for 
Smeringurus mesaensis (Gaffin & Brownell, 1997a). A 
third, smaller, triphasic waveform (colored red in Fig. 6) 
was detected in three records. The patterns of spiking 
activity appeared similar in each of the records. 
 
 
 
 

Fig. 5: No stimulus control. The bottom trace shows the travel of
an empty pipette tip from 50 microns to within 1 micron of the
peg tip and back. The “Raw” trace shows all electrical activity
recorded from the peg sensillum while A1 and A2 show the 
isolated activity of two identifiable cells. The top graph depicts
the spiking activity of the peg in Hz for the duration of the test.  

Stimulus 

Raw 

A1 

A2 

Hz 

0 µm 

50 µm 10 s 

0 

5 

10 

Fig. 6: Baseline series. Shown are no-stimulus recordings of 
spontaneous activity from seven adjacent peg sensilla. The 
traces at right show 15 seconds of spiking categorized by 
spike sorting algorithm. At right are the superimposed 
waveforms from each record. Spiking frequencies varied from 
7.18 to 13.10 Hz in these records. 

10.66 Hz

9.05 Hz

13.10 Hz 

9.98 Hz 

8.10 Hz

7.18 Hz 

12.23 Hz

5 s 
1 ms
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Chemical Stimulation 

 
To test for similarity in chemical response, we 

recorded from six consecutive pegs from tooth 19 of a 
female P. utahensis. Several successive advances and 
retractions of pure 1-hexanol were made for each 
recorded peg. In each case, the pipette tip was moved 
immediately adjacent to the peg, then retracted 20 

microns, and returned to the peg tip. The advance and 
retraction rate was 4 microns per second; one 
complete cycle took 10 seconds. Shown in Figure 7 
are samples of seven such advances and retractions. 
The spiking patterns of each peg were similar, 
showing a sharp increase in spiking with approach of 
the stimulus pipette. Spiking frequencies, smoothed by 
3-second bins, are displayed above the spikes in each 
of the peg records. Peak frequencies ranged from 20 to 
40 Hz across the records.  
 
 
Peg density vs. sand grain size 
 
 The peg density on tooth 17 of a female P. utahensis 
was directly calculated from a series of overlapping 
photos. We counted 105 pegs on this tooth across a 
peg field area of approximately 8400 µm2. This gives 
a peg density of approximately 0.0125 pegs per µm2 or 
12,500 pegs per mm2. We also measured the area of a 
“typical” sand particle from the dune habitat where 
these animals live. We measured the surface area of 
this particle directly from the photo as 33,440 µm2. 
Put another way, 418 pegs would fit on this sand grain 
(33,440 µm2 * 0.0125 pegs/µm2 = 418 pegs). Figure 8 
shows representative peg fields from three pecten teeth 
superimposed atop the sand grain.  
 
 
 
 
 

100 µm 

Fig. 8: Peg sensilla density relative to a sand grain. The 
positions of peg sensilla on a pecten tooth of a female P. 
utahensis was determined using overlapping photos of the peg 
field taken from high power light microscopy. Here we show 
this field repeated three times at the appropriate spacing to 
represent three successive pecten teeth. The fields are 
superimposed atop a photo of a grain of sand from the 
scorpion’s native habitat. 
 

Fig. 7: Hexanol stimulation of six adjacent peg sensilla. A: Neural 
responses of six pegs to seven successive movements of the
stimulus pipette from 20 µm to 0 µm (adjacent to the peg tip) and
back (pipette travel shown below peg 6 record).  For each peg, the
bottom trace represents the isolated spiking activity and the top
trace the spiking frequency in Hz. B: Spiking frequency averaged
across the seven stimulus repetitions for each of the six pegs. 
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Kinematics of a pecten “sniff” 
 
 The pecten sniff consisted of a ~0.20-second lowering 
sequence followed by a ~0.07 second retraction of the 
pecten upon contact with the substrate (Fig. 9). Contact 
with the substrate, in this case, lasted at most 0.033 
seconds. During other sequences of this and other trials, 
scorpions displayed another behavior in which they 
would lower and drag their pectines for a longer period 
just above or on the substrate before retracting them. 

 
Discussion 
 
Both the activity patterns and types of units present in 
recordings from peg sensilla are similar between 
individual pegs during both spontaneous recordings and 
under consistent stimulation. The new method of 
presenting a stimulus by moving a static source near a 
peg tip gives much more consistent response patterns 
between pegs than during forceful propulsion of the 

0.000 s 0.033 s 0.067 s 

0.100 s 0.133 s 0.167 s 

0.200 s 0.233 s 0.267 s 

Fig. 9: These pictures represent a time course of a pecten “sniff” in a captive, female P. utahensis. Video was recorded at sixty 
frames/second under infrared (IR) light with an IR-sensitive camera. This time course represents snapshots of the video taken 
every other frame. The pecten is indicated by the white arrow in the first frame. 
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stimulant across the peg field from a distance (Gaffin & 
Brownell, 1997a). The small departure in stimulant 
response for some pegs (such as peg 4 in Fig. 7) is more 
likely a result of the pipette tip not being as close to the 
peg pore as in the other recordings; we found that 
distance from pipette to tip greatly influences the peg 
response and even a micron can have a significant effect.  

The data from videography allowed us to observe 
pecten lowering in a homogenous environment and to 
determine a time course for one pecten “sniff.” We also 
observed that pectines appear to make contact with the 
substrate. To fully analyze pecten sniffs or dragging 
behavior, we need to record more pecten sniffs from 
multiple animals, classify how many events were 
“touches” and how many were drags, and record an 
average time course of these drags. We hypothesize that 
this dragging behavior may be a response to the smooth, 
homogeneous surface on which they were traveling. 
More observations are needed of scorpions active at 
night in their natural habitat to record the exact sniffing 
behavior on a normal substrate. 

The time course of a single pecten “sniff” is important 
for approximating the amount of time available for a 
field of peg sensilla to gather an information sample. On 
the conservative side, the peg fields are near to the 
substrate (within microns) for only 0.033 s. We have 
found that chemical responsiveness of peg neurons to a 
pure stimulant varies significantly with distance of the 
stimulant from the peg tip. For example, movement of 
the pipette tip from 20 µm distant to 1 µm distant 
resulted in an increase of spiking frequencies from 0 to 
40 Hz (see Fig. 7) with most of the change occurring as 
the tip was within 10 µm. 

The peg density for the pecten tooth we measured on a 
female P. utahensis was approximately 0.0125 pegs per 
µm2. This calculation is in line with what Brownell 
(2001) reported for another vaejovid scorpion species, 
Smeringurus mesaensis. Why are there so many pegs? 
This is an important question, given that the particle size 
of the animal’s habitat is orders of magnitude greater 
than the inter-peg distances.  

The answer to this question may come from a closer 
examination of the chemical response data. First, we 
find that the inter-peg distances are approximately 8 µm, 
which is in line with the proximity of the stimulus 
pipette tip for which we see significant neural responses. 
Also, while our frequency graphs of neural activity 
suggest that individual pegs can track the stimulant 
within this distance, we obtained those graphs by 
averaging over 3-second bins. If calculated across a 
more realistic time window of 0.033 seconds (the time 
course of a pecten “sniff,” calculated above), spiking 
averages of peg neurons would not be able to resolve 
stimulant distance with any degree of confidence. Put 

another way, to achieve the stimulant distance resolution 
for a single peg sensillum as implied by Figure 7, the 
animal would need to hold its pectines to the ground for 
at least three seconds – and the animal simply does not 
do this.  

Taken together, these data support the Information 
Enhancement Hypothesis, with the peg sensilla being 
functionally repeated units. It appears that the peg fields 
function in a parallel sampling system, delivering to the 
brain information sampled from a quick “sniff.” In 
essence, such a system could provide the same 
resolution of stimulant location as can be obtained from 
a single sensillum presented with seconds of prolonged 
chemical stimulation.  
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Screening for scorpions: A non-invasive approach to
tracking the movements of arachnids in sand
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Summary
Piezoelectric materials are highly sensitive devices capable of transducing mechanical energy into electric voltage.
They find application as sensors in a wide variety of commercial and academic fields.  Borrowing from the use of
these materials in geophysics to measure the transmittance of a wave front through a substrate, and the principles
used to locate the epicenter of an earthquake, we are investigating the use of an array of piezoelectric transducers on
a much smaller scale to triangulate the position of a scorpion, in sand, as it leaves its burrow to hunt.  Such an
approach relies on the ability to resolve the surface waves created by a scorpion’s footsteps and uniquely identify
them against a background of other such waves.  Such a passive form of measurement has the benefit of eliminating
environmental factors associated with other monitoring systems, such as camera lights, that could change the
scorpion’s behavior.  The work to date has yet to yield a fully functional tracking system but has identified the major
obstacles that, when resolved, should yield a sensitive, accurate, and dependable technique. Much progress has been
made in resolving issues of sensitivity and reproducibility of signal measurement with the piezoelectric materials
currently in use.

Introduction

Scorpions are well suited for scientific study.  Their
relatively clear ancestral origin makes them ideal for
comparative studies, and their unique physiology offers
an exceptional platform for investigating the “broader
questions of organismal biology” (Brownell, 2001).  One
of the very interesting aspects of scorpion sensory
biology, seemingly unique among terrestrial animals, is
their use of vibration-sensitive structures for hunting.
These structures, called the basitarsal slit sensilla, are
located near the tarsal joint on each of the scorpion’s
eight legs and can sense the mechanical waves generated
by the movements of its prey (Brownell, 2001).  In the
1970s and 1980s, Philip Brownell published a series of
papers detailing this sensitivity to vibration and how
such information is vital to the way scorpions hunt
(Brownell, 1977, 1984).  Scorpions can determine with
remarkable accuracy both the direction of and distance
to the origin of a set of waves.  Brownell reports that
within a distance of 20 cm these estimates are reliable
enough to capture a prey item in a single movement, and
that signals generated from as far away as 50 cm can be
sensed and used for hunting (Brownell, 1977).

This ability is made possible by the wave conduction
properties of sand.  Unlike many other solids, where
seismic velocities are typically on the order of several

kilometers per second (Manghnani & Ramanananto-
andro, 1974), measured velocities in unconsolidated
sand are closer to 40–120 m/s (Brownell, 1977) with a
theoretical minimum of 13 m/s, as reported by Bachrach
et al. (1998).  Nervous systems were once thought to be
too insensitive to discern the differences in arrival times
of waves with the greater velocities measured in solids
(Brownell, 1984).  Accordingly, when an earthquake
strikes, a human can tell when the seismic waves have
passed by feeling the “shaking” of the ground, but
cannot determine which leg felt the wave first.  No
known example exists of an organism with sufficient
resolution to use mechanical vibrations in a solid
substrate to orient itself.  In sand, however, the lessened
velocity of the waves allows the scorpion to judge the
passing of the wave front across each of its legs, making
sand a plausible medium for transmitting a biologically
useful and unique sensory cue.

Inspired by the ability of a scorpion to triangulate the
position of an object of interest based on vibration, we
became interested in devising a method of tracking the
scorpion itself in a similar manner—a case of hunting
the hunter, so to speak.  With an array of sensors
sufficiently sensitive to resolve the seismic waves
generated by a scorpion’s footsteps, it seems possible
that one could track the movements of a scorpion in a
non-invasive way.  Traditional approaches to monitoring
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such movements use a low-light or IR camera for
filming.  With such methods, however, a certain amount
of light is necessarily introduced into the environment.
In experiments where total darkness may be desired to
limit the scorpion’s reliance on visual cues, no
completely satisfactory method exists for determining
the position and movement of the study organism.  With
vibration sensors buried within the substrate,
measurements would be taken in a passive way,
eliminating the need for light sources or other behavior-
altering stimuli.  It has been the focus of this project to
determine if such a technique can be developed, based
on preliminary experimentation with inexpensive
materials.

Piezoelectric materials

Piezoelectric crystals are transducers that convert
mechanical energy into a voltage and vice versa (Mason,
1950).  As such, they can be used as sensors by pro-
ducing a voltage proportional to the amount of strain
applied or, with applied voltages they can be used as
micromanipulators or motors.  The major characteristic
common to all materials exhibiting the piezoelectric
effect is the lack of a center of symmetry in the crystal
structure (Mason, 1950).

These materials are quite common, being used in such
varied applications as crash sensors in automobiles,
micromanipulators, “key finders” activated by whistling,
and in electronic circuitry as filters for eliminating
extraneous signals (Mason, 1950; Anonymous, 2004).
For our purposes, the most appealing characteristic of
these materials is their acute sensitivity, which makes
them a candidate for the sensors required to register the
very low energy waves that will be produced by a
scorpions footsteps.

Piezoelectric materials can be specially manufactured
to suit a particular application.  As an inexpensive
alternative, we have been using materials harvested from
pre-existing commercial sources (see Methods).

Theory of triangulation

Theoretically, to determine the position of a scorpion,
one needs at least three transducers arrayed so as to
measure the passing waves from three different
positions.  The transducers are only able to measure the
difference in arrival times of various waves, but from
this information two methods for determining the
position of the scorpion are available.

