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Abstract 

INTRODUCTION: Analyzing animal behavior helps researchers understand their decision-making process and helper tools 

are rapidly becoming an indispensable part of many interdisciplinary studies. However, researchers are often challenged to 

estimate animal pose because of the limitation of the tools and its vulnerability to a specific environment. Over the years, 

deep learning has been introduced as an alternative solution to overcome these challenges. 

OBJECTIVES: This study investigates how deep learning models can be applied for the accurate prediction of animal 

behavior, comparing with traditional morphological analysis based on image pixels. 

METHODS: Transparent Omnidirectional Locomotion Compensator (TOLC), a tracking device, is used to record videos 

with a wide range of animal behavior. Recorded videos contain two insects: a walking red imported fire ant (Solenopsis 

invicta) and a walking fruit fly (Drosophila melanogaster). Body parts such as the head, legs, and thorax, are estimated by 

using an open-source deep-learning toolbox. A deep learning model, ResNet-50, is trained to predict the body parts of the 

fire ant and the fruit fly respectively. 500 image frames for each insect were annotated by humans and then compared with 

the predictions of the deep learning model as well as the points generated from the morphological analysis. 

RESULTS: The experimental results show that the average distance between the deep learning-predicted centroids and the 

human-annotated centroids is 2.54, while the average distance between the morphological analysis-generated centroids and 

the human-annotated centroids is 6.41 over the 500 frames of the fire ant. For the fruit fly, the average distance of the 

centroids between the deep learning- predicted and the human-annotated is 2.43, while the average distance of the centroids 

between the morphological analysis-generated and the human-annotated is 5.06 over the 477 image frames. 

CONCLUSION: In this paper, we demonstrate that the deep learning model outperforms traditional morphological analysis 

in terms of estimating animal pose in a series of video frames. 
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1. Introduction

Understanding the relationship between nervous system 

function and behavior has been a major goal in the 

neuroscience research [2]. Real et al. [3] presented a circuit 

inference framework that represents neurons and their 

*Corresponding author. Email: leesan@marshall.edu

connections to facilitate the understanding of neural 

circuits, and Deisseroth [4] emphasized the significance of 

the function of nervous systems. While a variety of studies 

has been focused on the structure of neurons and function, 

the analysis of animal behavior has been moved slowly 

because of the lack of understanding about theoretical and 

experimental research of behavior [5]. 
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Animal behavior is an important part of neuroscience 

study and has been treated in many fields, such as genetics, 

psychology, and ethology [6]. To understand animal 

behavior, high-quality video recordings have been used to 

capture the motion signal of behaving animals. However, 

researchers have been suffered from the lack of an efficient 

method for the animal behavior analysis in the captured 

video recordings; the analysis takes too much time to 

complete all tasks for each frame in the captured video 

recordings. Moreover, it may be highly subjective judging 

whether the animal behavior changes in certain situations. 

Advances in automatic technologies have enabled 

animal scientists or researchers to better study the behavior 

of animals, providing the automated analysis of images [7, 

8]. In bioimage analysis, automated image analysis using a 

convolutional neural network (CNN) has been a popular 

method for studying digital images. As a class of neural 

network model, the CNN-based models, such as CNN [9], 

Recurrent CNN-based models [10], encoder-decoder-

based models, generative adversarial networks [11], and 

CNN-based active learning models [12] have been widely 

studied and successfully applied to the real-world problems 

[13-15]. In particular, Apte et al. presented that a deep 

learning-based image segmentation can be involved in an 

open-source library [16] and Stern et al. presented a high-

throughput analysis of animal behavior by using CNN [17]. 

Further, some studies show CNN- based models can 

improve the fundamental image analysis operations [18, 

19]. However, these methods are still time-consuming and 

require a heavy workforce for training and testing on the 

captured video recordings.  

Animal pose estimation has been received much 

attention by reducing the time-consuming effort to label. 

