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ABSTRACT 

 

Electrospun polymeric fibers have been investigated as scaffolding materials for bone tissue 

engineering. However, their mechanical properties in particular stiffness and ultimate tensile 

strength cannot match those of natural bones. The objective is to develop novel composite 

nanofiber scaffolds by attaching minerals to polymeric fibers using an adhesive material mussel-

inspired protein-polydopamine as “superglue”. Herein, we report for the first time the use of 

dopamine to regulate mineralization of electrospun poly(ε-caprolactone) (PCL) fibers for 

enhancing their mechanical properties. We have examined mineralization of PCL fibers by 

adjusting the concentration of HCO3
- and dopamine in the mineralized solution, reaction time, 

and surface composition of fibers. We have also examined mineralization on the surface of 

polydopamine-coated PCL fibers. We have demonstrated the control of morphology, grain size 

and thickness of minerals deposited on the surface of electrospun fibers. The obtained mineral 

coatings render electrospun fibers with much higher stiffness, ultimate tensile strength and 

toughness, which could be closer to the mechanical property of natural bone. Such a great 

enhancement of mechanical properties for electrospun fibers through mussel protein mediated 

mineralization was not seen in previous reports. Further, this study could also be extended to 

fabricate other composite materials for better bridging the interfaces between organic and 

inorganic phases. 

 

Keywords: Electrospinning, Polydopamine, Fibers, Surface modification, Coating, Calcium 

phosphate
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1. Introduction 
 A great advancement in development of bone scaffolds with various compositions and 

structures have been achieved using many techniques. Among them, electrospinning has been 

attracted much attention for fabrication of nanofiber scaffolds for use in bone tissue regeneration 

in that a non-woven mat of electrospun nanofibers can serve as an idea scaffold to mimic the 

extracellular matrix for cell attachment and nutrient transportation owing to its high porosity and 

large surface-area-to-volume ratio [1, 2]. Some studies have demonstrated that electrospun fibers 

of a polymer alone can serve as bone tissue engineering scaffolds and enhance bone regeneration 

to some extent. Other studies have suggested the use of some inorganic materials like bioactive 

glasses which have been processed into fibers or tubes by electrospinning technique for bone 

tissue regeneration [3-5]. However, the mechanical property of pure polymeric scaffolds is far 

from that of natural bone. And the nanofibers/tubes made of inorganic materials are very brittle 

and hard to manipulate. Recent efforts have been focused on the development of composite 

nanofiber scaffolds which can better mimic the composition and further match the mechanical 

property of natural bone. Incorporating an inorganic phase material (e.g., hydroxyapatite, 

octacalcium phosphate), which is one of the compositions of natural bone or bone precursors, to 

an organic phase material (e.g., biodegradable polymeric nanofibers) is generally used to 

enhance the mechanical property of nanofiber scaffolds. Two approaches of incorporation of 

inorganic phase materials include encapsulating inorganic phase materials (e.g., hydroxyapatite 

nanoparticle, nanorods) inside polymeric nanofibers and depositing inorganic phase materials on 

the surface of polymeric nanofibers to form uniform coatings [6-11]. The encapsulation of 

inorganic materials could improve the mechanical property of fibrous materials. However, the 

fiber surface is not optimized being a support to maintain desirable cell-substrate interaction. 

Direct deposition of inorganic materials on the nanofiber surface can not only enhance its 

mechanical property but also provide favorable substrate for cell proliferation and osteogenic 

conduction [11, 12].  

 Towards this end, many studies have investigated the deposition of minerals on the 

electrospun polymeric fibers. In principle, the morphology and grain size of minerals deposited 

on the fibers can be tailored by controlling the composition of mineralized solution, surface 

charge of substrate, and surface chemistry properties. It was demonstrated that Mg2+, HCO3
- 

acted as inhibitors of crystal growth and by varying the concentrations of them, the morphology 
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and grain size of minerals can be controlled [11, 13, 14]. The dose-dependent effects of 

amelogenin were also found to significantly inhibit apatite crystal growth and cause the 

octacalcium phosphate crystals to change from a plate-like shape to a curved shape [15]. In the 

same study, it was shown that the presence of bovine serum albumin in the mineralized solution 