The first takes advantage of the fact that packets of
waves are typically produced when the surface of the
substrate is disturbed.  Traditionally, these packets are
referred to as primary, secondary, and long waves.  Each
has a characteristic transmission velocity and thus the
tranducer will register their passage at different times—

first the primary wavefront, then the secondary, and
finally the long waves.  If the waves have traveled any
appreciable distance, the temporal separation between
the arrivals of the various waves should be measurable.
The farther the waves have had to travel, the greater the
separation in time between their respective arrivals.
This separation is predicted to vary linearly with
distance traveled, but can appear nonlinear if the
distances and depths of transmission are great.  The
latter factor involves the increasing velocity of the
waves with depth, due to the increased compression of
the substrate (Longwell & Flint, 1955).

A typical signal from a piezoelectric transducer
registering surface waves is pictured below:

Here, the first few spikes likely represent the passage
of compression waves, whereas those that follow are
probably due to Rayleigh waves (Mason, 1950).
Assuming one can accurately determine the difference in
arrival times of these two sets of waves, one can
calculate the total distance they have traveled.

Assuming that the increase in separation of the wave
fronts is linear with respect to the distance the waves
have traveled, one can calculate the distance from their
origin to the receiver by solving the following equation
for X:

X / Vs - X / Vp = t
where X = the distance from the origin to the receiver

Vs  = the velocity of the second wave to arrive
Vp  = the velocity of the first wave to arrive
t = the time between the arrival of the two waves

This distance can be represented graphically by a
circle of radius X that is centered on the receiver,
signifying that the origin of the waves could have been
anywhere a radial distance of X from the receiver.  If
three receivers are used, and three such distances are
derived, one can triangulate the position of the scorpion
by determining the intersection of the three circles:
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Where:
P1, P2, P3  = Piezoelectric receivers 1, 2, and 3
S = Source of the disturbance

We did not explore this approach for two reasons.
First, it relies on the ability to precisely identify the
arrival of at least two separate wave types.  As will be
discussed, one of the greatest difficulties encountered
thus far is judging precisely the arrival of a single
wavefront.  Making two of these judgments for each
measurement compounds the difficulty.  Second, this
approach will require that, beyond the use of surface
waves, the more ephemeral compression waves be used.
Compression waves spread in three dimensions, as
opposed to surface waves that are largely two
dimensional, and thus suffer from geometrical spreading
to a greater degree than their surface counterparts.
Essentially, the energy that interacts with a given
receiver diminishes far more quickly with compression
waves, making them hard to measure except at close
range.

The second approach that can be used to determine the
scorpion’s position involves looking at the time
difference of arrival of the same wave packet at each of
the three receivers.  One might, therefore, track the
arrival of the Rayleigh wave front as it passes across
each of the receivers.

If, for example, the source of the waves is equidistant
from two receivers, the waves should arrive at the same
time.  If the source is closer to one receiver than the
other, the wave packets will arrive first at the nearer of
the two.  More quantitatively, for receivers called “1”
and “2,” placed at “p” and “-p” on the x-axis
respectively, the radial distance from any point in the x-
y plane to the first receiver can be expressed as:

R1 = SQRT [(x-p)2 + y2]

-p +p

Where:
R1 = the radial distance between the source and the

first receiver (P1)
x = the Cartesian coordinate of the scorpion on the

x-axis
p = the known position of the receiver (P1 or P2) on

the x-axis
y = the Cartesian coordinate of the scorpion on the

y-axis

The distance to the second receiver is thus

R2 = SQRT [(x+p)2 + y2]

The difference in the distances is

R2 - R1 = SQRT [(x+p)2 + y2] - SQRT [(x-p)2 + y2]

This represents the extra distance the waves must
travel to reach the second receiver after contacting the
first.  This distance can also be expressed as

V * t = R2 - R1 = SQRT [(x+p)2 + y2] - SQRT [(x-p)2 + y2]

Where
V = the velocity of the wave used for the calculation
t = the time difference between the arrivals at the

two receivers

This yields a relationship between the arrival time
difference and the x and y position of the scorpion.  The
equation itself is that of one-half of a hyperbola, as is
more easily seen when rewritten in the more familiar
form :

           x2       -          y2            =   1
        t * v/2        p2 - t * v/2

Where
t, p, and v are constant
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A hyperbola describes the set of points for which the
absolute value of R2 - R1 is constant (Demana & Waits,
1990).  In our case, we are not concerned with the
absolute value of R2 - R1 but rather the true value.  A
positive value for this difference indicates that the
scorpion is closer to P1, whereas a negative value
indicates the scorpion is closer to P2.  Thus, when
plotting the graph of the hyperbola, only half of the
points are included; those on the side of the conjugate
axis shared with the closest receiver.

For any given time difference between the arrivals at
two receivers, a series of possible origination points are
found by plotting the half of the hyperbola that used the
nearest receiver as a focal point.  If three receivers are
used and the time differences are found between two
pairs, two hyperbolas can be plotted.  The intersection of
these hyperbolas is the origin of the wave fronts.

Representation of the intersection of two hyperbolas
generated by the time differences between P1 - P3 and
P2 - P3 (the third possible hyperbola is not pictured).
Here,

S = Position of the scorpion
P1 = Receiver 1
P2 = Receiver 2
P3 = Receiver 3
R1 = Distance between S and P1
R2 = Distance between S and P2
R3 = Distance between S and P3

Assuming that sensors are sensitive and precise
enough to register the vibrations produced by the
walking of a scorpion, a series of equations similar to
those above could be solved to arrive at a position in the
defined Cartesian coordinate system that represents the
origin of the waves and thus the position of the scorpion
at that moment.

Methods

To develop a reliable system of triangulation for
tracking a scorpion, the piezoelectric receivers must be
both sensitive and reproducible.  Various inexpensive
commercial sources of piezoelectric materials were
explored including those harvested from an antiquated
brand of phonograph cartridge from the Astatic
company, and those taken from two brands of electric
lighters.  Other sources have been examined but not
tested to this date.

Each transducer was assessed for sensitivity and
reproducibility to a signal generated by disturbing the
surface of the sand.  As this project is still in its trial
stages, no single rigorous assay has been developed for
comparing the performance of the various piezoelectric
materials or determining the effect of the various
alterations made to improve the setup.  Most of the
“data” to this date are either qualitative or based on
simple voltage or signal-to-noise ratio comparisons.

The outputs of the transducers were amplified by an
AM Systems differential AC Amplifier (Model 1700)
and converted to a digital signal by a 1401-plus Analog
to Digital Converter (CED, Cambridge, England).  Spike
II (CED) was used as the data acquisition and analysis
software package.

Sand used in these experiments was collected from
sandy regions of the Northern Chihuahuan Desert near
Kermit, Texas, from areas with healthy populations of
sand scorpions (Paruroctonus utahensis, in particular).
Several small containers for this sand were experimented
with, and the best results were achieved in a thick
(approximately 2.5 cm) Styrofoam container, with a
square internal diameter of 35 cm, filled with sand to an
average depth of 20 cm.  Good results were also
achieved in an electrically grounded metal cookie tin of
about 30 cm circular diameter and an average sand depth
of 15 cm.

Several methods were used to disturb the surface of
the sand, ranging from driving the tip of a pen into the
surface, to dropping a small weight from a known
height, to allowing a scorpion to walk across the surface.

To test the characteristics of each piezoelectric
material, some effort was required to standardize the
measurements and to improve the between-trial
reproducibility.  Steps were taken to filter out extraneous
noise, adjust amplification parameters, and improve the
sensitivity of the transducers themselves.

Results & Discussion

The following factors had the most significant effects
on the sensitivity and reproducibility of measurement:
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 Bandpass filter of the signal from 300–500 Hz
to capture the major frequency bandwidth for
compression and Rayleigh waves in sand.

 Further insulation of the sandbox from
extraneous vibrations.

 Use of a resistor/capacitor (RC) filter to
attenuate unwanted frequencies.

 Elimination of unnecessary electromagnetic
field effects from the environment.

 Reduction of amplification of the signal to
prevent saturation of the amplifier.

 Increasing of the exposed area of the
piezoelectric receiving element to improve
sensitivity.

Bandpass filtering

The greatest improvement to the signal came by
limiting the frequency bandwidth used for amplification.
For the AM Systems amplifier, the high pass filter
ranges from 0.1 Hz to 300 Hz, and the low pass filter
ranges from 500 Hz to 20,000 Hz.  With the high pass
filter set at 0.1 Hz and the low pass filter set at 20,000
Hz, the signal drifts over a wide range, and distinct wave
pulses attributable to a stimulus cannot be identified.
Brownell (2001) states that in sand the majority of the
signal strength for compression and Rayleigh waves lies
in the 300–500 Hz range for distances greater than 10
cm and up to 5000 Hz for lesser distances.  On the
assumption that either compression or Rayleigh waves
would be valuable for triangulation purposes, the signals
from the receivers were band passed filtered between
300 to 500 Hz.  The result was immediately apparent,
yielding a vastly improved signal.  It was noted, by
independently varying the high and low pass filters, that
most of the noise and “drift” was a result of low
frequencies.  Thus, a high pass filter setting of 300 Hz
was necessary, while filtering above 500 Hz was less
important.  The figure below shows an example of signal
improvement with filtering:

Insulation of the apparatus

Most measurements were taken with the sandbox atop
a thick foam insulation pad.  This reduced the effects of
building vibrations but did not completely eliminate
them.

To further improve insulation from vibration, the
apparatus was placed atop an inertial mass (a very heavy
metal sheet) supported by four rubber racquet balls.
Theoretically, this should eliminate high frequency noise
as the inertial mass will resist high frequency oscillation.
The effect of this step was not apparent and not
seemingly worth the effort of involving the awkward
inertial mass.  This follows along with the observations
made during bandpass filtering, that the lower
frequencies had a greater effect on signal quality and
that high-frequency noise is either not present, is
attenuated by the sand, or does not seem to effect
measurements.

RC filtering

Several trials were conducted using an RC filter as a
low and a high pass pre-filter.  Unfortunately, during
these measurements, the between-trial reproducibility
remained poor.  Thus, measurements could not be
compared for a single piezoelectric receiver with and
without filtering, but rather simultaneous measurements
between two receivers (one with an RC filter and the
other without) were made.  Afterward, the filter was
switched between the receivers to control for effects
other than the filtering.

Following up on similar experiments previously
conducted by Stephens & Gaffin (2000), a 99 kohm
resistor and a 0.01 microfarad capacitor were used for
the filter.  For the simple setup we used, frequencies
above or below the time constant, or “break point” of the
RC circuit will be attenuated.  The break point for this
RC pair is 1010.1 Hz.  Given the preferred frequency
bandwidth of 300–500 Hz, this filter will likely work
best as a low pass filter.  This is confirmed by cursory
examination of the effects seen when the filter was used
as a high-pass filter; signal quality was either reduced or
seemingly unaffected.  However, rigorous testing using
the device as a low pass filter has not been completed.  It
may also be desirable to adjust the resistance and
capacitance values to better reflect the desired
bandwidth of 300-500Hz.

Electromagnetic field effects

Cables and wiring not associated with the
triangulation apparatus may interfere with the
measurements.  The signal-to-noise ratio improved when
all wires near the triangulation apparatus were
disconnected and removed.  The use of a loosely
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constructed Faraday cage using window screens and
aluminum foil has a yet uncertain effect.

Amplification

In each of the previous trials, results were often
qualitative or inconclusive.  This is largely the effect of
the inability to reproduce a given trial.  Signal intensity
would often change by an order of magnitude or more
on separate days, given seemingly identical circum-
stances and setup.  More problematic was the periodic
loss of signal, even in the middle of a trial, when the
spikes representing the stimuli would suddenly fail to
register regardless of how hard the sand was disturbed.
This loss of signal could be due to saturation of the
amplifier.  The amplification setting was subsequently
reduced from 10,000X to 1,000X or 100X.  This seems
to largely correct the problem.

Choice of piezoelectric material and exposed
surface area of the receiver

Experimentation with the three sources of piezo-
electric material used thus far indicates that highest
sensitivity was achieved with the Astatic phonograph
cartridge.  Piezoelectric materials were also harvested
from two brands of electric lighters: one purchased from
the local supermarket and labeled only as a piezoelectric
lighter, and the other a Scripto® brand utility lighter.
These two brands of electric lighters contained
transducers that were sensitive to the type of vibrations
being used to a distance of approximately 20 cm.  These
have therefore been abandoned without further attempts
to improve their sensitivity.  The phonograph cartridges,
as the more sensitive receivers, have been subject to
several modifications to further improve their
functionality.  Originally, they were employed using
their full casing, with the needle arm acting as the
receptor and applying pressure directly to the transducer.

After testing, the cartridges were pried open and the
transducer itself was used as the receptive element.  This
approach benefited from the increased surface area for
receiving the waves, but suffered due to the fragility of
pre-attached electrodes.  Several electrodes were torn
during handling.

Finally, the cartridge was altered by cutting away part
of one of the sides, exposing the transducer but allowing
it to remain within the stable casing.  This seems to
maximize the performance of the receivers while
protecting the electrodes.

The best signals produced are sufficient to resolve a
clear signal of a pencil driven into the sand at distance of
more than 0.5 m.  Unfortunately, they cannot, except in
the very near field, resolve the footsteps of a scorpion
above the baseline of background noise.  For now,
triangulation of a more robust signal (pencil tap) is being
pursued to determine how accurately the triangulation
can be performed assuming a sufficient signal.  Once the
technique is perfected, new sources of piezoelectrics will
be sought.  It may prove necessary to buy directly from a
manufacturing company to achieve the necessary
sensitivity.

