
Marshall University Marshall University 

Marshall Digital Scholar Marshall Digital Scholar 

Mathematics Faculty Research Mathematics 

1-2021 

A Gompertz distribution for time scales A Gompertz distribution for time scales 

Tom Cuchta 
Marshall University, cuchta@marshall.edu 

Robert Jon Nichel 

Sabrina Streipert 

Follow this and additional works at: https://mds.marshall.edu/mathematics_faculty 

 Part of the Discrete Mathematics and Combinatorics Commons 

Recommended Citation Recommended Citation 
Cuchta, Tom; Niichel, Robert Jon; and Streipert, Sabrina (2021) "A Gompertz distribution for time scales," 
Turkish Journal of Mathematics: Vol. 45: No. 1, Article 12. https://doi.org/10.3906/mat-2003-101 

This Article is brought to you for free and open access by the Mathematics at Marshall Digital Scholar. It has been 
accepted for inclusion in Mathematics Faculty Research by an authorized administrator of Marshall Digital Scholar. 
For more information, please contact beachgr@marshall.edu. 

https://mds.marshall.edu/
https://mds.marshall.edu/mathematics_faculty
https://mds.marshall.edu/mathematics
https://mds.marshall.edu/mathematics_faculty?utm_source=mds.marshall.edu%2Fmathematics_faculty%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/178?utm_source=mds.marshall.edu%2Fmathematics_faculty%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:beachgr@marshall.edu


Turkish Journal of Mathematics Turkish Journal of Mathematics 

Volume 45 Number 1 Article 12 

1-1-2021 

A Gompertz distribution for time scales A Gompertz distribution for time scales 

TOM CUCHTA 

ROBERT JON NIICHEL 

SABRINA STREIPERT 

Follow this and additional works at: https://journals.tubitak.gov.tr/math 

 Part of the Mathematics Commons 

Recommended Citation Recommended Citation 
CUCHTA, TOM; NIICHEL, ROBERT JON; and STREIPERT, SABRINA (2021) "A Gompertz distribution for time 
scales," Turkish Journal of Mathematics: Vol. 45: No. 1, Article 12. https://doi.org/10.3906/mat-2003-101 
Available at: https://journals.tubitak.gov.tr/math/vol45/iss1/12 

This Article is brought to you for free and open access by TÜBİTAK Academic Journals. It has been accepted for 
inclusion in Turkish Journal of Mathematics by an authorized editor of TÜBİTAK Academic Journals. For more 
information, please contact academic.publications@tubitak.gov.tr. 

https://journals.tubitak.gov.tr/math
https://journals.tubitak.gov.tr/math/vol45
https://journals.tubitak.gov.tr/math/vol45/iss1
https://journals.tubitak.gov.tr/math/vol45/iss1/12
https://journals.tubitak.gov.tr/math?utm_source=journals.tubitak.gov.tr%2Fmath%2Fvol45%2Fiss1%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=journals.tubitak.gov.tr%2Fmath%2Fvol45%2Fiss1%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.3906/mat-2003-101
https://journals.tubitak.gov.tr/math/vol45/iss1/12?utm_source=journals.tubitak.gov.tr%2Fmath%2Fvol45%2Fiss1%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:academic.publications@tubitak.gov.tr


Turk J Math
(2021) 45: 185 – 200
© TÜBİTAK
doi:10.3906/mat-2003-101

Turkish Journal of Mathematics

http :// journa l s . tub i tak .gov . t r/math/

Research Article

A Gompertz distribution for time scales

Tom CUCHTA1,∗, Robert Jon NIICHEL1, Sabrina STREIPERT2
1Department of Computer Science and Mathematics, Fairmont State University, Fairmont, WV, USA

2Department of Mathematics and Statistics, McMaster University, Hamilton, ON, Canada

Received: 23.03.2020 • Accepted/Published Online: 12.11.2020 • Final Version: 21.01.2021

Abstract: We investigate a family of probability distributions, with three parameters associated with the dynamic
Gompertz function. We prove its existence for various parameter sets and discuss the existence of its time scale
moments. Afterwards, we investigate the special case of discrete time scales, where it is shown that the discrete Gompertz
distribution is a q -geometric distribution of the second kind. Further, we find their q -binomial moments, we bound their
expected value, and we show how a classical Gompertz distribution is obtained from them.

Key words: Time scales calculus, dynamic equations, difference equations, Gompertz, discrete q-distributions

1. Introduction
The Gompertz distribution is a family of two-parameter continuous distributions, typically with support on
(−∞,∞) or on [0,∞) [15]. There is significant interest in generalizations of the Gompertz distribution. In
demography, recognizing the Gompertz distribution “as a member of families of models opens new perspectives”
[18] in the field of mortality analysis. A five-parameter “beta generalized Gompertz distribution” was used to
model lifetime of some devices [2]. A four-parameter “Gompertz Frêchet” distribution was used to model a data
set of hauling times [17], and numerous three-parameter generalized Gompertz distributions have been defined
in [1] [10], and [12].