can greatly alter the plate-like octacalcium phosphate (OCP) crystals into a round-edged, curved 

shape, indicating a general inhibitory effect [15]. The presence of cetyl trimethylammonium 

bromide (CTAB), poly-L-aspartic acid (PASP), and polyacrylic acid (PAA) in the mineralized 

solution was examined on the formation of crystals of minerals as well [16-18]. The charged 

surface was also thought to be an important factor which greatly affects the nucleation of 

minerals onto the substrates. It was reported that the negative surface was favorable for the 

heterogeneous nucleation of calcium phosphate [19-21]. Separate studies additionally examined 

the influence of different surface functional groups (e.g., carboxyl, carbonyl, amino, hydroxyl 

groups) and their combinations of substrates on the nucleation and growth of crystals during the 

mineral deposition [9, 10].  

 However, minerals attachment to polymeric materials in micro-/nanoscale is a big challenge 

as they represent inorganic phase materials and organic phase materials, respectively, exhibiting 

significant difference in mechanical properties. Prior studies demonstrated the control of 

morphology and grain size of minerals deposited on the electrospun polymeric fibers to enhance 

mechanical properties (e.g., stiffness) to a certain extent. However, none of them attempted to 

enhance the mechanical property by attaching minerals to electrospun polymeric fibers with a 

“filler” or “glue”. In the present work, we aim to develop novel composite nanofiber scaffolds by 

attaching minerals (inorganic phase) to polymeric fibers (organic phase) through an adhesive 

material mussel-inspired protein-polydopamine as a “glue”. We hypothesized that these hybrid 

fiber scaffolds could have superior mechanical properties compared to the unmodified fibers. 

 

2. Materials and methods 
2.1. Fabrication of PCL Fibers 

 The electrospinning setup used in the present work was similar to those described in our 

previous publications [22, 23]. Poly(ε-caprolactone) (PCL) (Mw=80,000 g/mol; Sigma-Aldrich, 

St. Louis, MO) was dissolved in a solvent mixture consisting of dichloromethane (DCM) and N, 

N-dimethylformamide (DMF) (Fisher Chemical, Waltham, MA) with a ratio of 4:1 (v/v) at a 
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concentration of 10% (w/v). Polymer solution was loaded into a 10 mL plastic syringe with a 22 

gauge needle attached and pumped at a flow rate of 0.5 mL/h using a syringe pump. The working 

distance between the tip of the needle and the collector was about 15 cm and a voltage of 12 kV 

was applied. Alignment of electrospun fibers was achieved by making use of a high-speed 

rotating mandrel as a collector. 

 

 2.2. Fabrication of Composite Fibers 

 Composite fibers were fabricated in two different ways as indicated in Figure 1. One was to 

coat mussel inspired protein on the surface of plasma-treated, electrospun fibers and 

subsequently perform biomineralization of polydopamine-coated fibers. Specifically, nanofiber 

materials were treated with plasma for 8 min and then immersed in 0.2 mg/mL dopamine·HCl  in 

Tris buffer (pH 8.5) for 4 h [22]. Polydopamine-coated nanofiber materials were then washed 

with DI water to remove excess monomer. Subsequently, the fiber mat was immersed in a 

supersaturated solution of  10 times concentration simulated body fluids (10×SBF) which was 

prepared from NaCl, CaCl2, and NaHPO4·H2O in the presence of different amounts of NaHCO3. 

The composition of 10×SBF was shown in Table 1. The ion concentrations in 10×SBF solution 

were 1 M of Na+, 2.5×10-2 M of Ca2+, and 1.0×10-2 M of HPO4
-. The other is to directly 

biomineralize fibers in the 10×SBF solution in the presence of different amounts of dopamine 

and NaHCO3. The minerals coated on electrospun fibers could be close to the composition of 

inorganic phase in native bone as mineralization in SBF mimics the mineral formation in human 

body.  

 

2.3. Characterization of Fibers 

 The morphology of nanofiber scaffolds was characterized by scanning electron microscopy 

(SEM) (FEI, Nova 2300, Oregon). To avoid charging, polymer fiber samples were fixed on a 

metallic stud with double-sided conductive tape and coated with platinum for 40 seconds in 

vacuum at a current intensity of 40 mA using a sputter coater. SEM images were acquired at an 

accelerating voltage of 15 kV.  

