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Cerium Oxide Nanoparticle Exposure Activates MAPK in Rat Lungs

ratio in exposed animals was 99% higher three days after ex-
posure (p<0.05) before declining thereafter. Compared to the 
day 1 saline control group, the Bax to Bcl-2 ratio was 37, 23, and 
14% lower at days 14, 28, and 56, respectively, in animals ex-
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Figure 1. Cerium concentration in the lungs appears to dimin-
ish over time. Lung tissues (approximately 1 g) were used for es-
timation of the cerium content in the lungs through induction 
couple plasma-mass spectrometry analysis. Con-1 represents 
the day 1 saline control group, while CeO2-1, 3, 14, 28, and 90 
represent the groups exposed to cerium oxide (CeO2) nanopar-
ticles for 1, 3, 14, 28, and 90 days respectively. One-way analysis 
of variance was performed for overall comparisons, while the 
Student-Newman-Keuls post hoc test was used to determine 
differences between groups. *p<0.05 between the day 1 saline 
control group, †p<0.05 between the CeO2 day 1 group. 
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Figure 2. Gross alterations in the lungs with exposure to ce-
rium oxide (CeO2) nanoparticles include increased weight, 
black discoloration of the lungs, and the appearance of white 
nodules on the surface. The white nodules appeared to in-
crease with longer exposure, and the white nodules appeared 
to coalesce to form bigger nodules at day 90. (A) Saline control 
lungs day 1, (B) CeO2 exposed lungs (7.0 mg/kg) day 28, (C) 
CeO2 exposed lungs (7.0 mg/kg) day 56, and (D) CeO2 exposed 
lungs (7.0 mg/kg) day 90.

Exposure to Cerium Oxide Nanoparticles Alters 
the Gross Histological Appearance of the Lung

Alterations in the appearance of the lungs following exposure 
included the presence of areas of black discoloration and white 
pustular nodules on the surface of the lungs, which appeared 
to increase over time (Figure 2). Histological alterations includ-
ed an increased number of alveolar macrophages, an increased 
number of polymorphonuclear cells, and an apparent accumu-
lation of particulate material in the alveolar spaces (Figure 3).

Cerium Oxide Nanoparticles Increase Apoptotic 
Protein Signaling in the Lung 

Compared to the day 1 saline control group, the Bax to Bcl-2 

A B C D E

Figure 3. Alterations in the histological appearance of lungs associated with the instillation of CeO2 nanoparticles include an in-
creased number of alveolar macrophages, an increase in the number of polymorphonuclear white blood cells (short arrow), and 
the increased accumulation of particulate matter (long arrow) in the air spaces (400×). (A) Saline control-1 H&E lung 400X, (B) 
CeO2-1 H&E lung 400X, (C) CeO2-3 H&E lung 400X, (D) CeO2-14 H&E lung 400X, and (E) CeO2-28 H&E lung 400X. CeO2, cerium ox-
ide; H&E, hematoxylin and eosin; CeO2-n, lung tissues from the groups that had been exposed to CeO2 nanoparticles for n days.
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posed to CeO2 nanoparticles (p<0.05) (Figure 4).
In order to extend these findings, we next examined the reg-

ulation of the initiator (caspase-9) and the executor caspases 
(caspase-3) [18]. Compared to the day 1 saline control group, 
the total caspase-9 protein levels were reduced by 28, 6, 23, 21, 
and 32% in the 1, 3, 14, 56, and 90-day post-exposure groups 
(p<0.05). Compared to the day 1 saline control group, the ex-
pression of the 38-kDa and 40-kDa cleaved fragments of cas-
pase-9 was increased by 20% in the 3, 14, and 28-day post-ex-
posure groups (p<0.05) (Figure 4).

Caspase-3 protein expression levels increased by 56% 
(p<0.05) and 20% (p<0.05) in the 3 and 14-day exposure 
groups, when compared to the day 1 saline control group. 
Compared to the day 1 saline control group, the protein expres-
sion of the cleaved fragments of caspase-3 (17 kDa and 19 kDa) 
were increased by 10, 88, 66, 119, 77, and 39% in the 1, 3, 14, 

28, 56, and 90-day post-exposure groups (p<0.05) (Figure 4). 