On the other hand, the theory of discrete q -distributions has developed independently from the classical
Gompertz distribution, culminating in the recent monograph [7]. The q -geometric distribution of the second
kind, defined for parameters 0 < θ < 1 and 0 < q < 1 with support {0, 1, 2, . . .} , has a probability mass
function

P (X = n) =
θqn

1− Eq

(
− θ

1−q

) n∏
j=1

(
1− θqj−1

)
, (1.1)

where Eq denotes the so-called q -exponential function. Intuitively, the associated random variable counts the
number of successes until the first failure when the probability of a success varies geometrically with the number
of successes that have already been encountered. Compared to other discrete q -distributions, (1.1) has seen few
applications in the literature, but relating it to the broadly applicable Gompertz distribution could invigorate
new avenues of research in this area.
∗Correspondence: tcuchta@fairmontstate.edu
2010 AMS Mathematics Subject Classification: 34N05, 39A12, 26D15
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The synthesis of these two apparently disparate distributions is obtained in the theory of time scales
calculus. The Gompertz dynamic equation is [8]

y∆ = (	r)(t)yLy, y(t0) = y0, (1.2)

whose solution was shown to be both qualitatively and quantitatively similar to the continuous Gompertz model.
The Gompertz differential equation is a special case of (1.2) whose solution is normalized to obtain the Gompertz
distribution with support on (−∞,∞) or [0,∞) . On the discrete time scale T = hN0 = {h, 2h, 3h, . . .} , h > 0 ,
the unique solution of (1.2) normalizes to an instance of (1.1), unifying the Gompertz distribution with the
discrete q -geometric distribution of the second kind.

2. Preliminaries
Discrete q -distributions are discrete distributions with the property that they contain a parameter q ∈ (0, 1)

such that taking q → 1− yields a traditional probability distribution. The q -numbers [x]q are defined by

[x]q =
1− qx

1− q
. If x = k is a nonnegative integer, then the q -factorial is defined by [k]q! = [k]q[k−1]q . . . [2]q[1]q ,

and we define the k th order q -factorial by the formula

[x]k,q = [x]q[x− 1]q . . . [x− k + 1]q.

The q -binomial coefficients are
[
x
k

]
q

=
[x]q!

[k]q![x− k]q!
=

[x]k,q
[k]q!

, and for x ≥ m , they obey the formula [13, (6.1)]

[
x
m

]
q

=

[
x

x−m

]
q

. (2.1)

The q -binomial moments of a discrete q random variable X are defined by [7, (1.55)] as

E

([
X
m

]
q

)
=

∞∑
x=m

[
x
m

]
q

f(x), (2.2)

where f is its probability mass function. For 0 < q < 1 , the q -exponential function Eq is defined [13, (9.10)]
[7, (1.23)] by

Eq(t) =

∞∏
j=1

(
1 + t(1− q)qj−1

)
. (2.3)

See [5] for the basic definitions of time scales calculus, which we now summarize. A time scale T is a
nonempty closed (under the usual topology) subset of R . We use the notation Tκ to mean T\supT when T has a
left-scattered maximum; otherwise Tκ = T . The forward jump operator σ : T → T is σ(t) = inf{s ∈ T : s > t} ,
and the graininess operator µ : T → [0,∞) is µ(t) = σ(t)− t . Similarly a backwards jump operator ρ : T → T
is defined by ρ(t) = sup{s ∈ T : s < t} ; if ρ(t) < t , then we say that t is left-scattered. If f : T → R , then the
∆ -derivative of f at t ∈ Tκ is defined to be the number f∆(t) with the property that for any ϵ > 0 , there is
a neighborhood U of t such that for all s ∈ U ,∣∣∣f(σ(t))− f(s)− f∆(t) (σ(t)− s)

∣∣∣ ≤ ϵ|σ(t)− s|.
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The ∆ -integral is defined so that the fundamental theorem of calculus holds, i.e. for t, s ∈ T ,

∫ t

s

f∆(τ)∆τ = f(t)− f(s).

The reader should see [11] where a measure theoretic approach to the ∆ -integral is defined via the so-called
µ∆ measure, but its construction is not emphasized or needed here.

The Taylor monomials hn on a time scale are defined recursively by
h0(t, s) = 1,

hn+1(t, s) =

∫ t

s

hn(τ, s)∆τ,

and in particular, independent of the time scale, h1(t, s) = t − s . If f is ∆ -differentiable, then we define [8,
Definition 7] the time scales logarithm Lf for t ∈ T, a ∈ R by

Lf (t, t0; a) = a+

∫ t

t0

f∆(τ)

f(τ)
∆τ.