Fiber surface chemistry was examined by AXIS His X-ray photoelectron spectroscopy (XPS) 

(Kratos Analytical Inc., NY) and associated curve fitting software. For all samples, a survey 

spectrum was recorded over a binding energy range of 0-1100 eV using a pass energy of 80 eV. 
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In all cases, the survey spectra recorded the presence of Oxygen (O1s 533 eV), Carbon (C1s 285 

eV), Calcium (Ca2p 347.8 eV, Ca2s 466.1 eV), Phosphorus (P2p 133.7, P2s 190.9 eV), and 

Nitrogen (N1s 399 eV) at the surface. 

 

2.4. Mechanical Test of Fibers 

 Fiber mats composed of uniaxially-aligned fibers were cut into sections and fixed onto a 

paper frame. Gauge length and width was set to 10 mm and 5 mm according to the frame size 

and the thickness of each sample, pre-determined by light microscope. Samples were mounted 

on a nano tensile tester (Nano Bionix, MTS, USA) and the edge of frame was cut before testing 

the fiber samples. Ten samples were stretched to failure at a low strain rate of 1%/sec at room 

temperature while related displacement and force values were recorded.   

 

3. Results 
3.1. Fabrication of Composite Fibers 

 In this work, we chose PCL as a model material because it is a biocompatible and 

biodegradable polymer that has been approved by FDA for certain human clinical applications 

[24]. We firstly coated electrospun PCL fibers with polydopamine following our recent study 

[22]. Specifically, PCL fibers were plasma treated and immersed in 0.2 mg/mL dopamine 

solution at pH 8.5 for 4 h. Morphology was similar between polydopamine-coated and un-coated 

fibers, with both fiber populations demonstrating consistent fiber diameters and limited surface 

roughness. Subsequently, we immersed polydopamine-coated PCL fibers in 10×SBF solution at 

37oC for 24 h in the presence of 0.01 M and 0. 04M NaHCO3. Figure 2 shows the influence of 

NaHCO3 concentration on the mineralization of polydopamine-coated PCL fibers. At a low 

concentration (0.01 M), large, thin, and plate-like minerals tended to be formed and loose 

structure of minerals was observed on the fibers (Figure 2, A and C). At a high concentration 

(0.04 M), smaller grain size of minerals displayed on the fibers and denser coating of minerals 

was seen compared to the samples fabricated in a low concentration of NaHCO3 (Figure 2, B and 

D). The diameter of fibers in Figure 2D was around 1.2 µm. We also investigated the 

mineralization of polydopamine-coated PCL fibers at these two concentrations for longer period 

time (72 h). At low concentration, more plate-like minerals were seen on the surface of fibers 

and the fibrous morphology was still visible (Figure 3, A and B).  In contrast, minerals coated on 
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the fiber surface in the presence of higher concentration of NaHCO3 were dense and smooth 

(Figure 3, C and D). The fiber diameter was around 2.8 µm after 72 h coating.   

 In order to examine the influence of dopamine, we explored the mineralization of PCL fibers 

for 24 h in the presence of 0.04 M NaHCO3 and a series of concentrations of dopamine (Figure 

4). With increasing the dopamine concentration from 0.02 mg/mL to 0.2 mg/mL, there was no 

evident variation of mineral morphology and grain size (Figure 4, A-D). When the dopamine 

concentration reached 0.4 mg/mL and 1 mg/mL, the mineral morphology changed from plate-

shape to nanorod-shape further to particle-shape (Figure 4, E and F). We also examined the 

influence of dopamine on the mineralization in the presence of low concentration of NaHCO3. 

Plasma-treated PCL fibers were mineralized in 10×SBF solution containing 0.01 M NaHCO3 and 

different amounts of dopamine for 2 h. In the absence of dopamine, few plate-like minerals were 

deposited on the PCL fibers (Figure 5, A and B). With increasing dopamine concentration, the 

morphology of minerals changed significantly (Figure 5). Also, more minerals were deposited on 

the fibers and the grain size of minerals decreased dramatically (Figure 5, E and F). We also 

examined the mineralization of PCL fibers in 10×SBF solution containing 0.04 M NaHCO3 and 

0.2 mg/mL dopamine at 37oC for different times (Figure 6). The dense and smooth mineral 

coatings were observed. The fiber diameters increased with increasing the mineralization time.  