Cerium Oxide Nanoparticle Exposure Is Associ-
ated With Activation of Mitogen-activated Pro-
tein Kinase Signaling

Compared to the day 1 saline control group, the ratio of phos-
phorylated p38 MAPK (Thr180/Tyr182) to total p38 MAPK was 
reduced by 22 and 14% in the day 1 and day 3 post-exposure 
groups (p<0.05). However, this ratio was elevated by 52, 15, and 
10% in the 14, 28, and 56-day post-exposure groups, before it 
declined by 19% in the 90-day post-exposure group (p<0.05) 
(Figure 5). 

The ratio of phosphorylated ERK-1/2 (Thr202/Tyr204) to total 
ERK-1/2 was reduced by 43, 57, 56, 62, 53, and 41% in the 1, 3, 
14, 28, 56, and 90-day post-exposure groups compared to the 
day 1 saline control group (p<0.05) (Figure 5). In contrast, the 

Figure 4. Cerium oxide (CeO2) nanoparticles increase pro-
apoptotic protein signaling in the lungs. Protein bands of the 
Bax, Bcl-2 (A), caspase-9, cleaved caspase-9 (B), and cas-
pase-3, cleaved caspase-3 (C) proteins, along with the corre-
sponding glyceraldehyde 3-phosphate dehydrogenase (GAP-
DH) levels, are represented in the figure. Bands correspond-
ing to the X-axis labels are shown in the immunoblotting im-
ages. The protein levels were adjusted depending on the 
GAPDH levels and compared with the day 1 control group. 
One-way analysis of variance was performed for overall com-
parisons, while the Student-Newman-Keuls post hoc test was 
used to determine differences between groups. *p<0.05 be-
tween the day 1 saline control group.
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The primary finding of the current study is that pulmonary ex-
posure to CeO2 nanoparticles is associated with histological 
evidence of lung inflammation, the activation of MAPK signal-
ing, the phosphorylation of STAT-3, increased caspase-3 cleav-
age, and inflammation. 

The data from the current study show that the instillation of 
CeO2 nanoparticles leads to the deposition of cerium in the 
lungs, as shown by ICP-MS (Figure 1). We also observed that 
exposure to CeO2 nanoparticles was associated with the devel-
opment of white nodular structures on the lung surface (Table 
1, Figures 2 and 3). Recent work has shown that nanoparticles 
such as carbon nanotubes, titanium dioxide nanoparticles, and 
polyacrylate nanoparticles can induce granulomas on the lung 
surface [21-23]. It is possible that the white nodules we ob-
served in the present study may be the byproduct of an ongo-
ing inflammatory reaction, which could result in either the 
clearance of the nanoparticles or their further development 
into granulomas on the surface of the lungs [22,24]. The afore-
mentioned possibility is consistent with our histopathological 
analysis, in which we observed an increase in the number of al-

Figure 5. Activation of mitogen-activated protein kinase 
(MAPK) protein signaling was observed with the instillation of 
cerium oxide (CeO2) nanoparticles. Protein bands of the p38 
MAPK, phosphorylated p38 MAPK (A), ERK-1/2-MAPK, phos-
phorylated ERK-1/2-MAPK (B), and JNK, phosphorylated JNK 
(C) proteins, along with the corresponding glyceraldehyde 
3-phosphate dehydrogenase (GAPDH) levels are represented 
in the figure bands corresponding to the X-axis labels and are 
shown in the immunoblotting images. Protein levels were ad-
justed according to the GAPDH levels and compared with the 
day 1 control group. One-way analysis of variance was per-
formed for overall comparisons, while the Student-Newman-
Keuls post hoc test was used to determine differences be-
tween groups. *p<0.05 between the day 1 saline control 
group. 
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ratio of phosphorylated (Thr183/Tyr185) JNK to total JNK was 
unaltered following nanoparticle exposure (Figure 5). 