A function f : T → C is called right-dense continuous (“rd-continuous”) if it is continuous at right-dense
points and its left-sided limits exist at left-dense points. The forward jump σ , and hence µ , is rd-continuous.
By [5, Theorem 1.60 (ii), Theorem 1.65, and Remark 1.66], an rd-continuous function with compact domain is
bounded, but may not necessarily achieve extreme values. An rd-continuous function is called regressive if for
all t ∈ T , 1 + µ(t)f(t) 6= 0 . We write f ∈ R to mean that f : T → C is both rd-continuous and regressive.
Moreover, we say f ∈ R+ if f ∈ R and for all t ∈ T , 1 + µ(t)f(t) > 0 . If f is regressive, then the circle

minus function 	f : T → C is defined by (	f)(t) =
−f(t)

1 + µ(t)f(t)
. For h ≥ 0 , the cylinder transformation ξh

is defined by

ξh(z) =

{
1

h
Log(1 + zh), h > 0

z, h = 0.

If p ∈ R and t0 ∈ T , then the time scales exponential function ep(·, t0) is defined by the expression ep(t, t0) =

exp

(∫ t

t0

ξµ(τ)(p(τ))∆τ

)
, and it is the unique solution of the initial value problem

y∆ = py, y(t0) = 1. (2.4)

It is well-known that for p ∈ R ,

e⊖p(t, s) =
1

ep(t, s)
, (2.5)

ep(t, s) =
1

ep(s, t)
,

and
ep(σ(t), s) = (1 + µ(t)p(t))ep(t, s). (2.6)

187



CUCHTA et al/Turk J Math

The dynamic exponential also obeys the semigroup property

ep(t, s) = ep(t, r)ep(r, s). (2.7)

If T is a time scale with t0 ∈ T obeying the property that µ(t) > 0 for all t ∈ T with t > t0 and t 6= supT ,
then

ep(t, t0) =
∏

τ∈[t0,t)∩T

1 + µ(τ)p(τ).

If r > 0 , then

e⊖r(t, t0) =
∏

τ∈[t0,t)∩T

1

1 + µ(τ)r
. (2.8)

The following theorem shows sufficient requirements for the dynamic exponential function to be always positive.

Theorem 2.1 If p ∈ R+ , then for all t ∈ T , ep(t, t0) > 0 .

If p : T → R is rd-continuous and nonnegative [3, Remark 2], then for t ≥ s ,

1 +

∫ t

s

p(τ)∆τ ≤ ep(t, s) ≤ exp

(∫ t

s

p(τ)∆τ

)
. (2.9)

Similary, it was shown in [4, Lemma 3.2] that if p ∈ R+ , then the second inequality in (2.9) holds.
Let T be a time scale such that supT = ∞ . For a fixed s ∈ T , an rd-continuous function p : [s,∞)∩T → C

is said to be of exponential order α ∈ R provided that the function t 7→ α is in R+ for all t ∈ [s,∞) ∩ T and
there exists K > 0 so that for all t ∈ [s,∞) ∩ T , |p(t)| ≤ Keα(t, s) . The time scales Laplace transform of a
function p : T → R , centered at s ∈ T , is defined by

LT{p}(z; s) =
∫ ∞

s

p(τ)e⊖z(σ(τ), s)∆τ.

It is known that if p is of exponential order α , then LT{p}(z; s) exists for z in a certain open subset of C [4,
Theorem 5.1]. It was shown in [4, Example 4.3] that the time scale Taylor monomials hn(·, s) are of exponential
order ϵ for each ϵ > 0 . In particular, [5, Theorem 3.90] shows that

LT{hn(·, s)}(z; s) =
1

zn+1
. (2.10)

Now we review some information about random variables on time scales. Let X be a random variable with
∆ -density function f : T → [0,∞) . In [16, Remark 2], the nth time scale moments of X , centered at s ∈ T ,
are defined by the formula

E (n!hn(X, s)) = n!

∫ supT

inf T
hn(t, s)f(t)∆t. (2.11)

Equation (2.11) reduces to classical moments over the time scale T = R because on that time scale, hn(t, s) =

(t− s)n

n!
. On the other hand, on the time scale T = N0 , (2.11) yields the so-called factorial moments [9, (5.2.1)]

because in this case, hn(t, s) =

(
t− s

n

)
.
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3. Gompertz distribution on time scales
We now prove the existence of a Gompertz-type distribution on time scales. This distribution is closely related
to the work in [8] where the Gompertz dynamic equation (1.2) was first introduced. Equation (1.2) has the
unique solution

y(t) = y0ep(t, t0), p(t) = a(	r)(t)e⊖r(t, t0) =
−ar

1 + µ(t)r
e⊖r(t, t0). (3.1)

Throughout the remainder of this article, we understand the function p as defined in (3.1) and assume that
p ∈ R . The following bounds on the limit were found when r > 0 and a < 0 :

1 + |a| ≤ lim
t→∞

ep(t, t0) ≤ exp(|a|). (3.2)

Theorem 3.1 If T is a bounded time scale, then for any a, r ∈ R , e∆p (·, t0) is ∆-integrable over T .

Proof By (2.4), e∆p (t, t0) = p(t)ep(t, t0) is rd-continuous since ep(·, t0) is ∆ -differentiable (hence is continuous).