Remaining obstacles

Having resolved a majority of the problems involved
in achieving a clear signal, the greatest remaining
problem is interpreting these signals.  The signal is
assumed to be composed of several different wave types,
however, the beginnings and ends of each are difficult to
precisely identify.  Attempts to determine, by hand, the
velocity of the respective waves based on time-of-arrival
measurements failed to achieve a precision of even tens
of meters per second.  The principal error was the
identification of the arrival of the wave front.
Techniques for such identification must be well known,
as seismologists routinely make such determinations
(Longwell & Flint, 1955).  Once we are able to better
estimate the time of arrival of the waves, we will be able
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to begin manual triangulation. When the technique
proves reliable and accurate, the system can be
automated and put into practice.
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Surface activity, biomass, and phenology of the striped
scorpion, Centruroides vittatus (Buthidae) in Arkansas, USA

Tsunemi Yamashita1

1Department of Biological Sciences, Arkansas Tech University, Russellville, Arkansas 72801, USA

Summary

A population of the striped scorpion, Centruroides vittatus (Buthidae) was monitored for four years at an upland site
in Pope County, Arkansas, USA. This surveillance was conducted to better understand the scorpion’s surface
activity, feeding rates, cannibalism, and biomass. The survey results indicate that scorpions are active at this site
from April to November, with male and female density generally equivalent during the surveyed months. For 2000-
2001, the calculated density/100 m2 was 2.92 and the population biomass was 0.133 kg/ha. In 2003, the calculated
density/100 m2 was 2.41 and the population biomass was 0.111 kg/ha. In 2001 a Peterson mark/recapture estimate
for adults was 140 individuals in the study site (SE = 85-276). A 2003 Jolly-Seber mark/recapture estimate for
adults was 110 (SE=15-434). Females with young were observed in June, July, and August. The calculated feeding
rate was 0.0-11.5% per survey night and the cannibalism rate (% of diet) was 9.5%. Lastly, no matings were
observed during the survey period.

Introduction

Scorpions have been shown to be model research
organisms for desert ecosystems (Polis, 1990, 2001).
With their high density in deserts, ease of detection with
ultraviolet lights, and external prey digestion, they have
contributed greatly to the understanding of energy flow
and other ecological factors in these environments. In
spite of the large number of studies in deserts and other
arid regions, scorpion biology in other terrestrial systems
has not been well studied. In particular, scorpions in
forested or semi-forested ecosystems of the eastern and
midwestern United States are poorly understood
although several species exist in these areas, e.g.,
Centruroides vittatus (Buthidae) and Vaejovis
carolinianus (Vaejovidae) (Shelly & Sissom, 1995).
Species of the genus Centruroides are well suited for
ecological study as they can exist in a wide range of
ecological habitats and may encompass a large
geographic range. In this paper, I summarize surface
activity patterns, density and biomass, and aspects of
feeding biology for the striped scorpion, Centruroides
vittatus (Say, 1821) in northwestern Arkansas. This
scorpion encompasses a large geographic area that
includes Texas, eastern New Mexico, southern
Colorado, Kansas, southern Nebraska, southern
Missouri, a small portion of western Illinois, western
Arkansas, western Louisiana, and Oklahoma (Shelly &

Sissom, 1995). In several states, Centruroides vittatus is
the only scorpion reported: Kansas, Nebraska, Missouri,
Illinois, Arkansas, and Oklahoma. Ecological studies of
this scorpion were conducted in west Texas (Brown et
al., 2002) and southern Texas (McReynolds, this
volume), but none have investigated the biology of this
species in more temperate climates.

Methods

Study site

The site selected for the study is located in Pope
County, Arkansas. The study site is included within a
large south facing rocky upland semi-forested area
(study site = 4500m2) with exposed sandstone substrate
(37% unforested area). The forest in the study site is a
typical upland habitat found in Arkansas’ Interior
Highlands that includes hot, dry glades with a broken
Post Oak (Quercus stellata), Shortleaf Pine (Pinus
echinata), and Cedar (Juniperus ashei) canopy and
fauna characteristic of more western regions (Trauth et
al., 2004). This area receives an average of 123.42
cm/year with an average July high temperature of 27.5
°C and an average January low temperature of 3.8°C
(NOAA, 2002). The study site area measurements were
taken with a Trimble GPS Pathfinder System and
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analyzed with the Trimble TSC1 Asset Surveyor
software.

Scorpions were monitored at night with UV lights
from the year 1999 through 2003. As the first survey
years encompassed less of the active months of the
scorpion, the data for the density and population biomass
were taken from years 2000 and 2003 (June or April
through November). Each week during the scorpion’s
active year, data were collected on number of each sex
observed, location and activity, and feeding and prey
type. Feeding rate was calculated as the proportion of
individuals observed that were feeding on a given survey
night (Polis, 1979). Cannibalism was calculated as the
percentage of the diet that included conspecifics.
Individuals were approximately categorized during the
surveys as adults, juveniles, and second instars.
Juveniles were those individuals that appeared markedly
smaller than adults but were much larger than second
instars and most likely represent third or fourth instars.
These observations totaled to 69 survey dates with 2539
total scorpions (2308 adults) observed in the study.

I summarized the data as surface density/100 m2,
surface activity as a function of temperature, male versus
female activity (actively moving vs. sessile), micro-
habitat type the scorpion was found in (on rocks, on the
substrate, in grass, and in trees). In addition, the surface
density was calculated from nightly survey data. This
calculation was done to provide a comparable estimate
to Brown et al. (2002).

 The population biomass for 2001 and 2003 was
calculated from a mark/recapture adult density estimate
(both sexes) conducted with a Peterson method for
closed populations in June 2001 and a Jolly-Seber
method for open populations in August 2003. The
mark/recapture surveys were conducted over four
successive nights in an attempt to obtain a robust
recapture rate. In 2001, I did not mark individuals for
separate identification. In 2003, however, I marked each
individual with unique paint marks for individual
identification. To determine the number of each sex in
the study site, the density estimate provided through the
mark/recapture methods was adjusted with the average
percentage of each sex represented in the nightly
observations. The calculated number of each sex was
then multiplied with average adult mass of each sex to
determine total mass of each sex in the study site. After
the total population mass of each sex was added
together, the number was adjusted to produce total
biomass (kg/ ha). Biomass estimates were also produced
from nightly observation data alone to allow comparison
with other studies. Lastly, the feeding regime was
determined with summarizing prey type, feeding rate,
and cannibalism rate (percent of diet).

Results

Surface density per 100 m2

Scorpions were found on the surface during the UV
night surveys from April to early November. The mean
surface density from nightly survey data alone for 2000
was 0.818 individuals/100m2 and for 2003 it was 0.456
individuals/100m2. The range in surface density was
0.250 - 1.690 for 2000 and 0.044-1.093 for 2003 (Figs. 1
and 2, respectively). The estimated surface density
calculated from the mark-recapture methods was 2.92
individuals/100m2 for 2000 and 2.41 individuals/100m2

for 2003. In both years, two peaks were seen in surface
density. The first occurred in the spring (April or June)
with the second peak in October. Generally, surface
activity is most likely a response to ambient temperature
(see below). Although no scorpions were recorded as
active on the surface during December through January,
rock flipping surveys did yield individuals during warm
days in these months.

Juveniles and second instars showed lower average
surface densities of 0.061/100m2 (2000) and
0.064/100m2 (2003) (Figs. 3 and 4). The ranges for these
individuals were 0.021-0.376 (2000) and 0.022-0.219
(2003). In 2000, juveniles were seen from July to
October with a peak in early July. Second instars were
seen from late June to early October with a peak in late
June. In 2003, juveniles were seen April through
November with a peak in early October. Here, second
instars were active during the same months as 2000 with
a peak in numbers in early July.

Surface activity and air temperature

Surface activity appears to be correlated with
environmental temperature (Fig. 5). Scorpion were not
activity at surface temperatures below 10°C and reached
the highest surface densities between 20° and 30°C.
With regard to temperature, female and male surface
activity do not appear to be significantly different from
each other (Figs. 6 & 7).

Male and female variation in surface movement
and location

When found on the surface, scorpions were
categorized as actively moving on the surface or sessile.
Overall, 42.97% of scorpions were observed actively
moving on the surface. Males were observed more active
than females with 54.40% of males (n=546) versus
34.92% of females (n=776) moving on the surface.
Marked males also support the higher male surface
movement observation as several males were also seen
outside  the  study  area  many  meters away  from where
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Dates Scorpions Observed

Fig. 1.  Scorpion surface activity throughout
the 2000 survey year.

 

they were marked. In contrast, several marked females
were observed for a few weeks just meters from where
they were marked. For example, in the weeks following
the 2003 mark/recapture analysis, only one male was
recaptured in the study site whereas 12 females
recaptures were noted.

Adult scorpions were observed on several
components of their environment. Individuals were
considered above ground if they were observed greater
than five centimeters above the substrate. This criteria
was applied to separate individuals moving through
grass and leaf litter from those further above the
substrate. Although they were most prevalent on the
ground on rock or leaf litter substrate (80.33%, n=961),
they were also observed on top or the side of rocks
(35.80%), in grass clumps or on grass blades above the
ground (10.61%), and on trees (9.05%). These data
represent a subset of the total observations that
specifically noted where scorpions were found in a
microhabitat. A greater percentage of females were
observed above the ground on trees and grass than males
(females: 3.22% on trees and 1.26% on grass, n=1273;
males: 1.35% on trees and 0.29% on grass, n=1035). In
addition, the overall percentage of adults in trees was
3.68%. Lastly, only 1.56% of all adults observed were
seen on the open rock substrate away from shelter (e.g.,
rocks, trees, and leaf litter; n=2308).

Mark/recapture population density estimates and
biomass

The 2001 Peterson mark/recapture survey resulted
in a population size of 140 individuals in the study site
(SE=85-276). The Jolly-Seber survey in August 2003
produced a density of 110 individuals (SE=15-434).
These density numbers were adjusted with individual
male and female mass (0.41g and 0.49g, respectively) to
calculate a population biomass of 0.133 kg/ha for 2001
and 0.111 kg/ha for 2003. If a population biomass is
estimated with nightly survey data alone, the biomass
reduces to 0.0346 kg/ha for 2000 and 0.0195 kg/ha for
2003.

Feeding rate and prey type

The feeding rate for C. vittatus ranged from 0.0 –
11.5% with an overall average of 1.65%. Twelve
different prey items were recorded with spiders as the
most common prey item (Table 1). Cannibalism of
smaller individuals by larger individuals was observed
with a dietary of 9.30%. Cannibalism from adult males
was calculated to be higher than that from females
(7.14% versus 2.38%). Females, however, showed a
higher percentage of prey capture, excluding
cannibalism,   than  males  (50%  versus 38.1%,  n for all
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Fig. 2.  Scorpion surface activity throughout the 2003 survey year.

Dates Scorpions Observed

prey taxa = 43). No second instars were recorded
cannibalizing others of the same age class.

Prey Item Prey
Number

Percentage of Diet

Cannibalism 4 9.30
Caterpillar 5 11.63
Locust 7 16.23
Moth 6 13.95
Spider 12 27.91
Cricket 1 2.33
Beetle 1 2.33
Grub 1 2.33
Fly 2 4.65
Katydid 1 2.33
Crane Fly 1 2.33
Harvestmen 1 2.33
Other 1 2.33
Total 43

Table 1: Prey items and dietary percentage in the Arkansas C.
vittatus population.

Discussion

Surface density/100 m2 and temperature effects

The surface activity and density was lower for the
Arkansas population than other scorpion populations. In
arid regions, scorpions can be active in all months (Polis,
1980). In a west Texas population of C. vittatus,
individuals were observed in all months (Brown et al.
2002). The inactivity of the Arkansas population during
the winter is most likely due to lower temperatures
(Warburg and Polis, 1990). Polis (1980) observed that
4°C was the lower limit of scorpion activity in sandy
deserts. The Arkansas population showed a slightly
higher value of 12°C as the lowest recorded surface
activity limit. The estimated surface density of 0.818
individuals/100m2 and 0.456 individuals/100m2 falls
within recorded values from other populations (Polis,
1990; Table 6.7). However, only four of 24 recorded
scorpion densities from Polis (1990) are lower than this
population. Moreover, it is the lowest recorded
population density for a Centruroides species. Brown et
al. (2002) reported a population estimate of 7.36
individuals/100m2, 2.5X higher than that of the Arkansas
population. The lower density in this population may
stem from a shorter activity season than that observed in
more  arid  populations.    In addition,   as  this  scorpion
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Fig. 3.   Juvenile and second instar surface
activity in 2000.

 

cannot dig deep burrows to reduce climatic effects,
freezing winter temperatures and a more harsh
environment most likely serves to limit population size.
Scorpions in this study also reflected a summer activity
decrease as noted by Polis (1980), Warburg and Polis
(1990), Brown et al. (2002). In this study, the two
highest peaks in surface activity occurred in the late
spring/early summer and also in October.

Juveniles and second instars did not show activity
patterns that differed from adults although their densities
were approximately 20-30x lower than adults. Smaller,
more juvenile individuals in sand scorpion populations
exhibited reduction in surface activity overlap when
compared to adults to reduce cannibalism from adults
(Polis, 1990). The low surface activity of smaller
individuals throughout the year may produce the same
effect seen in sand scorpions to reduce cannibalism. In
addition, as the physical environment this population
occurs in is more complex than that of the sand scorpion,
more opportunity for hiding in the leaf litter substrate or
in trees exists and can reduce overlap with adults. The
substrate complexity would reduce niche overlap with
adults and may reduce the need for temporal shifts due
to predation risk.