Newell et al. [20] introduced a CNN architecture called 

stacked hourglass for human pose estimation and 

Insafutdinov et al.  [21] firstly presented an articulated 

multi-person pose estimation by using the most popular 

deep learning model, ResNet. Mathis et al. [1] advanced 

Insafutdinov's work. However, these methods have been 

focused on deep learning models and didn't demonstrate 

their models by comparing them with morphological 

analysis. 

In this paper, we investigate how CNN-based models can 

achieve accurate animal pose predictions by using a newly 

developed open-source software toolbox called 

DeepLabCut [1, 22], comparing with traditional 

morphological image analysis. Raw images of a fruit fly 

(Drosophila melanogaster) and fire ant (Solenopsis invicta) 

are recorded by a motion-tracking device called transparent 

omnidirectional locomotion compensator (TOLC) [23] 

separately. Each video recording created by TOLC is 

trained by deep learning models and the trained deep 

learning models are used to predict animal poses. The 

animal poses predicted by the trained deep learning models 

are compared with the poses estimated by morphological 

images analysis. 

The rest of the paper is organized as follows. In Section 

2, we describe our TOLC device. In Section 3, we 

introduce the DeepLabCut open-software tool. To provide 

a better understanding of the raw image data and the 

methods used in this paper, Section 4 shows detailed 

information about the measurement, raw images, and 

model configuration. In Section 5, we present our 

experimental results. Finally, Section 6 concludes the 

presented work. 

2. Materials and Method

2.1. Tracking device 

Tracking devices have been being developed extensively 

by animal scientists or researchers because tracking 

behavioral data help to capture footage from an animal's 

movement and provides invaluable contributions to many 

disciplines such as genetics, psychology, and ethology [24, 

25]. This tracking device records the behavior of walking 

insects, such as a fruit fly, a cricket, and ants, by 

compensating their motion using a transparent sphere. 

However, the behavior observation system has been having 

difficulty obtaining all behavioral data because of its 

limited field of view. To address this issue, much attention 

has been paid to the development of a finite behavior 

chamber to observe the behavior in a freely walking insect 

by restricting the behavior of the animal. 

Meanwhile, an insect was tethered on the fixture and 

walked on top of the air-floated ball in the finite behavior 

chamber. However, the tethered method makes an insect 

move its legs only to rotate a ball while its body is 

immobilized in the fixture. Although this method allows 

infinite space navigation with a virtual reality system, it 

causes a serious problem that damages the animal during 

the tethering process and makes it difficult for a long-term 

behavior study of an insect. We extended our paper [26] to 

include a walking red imported fire ant (Solenopsis invicta) 

without tethering but using the feedback control of the 

TOLC. 

Figure 1. (a) Omnidirectional Motion 
Compensation System. (b) The schematic drawing 
of main components. (c).  closed-view of fire ants on 

the tracking device 
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The TOLC [23] is a tracking device that captures an 

insect's movement by compensating its motion with the 

help of a transparent sphere. This TOLC device, shown in 

Figure 1, detects the motion of the untethered walking 

insect and brings it back to the desired location by rotating 

a sphere to counteract the walking motion. The imaging 

system underneath the transparent sphere captures an 

image of the freely walking insect at 200 Hz with the 

illumination of 850 nm near-infrared (NIR) light-emitting 

diodes (LEDs) to minimize the visual distraction of the 

insect. Once the position is detected, three omnidirectional 

wheels attached to the servomotor rotate the sphere in the 

desired direction to cancel out error between the current 

and target positions. We implemented the proportional 

integral derivative(PID) control methods to compute the 

control input [23]. The rotation is measured by two optical 

encoders on the side of the sphere, which is used to estimate 

the travel trajectory of the walking insect.  