 

Cerium Oxide Nanoparticles Activate Inflamma-
tory Protein Signaling Through p38 MAPK Medi-
ated STAT-3 Activation 

It is known that JAK-2 and STAT-3 play a crucial role in inflam-
mation [19]. When compared to the day 1 saline control group, 
the ratio of phosphorylated (Tyr705) to total STAT-3 protein was 
111, 193, and 106% higher at 3, 14, and 28 days after exposure 
(p<0.05) (Figure 6). The ratio of phosphorylated (Tyr1007/1008) 
JAK-2 to total JAK-2 was 25 and 103% higher in the 1 and 90-
day post-exposure groups compared to the control animals (p<  
0.05) (Figure 6).

DISCUSSION

Previous In vitro and in vivo studies have suggested that ex-
posure to CeO2 nanoparticles can elicit toxic effects, although 
the underlying mechanism is not well understood [3,8,12,20]. 
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veolar macrophages and polymorphonuclear white blood cells 
in the lungs of animals that had been exposed to CeO2 nanopar-
ticles. It is thought that the toxic effects of most nanoparticles 
(silver, silica, titanium dioxide, zinc oxide, and carbonaceous 
nanoparticles) are characterized by increased oxidative stress 
[25-29]. Whether these increases in oxidative stress are due to in-
creased reactive oxygen species (ROS) generation or decreased 
ROS scavenging is currently unclear, although many metallic ox-
ide nanoparticles have been shown to increase ROS production 
[30,31]. 

Increased ROS levels may also induce apoptotic signaling. We 
observed an increase in the pro-apoptotic Bax to Bcl-2 ratio at 
one and three days after the exposure to CeO2 nanoparticles, 
with a subsequent decline. Since the Bax to Bcl-2 ratio is an in-
dicator of whether a cell is likely to undergo apoptosis [18,32], 
we next examined the possibility that CeO2 nanoparticle expo-
sure may be associated with the activation of caspase-3. Con-
sistent with the Bax/Bcl-2 data, we found that caspase-3 cleav-
age (activation) was elevated at 3, 14, 28, and 56 days post-ex-
posure. Why caspase-3 cleavage was present in the absence of 
an elevated Bax/Bcl-2 ratio is currently unclear. Other signaling 
pathways (extrinsic or intrinsic pathways) that activate the 
apoptotic pathway may be in play and explain the possible ac-
tivation of effector caspase-3 in the absence of an elevated 
Bax/Bcl-2 ratio. It is thought that mild lung injury may elicit the 
repair of the damaged tissue, whereas excessive apoptosis-in-
duced cell death may lead to the development of lung remod-
eling and fibrosis [33]. Bearing this in mind, the activation of 
caspase-3 we identified in the current study may help to ex-

plain previous findings that increased lung fibrosis follows ex-
posure to CeO2 nanoparticles [12].

MAPKs are stress-responsive proteins that can be activated 
by growth factors, chemicals, ultraviolet radiation, heat, syn-
thesis inhibitors, metals, or foreign organisms [34]. MAPK path-
ways have been shown to play important roles in oxidative 
stress and inflammation induced by nanoparticles and metals 
[15,31]. The three primary members of the MAPK signaling 
modules are the p38, JNK, and ERK-1/2 MAPKs. MAPK proteins 
are thought to phosphorylate (activate) transcription factors 
that are involved in regulating both cell survival and cell death. 
In the present study, exposure to CeO2 nanoparticles was asso-
ciated with increased phosphorylation of p38 MAPK at 14, 28, 
and 56 days after exposure. Conversely, we found that ERK-
1/2-MAPK activity appeared to be impaired by CeO2 nanopar-
ticles (Figure 5). Since ERK-1/2-MAPK is thought to play an im-
portant role in cell survival and p38 MAPK may play an impor-
tant role in apoptosis [34], these differences in MAPK signaling 
may help to explain the sustained caspase-3 cleavage after 
the pro-apoptotic Bax to Bcl-2 ratio returned to normal. 