Male and female variation in surface movement
and location

C. vittatus was more active on the surface than the
sand scorpion (42.97% versus 1.8% recorded by Polis,
1979), which supports the more errant nature of this
scorpion. As reported in the sand scorpion, male C.
vittatus were more active than females when on the
surface (Polis, 1980). This male activity is associated
with reproductive behavior as males move to seek
females for mating (Polis and Sissom, 1990). As mating
activity was not observed in this population and seasonal
spikes in male movement did not occur, I speculate prey
foraging may contribute more to male movement.
Females at the end of the activity season did show an
activity frequency similar to males. In the last week of
October in 2000 and 2003, female activity increased
from the yearly average of 34.92% to 58.91% (n=129).
For these four sampling dates, the male activity
frequency was 60.42% (n=48). These dates may reflect
increased prey foraging by both sexes or individuals
seeking over wintering sites.

Although scorpions were occasionally observed on
trees (9.05%), the majority of the time they were
observed was on the ground or close to the ground. In
the sand scorpion, 25% of prey items were carried to
vegetation   (Polis,  1979).   In   C.   vittatus,  40.91%  of
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Fig. 4.  Juvenile and second instar surface
activity in 2003.

female feeding and 10.53% of male feeding occurred
above the ground in grass or in trees (n=43); however,
females were more prevalently perched above the
ground (4.48% of all females observed) than males
(1.64% of all observed males). These data that show that
females were more likely to climb, again suggest
females may occupy a homesite and remain more
sedentary than males.

When compared to Brown and O’Connell’s (2000)
study of climbing behavior in this scorpion in west
Texas, the Arkansas population shows a reduction in
climbing behavior (19.3% and 25.2%, west TX; 3.68%
in AR). If the data are partitioned into sexes, males show
a lower percentage climbing when compared to females.
Arkansas males were observed climbing 1.64%, females
4.48%. West Texas scorpions also showed similar
percentages: females were observed on vegetation
14.58% and 24.32%, whereas males were observed on
vegetation 8.5% and 13.89% (Brown and O’Connell,
2000).

Brown and O’Connell (2000) illuminated one
potential problem in their analysis- pseudoreplication. If
scorpions are measured repeatedly, the assumption of
independence in the data set is violated (Hurlbert, 1984;
Wise, 1993). In this study, the probability of resampling
the same individual is reduced as adult recapture rates
week to week were low (1/17, 5.88% to 3/20, 15%
recaptures in 2003).

The predator avoidance strategy proposed in Brown
and O’Connell (2000) appears as the most robust
explanation for climbing behavior in Arkansas
scorpions. Ground dwelling spiders (lycosids) were the
most abundant prey item, suggesting that foraging on the
surface was more productive than foraging above
ground. Finally, the low occurrence of scorpions in open
substrate away from shelter strongly suggests predator
avoidance is an important adaptation in this population.

Mark/recapture population density estimates and
biomass

Both density estimates conducted in this study
appear similar to each other although different
assumptions are inherent in each. The slightly higher
density estimate for 2001 is also reflected in the number
of individuals observed on the surface in that year. I
speculate this population could exhibit large density
fluctuations due to year-to-year climate variation during
the winter.

The biomass data also reflect the reduced surface
density data when compared to other scorpion
populations. This population showed a biomass of 0.133
and 0.111 kg/ha (2001 and 2003 estimates, respectively).
This estimate is 3X lower than the 0.31 kg/ha overall
estimate reported in Brown et al. (2002). Again, the
lower biomass may be representative of harsher
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Fig. 5. Total surface activity as a function of
temperature.

environmental conditions and a shorter activity season in
this population. Interestingly, average adult male mass
was similar in both the west Texas and Arkansas
populations (0.419 g and 0.41 g, respectively), but
average adult female mass was 1.5X higher in the west
Texas population (0.765 g versus 0.49 g). West Texas
female scorpions may undergo extra molts to achieve a
larger body size (Brown, pers. comm.).
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Feeding rate and prey type

The overall feeding rate for this scorpion was twice
as low as that calculated for the sand scorpion (1.65 %
versus 3.75 %) (Polis, 1979).   In spite of this difference,

 

B
BB

B

B

B

B

B
B

BB

BB

B

B

B

B

B

B

B

B

B

B

B
B

B

B

B

B

B

B

B

BB

B

B

B

B

B

B

B

B

B

B

B

B

BB

B

B

B

B

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35

M
al

e 
Su

rfa
ce

 A
ct

iv
ity

Degrees Centigrade

Fig. 7.  Male surface activity as a function of
temperature.

the highest proportion of scorpions feeding was greater
in this population than in the sand scorpion (11.5 %
versus 8.1 %). The higher overall feeding rate in the
sand scorpion may stem from larger number of days in
which the sand scorpion was feeding, i.e, the striped
scorpion experienced more poor days where no feeding
took place. In addition, cannibalism rates were
approximately the same as that reported with the sand
scorpion (9.1 % versus 9.52 %, C vittatus). The high
cannibalism rate was a surprise as buthid species are
considered semi-social and regarded as representing the
communal stage of sociality on the parasocial trajectory
(Polis & Lourenco, 1986; Polis, 1990). This scorpion in
southern populations has been found in aggregates
(McAllister, 1966) and other buthids are known to
overwinter together (Stahnke, 1966). Together with the
lower densities, population biomass, more severe
climate, and a high cannibalism rate; this population
appears to exhibit evidence of food stress.

Food stress is considered to result in higher
cannibalism rates than when prey are more abundant
(Polis, 1988). This conclusion is somewhat paradoxical
for this population as the regional ecosystem receives
over 100 mm of precipitation annually and prey
abundances could be high. The glade habitat, however,
could exhibit lower productivity due to poor soils and
the rocky substrate. The shorter activity year could result
in these scorpions experiencing a smaller seasonal
feeding window as well as greater metabolic demands to
offset the more severe environment. In addition, food
stress may be exhibited in populations that have
undergone recent expansion and then experienced
climate change. Ozark populations of the striped
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scorpion could represent those not fully adapted to
environmental conditions as they may have recently
expanded into this region during the warmer, drier
Hypsithermal Interval approximately 8,000 to 4,000
years ago with other prairie species such as the collared
lizard (Crotaphytus collaris) (Hutchison et al., 1999;
Trauth et al., 2004). A recent phylogeographic analysis
of striped scorpion populations revealed Ozark
populations are difficult to separate based upon mtDNA
analysis when compared to Texas populations, which
supports a recent expansion hypothesis (Yamashita,
unpublished data).

Conclusions

The striped scorpion (Centruroides vittatus) in
Arkansas exhibits a lower population density, biomass,
and seasonal activity compared to the west Texas
population and other reported scorpion species. In
addition, it shows high cannibalism rates.  These factors
suggest this population experiences food stress during
the year. Northern populations of this scorpion may have
recently expanded into their present location and may
experience different environmental conditions than those
present during their colonization. This climatic shift may
have resulted in these populations experiencing a more
metabolically stressful environment and has lead to food
limitation. Food stress in this scorpion may result from a
shorter feeding season and more metabolically severe
overwintering conditions than those present in southern
populations.
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Temporal patterns in microhabitat use for the scorpion
Centruroides vittatus (Scorpiones: Buthidae)

C. Neal McReynolds1
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Summary

For scorpions (e.g., Centruroides vittatus), predation risk is often associated with the lunar cycle and prey availabil-
ity with seasonal changes. When scorpions are illuminated by the moon, predation risk from nocturnal predators can
increase in exposed microhabitats. Seasonal changes in precipitation and temperature can affect prey availability and
thus microhabitat use by scorpions. Microhabitat use had a significant association with the lunar cycle for C. vitta-
tus. Scorpions were on the ground at a significantly lower frequency during the waxing gibbous moon. During the
waning gibbous moon, microhabitat use was significantly associated with moon rise. The frequency of scorpions
found on the ground decreased after moon rise. However, the frequency of prey capture was not associated with the
lunar cycle. Microhabitat use had a significant association with monthly classes. Ground use was higher during
August and blackbrush (Acacia rigidula) use was higher during March and April. Scorpion height on vegetation was
significantly different among monthly classes. Mean scorpion height was greater during April, March and October
and less during August. Prey capture was significantly associated with monthly classes. Prey capture was low during
August and high during April. Scorpion changes in microhabitat use during the lunar cycle supports a change in
behavior to reduce predation risk. However, the change in microhabitat use does not appear to require a tradeoff
between foraging success and predation risk. Seasonal changes in prey availability can explain differences in micro-
habitat use and foraging success by C. vittatus among monthly classes.

Introduction

Habitat selection by a predator often includes a trade-
off between higher foraging success and reducing the
predator’s own predation risk (Luttbeg & Schmitz, 2000;
Murdoch & Sih, 1978; Werner et al., 1983; Werner &
Hall, 1988). For scorpions, foraging success can be as-
sociated with seasonal changes in prey availability
(Polis, 1980a, 1988; Polis & McCormick, 1986a) and
predation risk from nocturnal visual predators can be
associated with the lunar cycle (Hadley & Williams,
1968; Polis, 1980a; Polis et al., 1981).

Microhabitat use by scorpions can change with the lu-
nar cycle to reduce predation risk during high illumina-
tion (see Skutelsky, 1996). Scorpions can shift nightly
activity or microhabitat use to lower predation risk with
high illumination. Neither Polis (1980a) nor Bradley
(1988) found evidence of the lunar cycle affecting scor-
pion activity. However, habitat use by adult (but not
juvenile) Buthus occitanus shifts because of the lunar
cycle (Skutelsky, 1996). Seasonal changes in tempera-
ture and precipitation can affect prey availability and

foraging success in scorpions (Polis, 1979, 1980a, 1988,
but see Bradley, 1988).

Brown and O’Connell (2000) hypothesize that Cen-
truroides vittatus (Say, 1821) (Scorpiones: Buthidae)
climb into vegetation to either decrease predation risk or
increase foraging success (Fig. 1). If habitat selection by
the striped bark scorpion C. vittatus is to reduce risk of
predation during high illumination from the moon, then
scorpions should shift to less exposed microhabitats
during the waxing gibbous phase of the lunar cycle and
after moon rise during the waning gibbous phase. Scor-
pions can be found in more open microhabitats during
waxing and waning crescent phases with low illumina-
tion from the moon. If foraging success declines as a
tradeoff for lower predation risk during the lunar cycle,
then foraging success of scorpions should be lower dur-
ing waxing gibbous phase when predation risk is high. If
habitat selection by C. vittatus is because of seasonal
changes in weather and/or prey availability, then there
should be seasonal changes in microhabitat use, scorpion
height on vegetation and foraging success of scorpions.
Can seasonal changes in prey availability explain these
patterns?
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Figure 1: Centruroides vittatus on Texas
prickly pear cactus (Opuntia engelmannii) fluo-
rescing under ultraviolet light.

Methods

Study animal

Centruroides vittatus (Say), the striped bark scorpion,
has a wide distribution with Laredo, Texas in the south-
ern portion of the species’ geographic range (Shelley &
Sissom, 1995). Centruroides vittatus is nocturnal with
refuges during the day in debris, beneath vegetation,
under bark and in openings in the ground. Centruroides
vittatus and other bark scorpions rarely dig their own
burrows (Polis, 1990, pers. obs.). Scorpions emerge
from their refuge only occasionally to forage (Polis,
1980a; Bradley, 1988; Warburg & Polis, 1990). Centru-
roides vittatus is active on nights of emergence on the
ground or in vegetation.

Habitat

This study was done on the campus of Texas A&M
International University (27° 34’ N 99° 25’ W), Laredo,
Texas. Laredo is in the Tamaulipan Biotic Province that
is characterized by low precipitation and high average
temperatures (Blair, 1950). The habitat of the study site

can be described as thorny brush (Blair, 1950) or chapar-
ral. Vegetation in the study site includes blackbrush
(Acacia rigidula), guajillo (Acacia berlandieri), honey
mesquite (Prosopis glandulosa), Texas prickly pear
cactus (Opuntia engelmannii), tasajillo (Opuntia lepto-
caulis), strawberry cactus (Echinocereus enneacanthus),
cenizo (Leucophyllum frutescens), guayacan (Guaiacum
angustifolium), leather stem (Jatropha dioica), lotebush
(Ziziphus obtusifolia), Spanish dagger (Yucca trecu-
leana), and other species.

Data collection

Scorpions were observed at night by locating the
scorpion fluorescing under ultraviolet light (see Sissom
et al. 1990). The data was collected from 24 February
2000–15 April 2004. Scorpion data were collected after
sunset on 211 nights between 7:30 PM CST at the earli-
est and 1:00 AM CST at the latest for an average of two
hours per night. Data collected for each scorpion ob-
served included date and time observed, species of scor-
pion, microhabitat used, the height that scorpions
climbed on vegetation, position relative to sites, prey
captured, prey taxa and behavior. Local temperature and
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______________________________________________________________________________

Planned Comparisons G df P
______________________________________________________________________________

Ground vs. Vegetation 18.319 3 P < 0.001
Cactus vs. Grass vs. Tree-Shrub 8.093 6 ns
Shrubs vs. Trees 5.582 3 ns
Blackbrush vs. Other Trees 1.725 3 ns

Total 33.719 15 P < 0.01
______________________________________________________________________________

Table 1: Planned comparisons among microhabitat classes of the contingency table for microhabitat vs. lunar cycle classes. ns =
not significant. See Fig. 2.

humidity were collected each night using a portable
weather meter, Kestrel® 3000.