By hypothesis, T is compact, so ep(·, t0) is bounded and the quantity M := sup
t∈T

e∆p (t, t0) exists and is finite.

Therefore ∫
T
e∆p (t, t0)∆t ≤ M(sup(T)− inf(T)) < ∞,

completing the proof. 2

Theorem 3.1 guarantees the unsurprising result that the Gompertz distribution exists on any compact
time scale, provided that e∆p (·, t0) does not change sign. It is more interesting to consider unbounded time
scales.

Theorem 3.2 Let T be an arbitrary unbounded time scale. If a < 0 and r > 0 , then e∆p (t, t0) is positive and

0 <

∫ supT

inf T
e∆p (t, t0)∆t < ∞.

Proof Suppose supT = ∞ and inf T = −∞ . Since r > 0 , we know 1 + µ(t)r > 0 and hence the function
t 7→ r is in R+ . We calculate

1 + µ(t)(	r)(t) = 1− µ(t)r

1 + µ(t)r
=

1

1 + µ(t)r
> 0,

and so 	r ∈ R+ , allowing us to conclude by Theorem 2.1 that e⊖r(t, t0) > 0 for all t ∈ T . Since r > 0

and a < 0 , we see that a(	r)(t) > 0 , p = a(	r)(t)e⊖r(t, t0) > 0 , and 1 + µ(t)p(t) > 0 , so we conclude by
Theorem 2.1 that ep(t, t0) > 0 for all t ∈ T . Therefore e∆p (t, t0) = p(t)ep(t, t0) > 0 , and hence ep(·, t0)
is an increasing function. Therefore L := lim

t→−∞
ep(t, t0) exists and is ≥ 0 . We know from (3.2) that

U := lim
t→∞

ep(t, t0) ≤ exp(|a|) . We conclude

0 <

∫ ∞

−∞
e∆p (t, t0)∆t = U − L < ∞.
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If one of inf T or supT is finite, a similar argument holds, completing the proof. 2

We define the following condition on parameters for the Gompertz distribution that we will repeatedly use:

r > 0 and ∀t ∈ T, 0 < a <
1

|(	r)(t)|µ(t)e⊖r(t, t0)
. (3.3)

The following lemma is proven by routine algebraic manipulation.

Lemma 3.3 If (3.3) holds, then p ∈ R+ .

Theorem 3.4 Let T be an unbounded time scale such that inf T = t0 > −∞ . If (3.3) holds, then the function
y(t) = e∆p (t, t0) is negative and integrable on T .

Proof By Lemma 3.3, p ∈ R+ and so ep(t, t0) > 0 for all t ∈ T . On the other hand,

e∆p (t, t0) = a(	r)(t)e⊖r(t, t0) < 0,

and so we see that ep(·, t0) is a decreasing function. Therefore, L := lim
t→∞

ep(t, t0) exists and L ≥ 0 . Thus,

∫ ∞

t0

e∆p (t, t0)∆t = L− ep(t0, t0) = L− 1 < 0,

completing the proof. 2

We define the symbol N to denote the value

N :=

∫ supT

inf T
e∆p (t, t0)∆t,

provided it exists. Theorem 3.1, Theorem 3.2, and Theorem 3.4 show various conditions on r and a under
which N is finite. In these situations, we define a time scales probability density function g : T → [0,∞) using
p in (3.1) and three parameters a , r , and t0 by

g(t) =
1

N
e∆p (t, t0) =

1

N
p(t)ep(t, t0). (3.4)

A random variable G shall be called a time scale Gompertz random variable on T if for every µ∆ -measurable
set S ⊆ T ,

P (G ∈ S) =

∫
S

g(τ)∆τ.

Theorem 3.5 If T is an arbitrary time scale with t0 = inf T > −∞ , supT = ∞ , r > 0 , and a < 0 , then the
time scale moments of G , centered at s , exist. Moreover, for some constants ms and Ms ,

n!ms(s− t0)

N
+

n!|a|e⊖r(s, t0)

N rn
≤ E(hn(G, s)) ≤ n!Ms(s− t0)

N
+

n!|a| exp (|a|e⊖r(s, t0))

N rn
.
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Proof By (2.11), we must bound the expression

E (hn(G, s)) =
n!

N

∫ ∞

t0

hn(t, s)p(t)ep(t, t0)∆t. (3.5)

Rewrite this integral as

n!

N

∫ s

t0

hn(t, s)p(t)ep(t, t0)∆t+
n!

N

∫ ∞

s

hn(t, s)p(t)ep(t, t0)∆t. (3.6)

Since the first integral is over a compact set, the integrand is bounded below and above by some constants ms

and Ms , respectively. Therefore the first integral in (3.6) obeys

n!ms(s− t0)

N
≤ n!