 

3.2. XPS Characterization of Composite Fibers 

 Figure 7 shows a typical XPS survey spectrum of PCL fibers before and after mineralization. 

XPS wide scan in Figure 7A identified carbon and oxygen as the major constituents of PCL 

fibers, as expected. Figure 7, B-D, confirmed that the surface of mineral coated PCL fibers was 

primarily comprised of carbon, calcium, phosphorous, oxygen, and nitrogen. The spectra peaks 

for Ca2s, Ca2p, P2s, and P2p were originated from mineral coatings. N1s peak was originated 

from polydopamine. The surface composition was quantified in table 2. Ca/P ratio for 

mineralized samples is close to 1.67 the Ca/P ratio of hydroxyapatite. Figure 8 and Figure 9 

show the typical C1s and Ca2p spectra of fibers before and after mineral coating. It is shown that 

the intensity of C1s band decreased while Ca2p and N1s bands increased. 

 

3.3. Mechanical Test of Composite Fibers 
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Figure 10 demonstrates that the mineral coatings had functional consequences with regard to 

the mechanical properties of scaffolds composed of uniaxially-aligned composite fibers. 

HAP/PDA-PCL(24h) and HAP/PDA-PCL(48h)  indicate the samples  which were mineralized in 

the 10×SBF solution containing 0.04 M NaHCO3 and 0.2 mg/mL dopamine for 24 h and 48 h. 

HAP-PDA-PCL(24h) indicates the samples were coated with polydopamine in 0.2 mg/mL 

dopamine solution at pH = 8.5 for 4 h prior to mineralization in the 10×SBF solution containing 

0.04 M NaHCO3 for 24 h. Evidently, the elastic modulus (Young’s modulus) defined as the slope 

of stress-strain curve in the elastic deformation region increased dramatically from 86 MPa for 

PCL fiber samples to 459 MPa for HAP/PDA-PCL(24h) samples  and further to 730 MPa and 

768 MPa for HAP-PDA-PCL(24h) samples and HAP/PDA-PCL(48h) samples, respectively, 

suggesting the fibers become much stiffer after coating. It is seen that minerals can also 

significantly enhance ultimate tensile strength of fiber samples, increasing from around 36 MPa 

for PCL fibers to 157 MPa for HAP/PDA-PCL(24h) samples and further to 285 MPa for both 

HAP-PDA-PCL(24h) and HAP/PDA-PCL(48h) samples. The area covered under stress-strain 

curve is called toughness which is defined as the ability to absorb mechanical (or kinetic) energy 

up to failure. Accordingly, we quantified the area under the stress-strain curve and found that 

toughness showed the similar trend as elastic modulus and ultimate tensile strength. The 

toughness increased from 21.6 J/m3 for PCL fibers to 80.5 J/m3 for HAP/PDA-PCL(24h) 

samples and further to 137.4 J/m3 for HAP/PDA-PCL(48h) samples. And the HAP-PDA-

PCL(24h) samples showed the comparable toughness as HAP/PDA-PCL(48h) samples.  

 

4. Discussion 
Biomineralization of electrospun fibers provides a useful platform to fabrication of 

biomimetic materials for bone tissue engineering as they can recapitulate both the topography of 

extracellular matrix and composition of bone. Although previous studies examined the effect of 

different ions (e.g., HCO3
- and Mg2+) and proteins in the mineralized solution, surface charges 

and surface functional groups of substrates on the mineralization of electrospun fibers (e.g., 

morphology and grain size), the mechanical properties of obtained mineralized fibers was not 

optimum, which could be due to their ignorance of the usage of a ‘glue’ to bridge the two 

dissimilar materials between mineral coatings (inorganic phase) and polymeric fibers (organic 

phase). Our recent study demonstrated a uniform coating of polydopamine – a mussel inspired 
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protein which has been demonstrated to adhere to many different substrates ranging from metals, 

oxides, and polymers, on electrospun PCL fibers [22]. In the present study, we examined the 

mineral deposition to PCL fibers in two different approaches: mineralization of polydopamine-

coated fibers and mineralization of PCL fibers in the 10×SBF solutions in the presence of 

dopamine. We demonstrated that the control of morphology, grain size, and thickness of mineral 

coating on PCL fibers with and without prior polydopamine coating. The mineral coatings result 

in significant improvement in mechanical properties (e. g., Young’s modulus, ultimate tensile 

strength, and toughness) of fibers. 