The microhabitat data were placed in six classes:
ground, grass, cactus, shrub, blackbrush and other trees
for the comparisons in this paper. The scorpion was con-
sidered on the ground if on soil, leaf litter, or rocks.
Grasses were not identified to species, but all other
plants were identified to species if possible. Trees in-
cluded many woody species that are rarely taller than 2
meters. Shrubs included a variety of perennials such as
cenizo, guayacan, leather stem, lotebush and Spanish
dagger. Annuals were rare in the habitat except for
ephemeral wildflowers after heavy rains and scorpions
rarely climbed these wildflowers.  Prey capture classes
included 0 (= no prey capture) and 1 (= prey capture).
Prey capture by scorpions can be observed as scorpions
digest externally, thus prey items can be observed in
pedipalps or chelicerae (Polis, 1979).

Lunar cycle

Microhabitat use and prey capture were compared
during the lunar cycle. The lunar phase and time of
moon rise or set were recorded for each collecting night
from the U. S. Naval Observatory Astronomical Appli-
cation  internet  site  ( http://aa.usno.navy.mil/ data/docs
/RS_OneDay.html). Four lunar cycle classes were used:
waxing crescent, waxing gibbous, waning gibbous and
waning crescent. The waxing crescent class had 0-50%
illumination of the moon disk and included the first
quarter moon with 50% illumination. The moon can set
during fieldwork on nights of the waxing crescent moon.
The waxing gibbous class had 50-100% illumination and
included the full moon with 100% illumination. The
moon had already risen during fieldwork of the waxing
gibbous moon. The waning gibbous class had 100-50%
illumination and included the last quarter moon with
50% illumination. The moon can rise during fieldwork
of the waning gibbous moon. The waning crescent class

had 50-0% illumination and included the new moon with
0% illumination. The moon had already set during
fieldwork of the waning crescent moon. An additional
comparison of microhabitat use by scorpions before and
after moon rise during the waning gibbous moon was
performed to compare a period of no illumination from
the moon to a period with potentially high illumination
from the moon.

Seasonal

Microhabitat use, scorpion height on vegetation, and
prey capture were compared during the year to deter-
mine seasonal patterns. There were ten monthly classes.
Both January and February (J-F) and November and
December (N-D) were pooled into a single class because
of low sample sizes.

Data analyses

Comparisons of relative proportion in a contingency
table of a microhabitat use or prey capture used the ad-
justed G-test for independence. A unplanned tests of
homogeneity were performed on microhabitat vs. month
contingency table to determine seasonal patterns of mi-
crohabitat use (Sokal & Rohlf, 1981). Orthogonal
planned comparisons of microhabitat were performed on
microhabitat vs. lunar cycle and microhabitat vs. month
contingency tables. Orthogonal planned comparisons of
monthly classes were performed on prey capture vs
monthly class contingency table. The first planned com-
parison was based on homogeneous classes from the
microhabitat vs. month contingency table. The heights of
scorpions on vegetation were compared using the
Kruskal-Wallis test (corrected for ties) because the class
variances were heterogeneous.  Dunn’s multiple tests
(unplanned comparison) were performed on scorpion
height data with the overall P < 0.05.
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Figure 2: The proportion (%) of Centruroides vittatus using different microhabitats among lunar cycle classes. The frequency
of microhabitat use was significantly different among lunar cycle classes (G = 33.719, P < 0.01, df = 15, n = 1292). See Table 1
for planned comparisons among microhabitat classes.

Results

Lunar cycle

Microhabitat use was significantly different among
lunar cycle classes (Fig. 2). Ground class was signifi-
cantly different from pooled vegetation classes in
planned comparison (Table 1). The lowest frequency of
scorpions on the ground was during the waxing gibbous
phase. Microhabitat use was significantly different
among moon rise classes during the waning gibbous
phase (Fig. 3). In planned comparisons, difference in
ground and pooled vegetation classes was marginally
significant and grass and cactus classes were signifi-
cantly different from the pooled shrub-tree classes (Ta-
ble 2). The lowest frequency of scorpions on the ground
and the highest frequency of scorpions on grass or cactus
was after moon rise with the potential of more illumina-
tion. Frequency of prey capture was not significantly
different among lunar cycle classes (Fig. 4).

Seasonal

Microhabitat use was significantly different among
monthly classes (Fig. 5). The three homogenous sets
(January-June, May-August and September-December)
of monthly classes were determined from unplanned
comparisons. Ground class was significantly different
from pooled vegetation classes (Table 3).  Cactus and
grass classes were significantly different from pooled
tree-shrub classes. The blackbrush class was signifi-
cantly different from other trees. The lowest frequency
of scorpions on the ground and the highest frequency in
grass and cactus was during September-December. Trees
were utilized at a low frequency during July and August.
Blackbrush was utilized at a high frequency during
March and April. Average scorpion height on vegetation
was significantly different among monthly classes (Fig.
6). In unplanned comparisons of medians, scorpion
height for March, April and October were significantly
higher than August. Frequency of prey capture was sig-
nificantly different among monthly classes (Fig. 7). In
planned  comparisons,   January-June,   July-August and
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Figure 3: The proportion (%) of Centruroides vittatus using different microhabitats before or after moon rise during the waning
gibbous phase. The frequency of microhabitat use was significantly different among moon rise classes (G = 11.314, P < 0.05, df
= 5, n = 335). See Table 2 for planned comparisons among microhabitat classes.

______________________________________________________________________________

Planned Comparisons G df P
______________________________________________________________________________

Ground vs. Vegetation 3.717 1 0.05 < P < 0.1
Cactus vs. Grass vs. Tree-Shrub 7.388 2 P < 0.05
Shrubs vs. Blackbrush vs. Other Trees 0.210 2 ns

Total 11.314 5 P < 0.05
______________________________________________________________________________

Table 2: Planned comparisons among microhabitat classes of the contingency table for microhabitat vs. moon rise classes dur-
ing the waning gibbous phase. ns = not significant. See Fig. 3.
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Figure 4: The proportion (%) of Centruroides vittatus with or without prey among lunar cycle classes (0 = no prey capture, 1 =
one prey captured). The frequency of prey capture was not significantly different among lunar cycle classes (G = 6.075, ns, df =
3, N = 1279).

______________________________________________________________________________

Planned Comparisons G df P
______________________________________________________________________________

Ground vs. Vegetation 98.894 9 P < 0.001
Cactus vs. Grass vs. Tree-Shrub 35.356 18 P < 0.01
Shrubs vs. Trees 4.801 9 ns
Blackbrush vs. Other Trees 35.796 9 P < 0.001

Total 174.847 45 P < 0.001
______________________________________________________________________________

Table 3: Planned comparisons among microhabitat classes of the contingency table for microhabitat vs. monthly classes. ns =
not significant. See Fig. 5.
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Figure 5: The proportion (%) of Centruroides vittatus using different microhabitats among monthly classes. The frequency of
microhabitat use was significantly different among monthly classes (G = 174.847, P < 0.001, df = 45, n = 1292). Homogeneous
(unplanned comparisons) sets of monthly classes included January-June (classes J-F, M, A, M and J); May-August (classes M, J,
J and A); and September-December (classes S, O and N-D). See Table 3 for planned comparisons among microhabitat classes.

______________________________________________________________________________

Planned Comparisons G df P
______________________________________________________________________________

J-J vs. J-A vs. S-D 10.752 2 P < 0.01
J-F vs. M-A vs. M-J 4.416 2 ns
March (M) vs. April (A) 0.906 1 ns
May (M) vs. June (J) 0.111 1 ns
July (J) vs. August (A) 3.885 1 P < 0.05
S-0 vs. N-D 0.254 1 ns
September (S) vs. October (O) 0.524 1 ns

Total 20.848 9 P < 0.05
______________________________________________________________________________

Table 4: Planned comparisons among monthly classes of the contingency table for prey capture vs. monthly classes. ns = not
significant. See Fig. 7.
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Figure 6: Both the mean and median height of Centruroides vittatus on vegetation among monthly classes. Scorpion height was
significantly different among monthly classes (Kruskal-Wallis Statistic: KW = 70807 (corrected for ties), P < 0.001. Standard
error bar (± 1 SE) and sample size (n) were shown for the mean of each class. Medians with the same letter were not significantly
different in unplanned comparisons using Dunn's multiple tests.

September-October pooled classes were significantly
different (Table 4). The planned comparison among the
July and August classes was significantly different.

Discussion

Centruroides vittatus shows temporal shifts in micro-
habitat use. Scorpions shift to vegetation during the
waxing gibbous phase and after moon rise during the
waning gibbous moon. The change in microhabitat use

during the lunar cycle indicates shifts in behavior to re-
duce predation risk when the illumination from the
moon is high. Scorpions in the open (e.g., ground) could
be more visible to nocturnal visual predators while
climbing onto cactus, grass and other vegetation can
provide shelter from predators (see Polis et al. (1981) for
potential predators). Alternately, scorpions can reduce
predation risk by moving beneath vegetation or remain-
ing (or returning) to refuge during high illumination.
Adult  Buthus  occitanus move under vegetation instead
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Figure 7: The proportion (%)
of Centruroides vittatus with
or without prey among mon-
thly classes. The frequency of
prey capture was significantly
different among monthly class-
es (G = 20.848, P < 0.05, df =
9, n = 1279) See Table 4 for
planned comparisons among
monthly classes.

of climbing vegetation (Skutelsky, 1996). However,
Centruroides sculpturatus activity is not affected by the
lunar cycle (Hadley & Williams, 1968). Further research
needs be done to determine if C. vittatus uses less ex-
posed microhabitats (e.g., beneath vegetation) during
high lunar illumination.

The results of prey capture during the lunar cycle do
not indicate a tradeoff between predation risk and for-
aging success. The prey capture by C. vittatus did not
change significantly during the periods of the lunar cycle
with high illumination from the moon (waxing gibbous
moon) when shifts to microhabitats to reduce predation
risk are predicted. Habitat selection is not always a
tradeoff between prey availability and predation risk
(e.g., widow spiders (Lubin et al., 1993)). Microhabitats
that have high prey availability can also provide protec-
tion from predators. Scorpions can forage in trees and
shrubs with high prey availability and still have low pre-
dation risk.

Centruroides vittatus is active throughout the year ex-
cept midwinter (Brown et al., 2002, unpl. data).  Micro-
habitat use and foraging behavior of C. vittatus changes
with seasonal change. The pattern is similar to the pat-
tern of activity and feeding by other scorpions such as
Paruroctonus mesaensis (Polis, 1979, 1980a). Seasonal
changes in temperature and precipitation can affect prey

availability and scorpion activity (Polis, 1980a but see
Bradley, 1988). An important factor for changes in for-
aging by P. mesaensis is precipitation (Polis, 1988) and
perhaps important in foraging by C. vittatus as well.
Further research will be performed to determine the ef-
fect of seasonal changes (e.g., precipitation) on prey
availability in blackbrush and microhabitat use by C.
vittatus.

Seasonal changes do not just effect prey items cap-
tured but also where C. vittatus forages. Centruroides
vittatus can forage and feed on the ground. Important
prey items handled on the ground are ants and termites.
However, scorpions feeding on ants and termites can
rarely be observed because of the prey’s small size, but
scorpions are often observed near ant trails or nest
openings and termite mud tubes (pers. obs.). Centruroi-
des vittatus can forage on the ground and feed in the
vegetation. Carrying captured prey into vegetation can
be to reduce risk of predation (Brown & O’Connell,
2000). The risk of predation can be from intraguild
predators (Polis, 1980b; Bradley & Brody, 1984; Polis &
McCormick, 1986b, 1987). For C. vittatus, the prey
captured on the ground and carried into vegetation are
often intraguild prey (scorpions, spiders (Fig. 8), solpu-
gids and centipedes) (McReynolds, in prep.). Seasonal
factors  can  also effect the  type of prey captured includ-
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Figure 8: Centruroides vittatus with wolf spider (Lycosidae)
as prey.

Figure 9: Centruroides vittatus with caterpillar (Lepidoptera)
as prey on blackbrush (Acacia rigidula).

ing cannibalism (Polis, 1980b) predation on scorpions
(Polis & McCormick, 1987) and predation on spiders
and solpugids (Polis & McCormick, 1986b). Further

research on intraguild predation on and by C. vittatus
needs to be performed.