N

∫ s

t0

hn(t, s)p(t)ep(t, t0)∆t ≤ n!Ms(s− t0)

N
. (3.7)

Now we turn our attention to the second integral in (3.6). Using the semigroup property (2.7), we rewrite the
integrand as

hn(t, s)p(t)ep(t, t0) = a(	r)(t)hn(t, s)e⊖r(t, s)e⊖r(s, t0)ep(t, s)ep(s, t0),

and so the integral becomes

n!|a|rep(s, t0)e⊖r(s, t0)

N

∫ ∞

s

hn(t, s)ep(t, s)
e⊖r(t, s)

1 + µ(t)r
∆t, (3.8)

which we now bound. Since a < 0 and r > 0 , p is nonnegative and clearly rd-continuous, by (2.9),

ep(t, s) ≤ exp

(∫ t

s

p(τ)∆τ

)
= exp

(
ae⊖r(s, t0)

∫ t

s

e∆⊖r(τ, s)∆τ

)
= exp

(
ae⊖r(s, t0)(e⊖r(t, s)− 1)

)
= exp

(
|a|e⊖r(s, t0)(1− e⊖r(t, s))

)
.

Using (2.5) and (2.6), we see

e⊖r(t, s)

1 + µ(t)r
=

1

(1 + µ(t)r)er(t, s)
=

1

er(σ(t), s)
= e⊖r(σ(t), s).

Finally, since |a|e⊖r(t, t0) > 0 , it follows that exp(−|a|e⊖r(t, t0)) < 1 . Using the above, (3.8), and (2.10),
compute ∫ ∞

s

hn(t, s)ep(t, s)
e⊖r(t, s)

1 + µ(t)r
∆t

≤ exp (|a|e⊖r(s, t0))

∫ ∞

s

hn(t, s)e⊖r(σ(t), s) exp (−|a|e⊖r(t, t0))∆t

≤ exp (|a|e⊖r(s, t0))

∫ ∞

s

hn(t, s)e⊖r(σ(t), s)∆t

= exp (|a|e⊖r(s, t0))L {hn(·, s)}(r; s) =
exp(|a|e⊖r(s, t0))

rn+1
. (3.9)
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Combining (3.6), (3.7), and (3.9) establishes

E (hn(G, s)) ≤ n!Ms(s− t0)

N
+

n!|a| exp (|a|e⊖r(s, t0))

N rn
,

completing the proof for the upper bound. For the lower bound, realize that (3.6) still applies, so it remains to
bound the second integral there. By (2.9),

ep(t, t0) ≥ 1 +

∫ t

t0

p(s)∆s = 1 + a
(
e⊖r(t, t0)− 1

)
,

so we see ∫ ∞

s

hn(t, s)p(t)ep(t, t0)∆t ≥
∫ ∞

s

hn(t, s)p(t)
(
1 + a

(
e⊖r(t, t0)− 1

))
∆t

=

∫ ∞

s

hn(t, s)p(t)
(
(1− a)− |a|e⊖r(t, t0)

)
∆t.

(3.10)

Now compute

(1− a)

∫ ∞

s

hn(t, s)p(t)∆t = |a|r(1− a)

∫ ∞

s

hn(t, s)e⊖r(σ(t), t0)∆t

= |a|r(1− a)e⊖r(s, t0)L {hn(·, s)}(r; s)

=
|a|(1− a)e⊖r(s, t0)

rn
.

(3.11)

Since t 7→ (	r)(t) is a function in R+ , we use (2.9) to bound

e⊖r(t, t0) ≤ exp

(
−r

∫ t

t0

1

1 + µ(τ)r
∆τ

)
≤ 1,

and hence −e⊖r(t, t0) ≥ −1 . Therefore we compute

−|a|
∫ ∞

s

hn(t, s)p(t)e⊖r(t, t0)∆t = −a2r

∫ ∞

s

hn(t, s)

1 + µ(t)r
e2⊖r(t, t0)∆t

≥ −a2r

∫ ∞

s

hn(t, s)

1 + µ(t)r
e⊖r(t, t0)∆t

= −a2re⊖r(s, t0)L {hn(·, s)}(r; s)

= −a2e⊖r(s, t0)

rn
.

(3.12)

Recalling that −|a| = a and combining (3.11) and (3.12) allows us to further bound (3.10) by∫ ∞

s

hn(t, s)p(t)ep(t, t0)∆t ≥ |a|e⊖r(s, t0)

rn

Combining this in (3.6) with (3.7) yields

E(hn(G, s)) ≥ n!ms(s− t0)

N
+

n!|a|e⊖r(s, t0)

N rn
,

completing the proof. 2

We get simpler bounds if the moments are taken to be centered at s = t0 in Theorem 3.5.
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Corollary 3.6 If T is an arbitrary time scale with t0 = inf T > −∞ , supT = ∞ , r > 0 , and a < 0 , then the
time scale moments of G , centered at t0 , exist. Moreover,

n!|a|
N rn

≤ E(hn(G, t0)) ≤
n!|a|e|a|

N rn
.