Based on the results of our research, we have proposed the two mechanisms for the 

mineralization of polydopamine-coated PCL fibers and plasma-treated PCL fibers in the 

presence of dopamine. In the first case, Ca2+ ions in the mineralized solutions bind to 

polydopamine and subsequently nucleation of CaP minerals takes place, followed by crystal 

growth. In the second case, Ca2+ ions bind to RCOO- on the surface of plasma-treated PCL fibers 

and nucleate and simultaneously dopamine polymerization occur in the mineralized solution. 

Other than the deposition to fibers, polydopamine could be deposited to certain facet of mineral 

crystals or whole surface of the minerals which may inhibit the growth of CaP mineral crystals 

along certain direction or inhibit the growth of CaP minerals.    

Previous studies have demonstrated higher HCO3
- concentration in the mineralized solution 

could lead to smaller grain size [11, 13, 14]. Our results are in line with those studies. However, 

the grain size of minerals deposited on the fibers was too large in some previous studies, 

resulting in elimination of fibrous morphology after mineral deposition and thus loss of ECM 

biomimetic capability of fiber scaffolds [12]. In the present study, fibers after mineral coating 

still remain the fibrous morphology. More importantly, for the first time we demonstrate that 

dopamine in the 10×SBF solution can affect the mineralization of PCL fibers. Increase of 

dopamine concentration in the mineralized solution can greatly decrease the grain size and 

change the morphology of minerals from plate to rod and further to particles. In addition, HCO3
- 

ions were demonstrated not only affect the morphology and grain size during biomineralization 

but also the dissolution kinetics of minerals. A recent study showed that mineral coatings with 

increased HCO3
- substitution presented more rapid dissolution kinetics in an environment 

deficient in calcium and phosphate, which can be used as carriers for regulation of growth factor 

release. The same principle should also be applied to our mineralized nanofiber scaffolds [25].  
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Recently, the macro-tensile measurements on nonwoven PCL fiber scaffolds showed a 

Young’s modulus of around 3.8 MPa and the strain at break is at 170% [26]. In separate studies, 

it was demonstrated that the additive of nanohydroxyaptite could make the tensile strength 

increase from 0.81 MPa (0% nHAP) to 1.32 MPa (25% nHAP) and further to 1.44 MPa (50% 

nHAP) [27, 28]. Accordingly, the elastic modulus increased from 3.32 MPa to 3.5 MPa and 

further to 3.69 MPa. However, these studies demonstrated an increase of Young’s modulus 

(stiffness) and ultimate tensile strength of electrospun PCL fibers to certain degree by creation of 

composite fibers or polymer blended fibers. Our recent study showed higher modulus, ultimate 

tensile stress, and toughness in the aligned nanofiber scaffolds relative to the random scaffolds 

[29]. In this work, we chose to test the mechanical properties of uniaxially-aligned PCL fiber 

scaffolds without and with mineral coatings, indicating biomineralization of fibers mediated by a 

mussel inspired protein can greatly enhance the mechanical properties including Young’s 

modulus (≈ 9-fold), ultimate tensile strength (≈ 8-fold), and toughness (≈ 6-fold).  Although our 

recent study demonstrated polydopamine coating could result in PCL fibers with a higher 

Young’s modulus [22], PCL fibers without prior coating of polydopamine were directly 

mineralized in 10×SBF containing NaHCO3 and dopamine showing great improvement 

compared to polydopamine-coated PCL fibers with regarding to Young’s modulus and 

toughness.  