Centruroides vittatus can forage and feed in vegeta-
tion. An important prey item for C. vittatus is caterpillars
(McReynolds, in prep.). Caterpillars are prey items that
scorpions can encounter at a high frequency in vegeta-
tion. Centruroides vittatus feeding on caterpillars are
often associated with blackbrush (Fig. 9) (McReynolds,
in prep.). Still to be determined is how errant scorpions
search microhabitats. Brown and O’Connell (2000) sug-
gest that C. vittatus movement is a random walk with
regard to topography (ground or vegetation) but follow-
ing gradients (e.g., temperature, humidity, or prey avail-
ability) instead. Seasonal shifts in microhabitat use by C.
vittatus can be due to seasonal changes in prey avail-
ability. Budding of flowers and foliage on blackbrush in
March and April and new foliage in trees after heavy
rains in the fall can increase prey availability, and scor-
pions can climb higher into vegetation to forage for cat-
erpillars and other prey then. Caterpillars (Lepidoptera)
are important prey items in blackbrush (McReynolds, in
prep.). Do scorpions select blackbrush and other trees
when prey (e.g., caterpillar) availability is high? Further
research is needed to determine if scorpions change for-
aging behavior with seasons or prey availability and
prefer certain microhabitats.
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Summary

This paper provides a brief review of current literature on the systematics of one of the most intensively studied
scorpion genera, Euscorpius Thorell, 1876 (Scorpiones: Euscorpiidae). It is a “state-of-the-genus” report for the end
of 2004, when the systematics of Euscorpius is still far from being resolved. A number of species and “species com-
plexes” has been recently reassessed. The molecular systematic analyses published starting in 1998 addressed a
number of species and populations. The taxonomic information on Euscorpius in the most recent Catalog of the
Scorpions of the World (Fet & Sissom, 2000), as of 2004, is largely obsolete. It is especially important to further
address taxonomic complexes of Euscorpius from the Balkans and Anatolia. Currently, the genus Euscorpius in-
cludes 15 valid species, and this number is likely to increase due to the revisionary systematic work, based on both
morphological and molecular analyses.

Introduction

This paper is intended as a succinct but exhaustive
review of extensive literature on the current systematics
of the genus Euscorpius Thorell, 1876 (Scorpiones: Eu-
scorpiidae), one of the most intensively studied scorpion
genera. Morphology of a number of species and “species
complexes” of Euscorpius has been reassessed in recent
years. The molecular analyses published starting in 1998
addressed a number of species and populations. While
for some areas of the geographic range of Euscorpius we
have a relatively good idea of the number of species
present and their taxonomic identity, the situation in
other areas is not clear. Multiple subspecific forms are
described, but their validity is not clear. A wealth of
information is scattered in the literature but a compre-
hensive modern revision of the entire genus has never
been done. Nor is it an easy task since available material
in museums is uneven: some areas, especially the Bal-
kans and Anatolia, are severely undercollected.

Brief History of Euscorpius

Ecologically diverse, species of Euscorpius occupy
a variety of habitats from xeric to mesic, from the
Mediterranean shoreline to the high altitudes of the Alps,
Balkans, and Taurus. A detailed taxonomic history of
this genus is provided in Fet & Sissom (2000); for addi-
tional recent reviews see also: Fet, 2000, 2003; Fet &

Braunwalder, 2000; Fet et al., 2002b, 2003a, 2003b; Fet
& Soleglad, 2002; Gantenbein et al., 1999, 2000, 2001,
2002; Scherabon et al., 2000).

Of six species of scorpion described by Linnaeus,
one was Scorpio carpathicus from Romania (Fet et al.,
2002a, 2002b; Fet & Soleglad, 2002), which now bears
the name Euscorpius carpathicus (L., 1767). Soon, two
other distinct species were described: Euscorpius flavi-
caudis (DeGeer, 1787) and E. italicus (Herbst, 1800). C.
L. Koch (1837a, 1837b) established a number of new
species in then valid genus Scorpius, some of which
were undeservedly “lumped” by future researchers.
Thorell (1876) erected the genus Euscorpius, with E.
carpathicus (L.) as its type species. Kraepelin (1899),
one of the “lumpers”, recognized only four valid species
in this genus: E. carpathicus, E. flavicaudis, E. italicus
and E. germanus (C. L. Koch, 1837). This “umbrella”
arrangement persisted for a long time although a number
of authors started introducing subspecies, mainly in E.
carpathicus and E. germanus (see Birula, 1898, 1900,
1903, 1917a, 1917b). Already Birula (1900) ironically
commented that “the genus Euscorpius belongs to such a
category of systematic groups, in which the number of
species accepted by a specialist depends on how well
developed this specialist’s passion was to compile long
columns of synonymous species names”. He quite cor-
rectly wrote further that “…only studying the morphol-
ogy of all forms as related to their geographic distribu-
tion will we possibly make some positive conclusions
about the classification of this genus”.
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Hadži (1929, 1930, 1931) promoted the subspecies
category in Euscorpius, and especially Caporiacco
(1950) left it with more than 40 often poorly justified
subspecies. Hadži (1929) was the first who attempted to
treat enormous trichobothrial variation in Euscorpius
(albeit only total number, not patterns). The set of “oli-
gotrichus”, “mesotrichus” and “polytrichus” names was
published by Hadži in 1929 simultaneously (in the same
work) for each of three species: E. italicus, E. carpathi-
cus and E. germanus. The geographic treatment of Hadži
was not exhaustive but concentrated on Balkan popula-
tions; Hadži (1930) continued discussion of these taxa.
Later (Hadži, 1956), he explained that in erecting his
subspecies that were described in 1929 he did not really
adhere to the taxonomic standards. He also treated his
“oligotrichus”, “mesotrichus” and “polytrichus” forms
(in each of the three species he studied) as meristic
classes characterizing variation, rather than Latin names.
Nevertheless, these names were, and should be, treated
as available Latin names according to the International
Code of Zoological Nomenclature. Caporiacco (1950) as
“the first reviser” according to the Code (4th Edition,
1999, Article 24.2), declared that Hadži’s set of “oligo-
trichus”, “mesotrichus” and “polytrichus” names are
available subspecific names only for E. italicus and
therefore are homonyms for E. carpathicus and E. ger-
manus.

The traditional characters such as pectinal tooth
number, coloration and metasomal carination (e.g. Bi-
rula, 1900, 1917a, 1917b; Caporiacco, 1950; Kinzel-
bach, 1975) were often inconclusive for species diagno-
sis, and so are total numbers of trichobothria which are
variable on pedipalp manus and patella. Also, Euscor-
pius is so geographically diverse that the complete pic-
ture is often non-observable without analysis of many
variable populations from many various countries—a no
small task—especially in the Balkans, the center of Eu-
scorpius diversity.

Trichobothrial characters, so crucial for modern un-
derstanding of Euscorpius systematics, have received
some attention from the early authors starting from C. L.
Koch (1850) who gave a survey on all the Euscorpius
species he had described in 1837–1842, and clearly di-
vided these species into three groups according to the
number of trichobothria (“Grübchen”) on the ventral
aspect of pedipalp patella. Birula (1917a, 1917b) sepa-
rated three subgenera based exclusively on trichobothria.
However, it was Vachon (1963, 1975, 1981) who ap-
proached Euscorpius systematics with his unprecedented
attention to this unique and extremely variable character
set. An important contribution at the same time was also
made by Valle (1975) who designed an independent
trichobothrial character system and studied a variety of
populations assigned at this time to E. carpathicus.

A survey of the Aegean fauna was published by
Kinzelbach (1975) who was the first in many years to

note that old E. carpathicus might include more than one
species. Kinzelbach (1975) also promoted a species ori-
gin theory which advocated a hybridogenic origin for
many Euscorpius species and populations; however,
recent genetic studies using allozyme and DNA tech-
niques did not support these assumptions. Additional
observations on variation in Euscorpius were published
by Ćurčić (1972).

Vachon & Jaques (1977) brought the issue of
trichobothrial diagnosis to the center of important differ-
ences between E. carpathicus and E. germanus. Bo-
nacina (1980), in an important morphological revision,
separated and justified E. germanus and E. mingrelicus;
he demonstrated that that in fact the major part of the
range, formerly recognized for E. germanus, belongs to
E. mingrelicus. In the decade before 1999, further re-
gional faunistic studies were published by Fet (1986,
1989, 1993, 1997), Scherabon (1987), Lacroix (1991a,
1991b, 1995), Kritscher (1992, 1993), Crucitti (1993),
Braunwalder & Tschudin (1997), and other authors who,
however, rarely addressed central taxonomic issues on
validity of species and subspecies. Fet & Sissom (2000)
presented the exhaustive list of all taxa assigned to Eu-
scorpius by 1998, i.e. species and subspecies (including
nominotypic ones). However, a large portion of this in-
formation is outdated now (2004) as a result of ongoing
studies.

The Recent Developments in Euscorpius
(1999-2004)

Subgenus Alpiscorpius Gantenbein et al., 1999.
This new subgenus was separated from Euscorpius s. str.
as a result of the first molecular phylogenetic study
(based on a fragment of 16S rRNA mitochondrial gene)
of the genus Euscorpius (Gantenbein et al., 1999). The
old subgenus Euscorpius s.str. was demonstrated to be
polyphyletic: “E. carpathicus” (now E. tergestinus) did
not form a monophyletic group with E. germanus. Fur-
ther studies confirmed that the subgenus Alpiscorpius
should included most forms of “E. germanus complex”
and “E. mingrelicus complex”, listed as subspecies of E.
germanus and E. mingrelicus by Fet & Sissom (2000).

Gantenbein et al. (2000) restricted the scope of E.
germanus (type from historical Tyrol, now Trentino-
Alto Adige, Italy); see also Fet & Braunwalder (1997)
for detailed taxonomic history. At the same time, Gan-
tenbein et al. (2000) elevated E. alpha Caporiacco, 1950
from northern Italy (formerly a subspecies of E. germa-
nus; type from Lombardy) to species level. E. germanus
and E. alpha are allopatric, sibling Alpine species, which
appeared as and sister groups in all further phylogenetic
analyses (Scherabon et al., 2000; Fet et al., 2003a). The
estimated degree of divergence between E. germanus
and E. alpha clearly predates the Pleistocene glaciations,
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Figures 1-2: Dorsal view. 1. Euscorpius italicus (Herbst, 1800), male, Italy (after Gantenbein et al., 2002). 2. Euscorpius hadzii
Caporiacco, 1950, male, Albania (after Fet & Soleglad, 2002).
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as it is the case for a number of other Alpine taxa. It is
possible that E. germanus has isolated populations also
in the Apennines (Guerra, 1979; Vigiani, pers. comm.)
although it is not known whether they represent relict
populations or are introduced by humans.

The northwestern subspecies of E. germanus, E. g.
beta Caporiacco, 1950, was synonymized with E. ger-
manus by Gantenbein et al. (2000). Another subspecies,
E. g. croaticus Caporiacco, 1950, was transferred by
Gantenbein et al. (2000) to “carpathicus complex” (see
below). One more subspecies of E. germanus, status of
which remains unclear, is E. g. marcuzzii from north-
eastern Italy and Slovenia. It was very briefly described
by Valle et al. (1971); this form is a subject of our on-
going revision based on large material from Slovenia.

Euscorpius mingrelicus (Kessler, 1874; type from
Georgia) as redefined by Bonacina (1980) and listed by
Fet & Sissom (2000), is still under revision. It is now
addressed as a “mingrelicus complex”, which at this
moment includes three valid species (E. gamma Capo-
riacco, 1950, E. beroni Fet, 2000, and E. mingrelicus).
The remaining E. mingrelicus most likely will be split
further.

Euscorpius gamma has been separated from E. min-
grelicus by Scherabon et al. (2000); it inhabits southern
Austria, northeastern Italy, Slovenia and Croatia. Two
independent systems of molecular markers (allozymes
and 16S mtDNA) confirmed morphological analysis of
Scherabon (1987) and revealed an identical pattern: a
deep phylogenetic divergence between the Karawanken
Alps population of Euscorpius (“K-Form” of Scherabon,
1987) as opposed to the cluster of “typical” E. germanus
populations from western Carinthia, northern Italy and
western Slovenia.

Fet (2000) described a new species E. beroni, from
the high mountains of Albania (Prokletije Mts.), hitherto
completely unknown area; this species belongs to the
Balkan portion of the “mingrelicus complex”. The rest
of the Balkan “mingrelicus complex” includes two un-
clearly defined subspecies: E. m. caporiaccoi Bonacina,
1980 and E. m. dinaricus Caporiacco, 1950 (types of
both from Bosnia & Herzegovina). In addition, the old
name Scorpius bosnensis Möllendorff, 1873, could be
resurrected as a senior synonym. It is unclear what name
should be assigned to known populations of this com-
plex from Montenegro and Serbia. Teruel et al. (2004)
for the first time report a disjunct “mingrelicus complex”
form from Pirin Mountains, Bulgaria. A form probably
belonging to “mingrelicus complex” has been also re-
corded from the environs of Ioannina (Epiros, NW
Greece) (Guerra, 1979). However, no records of “min-
grelicus complex” exist from the eastern Balkans. Rec-
ords from the Aegean islands of Tinos and Ikaria (Kin-
zelbach, 1975) most likely refer to a “carpathicus com-
plex” form. Thus, there is a considerable disjunction in

“mingrelicus complex” forms between the continuous
Balkan and Anatolian ranges. Records from European
Turkey are sparse, and the exact boundary of the range
there is not clear. Fet (1989) mentioned an enigmatic
record of a specimen resembling the Anatolian E. m.
phrygius from “Moldavia” (collected by K. Jelski in 19th

century), but modern Moldova and Romania have no
record of “mingrelicus complex”.