2.2. Pose estimation 

Pose estimation is a machine learning task that estimates 

the object position from a series of image frames taken 

from a video recording at a particular frame rate [27]. The 

object position has been detected, associated, and tracked 

by a model reference frame obtained at a previous time, but 

the accuracy of pose estimation has been limited by high 

computational resources. Today, advances in image 

analysis methods based on convolutional neural networks 

(CNNs) promote fast and accurate object pose inference by 

pre-trained models for pose detection and pose tracking. 

DeepLabCut is an image analysis tool that provides 

capabilities for tracking behaviors of various objects over 

state-of-the-art deep learning models. This deep learning-

equipped image analysis tool helps users to easily label the 

subject pose and train the labels for the object pose 

inference. DeepLabCut provides users steps to successfully 

predict the object pose. The steps follow: creating a project, 

extracting frames, labeling object pose, training labels, and 

evaluating deep learning models. DeepLabCut also 

provides the ability to retrain evaluated deep learning 

models by extracting outlier frames or updating labeled 

frames. 

DeepLabCut utilizes deep residual networks such as 

ResNet-50 and ResNet-101 which are ImageNet pre-

trained to estimate human body parts with high 

performance. ResNet introduced in [28] is a special type of 

neural network that has received much attention in many 

image vision communities because a large number of 

layers on neural networks avoid training errors. As the 

state-of-the-art neural network architectures, such as VGG 

network [29], GoogleNet [30], and SqueezeNet [31], have 

been suffered in the training performance of large layered 

networks, ResNet models provided a solution to the 

problem by fitting the stacked layers to a residual mapping. 

Moreover, DeepLabCut offers several benefits over 

similar available tools such as DataJoint, Kinematic, and 

Openephys, for feature tracking. DeepLabCut guides the 

experimenter using an interface that provides a step-by-

step procedure from labeling to training, minimizes the cost 

of manual behavior analysis and can achieve human-level 

accuracy with only a small amount of labeled images, can 

be easily adapted to analyze behaviors across species, and 

is open-source and free to use. 

The procedure of DeepLabCut is established by several 

steps: extracting the region of interest (ROI), manually 

localizing body parts, training a deep neural network (DNN) 

architecture, and predicting the locations of the body parts 

from new videos. Particularly, the DNN architecture uses 

ResNet-50 to predict the location of the body part by 

updating a distinct readout layer and network weights. The 

architecture of DeepLabCut with ResNet-50 is shown in 

Figure 2. 

In this paper, we use ResNet-50 built in the DeepLabCut 

and compare it with traditional morphological analysis. 

Especially, we investigate how the centroid of an object is 

accurately predicted by the deep learning model. The 

results of the deep learning model will be compared with 

the centroids measured by using morphological image 

processing in a sequence of the image frames. 

2.3. Datasets 

We created two datasets for Drosophila melanogaster 

and fire ant. For the experiment of estimating Drosophila 

Figure 2. DeepLabCut ResNet-50 architecture [1]. 
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melanogaster pose, wild-type Canton S was obtained from 

the Drosophila stock center (Bloomington, IN) to be raised 

with a standard food (Genesee Scientific, 66-117) at 25°C 

in a 12-hour dark-light cycle. Fruit flies between twenty 

and 40 days old were used for the first experiment in the 

chamber under CO2 anesthesia. The fire ant workers used 

for experiments were collected from the campus of 

Kennesaw State University (Georgia, USA). Fire ants were 

housed in a plastic chamber with a nest tube, and they were 

provided with sugar water and held at standard room 

temperature (~22°C). For an initial 5 minutes, both the fruit 

fly and the fire ant were left to habituate before the first 

experiment. The experiment is conducted in the dark 

chamber to eliminate unpredicted external stimuli.  

To record two animals, the near-infrared (NIR) camera 

(FLIR, CM3-U3-31S4M-CS) with 850 nm light-emitting 

diodes (Osram, SFH 4655-Z) equipped in TOLC was used 

to capture the animals' motion. Videos were recorded and 

their metadata were formatted as a binary file with 640x376 

sized images and 720x540 sized images for a fruit fly and 

a fire ant respectively. 