Classical moments of random variables on time scales are obtained by replacing hn(t, t0) in (3.5) with
(t−s)n . In this case, the expression LT{tn}(r) is obtained, but it appears to be unknown whether the function
t 7→ (t− s)n is of exponential order α on all time scales for every n . Since h1(t, s) = t− s on all time scales,
we do immediately obtain a bound on the expected value of G .

Corollary 3.7 If T is an arbitrary time scale with t0 = inf T > −∞ , supT = ∞ , r > 0 , and a < 0 , then the
expected value of G exists. Moreover,

|a|
N r

+ t0 ≤ E(G) ≤ |a|e|a|

N r
+ t0.

In the sequel, we investigate a similar inequality on discrete time scales. In the following theorem, we refine the
inequality in Corollary 3.7 in the same class of time scales investigated in the next section.

Theorem 3.8 If h > 0 , T = hN0 = {0, h, 2h, . . .} , a < 0 , and r > 0 , then

|a|
Nhr

< E(G).

If, further, |a| ≤ h+ h2r , then

E(G) ≤ h|a| (1 + hr + |a|r) (1 + hr)

N (h2r + h− |a|)2 r
.

Proof Under the hypothesis, for any j ∈ N0 ,

1− ar

(1 + hr)j+1
= 1 +

|a|r
(1 + hr)j+1

> 1,

so since we know by Theorem 3.2 that N > 0 , for t ∈ hN0 ,

|a|r
N (1 + hr)j+1

<
|a|r

N (1 + hr)j+1

j−1∏
k=0

(
1 +

|a|r
(1 + hr)k+1

)
.

Thus,

|a|r
N

∞∑
j=0

hj

(1 + hr)
j+1

<
|a|r
N

∞∑
j=0

hj

(1 + hr)
j+1

j−1∏
k=0

(
1 +

|a|r
(1 + hr)k+1

)
.

The right-hand side is the expected value E(G) , so we obtain

h|a|r
N (1 + hr)2

∞∑
j=0

j

(1 + hr)
j−1

<
1

N

∞∑
j=0

hje∆p (j, 0) = E(G). (3.13)
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It is well-known from elementary power series that when |x| < 1 .

∞∑
k=0

kxk−1 =
1

(1− x)2
. (3.14)

Taking x =
1

1 + hr
in (3.14) shows that (3.13) becomes

E(G) >
|a|rh

N (1 + hr)2
1(

1− 1
1+hr

)2 =
|a|
Nhr

,

which completes the first part of the proof. For the second part, the inequality |a| ≤ h+h2r can be algebraically
rearranged to

1

1 + hr

(
1 +

|a|r
1 + hr

)
< 1, (3.15)

which implies

h+ |a| < (1 + hr)2 − 1

r
= 2h+ h2r,

hence (3.15) is equivalent to the assumed condition. Since the function f(j) = 1 +
|a|r

(1 + hr)j+1
is strictly

decreasing, max
j≥0

f(j) = f(0) , so for t ∈ hN0 ,

t
h−1∏
k=0

(
1 +

|a|r
(1 + hr)k+1

)
≤

t
h−1∏
k=0

(
1 +

|a|r
1 + hr

)
=

(
1 +

|a|r
1 + hr

) t
h

.

Therefore, using (4.2),

P (G = t) ≤ |a|r
N (1 + hr)

t
h+1

(
1 +

|a|r
1 + hr

) t
h

. (3.16)

Then

∞∑
k=0

k
h|a|r

N (1 + hr)k+1

(
1 +

|a|r
1 + hr

)k

=
|a|r

(
1 + |a|r

1+hr

)
N (1 + hr)2

∞∑
k=0

hk

(
1 + |a|r

1+hr

1 + hr

)k−1

=
h|a|r

(
1 + |a|r

1+hr

)
N (1 + hr)2

(
1− 1

1+hr

(
1 + |a|r

1+hr

))2 =
h|a| (1 + hr + |a|r) (1 + hr)

N (h2r + h− |a|)2 r

Combining this calculation with the inequality (3.16) completes the proof. 2

4. Relation to the q -geometric distribution of the second kind
Throughout this section, we scale nonnegative integers by h > 0 to obtain the time scale T = hN0 =

{0, h, 2h, 3h, . . .} and, for convenience, we choose t0 = 0 . Here we have µ(t) ≡ h and (	r)(t) = 	r =
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−r

1 + hr
∈ R . Equation (2.8) becomes

e⊖r(t, 0) =

t
h−1∏
j=0

1

1 + hr
=

(
1

1 + hr

) t
h

,

where e⊖r(0, 0) = 1 . By (3.1),

p(t) = a(	r)e⊖r(t, 0) =
−ar

1 + hr
e⊖r(t, 0) =

−ar

(1 + hr)
t
h+1

. (4.1)

Consequently, for t ∈ hN0 , (3.4) becomes

P (G = t) =
−ar

N

(
1

1 + hr

) t
h+1

t
h−1∏
j=0

(
1− ar

(1 + hr)j+1

)
. (4.2)

By Theorem 3.4, if

r > 0 and ∀t ∈ hN0, 0 < a <
(1 + hr)

t
h+1

hr
, (4.3)

then e∆p is integrable with N =

∫ ∞

0

e∆p (τ, 0)∆τ . Since r > 0 and h > 0 , the function t 7→ (1 + hr)
t
h+1 is a

monotone increasing function, meaning that (4.3) reduces to

r > 0 and 0 < a < 1 +
1

hr
. (4.4)

We now find a closed form for the normalizing constant N by showing (4.2) is a q -geometric distribution
of the second kind.