The range of “mingrelicus complex” in Asia em-
braces the entire Anatolia (Asian Turkey) as well as
western Georgia (from Adzharia in the south to Abk-
hazia in the north), and includes also adjacent part of
Russian coast of the Black Sea (north to Sochi). It is
unclear whether “mingrelicus complex” is found south
from Turkey although there are historical records labeled
“Syria” (Fet & Sissom, 2000). Lacroix (1995) described
three new subspecies from Anatolia (E. m. legrandi, E.
m. ollivieri, and E. m. uludagensis) in addition to three
already existing Anatolian-Caucasian forms (E. m. min-
grelicus, E. m. phrygius Bonacina, 1980 and E. m. cili-
ciensis Birula, 1898; see Birula, 1898; Bonacina, 1980;
Fet, 1986, 1989, 1993). It appears that the “mingrelicus
complex” inhabits the entire Anatolian Peninsula, in-
cluding high mountain ranges (Bulghar Dagh, Taurus
Mts.; the highest altitude recorded for the genus Euscor-
pius, 2400 m a.s.l.). Preliminary DNA data on the Ana-
tolian specimens of the “mingrelicus complex”, includ-
ing those from the type locality of E. m. ciliciensis (Fet
et al. 2003a; Fet et al., in progress) reveal high genetic
diversity of Anatolian populations; their sister group is
E. gamma from the Balkans.

Subgenus Euscorpius s. str. (=“carpathicus com-
plex”). The clear separation of the nominotypic subge-
nus from Alpiscorpius has been first discovered by
Gantenbein et al. (1999) and so far has not been chal-
lenged, although “oligotrichous” trend clearly expressed
in Alpiscorpius seems to be paralleled by certain forms
in Euscorpius s. str. The integrity of E. carpathicus (L.,
1758) was first challenged by Kinzelbach (1975) who
introduced another species he called “E. mesotrichus
Hadži”; this name, however, was a homonym and there-
fore not available; see discussion in Fet & Sissom
(2000). Gantenbein et al. (2001) established the species
status of the former insular subspecies E. balearicus
Caporiacco, 1950 (Fig. 3) from the Balearic Islands
(Spain). In a similar fashion, Fet (2003) elevated to spe-
cies level E. tauricus (C. L. Koch, 1837) from Crimea,
based on DNA analysis, with morphological investiga-
tion pending.

The detailed morphological study by Fet & Soleglad
(2002) restricted the traditional Linnean species E. car-
pathicus (Fig. 4) only to the Romanian populations,
based on analysis of numerous published data and col-
lections, including the Linnean holotype. In addition, Fet
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Figures 3-4: Dorsal view. 3. Euscorpius balearicus Caporiacco, 1950, female, Balearic Islands (after Fet & Soleglad, 2002)  4.
Euscorpius carpathicus (Linnaeus, 1767), male, Romania (after Fet & Soleglad, 2002).
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& Soleglad (2002) defined three more species in the
“carpathicus complex”, elevating them from subspecies
rank: E. hadzii Caporiacco, 1950 (type from Albania)
(Fig. 2); E. koschewnikowi Birula, 1903 (type from
northeastern Greece) (Fig. 5), and E. tergestinus (C. L.
Koch, 1837; type from Slovenia) (Fig. 6). Fet & Sole-
glad (2002) also synonymized nine former subspecies of
E. carpathicus, namely: E. c. apuanus Caporiacco, 1950,
E. c. aquilejensis Caporiacco, 1950, E. c. concinnus (C.
L. Koch, 1837), E. c. corsicanus Caporiacco, 1950, E. c.
niciensis (C. L. Koch, 1837), E. c. oglasae Caporiacco,
1950, and E. c. picenus Caporiacco, 1950, to E. tergesti-
nus; E. c. lagostae Caporiacco, 1950, to E. hadzii; and E.
c. banaticus (C. L. Koch, 1841), to E. carpathicus.
Comparison of DNA sequences of the Romanian popu-
lation with other forms of the “carpathicus complex”
(Fet et al., 2002b) confirmed its separate status.

Fet et al. (2003b) continued the revisionary work on
“carpathicus complex”, based on both morphology and
DNA data, and defined a diverse assemblage of popula-
tions in southern Italy, Sicily, Sardinia, Greece, and
Malta (as well as some minor Mediterranean islands and
North African enclaves) under the name E. sicanus (C.
L. Koch, 1837; type from Sicily). In this study, Fet et al.
(2003) synonymized with E. sicanus six former subspe-
cies of E. carpathicus, namely: E. c. argentarii Capo-
riacco, 1950, E. c. calabriae Caporiacco, 1950, E. c.
canestrinii (Fanzago, 1872), E. c. ilvanus Caporiacco,
1950, E. c. linosae Caporiacco, 1950, and E. c. palma-
rolae Caporiacco, 1950. The name E. sicanus applies
also to those enigmatic populations from Greece, which
Kinzelbach (1975) called “E. mesotrichus Hadži”. E.
sicanus is characterized by a unique trichobothrial pat-
tern and number where series eb, and in some popula-
tions also series eba, have five trichobothria (as opposed
to four in E. carpathicus or E. tergestinus).

While Fet & Soleglad (2002) applied the name E.
tergestinus to most of the “western” populations of for-
mer E. carpathicus (France, Italy, Slovenia, Croatia),
and the name E. sicanus to many Greek populations, at
least several more forms of the “carpathicus complex”
are present across the Balkans, on all Aegean islands,
and in southern Turkey. Some of these forms are sym-
patric with E. sicanus in mainland Greece, as first dem-
onstrated by Kinzelbach (1975) for Thessaly (Ossa, Pin-
dos, Pilion, and Olympus). These “carpathicus com-
plex” forms are currently not assigned to any species,
and are under detailed investigation, including diverse
populations from Bulgaria (Fet & Soleglad, in press). At
the same time, some former subspecies, formerly in-
cluded in E. carpathicus, are not currently assigned or
synonymized to any species. These include four forms
described from Greece: E. “carpathicus” aegaeus Capo-
riacco, 1950; E. “c.” candiota Birula, 1903; E. “c.”
ossae Caporiacco, 1950; and E. “c.” scaber Birula,
1903. The subspecies E. “carpathicus” fanzagoi Simon,

1879 was described from southwestern France but its
identity is dubious. Another enigmatic subspecies, de-
scribed as E. germanus croaticus Caporiacco, 1950 from
western Croatia, was transferred by Gantenbein et al.
(2000) to “carpathicus complex”, but its validity and
rank are not yet resolved. This form resembles oligo-
trichous populations of “carpathicus complex” found in
southern Bulgaria (Fet & Soleglad, in press) but  could
represent an independent case of homoplasious tricho-
bothrial number reduction.

The ongoing revisionary work on this complex, in
addition to the efforts of our research group, is indicated
by the presentations at the 16th International Congress 
of Arachnology (August 2004, Gent, Belgium) by Salo-
mone et al. (2004) and Vignoli et al. (2004) addressing
Italian forms, and by Stathi et al. (2004), addressing
Greek forms.

Subgenus Tetratrichobothrius Birula, 1917. This
monotypic subgenus includes only E. flavicaudis (De-
Geer, 1787) from France, Italy and Spain, and also from
coastal enclaves in northern Africa. Introduced, repro-
ducing populations exist in England and Uruguay. Fet &
Sissom (2000) list five subspecies; one of these was de-
scribed recently by Bonacina & Rivellini (1986). The
validity of subspecies in E. flavicaudis has not been re-
cently addressed. Some data on genetic diversity of E.
flavicaudis can be found in Gantenbein et al. (2001). The
within-population genetic diversity of E. flavicaudis was
found to be close to zero; also, diversity between popu-
lations was low. These results point to a recent (postgla-
cial) range expansion from a single refugium, acceler-
ated through human transplantation. For ecological and
behavioral study of the introduced population in Eng-
land, see Benton (1991, 1992, 1993).

Subgenus Polytrichobothrius Birula, 1917. The
large, conspicuous E. italicus (Herbst, 1800) (Fig. 1) is
widespread in southern Europe and reaches eastward
along the Black Sea coast to Turkey and Caucasus. Its
subspecies as described by Caporiacco (1950) were an-
nulled by Vachon (1981), as confirmed by Gantenbein et
al. (2002). In fact, morphological variation within E.
italicus is high but unstructured; preliminary genetic
data (Fet et al., in press) allows suggesting recent disper-
sal from a glacial refugium, maybe even in historical
time. This could explain absence of E. italicus from all
Aegean islands, and from the Mediterranean islands
such as Baleares, Sicily, Sardinia, Corsica, and Malta. At
the same time, dispersal with humans explains prefer-
ence of human habitations by this species (Birula,
1917a, 1917b; Braunwalder, 2001; Gantenbein et al.,
2002) and its disjunct introductions by humans. Intro-
duced, reproducing populations exist in Switzerland,
Yemen,   and  Iraq,   and  also were historically recorded
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Figures 5-6: Dorsal view. 5. Euscorpius koschewnikowi Birula, 1900, female lectotype, Greece (after Fet & Soleglad, 2002) 6.
Euscorpius tergestinus (C.L. Koch, 1837), female, Slovenia (after Fet & Soleglad, 2002).
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from Russia and Romania (Fet & Sissom, 2000; Braun-
walder, 2001; Fet & Kovařík, 2003).

Gantenbein et al. (2002) demonstrated in detail that
the unusual “oligotrichous” form  from Peloponnese,
previously assigned to E. italicus (Caporiacco, 1950;
Vachon, 1981; Bonacina, 1982; Crucitti, 1995, 1999)
deserved a species-level rank. This form was identical
with subspecies E. i. zakynthi Caporiacco (1950) from
Zakynthos Island, which, in turn, was identical with the
“old species” E. naupliensis (C. L. Koch, 1837).

High-level phylogeny. Relationships among sub-
genera of Euscorpius are still not completely resolved.
Both morphology and DNA clearly indicate that subge-
nus Tetratrichobothrius is a basal taxon, and an out-
group to all other three subgenera. DNA data also indi-
cate a derived place for the subgenus Polytrichobothrius
which appears to be closely related to Euscorpius s. str.
(Gantenbein et al., 1999), while it was traditionally al-
lied with Tetratrichobothrius on morphological basis
(Kinzelbach, 1975). Soleglad & Fet (2003) indicated that
a genus status could be justified in future for at least
some of Euscorpius subgenera.

For decades, Euscorpius was placed in Chactidae
(subfamily Euscorpiinae). Stockwell (1992) established
family Euscorpiidae, as listed by Fet & Sissom (2000).
The genus was “put into perspective” among other gen-
era by the exhaustive cladistic revision of Euscorpiidae
by Soleglad & Sissom (2001), which assigned it to a
monotypic subfamily. Among other unique features, this
revision emphasized the fact of enormous trichobothrial
variation (neobothriotaxy) among Euscorpiidae, and
particularly within Euscorpius–—the very feature which
allowed already early authors (e.g. Birula, 1917a, 1917b)
to parse the genus into clusters sometimes identifiable
solely by trichobothrial characters. Soleglad & Sissom
(2001) clearly established a separate position of Euscor-
pius in the subfamily (Euscorpiinae) of its own.

We should comment on the position of the relict ge-
nus Belisarius Simon, 1879, which has been for decades
placed as a sister genus of Euscorpius (as late as Kinzel-
bach, 1975), essentially from a geographic perspective
(being the only other chactoid genus in Europe). Place-
ment of this Iberian genus was unclear until recently
Soleglad & Fet (2003) demonstrated its position in
Chactidae (subfamily Brotheinae, tribe Belisariini).
Thus, Belisarius is not closely related to Euscorpius but
rather is an ancient relict with its closest relatives in
South America; see Soleglad & Fet (2003) for the de-
tailed analysis and justification.

Other studies. In addition to the studies listed
above, a number of important regional faunistic and
ecological surveys of Euscorpius species have been
published in the last decade. Crucitti (1999a) and Cru-
citti & Cicuzza (2001) provided a review of Anatolian

species; Braunwalder (2001) gave a detailed review of
three Swiss species; Komposch et al. (2001), of three
Austrian species; and Fet et al. (2001), of four Slovenian
species. Huber et al. (2001) addressed disjunct distribu-
tion of “E. carpathicus” (now E. tergestinus) in Austria,
and confirmed, using DNA data, that the Austrian
populations probably are introduced by humans. Another
introduced, and probably extinct, population of E.
tergestinus from Bohemia (Czech Republic) was ad-
dressed by Kovařík & Fet (2003). Crucitti & Malori
(1998), Crucitti (1999b), Fet (2000), Crucitti & Bubbico
(2001) and Stathi & Mylonas (2001) published new
faunistic data on a number of Balkan and Aegean popu-
lations.

In addition, Jacob et al. (2004a, 2004b) published
two very important works, supplied by superb illustra-
tions, which address the morphology of hemispermato-
phore in several species of Euscorpius. The importance
of hemispermatophore characters as diagnostic has been
discussed by Fet & Soleglad (2002). Studies of Jacob
and coauthors confirmed what was earlier suggested by
Molteni et al. (1980) about Euscorpius hemispermato-
phore variation not being diagnostic at spe-
cies/subspecies level. Table 1 presents a list of all valid
taxa in genus Euscorpius.

