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Abstract
Curcumin, a natural compound isolated from the Indian spice "Haldi" or "curry powder", has

been used for centuries as a traditional remedy for many ailments. Recently, the potential

use of curcumin in cancer prevention and therapy urges studies to uncover the molecular

mechanisms associated with its anti-tumor effects. In the current manuscript, we investigat-

ed the mechanism of curcumin-induced apoptosis in upper aerodigestive tract cancer cell

lines and showed that curcumin-induced apoptosis is mediated by the modulation of multi-

ple pathways such as induction of p73, and inhibition of p-AKT and Bcl-2. Treatment of cells

with curcumin induced both p53 and the related protein p73 in head and neck and lung can-

cer cell lines. Inactivation of p73 by dominant negative p73 significantly protected cells from

curcumin-induced apoptosis, whereas ablation of p53 by shRNA had no effect. Curcumin

treatment also strongly inhibited p-AKT and Bcl-2 and overexpression of constitutively ac-

tive AKT or Bcl-2 significantly inhibited curcumin-induced apoptosis. Taken together, our

findings suggest that curcumin-induced apoptosis is mediated via activating tumor suppres-

sor p73 and inhibiting p-AKT and Bcl-2.

Introduction
Cancer is the second leading cause of death in the United States and is projected to claim 2.3
million lives in 2014 [1]. Smoking or tobacco use is the cause of more than 30% of all cancers,
which predominantly affect the upper aerodigestive tract including the lung and bronchus, lar-
ynx, pharynx and oral cavity. Squamous cell carcinoma of the head and neck (SCCHN) and
lung cancers are the two major tobacco-related cancers. Tremendous advances have been
made over last few decades in the field of cancer prevention and therapy and the number of
cancer survivors has increased from 3 million in 1971 to 13.7 million in 2012 (AACR Cancer
Progress Report, 2013). However, the safety of available drugs remains a major concern, since
most currently used drugs are highly toxic. On the other hand, natural dietary compounds
present in fruits, vegetables and spices have been used in traditional medicines over centuries
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for various therapeutic purposes and their safety has been established through human con-
sumption over years. Hundreds of natural dietary compounds have been investigated for their
anti-cancer effects in the last several decades [2, 3]. Unlike chemotherapy and molecularly tar-
geted agents, the beauty of natural compounds is their safety and context-dependent effects on
multiple signal transduction pathways [2]. This multi-targeted effect is desired for the preven-
tion and therapy of multi-factorial diseases such as cancer, which involves complex interactions
between multiple signal transduction pathways.

Among the thousands of natural compounds initially tested for their anti-cancer potential,
only about 40 promising agents have been moved to clinical trials. Curcumin, a diketone com-
pound isolated from the rhizomes of the plant Curcuma longa commonly known as “Haldi”
in the Indian subcontinent, is one such agent currently under clinical investigation [4]. The
anti-cancer potential of curcumin has been established through multiple animal studies. Cur-
cumin was found to significantly decrease the initiation of 7,12-dimethylbenz-[a]-anthracene
(DMBA)-induced mammary adenocarcinoma in female rats by its intraperitoneal infusion
4 days before DMBA administration [5]. On the other hand, the chemopreventive effect of cur-
cumin on N-nitrosomethylbenzylamine-induced esophageal carcinogenesis in rats was ob-
served not only in the initiation phase but also in post-initiation phases [6]. Curcumin was also
reported to prevent colon cancer development in C57Bl/6J Min/+ mice with APCmutation [7]
and N-nitrosodiethylamine and phenobarbital-induced hepatic cancer in rats and reduced
lipid peroxidation and salvaged hepatic glutathione antioxidant defense [8]. The results of sev-
eral clinical trials have also been published which showed curcumin to be a promising chemo-
preventive agent, and are summarized in [4]. Like many other natural compounds, curcumin
modulates multiple signal transduction pathways involved in the lengthy carcinogenesis
process and induces apoptosis, inhibits survival signals, scavenges reactive oxidative species
(ROS), and reduces the inflammatory cancer microenvironment depending on the study con-
text [4]. In the current study, we investigated the mechanism of curcumin-induced apoptosis
in upper aerodigestive tract (lung and head and neck) cancer cell lines and showed that curcu-
min inhibited survival signals (p-AKT and Bcl-2), the reversal of which protected cells. On the
other hand, curcumin activated tumor suppressor pathways such as p73, inactivation of which
also protected cells from curcumin-induced apoptosis.