Experiments were performed on one Ubuntu server with 

40 cores, 196 GB memory, and two Quadro P4000 GPUs. 

ResNet-50 was adopted to train centroids of a fruit fly and 

a fire ant. We obtained 1,000 fruit fly images and 1,000 fire 

ant images from the videos splitting them into two 500 

images for training and testing. The number of training 

iterations was 15,000. A cross-entropy loss function with a 

learning rate of 0.02 was used for training. The cross-

entropy loss function represents the L1 distance between a 

predicted region and an actual region. The loss function is 

defined as below: 

(�̂�, 𝑦) = −(𝑦log�̂� + (1 − 𝑦) log(1 − �̂�))     (1) 

, where �̂� is a predicted region in pixel and 𝑦 is an actual 

region in pixel. 

The location of the fruit fly’s centroid was measured by 

a morphological filter from the TOLC device. The 

morphological filter computes the centroids in 2-

dimensional space with x-axis and y-axis. The geometric 

center (𝑡𝑐𝑥, 𝑡𝑐𝑦) of the fruit fly's area was compared with

the location (𝑑𝑐𝑥 , 𝑑𝑐𝑦 ) of the centroid predicted by the

ResNet-50 in the DeepLabCut. Likewise, we obtained the 

centroid location of the fire ant by the morphological filter 

and the deep learning prediction, comparing them with 

each other. 

Two experiments were conducted for the fruit fly and 

the fire ant respectively. To verify the effectiveness of the 

deep learning model, we compared the (𝑑𝑐𝑥, 𝑑𝑐𝑦) with the

location ( ℎ𝑐𝑥 , ℎ𝑐𝑦 ) of the centroid annotated by two

students (one graduate student and one undergraduate 

student), human-annotated. In the labeling process, the 

centroids in 50 image frames were labeled for the training 

of both animals. For the testing, 500 image frames were 

labeled using DeepLabCut's graphical user interface 

(GUI). 

3. Experiment Results

Figure 3. Experimental results of the distance comparisons of deep learning-predicted (DLC), 
morphological analysis-generated (TOLC), and human-annotated (Human) on the fire ant. 
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In this section, we demonstrate the effectiveness of the 

deep learning model based on the results of the experiments 

comparing three centroids: (𝑡𝑐𝑥 , 𝑡𝑐𝑦 ) calculated by the

morphological analysis, (𝑑𝑐𝑥, 𝑑𝑐𝑦) predicted by the deep

learning model, and (ℎ𝑐𝑥, ℎ𝑐𝑦) annotated by humans.

The Euclidean distance was chosen to compare the 

distance between two centroids to find the dissimilarity of 

the centroid location. The Euclidean distances 𝐸𝐷(𝑑, ℎ), 

𝐸𝐷(𝑑, 𝑡), and 𝐸𝐷(𝑡, ℎ) used in the experiment are defined 

as below: 

𝐸𝐷(𝑑, ℎ) = √(𝑑𝑐𝑥 − ℎ𝑐𝑥)2 + (𝑑𝑐𝑦 − ℎ𝑐𝑦)2      (2) 

𝐸𝐷(𝑑, 𝑡) = √(𝑑𝑐𝑥 − 𝑡𝑐𝑥)2 + (𝑑𝑐𝑦 − 𝑡𝑐𝑦)2       (3) 

𝐸𝐷(𝑡, ℎ) = √(𝑡𝑐𝑥 − ℎ𝑐𝑥)2 + (𝑡𝑐𝑦 − ℎ𝑐𝑦)2       (4) 

The distance between deep learning-predicted centroids 

and human-annotated centroids is defined as 𝐸𝐷(𝑑, ℎ) , 

while the distance between deep learning-predicted 

centroids and morphological analysis-generated centroids 

is defined as. The distance between morphological 

analysis-generated centroids and human-annotated 

centroids is defined as 𝐸𝐷(𝑡, ℎ).  