Further Issues and Perspectives in Taxon-
omy of Euscorpius

Study of the Alpine “germanus complex” of the
subgenus Alpiscorpius will benefit from further mo-
lecular and morphological data analysis. The “mingreli-
cus complex” both in the Balkans and Anatolia is virtu-
ally untouched in either morphological or molecular
aspects, and requires much more attention; however, the
dearth of material especially from inland Croatia, Bosnia
and Herzegovina, Serbia and Montenegro, Macedonia,
and Albania at this moment may not allow definitive
decisions to be presented soon. The “carpathicus com-
plex” (= subgenus Euscorpius s.str.) in the Balkans pres-
ents the same challenge; much more research has to be
done on the material from the above listed Balkan coun-
tries as well as Greece and Bulgaria. Western popula-
tions of “carpathicus complex” (mainly from Italy) are
better understood but still far from revisionary level.
Marginal and isolated forms from regions such as Cri-
mea and Romania have to be addressed in-depth. Rela-
tionships of species (or possibly species complexes) E.
hadzii and E. sicanus have to be addressed further. The
subgenera Tetratrichobothrius and Polytrichobothrius
will probably need less attention since the former is
clearly monotypic, and two species of the latter are now
rather well understood.
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Subgenus Alpiscorpius Gantenbein et al., 1999

“germanus complex”:

Euscorpius alpha Caporiacco, 1950:  Italy, Switzerland
Euscorpius germanus (C. L. Koch, 1837):

E. g. germanus (C. L. Koch, 1837): Austria, Italy, Slovenia, Switzerland
E. g. marcuzzii Valle et al., 1975: Italy, Slovenia

“mingrelicus complex”:

Euscorpius beroni Fet, 2000: Albania
Euscorpius gamma Caporiacco, 1950: Austria, Croatia, Italy, ?Montenegro, ?Serbia (eastern boundary unclear).
Euscorpius mingrelicus (Kessler, 1874):

E. m. mingrelicus (Kessler, 1874): Georgia, Russia, Turkey
E. m. caporiaccoi Bonacina, 1980: Bosnia & Herzegovina, ?Montenegro, ?Serbia.
E. m. ciliciensis Birula, 1898: Turkey
E. m. dinaricus Caporiacco, 1950: Bosnia & Herzegovina, ?Montenegro, ?Serbia.
E. m. legrandi Lacroix, 1995: Turkey
E. m. ollivieri Lacroix, 1995: Turkey
E. m. phrygius Bonacina, 1980: Turkey
E. m. uludagensis  Lacroix, 1995: Turkey

Subgenus Euscorpius Thorell, 1876  (= “carpathicus complex”):

Euscorpius balearicus Caporiacco, 1950: Spain (Balearic Islands).
Euscorpius carpathicus (Linnaeus, 1758): Romania.
Euscorpius hadzii Caporiacco, 1950:  Albania, Bosnia & Herzegovina, Bulgaria, Croatia, Greece, Macedonia,

Montenegro, Serbia.
Euscorpius koschewnikowi Birula, 1903: Greece.
Euscorpius sicanus (C. L. Koch, 1837): Greece, Italy (with Sicily and Sardinia), Madeira, Malta, northern Af-

rica (Egypt, Libya, Tunisia).
Euscorpius tauricus (C. L. Koch, 1837): Ukraine (Crimea).
Euscorpius tergestinus (C. L. Koch, 1837): Albania, Croatia, Greece, France (with Corsica), Italy, Monaco, San

Marino, Slovenia; introduced to Czech Republic (now extinct), Austria; eastern boundary unclear.

Formally valid subspecific forms not assigned to a certain species:
E. “carpathicus” aegaeus Caporiacco, 1950: Greece.
E. “carpathicus” candiota Birula, 1903: Greece (Crete).
E. “carpathicus” croaticus Caporiacco, 1950: Croatia.
E. “carpathicus” fanzagoi Simon, 1879: France, ?Spain.
E. “carpathicus” ossae Caporiacco, 1950: Greece.
E. “carpathicus” scaber Birula, 1903: Greece.

Subgenus Polytrichobothrius Birula, 1917

Euscorpius italicus (Herbst, 1800): Albania, Croatia, France, Georgia, Greece, Italy, Macedonia, Monaco,
Montenegro, Russia, San Marino, Slovenia, Switzerland, Turkey; northern Africa (Algeria, Morocco, Tuni-
sia); introduced to Iraq, Yemen, ?Romania.

Euscorpius naupliensis (C.L. Koch, 1837): Greece (Peloponnese).

Subgenus Tetratrichobothrius Birula, 1917

Euscorpius flavicaudis (DeGeer, 1787)
E. f. flavicaudis (DeGeer, 1787): France (with Corsica), Italy (with Sardinia), Spain (with Balearic Islands);

northern Africa (?Algeria, ?Tunisia); introduced to England and Uruguay.
E. f. algeriacus (C.L. Koch, 1838): Algeria.
E. f. cereris Bonacina & Rivellini, 1986: Italy
E. f. galitae Caporiacco, 1950: Algeria, Tunisia
E. f. massiliensis (C.L. Koch, 1837): France.

Table 1: List of all valid taxa in genus Euscorpius.
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Summary

Soleglad & Fet (2001, 2003a, 2003b) demonstrated that Pseudochactas Gromov, 1998 is the most basal member of
Recent scorpions (infraorder Orthosterni), which also shares some characters with the Carboniferous fossil scorpion
family Palaeopisthacanthidae. This genus belongs to a separate family, superfamily, and parvorder of extant
scorpions. Major phylogenetic features of the lineage are discussed, as well as biogeography of this unique relict.
This veritable “platypus of a scorpion” deserves further study in all aspects.

Introduction

The monotypic genus Pseudochactas was described
by Gromov (1998) from Uzbekistan and Tajikistan
based on the type species, Pseudochactas ovchinnikovi
(Fig. 1) as the sole representative of the monotypic
family Pseudochactidae. Soleglad & Fet (2001)
established a separate orthobothriotaxic “Type D” for
Pseudochactas, indicating its exclusive and basal
position among all extant scorpions.

Systematics and Phylogeny

Gromov (1998: 1003) observed that “It is possible
that the representative of this new family
(Pseudochactidae) stands close to the common ancestor
of all these families [the Recent scorpions]”. As
Soleglad & Fet (2001) demonstrated based on
trichobothrial patterns, Pseudochactas is certainly a
basal member of Recent scorpions, and also shows
significant affinity in some characters with the
Carboniferous fossil scorpion family Palaeopistha-
canthidae.  Soleglad & Fet (2001) established a special
trichobothrial Type D for Pseudochactas in addition to
Types A, B, and C proposed by Vachon (1974).

Lourenço (2000) placed Pseudochactidae in his
superfamily Chaeriloidea, without any justification.
Soleglad & Fet (2001, 2003a, 2003b) demonstrated that
Pseudochactas is the most basal member of Recent
scorpions (infraorder Orthosterni) (Fig. 2), and also
shares some characters with the Carboniferous fossil

scorpion family Palaeopisthacanthidae. Soleglad & Fet
(2003b) created four parvorders (taxonomic category
between infraorder and superfamily) for extant scorpions
(all included in infraorder Orthosterni). The monotypic
parvorder Pseudochactida, established by Soleglad & Fet
(2003b), includes the monotypic superfamily Pseudo-
chactoidea, also established by these authors. The
diagnosis applicable to this parvorder and superfamily,
as well as to the family Pseudochactidae, is as follows:

Synapomorphies. Orthobothriotaxy type D; dorsal
edge of cheliceral movable finger without basal denticle;
ventral surface of leg tarsus with two sub-median rows
of spinules; transverse anterior carinae developed on
metasomal segments I–III; stigma small and oval in
shape. Important Symplesiomorphies. Two ventral
median carinae of metasomal segment V; sternum of
type 1, lacking horizontal compression; median denticle
row (MD) of pedipalp chelal finger arranged in oblique
groups; pedipalp chela exhibits “8-carinae” con-
figuration; pedipalp patella exhibits “7-carinae” config-
uration;  ventral  edge of cheliceral movable finger
crenulated; dorsal edge of cheliceral movable finger with
single subdistal denticle; ventral surface of cheliceral
fixed finger with denticles.
 

Biogeography and Ecology

The genus Pseudochactas was found only in two
restricted localities in the mountains of Central Asia
(Figs. 3–4):  it was first collected by Sergei Ovchinnikov
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Figure 1: Pseudochactus ovchinnikovi Gromov, 1998, female (after Soleglad & Fet, 2003)

(Fig. 5) and Oleg Lyakhov in the Surkhandarya Region
of southern Uzbekistan (Babatag Mountains), and by
Sergei Zonstein in Gandzhino, eastern Tajikistan. The
relict character of Pseudochactas distribution could be
due to its preservation in mild-climate, low-mountain
depressions of Babatag and Gandzhino ranges, with
desert surroundings at lower altitudes (Figs. 6–8).

Ecologically, this is not a desert scorpion; it actively
forages on wet mud along the temporary waterways, and
likely spends most of dry season in hibernation (V. Fet
& A. Gromov, pers. observation, Dukhone, Babatag
Mountains, Surkhandarya Region, Uzbekistan, May 1–4,
2002).

Judging from their ancestral position in scorpion
phylogeny, the parvorder and superfamily could have
been established in Permian/Triassic, We cannot spec-

ulate on whether this lineage was localized or
widespread since there are no fossils belonging to
Pseudochactida, and the parvorder is represented by a
single monotypic genus.

Although fossil Pseudochactida are absent,
inference from other orthostern fossils  Soleglad & Fet
(2003b) discussed the possible Pangaean origin
(Permian to Triassic time) of four extant scorpion
parvorders. Two of these partvorders (Buthida and
Iurida) still enjoy the world domination, albeit in Iurida
with significant disjunctions possibly due to extinctions
(superfamilies Iuroidea, Chactoidea). At the same time,
two other parvorders (Pseudochactida and Chaerilida)
currently survive only in Asia, each with a single relict
genus, Pseudochactas and Chaerilus. Through
Cretaceous,  many animal  taxa persisted  as relicts while
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Figure 2: Phylogenetic position of parvorder Pseudochactida (after Soleglad & Fet, 2003b).

other perished during the global restructuring of
ecosystems (Zherikhin, 1978). The parvorder Pseudo-
chactida—the most primitive extant group of
scorpions—appears to have survived in such a relict
condition.

Landmasses on which scorpions could have evolved
were available in the vicinity of modern Tajik
Depression for over 200 Ma. The core of Asia was
assembled during the late Paleozoic; already in the Early
Carboniferous, the Tajik depression was part of a
geographically continuous east-west elongate territory
extended from north China westward to the Scythian-
Turanian platform (Heubeck, 2001). In Jurassic, most of
Central Asia was a dry land, with increasingly more arid
climate. In Cretaceous, modern Kizylkum desert was
covered by sea transgression while the southwestern part
of the Tajik Depression was dominated by the coastal
landscapes with lagoons and river deltas (Kryzhanovsky,
1965). Seasonality was much less expressed, mountains
were low and arid, with major tectonic unheaval that

created Pamiro-Alai starting only in the Neogene (late
Eocene); at the same time real deserts emerged
(Sinitsyn, 1962; Atamuradov, 1994; Kazenas & Baish-
ashov, 1999).  Therefore, taxa such as Pseudo-chactas
could be relicts who survived extensive restructuring of
ecosystmes in the end of Cretaceous (Zherikhin, 1978)
on the islands of Tethys.

With the discovery of Pseudochactas, we now know
that four rather than three scorpion lineages survived the
K-T extinctions. Modern superfamilies of scorpions are
known from the Upper Cretaceous of Burma
(Chaeriloidea; Santiago-Blay et al., 2004) and Brazil
(Scorpionoidea; Soleglad & Fet, 2003b; and possibly
Chactoidea; F. Menon & P. Selden, pers. comm).

The Cenozoic aridization and mountain buildup
provided ample opportunities for further isolation of
relict taxa. Pseudochactas could represent a remnant of
littoral fauna of the receded Tethys Ocean, captured in
mountain depression by Tertiary uplift. Many important
floral   elements  of  littoral  origin   are  found   in   low

Pseudochactida

Buthida

Chaerilida

Iurida
Iuroidea

Scorpionoidea

ChactoideaRecent Scorpions
Pseudochactida Characteristics

Type D orthobothriotaxy

basal denticles absent on cheliceral movable finger
dual spinule rows on leg tarsus

dual ventral median carinae on metasoma segment V
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Figure 3: Geographic localities of Pseudochactas in southern Central Asia.

mountains of Uzbekistan and Tajikistan (Kamelin,
1979). Although not so ancient as Pseudochactas is
assumed to be, other relict taxa are known in southern
Central Asia and are hypothesized to have evolved on
the islands of the eastern Tethys during Upper
Cretaceous or Lower Tertiary, e. g. a monotypic darkling
beetle genus Allotadzhikistania (Coleoptera: Tenebrion-
idae) or many endemic species of Dorcadion (Coleop-
tera: Cerambycidae) (Kryzhanovsky, 1965).
  Modern climate in Tajik Depression is one of the
mildest in Southern Central Asia, with the longest
frostless period (Korzhenevsky, 1960; Bogdanova et al.,
1968). This feature, along with availability of shelters in
cracks and under tree roots, could have contributed to
survival of this unique, relict scorpion lineage.

This veritable “platypus of a scorpion” deserves
further study in all aspecs. In fact, comparison with the
bizarre, relict platypus does not do any justice to

Pseudochactas since the first known fossil Monotremata
are Cretaceous (Rich et al., 2001) while Pseudochactida
should have split from all other scorpion parvorders well
before Triassic (Soleglad & Fet, 2003b).
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Figure 4: Geographic localities of Pseudochactas in southern Central Asia (close-up).
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and Tajikistan.

Figure 7: Habitat of Pseudochactas in Uzbekistan: Babatag
Mountains, Dukhone sai (ravine), Chagam uchastok (area) of
Shurchi leskhoz (Forest Management District).
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Figure 8: Habitat of Pseudochactas
in Uzbekistan (Dukhone).
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