Materials and Methods

Cell lines
Cell lines used in the study were described elsewhere [9, 10]. Tu212, a cell line of hypopharyn-
geal origin, was kindly provided by Dr. Gary L. Clayman (University of Texas M.D. Anderson
Cancer Center, Houston, TX). Tu686 from a primary tongue cancer and 886LN from the
lymph node of laryngeal cancer origin were gifts from Dr. Peter G. Sacks (New York University
College of Dentistry, New York, NY). The human lung cancer cell lines A549, H1299, H460
and H292 were obtained from Dr. Sun’s laboratory (Emory University). MDAH041 (041) is a
human fibroblast cell line isolated from a Li-Fraumeni Syndrome patient and maintained in
DMEM containing 10% FBS. The SCCHN cell lines were maintained in DMEM/F12 (1:1) me-
dium supplemented with 10% heat-inactivated fetal bovine serum in a 37°C, 5% CO2 humidi-
fied incubator. Lung cancer cell lines were maintained in RPMI-1640 media supplemented
with 5% FBS.

Treatment of cells with curcumin
Curcumin was purchased from Sigma-Aldrich (St. Louis, MO) and was dissolved in DMSO as
a stock solution, which was further diluted in cell culture media immediately before use. The
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final concentration of DMSO was<0.1%. All cells were plated at a concentration of 2.5X105

cells/6-cm dish the day before treatment and treated with curcumin after overnight incubation.

Measurement of IC50

Appropriate numbers of cells were seeded with 100 μL medium in 96 well culture plates and in-
cubated overnight before treatment with varying concentrations of curcumin for 72 h. Inhibi-
tion of cell growth was determined by sulforhodamine B (SRB) assay as described elsewhere
[11, 12]. IC50 values were calculated using CalcuSyn software (Biosoft, UK).

Annexin V-phycoerythrin staining for apoptosis
Cells were treated with curcumin as indicated in the figure legends, trypsinized and washed in
cold 1x PBS. The cells were then resuspended in 1x Annexin binding buffer (BD PharMingen,
San Diego, CA), and stained with Annexin V-phycoerythrin (Annexin V-PE; BD PharMingen,
San Diego, CA) and 7-AAD (BD PharMingen, San Diego, CA) for 15 min at room tempera-
ture. The stained samples were analyzed using a fluorescence-activated cell sorting caliber
bench-top flow cytometer (BD Biosciences, San Jose, CA). Data were analyzed for the apoptotic
population using FlowJo software (Tree Star, Ashland, OR).

Western blot analysis
Cells were treated with curcumin for the indicated times and whole cell lysates were extracted
using lysis buffer. 20–30 micrograms of protein was separated on 8–12% SDS-PAGE, trans-
ferred onto a polyvinylidene difluoride membrane (Millipore Corporation, Billerica, MA) and
immunoblotted with specific antibodies. Mouse anti–β-actin antibody (Trevigen, Gaithersburg,
MD) was used as a sample loading control. Immunostained protein bands were detected with
an enhanced chemiluminescence kit (Thermo Scientific, Rockfield, IL).

Generation of transfected cell lines
The dominant-negative p73 plasmid generation and validation is described elsewhere [13].
pWZL-NeoAKT plasmid (constitutively active) was obtained from Addgene, and pLNCX-Bcl-
2 plasmid was obtained from the laboratory of Dr. M.W. Jackson (Case Western Reserve Uni-
versity, Cleveland, Ohio). The Bcl-2 overexpressing 041 cell line was generated by retroviral
transduction of Bcl-2 and selection by G418 as described [14]. Constitutively active Akt was
overexpressed in Tu686 cell lines (G418 selected pool).