The experiment results of Euclidean distances: 

𝐸𝐷(𝑑, ℎ), 𝐸𝐷(𝑑, 𝑡), and 𝐸𝐷(𝑡, ℎ) on the testing datasets 

for the fire ant are shown in Figure 3. In the figure, the x-

axis represents frame numbers recorded by the TOLC 

device, while the y-axis represents the distances measured 

by Euclidean distance. The solid red line representing 

𝐸𝐷(𝑑, ℎ) indicates that the centroid distances are likely to 

be maintained as the frame numbers increase, while the 

dotted blue line representing 𝐸𝐷(𝑡, ℎ)  shows irregular 

distances as the frame numbers increase, comparing with 

the solid red line. 

The overall experiment results of 𝐸𝐷(𝑑, ℎ) 𝐸𝐷(𝑑, ℎ), 

𝐸𝐷(𝑑, 𝑡), and 𝐸𝐷(𝑡, ℎ) on the testing datasets for the fire 

ant show that the deep learning-predicted centroids are 

much closer to the human-annotated centroids than the 

morphological analysis-generated centroids. These results 

demonstrate that the error distance of the centroids of the 

morphological analysis generated is much larger than the 

error distance of the centroids of the deep learning-

predicted. 

The Euclidean distances for 𝐸𝐷(𝑑, ℎ) , 𝐸𝐷(𝑑, 𝑡) , and 

𝐸𝐷(𝑡, ℎ) on the testing datasets for the fruit fly are shown 

in Figure 4. Similarly, the x-axis represents frame numbers 

recorded by the TOLC device, while the y-axis represents 

the distances measured by Euclidean distance. Unlike that 

the morphological analysis-generated centroids are fully 

obtained (500 frames) on the testing datasets for the fire 

ant, 23 morphological analysis-generated centroids were 

missing on the testing datasets for the fruit fly. Therefore, 

we performed the experiment on 477 frames of the fruit fly. 

These new unseen datasets were used to determine if the 

deep learning model was trained effectively or not. As a 

result, we found that the sold red line representing 

𝐸𝐷(𝑑, ℎ)  keeps maintaining the centroid distances 

between deep-learning predicted and human-annotated, 

Figure 4. Experimental results of the distance comparisons of deep learning-predicted (DLC), 
morphological analysis-generated (TOLC), and human-annotated (Human) on the fruit fly. 
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showing that the deep learning-predicted centroids are very 

similar to the human-annotated centroid. The dotted blue 

line representing 𝐸𝐷(𝑡, ℎ)  provides a different result 

showing that the centroid distances between morphological 

analysis-generated and human-annotated are irregular as 

the frame numbers increase. 

The cross-entropies 𝐿(�̂�, 𝑦) for training at 15,000 
iterations were 0.0062 and 0.0062 with a 0.02 learning rate 

for the fruit fly and the fire ant respectively. The average 

distances between 𝐸𝐷(𝑑, ℎ) , 𝐸𝐷(𝑑, 𝑡) , and 𝐸𝐷(𝑡, ℎ)  are 

shown in Table 1. 

Table 1. The average distances between 𝐸𝐷(𝑑, ℎ), 
𝐸𝐷(𝑑, 𝑡), and 𝐸𝐷(𝑡, ℎ).  

Average distance 

Fruit fly Fire ant 

𝑬𝑫(𝒅, 𝒉) 2.43 2.54 

𝑬𝑫(𝒕, 𝒉) 5.06 6.41 

𝑬𝑫(𝒅, 𝒕) 4.14 5.49 

    An additional experiment to further validate our 

experiment was performed on other locations such as head, 

front head, front right leg, front left leg, middle right leg, 

middle left leg, rear right leg, and rear left leg. The number 

of training iterations was 500,000. A cross-entropy loss 

function representing the L1 distance between a predicted 

region and an actual region was used for training and the 

learning rate is 0.02. Training loss for each experiment is 

shown in Figure 5. While the experiment on centroids for 

both the fire ant and the fruity fly are conducted over the 

15,000 iterations, we used 500,000 iterations for the seven 

locations. Three experiments indicate that the loss drops 

very quickly until around 2,300-th iteration and becomes 

constant as the iteration increases, demonstrating the 

effectiveness of the deep learning model on the 

experiments. 