In our future study, we will fabricate nanofiber scaffolds with gradations in both mineral 

content and fiber organization for repairing tendon-to-bone insertion site [30, 31]. In addition, 

adipose-derived stem cells (ADSCs) may be an optimal cell source for tendon-to-bone tissue 

engineering due to their pluripotency (i.e., they can differentiate into both tendon forming 

fibroblasts and bone forming osteoblasts), high proliferation rates, and capacity for matrix 

deposition [32-35]. We will also examine the response of ADSCs including attachment, 

proliferation and differentiation to the nanofiber scaffolds with dual gradients. 

 

5. Conclusions 
 We have demonstrated the biomineralization of electrospun PCL fibers by making use of 

polydopamine as a filler or “bioglue” to bridge the minerals and polymeric fibers. We found that 

the morphology, grain size, and thickness of CaP mineral coating on PCL fibers can be readily 

controlled by adjusting the composition of mineralized solution, surface property of fibers, and 
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duration of mineralization. The mineral coating can greatly enhance the mechanical property of 

fibers, which may be useful as scaffolding materials for hard tissue engineering such as bone. 

This work also has significant implications for fabrication of other composite or hybrid 

materials. 
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Fig. 1. Schematic illustrating the formation of composite fibers.  Method I: Plasma-treated, 

electrospun PCL fibers were coated with polydopamine in the 0.2 mg/mL dopamine solution at 

pH 8.5 for 4 h and subsequently mineralized in the 10×SBF solution containing different amount 

of NaHCO3. Method II: Plasma-treated, electrospun PCL fibers were directly mineralized in the 

10×SBF solution in the presence of different amounts of NaHCO3 and dopamine. 
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Fig. 2. SEM images of mineralized PCL nanofibers which were produced using method I shown 

in Fig.1. Plasma-treated, electrospun PCL nanofibers were coated with polydopamine for 4 h in 

0.2 mg/mL dopamine solution at pH 8.5 and mineralized in the 10×SBF solution containing 0.01 

M (A, C) and 0.04 M (B, D) NaHCO3 at 37 ○C for 24 h. 
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Fig. 3. SEM images mineralized PCL fibers which were produced using method I shown in 

Fig.1. Plasma-treated, electrospun PCL fibers were coated with polydopamine for 4 h in 0.2 

mg/mL dopamine solution at pH 8.5 and mineralized in the 10×SBF solution containing 0.01 M 

(A, B) and 0.04 M (C, D) NaHCO3 at 37 ○C for 72 h. 
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Fig. 4. SEM images of mineralized PCL fibers which were produced using method II shown in 

Fig.1. Plasma-treated, electrospun PCL fibers were mineralized in the 10×SBF solution 

containing 0.04 M NaHCO3 and 0 mg/mL (A), 0.02 mg/mL (B), 0.1 mg/mL (C), 0.2 mg/mL (D), 

0.4 mg/mL (E), and 1 mg/mL (F) dopamine at 37○C for 24 h. 
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Fig. 5. SEM images of mineralized PCL fibers which were produced using method II shown in 

Fig.1. Plasma-treated, electrospun PCL fibers were mineralized in the 10×SBF solution 

containing 0.01 M NaHCO3 and 0 mg/mL (A, B), 0.04 mg/mL (C, D), and 1 mg/mL (E, F) of 

dopamine at 37 ○C for 2 h. 
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Fig. 6. SEM images of mineralized PCL fibers which were produced using method II shown in 

Fig.1. Plasma-treated, electrospun PCL fibers were mineralized in the 10×SBF solution 

containing 0.04 M NaHCO3 and 0.2 mg/mL dopamine at 37 ○C for different times: (A) 1h; (B) 

24 h; (C) 48 h; and (D) 72 h. The reaction solution was changed every 24 h. 
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Figure 7. Survey scan XPS spectra for (A) plasma-treated PCL fibers, (B) HAP-PDA-PCL 

fibers (24 h), (C) HAP/PDA-PCL fibers (24 h), and (D) HAP/PDA-PCL fibers (48 h). HAP-

PDA-PCL fibers (24 h): plasma-treated PCL fiber were coated with polydopamine in 0.2 mg/mL 

dopamine solution at pH = 8.5 for 4 h prior to mineralization in the 10×SBF solution containing 