Theorem 4.1 Let T = hN0 and let G denote the associated time scales Gompertz distribution with probability
mass function (4.2). If (4.4) holds, then G is a q -geometric distribution of the second kind with parameters

θ =
arh

1 + hr
and q =

1

1 + hr
. Moreover, we obtain N =

E 1
1+hr

(−a)− 1

h
, where E 1

1+hr
is defined by (2.3).

Proof First by (4.4), θ =
arh

1 + hr
∈ (0, 1) and q =

1

1 + hr
∈ (0, 1) . If X is a q -geometric distribution of the

second kind with these parameters, then for n ∈ N0 ,

P (X = n) =

(
arh
1+hr

)(
1

1+hr

)n
1− E 1

1+hr

(
−

arh
1+hr

1− 1
1+hr

) n∏
j=1

(
1−

(
ar

1 + hr

)(
1

1 + hr

)j−1
)

=
arh

1− E 1
1+hr

(−a)

(
1

1 + hr

)n+1 n−1∏
j=0

(
1− ar

(1 + hr)j+1

)
,

which is identical to (4.2) for t

h
= n with

N =
E 1

1+hr
(−a)− 1

h
,
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completing the proof. 2

The following lemma does not appear to be stated in the literature.

Lemma 4.2 If X has a q -geometric distribution of the second kind, then its q -binomial moments are given by

E

([
X

m

]
q

)
=

θ−mq−m2
m∏
j=1

(1− θqj−1)

1− Eq

(
− θ

1−q

)
1− Eq

(
− θqm

1− q

) m∑
j=0

θjqmj

(1− q)j [j]q!

 .

Proof Let X have a q -geometric distribution of the second kind with parameters θ and q and probability
mass function (1.1). The following identity is well-known [14, (3.9)]:

∞∑
r=0

[
n+ r − 1

r

]
q

qr
r∏

j=1

(1− θqj−1) = θ−n

1− Eq

(
−θ

1− q

) n−1∑
j=0

θj

(1− q)j [j]q!

 .

Choosing the values x = n+ r − 1 and m = n− 1 implying r = x−m and n = m+ 1 and using the relation
(2.1), we compute

∞∑
x=m

[
x
m

]
q

qx−m
x−m∏
j=1

(1− θqj−1) = θ−(m+1)

1− Eq

(
−θ

1− q

) m∑
j=0

θj

(1− q)j [j]q!

 .

Now using (2.2), we compute the mth q -binomial moment of X as

E

[[
X
m

]
q

]
=

θqm
m∏
j=1

(1− θqj−1)

1− Eq

(
−θ
1−q

) ∞∑
x=m

[
x
m

]
q

qx−m
x−m∏
j=1

(1− (θqm)qj−1)

=

θ−mq−m2
m∏
j=1

(1− θqj−1)

1− Eq

(
−θ
1−q

)
1− Eq

(
−θqm

1− q

) m∑
j=0

θjqmj

(1− q)j [j]q!

 ,

completing the proof. 2

The following theorem follows immediately from Theorem 4.1 and Lemma 4.2 when taking θ =
arh

1 + hr
and

q =
1

1 + hr
.

Theorem 4.3 If T = hN0 and (4.4) holds, then the q -binomial moments of G are given by

E

([
G
m

]
1

1+hr

)
=

(1 + hr)m+m2
m∏
j=1

(
1− arh

(1 + hr)j

)
(arh)m

(
1− E 1

1+hr
(−a)

)
1− E 1

1+hr

(
− a

(1 + hr)m

) m∑
j=0

aj

(1 + hr)mj [j] 1
1+hr

!

 .
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Theorem 4.3 establishes the q -binomial moments of G under the condition (4.4) whose more general
expression was used for Theorem 3.4. If instead, the condition from Theorem 3.2 is used, then G is not a
q -geometric distribution of the second kind and so we do not know a formula for N . However, Theorem 3.5
shows that bounds for the moments of G do exist.

If f : hN0 → R , then we will use the constant interpolation function f : R → C given by

f(t) =

{
0, t < 0,
f(hn), t ∈ [hn, hn+ h) for some hn ∈ hN0.

It is known [6, Theorem 5.1] that ∫
[a,b]∩hN0

f(τ)∆τ =

∫
[a,b]

f(τ)dτ. (4.5)

The following theorem establishes the convergence of the discrete distributions on hN0 to the classic
Gompertz distribution with support on [0,∞) as h → 0+ . We let p(t;hN0) stand for (4.1), and we let
p(t; [0,∞)) stand for p(t) in (3.1) on the time scale T = [0,∞) , i.e. p(t; [0,∞)) = −are−rt . Similarly we write
ep(t, t0;hN0) and ep(t, t0; [0,∞)) to denote the time scales exponential functions over the time scales hN0 and
[0,∞) , respectively.