It is well known that nanoparticle exposure is often associ-
ated with increased levels of cytokines, interleukins, and other 
mediators of inflammation. The Janus kinase/signal transduc-
ers and activators of transcription (JAK/STAT) pathway is a par-
ticularly important pathway in mediating inflammation [19]. 
Interestingly, JAK-2 did not appear to play an important role in 
the toxicological response, as its phosphorylation (Tyr1007/ 
1008) was elevated only at day 1 and day 90 (Figure 6). Con-
versely, the phosphorylation of STAT-3 (Tyr705) seemed to 

Table 1. Cerium oxide (CeO2) nanoparticle exposure increases the ratio of lung weight to body weight 

Exposure (d)
Body weight (g) Lung weight (g)

Saline control CeO2 (7.0 mg/kg) Saline control CeO2 (7.0 mg/kg)

  1 319.67±15.92 319.67±15.20 1.74±0.28 1.88±0.08

  3 310.33±28.10 331.67±24.00 1.54±0.27 2.19±0.15

14 345.67±27.11 332.33±21.07 1.90±0.31 2.12±0.23

28 411.33±29.21,3 403.67±28.941,3 1.82±0.09 2.43±0.30

56 451.67±26.211-3 451.00±34.61-4 1.56±0.24 2.84±0.58

90 523.33±60.871-5 519.33±44.841-5 1.62±0.11 2.75±0.51

Lung tissues were collected from groups of animals that were intratracheally instilled with either normal saline or CeO2 nanoparticles at a dosage of 7.0 mg/kg, 
at 1, 3, 14, 28, 56, and 90 days after exposure. The lung tissues were cleaned to remove blood and tissue debris with Krebs’s lactate solution and weighed im-
mediately (n=6/group). Two-way analysis of variance was performed for overall comparisons, while the Student-Newman-Keuls post hoc test was used to de-
termine differences between groups; p<0.05 were considered to indicate statistical significance.
1Significantly different from the one-day exposure group for a given condition.
2Significantly different from the three-day exposure group for a given condition.
3Significantly different from the 14-day exposure group for a given condition.
4Significantly different from the 28-day exposure group.
5Significantly different from the 56-day exposure group.
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Figure 6. Activation of STAT-3 after exposure to cerium oxide (CeO2) nanoparticles follows the activation of p38 MAPK. The protein 
bands of the STAT-3, phosphorylated STAT-3 (A) and  JAK-2, phosphorylated JAK-2 (B) proteins, along with the corresponding glyc-
eraldehyde 3-phosphate and dehydrogenase (GAPDH) values, are represented in the figure. The bands corresponding to the X-ax-
is labels are shown in the immunoblotting images. The protein levels were adjusted according to the GAPDH levels and compared 
with the day 1 control. One-way analysis of variance was performed for overall comparisons, while the Student-Newman-Keuls 
post hoc test was used to determine differences between groups. *p<0.05 between the day 1 saline control group.
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parallel p38 MAPK activation (Figure 6). A previous study has 
demonstrated that p38 MAPK can act as an upstream activa-
tor of STAT-3, which, in turn, can induce apoptosis when acti-
vated [35]. Other research has shown that the p38 MAPK and 
STAT-3 signaling pathways can work in concert or separately 
to exert apoptotic effects on the cells [36]. These data, consid-
ered in light of our findings regarding the increased Bax to Bcl-
2 ratio, are consistent with the possibility that apoptosis medi-
ated by CeO2 nanoparticles is mediated through the activation 
of the p38 MAPK and STAT-3 signaling pathways.    

In summary, our data suggest that lung exposure to CeO2 
nanoparticles is associated with the increased accumulation 
of cerium in the lungs and gross pathological and histological 
alterations to the lungs. It also appears that CeO2 nanoparti-
cles can induce inflammation and apoptotic protein signaling 
in the lungs. Overall, the data from the current study indicate 
that CeO2 nanoparticle-induced inflammation and apoptosis 
may be mediated through the activation of the stress-respon-
sive MAPK protein signaling pathway, the phosphorylation of 
STAT-3, and the activation of the intrinsic apoptosis pathway 
(Figure 6). Given these findings, additional research to evalu-
ate the role of subcellular organelles in inducing apoptosis in 
these conditions is likely warranted.
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