0.04 M NaHCO3 for 24 h. HAP/PDA-PCL fibers (24 h) and HAP/PDA-PCL fibers (48 h): PCL 

fibers: plasma treated PCL fibers were mineralized in the 10×SBF solution containing 0.4 M 

NaHCO3 and 0.2 mg/mL dopamine for 24 h and 48 h. The reaction solution was changed every 

24 h. 
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Figure 8. Typical XPS C1s spectra for (A) plasma-treated PCL fibers, (B) HAP-PDA-PCL fibers 

(24 h), (C) HAP/PDA-PCL fibers (24 h), and (D) HAP/PDA-PCL fibers (48 h). HAP-PDA-PCL 

fibers (24 h): plasma-treated, electrospun PCL fiber were coated with polydopamine in 0.2 

mg/mL dopamine solution at pH = 8.5 for 4 h prior to mineralization in 10×SBF solution 

containing 0.04 M NaHCO3 for 24 h. HAP/PDA-PCL fibers (24 h) and HAP/PDA-PCL fibers 

(48 h): PCL fibers: plasma treated, electrospun PCL fibers were mineralized in the 10×SBF 

solution containing 0.04 M NaHCO3 and 0.2 mg/mL dopamine for 24 h and 48 h. The reaction 

solution was changed every 24 h.  
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Figure 9. Typical XPS Ca2p spectra for (A) plasma-treated PCL fibers, (B) HAP-PDA-PCL 

fibers (24 h), (C) HAP/PDA-PCL fibers (24 h), and (D) HAP/PDA-PCL fibers (48 h). HAP-

PDA-PCL fibers (24 h): plasma-treated, electrospun PCL fiber were coated with polydopamine 

in 0.2 mg/mL dopamine solution at pH = 8.5 for 4 h prior to mineralization in the 10×SBF 

solution containing 0.04 M NaHCO3. HAP/PDA-PCL fibers (24 h) and HAP/PDA-PCL fibers 

(48 h): PCL fibers: plasma treated, electrospun PCL fibers were mineralized for 24 h and 48 h in 

the 10×SBF solution containing 0.04 M NaHCO3 and 0.2 mg/mL dopamine. The reaction 

solution was changed every 24 h.  
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Figure 10. Stress-strain curves for various fibrous samples. HAP-PDA-PCL (24 h): plasma-

treated, electrospun PCL fibers were coated with polydopamine in 0.2 mg/mL dopamine solution 

at pH = 8.5 for 4 h prior to mineralization in the 10×SBF solution containing 0.04 M NaHCO3. 

HAP/PDA-PCL (24 h) and HAP/PDA-PCL (48 h): plasma treated, electrospun PCL fibers were 

mineralized in the 10×SBF solution containing 0.04 M NaHCO3 and 0.2 mg/mL dopamine for 

24 h and 48 h. The reaction solution was changed every 24 h.  
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Table 1. Composition of mineralization solution  

Composition of 10×SBF solution              Concentration (g/L) 

  NaCl                                                               58.43  

  CaCl2                                                              2.77  

  NaH2PO4·H2O                                                1.39  
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Table 2. Surface elemental analysis of various fiber samples  

Atomic %       PCL      HAP-PDA-PCL(24h)       HAP/PDA-PCL(24h)      HAP/PDA-PCL(48h) 

    C                 73.1                  29.73                                    15.7                              16.1            

    O                  26.9                  45.35                                    52.1                              51.5 

   Ca                                          15.51                                    19.0                              18.4 

    P                                            8.82                                      12.9                              11.3 

    N                                           0.59                                       0.3                                2.7 

 

PCL fibers: plasma-treated PCL fibers. HAP-PDA-PCL (24 h): plasma-treated PCL fiber were 

coated with polydopamine in 0.2 mg/mL dopamine solution at pH = 8.5 for 4 h prior to 

mineralization in 10×SBF solution containing 0.04 M NaHCO3. HAP/PDA-PCL (24 h) and 

HAP/PDA-PCL (48 h): plasma-treated PCL fibers were mineralized for 24 h and 48 h in 

10×SBF solution containing 0.04 M NaHCO3 and 0.2 mg/mL dopamine. The reaction solution 

was changed every 24 h. 
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