The visual representation of the locations on the fire ant 

is shown in Figure 6. Figure 6 represents fire ant NIR 

images with different times. The seven locations were 

colored as purple, blue, yellow, light blue, orange, light 

green, and red respectively. 

The trajectories for the seven locations of the fire ant are 

shown in Figure 7.  Figure 7A shows the fire ant's 

trajectories for the front legs. The upper figure indicates 

that both the front right leg and the front left leg have 

similar patterns across the 2-dimensional space. The 

bottom figure displays x and y-position over the image 

frames as time moves on. Likewise, the trajectories for both 

the rear legs and the middle legs produce similar results to 

Figure 6. Visual representation of the DeepLabCut-
predicted locations for head, front right leg, front left leg, 
middle right leg, middle left leg, rear right leg, and rear 

left leg. 

Figure 5. Loss over the iteration on training 
datasets. A. Loss on the fire ant centroids B. 
Loss on the fruit fly. C. Loss on the fire ant 

seven locations.
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the front legs. The trajectory information can be useful 

when researchers investigate animal behavior over the time 

domain. An example of the utilization of trajectory 

information is shown in Figure 8. 

4. Discussion

Our study demonstrates that DeepLabCut can be applied to 

different species of animals and is beneficial to auto-

tracking with a minimum of effort to identify the pattern of 

behavior exhibited by different species of animals. Our 

experimental results provide guidelines on how the 

predicted location information (i.e., centroids, head, and 

the six legs) can be combined. We plan to perform 

extensive experiments with more annotations that will 

avoid an intra-observer variation or learning bias. 

Moreover, we plan to study the conditioned behavior (i.e., 

positive phototactic movement) in Drosophila by tracking 

the leg movements. The phototactic response is the cellular 

behavior of moving directionally in response to the light 

source. While the negative phototactic response is related 

to moving away from the light, the positive phototactic 

response is related to moving toward the light. P. Pun et al. 

experimented on Drosophila melanogaster’s positive 

Figure 7. Ant trajectories for the seven locations. A. Front right leg and front left leg. B. Head. C. Rear 
right leg and rear left leg. D. Middle right leg and middle left leg.   
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phototactic movement by using the TOLC device and 

demonstrated the ability of the TOLC device to detect the 

fruit fly’s positive phototactic movement. This experiment 

would encourage us to use the sequence of DeepLabCut 

predicted leg movements with the heading angle measured 

by the TOLC device. 

5. Conclusion

In this paper, we performed an estimation of the animal 

pose in a sequence of image frames recorded by the TOLC 

device. Poses of two insects, a fruit fly, and a fire ant, were 

estimated to explain patterns at the location of the body 

parts. Morphological image analysis was performed to 

estimate the centroid of a body area, comparing it with the 

centroid predicted by a deep learning model. While the 

morphological process highly depends on a pixel-wise 

mask, the deep learning process creates a model that 

enables us to perform a markerless pose estimation to 

locate the centroid of a body area. In addition to the 

experiment, we studied the patterns of the insets’ 

movement by tracing the location of the head and six legs. 

A total of 2,000 image frames was used for the three 

experiments and 1,000 image frames were annotated for 

the centroids for both the fire ant and the fruit fly 

respectively. The experiment results showed that the 

overall distance between the deep learning-predicted 

centroids and the human-annotated centroids is less than 

the overall distance between the morphological analysis-

generated centroids and the human-annotated centroids.  
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