Theorem 4.4 If p(·, hN0) ∈ R+ , (4.4) holds, and t ∈ [0,∞) , then

lim
h→0+

ep(t, 0;hN0) = ep(t, 0; [0,∞)).

Proof From (4.4), we conclude that for all τ ∈ N0 ,

0 >
−arh

(1 + hr)τ
>

−arh

1 + hr
> −1.

For x > −1 , an elementary estimate for the logarithm is Log(1 + x) ≤ x . Using that, we see∣∣∣∣ξh( −ar

(1 + hr)τ+1

)∣∣∣∣ =

∣∣∣∣ 1hLog
(
1 +

(
−arh

(1 + hr)τ+1

))∣∣∣∣
≤
∣∣∣∣ 1h
(

−arh

(1 + hr)τ+1

)∣∣∣∣
=

ar

(1 + hr)τ+1

< ar.

So for n = 1, 2, 3, . . . , ∣∣∣∣ξ 1
n

(
−ar

(1 + 1
nr)

m+1

)∣∣∣∣ < ar and
∫ t

0

ar∆t < art < ∞.

Therefore, using the Lebesgue dominated convergence theorem,

lim
n→∞

∫ t

0

ξ 1
n

(
−ar(

1 + r
n

)τ+1

)
∆τ =

∫ t

0

lim
n→∞

ξ 1
n

(
−ar(

1 + r
n

)τ+1∆τ

)

=

∫ t

0

lim
h→0+

ξh

(
−ar

(1 + hr)τ+1
∆τ

)
. (4.6)
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It remains to show that the limit inside the right-hand side equals p(τ ; [0,∞)) . Using L’Hôpital’s rule and the
chain rule, we get

lim
h→0+

ξh(p(τ ;hN0)) = lim
h→0+

1

h
Log(1 + hp (τ ;hN0)) = lim

h→0+

p(τ ;hN0) + h d
dhp(τ ;hN0)

1 + hp(τ ;hN0)
. (4.7)

To obtain the limit, we further note that

d

dh
p(τ ;hN0) = −ar

d

dh

(
1

1 + hr

) τ
h+1

= −ar

(
1

1 + hr

) τ
h+1

d

dh

[( τ
h
+ 1
)
log

(
1

1 + hr

)]
= p(τ ;hN0)

[(
− τ

h2

)
log

(
1

1 + hr

)
+
( τ
h
+ 1
)
(1 + hr)

(
−r

(1 + hr)2

)]
.

= p(τ ;hN0)

[
τ(1 + hr) log(1 + hr)− rhτ − rh2

h2 + h3r

]
= p (τ, hN0)G(h).

Equation (4.7) is now of the form

lim
h→0+

p(τ ;hN0) + hp(τ ;hN0)G(h)

1 + hp(τ ;hN0)
.

Again using L’Hôpital’s rule twice, we compute

lim
h→0+

G(h) = lim
h→0+

τ(1 + hr) log(1 + hr)− rhτ − rh2

h2 + h3r
= lim

h→0+

rτ log(1 + hr)− 2rh

2h+ 3h2r

= lim
h→0+

r2τ
1+hr − 2r

2 + 6hr
=

1

2
r(rτ − 2).

It is easy to see that
lim

h→0+
p(τ ;hN0) = −are−rt,

hence

lim
h→0+

h
d

dh
p(τ ;hN0) = 0.

We now conclude from (4.7) that
lim

h→0+
ξh(p(τ ;hN0)) = p(τ ; [0,∞)). (4.8)

From (4.5), (4.6), (4.8), and t ∈ [0,∞) , we see

lim
h→0+

ep(t, 0;hN0) = exp

(∫
[0,t]

lim
h→0+

ξh(p(τ ;hN0))dτ

)

= exp

(∫
[0,t]

p(τ ; [0,∞))dτ

)
= exp

(∫ t

0

−are−rτdτ

)
= exp (a (e−rt − 1)) = ep(t, 0; [0,∞)),

as was to be shown. 2
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5. Conclusion
We have shown that there is a class of probability distributions on time scales with varying parameter require-
ments that deserve the title “Gompertz distribution on time scales”. We have estimated classical moments,
q -binomial moments, and time scales moments for these distributions. In Theorem 4.4, we showed that certain
q -geometric distributions of the second kind converge to Gompertz distributions with support [0,∞) as the
stepsize of the time scale approaches zero. Much work can still be done in this area: showing that t 7→ tn is of
exponential order α would establish bounds on the classical moments of G similar to Theorem 3.5, exploring
the connections between the Gompertz distribution with support on R with the Gompertz distribution on
T = hZ , and completely characterizing the parameter sets that yield a Gompertz distribution, to name a few.
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