Results

Curcumin inhibits growth and induces apoptosis of SCCHN and lung
cancer cell lines
Curcumin has drawn particular attention because of its potential chemopreventive and anti-
tumor effects and has been widely investigated from the late 1980s. However, the mechanism
of its anti-cancer efficacy is not yet fully understood. More importantly, curcumin targets mul-
tiple signal transduction pathways which vary greatly depending on the tumor type. In order to
understand the mechanism of curcumin-induced apoptosis in upper aerodigestive tract can-
cers, we first examined the sensitivity of multiple SCCHN cell lines to varying doses of curcu-
min. As shown in S1 Fig, all cell lines were sensitive to curcumin-induced growth inhibition
although their degree of sensitivity varied. Tu212, Tu177 and 886LN cell lines were more sensi-
tive than 38 and SqCCy1 cell lines. We also measured the IC50 values of curcumin in several
SCCHN and lung cancer cell lines, which also suggested varying degree of sensitivities of these
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cell lines (Table 1). In general, SCCHN cell lines were more sensitive than lung cancer cell
lines. We next measured apoptosis after curcumin treatment in different lung and SCCHN cell
lines. As shown in Fig 1, curcumin dose- and time-dependently induced apoptosis of different
cell lines. Although sensitivity varied among cell lines, 10–25 μM curcumin induced more than
50% apoptosis by 48 h. To further confirm apoptosis induction by curcumin, we examined
cleavage of PARP and caspase 3 in three different cell lines (one SCCHN and two lung), which
suggested that curcumin dose- and time-dependently cleaved PARP and caspase 3 in these cell
lines (Fig 2A–2C). We next examined whether curcumin induced intrinsic or extrinsic apopto-
sis by measuring cytochrome c release and caspase 9 cleavage. As shown in Fig 2D and 2E,

Table 1. IC50 values of curcumin.

Cell Line IC50 (μM)

A549 11.2

H1299 6.03

H292 11.6

Tu212 5.5

Tu686 6.4

doi:10.1371/journal.pone.0124218.t001

Fig 1. Curcumin dose- and time-dependently induces apoptosis of upper aerodigestive tract cancer cells. Lung cancer cell lines A549, H292, H460,
H1299, and SCCHN cell lines Tu212 and 886LN were treated with the indicated concentration of curcumin for 24 and 48 h. Apoptosis was measured by
annexin V-PE staining. Average apoptosis from three independent experiments is presented with standard deviation as error bars.

doi:10.1371/journal.pone.0124218.g001
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curcumin also cleaved caspase 9 and efficiently released cytochrome c in the cytoplasm, sug-
gesting that curcumin induced mitochondrial-mediated intrinsic apoptosis.

Curcumin induces p73-dependent but p53-independent apoptosis
The p53 family consists of three structurally and functionally closely related proteins, p53, p63
and p73, functionally classified as transcription factors and tumor suppressors, which play a
critical role in apoptosis [15]. Although curcumin increased the expression of p53, the exact
role of p53 in curcumin-induced apoptosis is not clear. Moreover, curcumin induced p53-inde-
pendent apoptosis in lung cancer cell lines [16, 17] although the mechanism is not well under-
stood. To investigate the role of p53 in curcumin-induced apoptosis, we used two pairs of
isogenic lung cancer cell lines (H292 and A549) previously generated in our laboratory in
which the parental cell lines express wild-type p53 which was ablated using shRNA [9]. As
shown in Fig 3, treatment with curcumin increased the level of p53 in both cell lines. On the
other hand, curcumin-induced growth inhibition was similar in both cell lines, suggesting that
curcumin inhibited the growth of lung cancer cell lines in a p53-independent manner. As
shown in Fig 1, curcumin-induced growth inhibition in these cell lines was due to apoptosis.
We have previously reported that p73 also plays a critical role in drug (both natural and syn-
thetic)-induced apoptosis [10, 13, 14]. Therefore, we examined the expression of p73 in two
cell lines that express inactive p53 and found that curcumin increased the expression of p73,
particularly the β-isoform, in both cell lines (Fig 4A). To confirm the role of p73 in curcumin-
induced apoptosis, we inactivated p73 in H1299 [18] and 041 cells [10] by overexpressing dom-
inant negative p73 and measured apoptosis after curcumin treatment. Curcumin-induced apo-
ptosis was significantly inhibited after p73 inactivation (Fig 4B and 4C). p73-dependent

Fig 2. Curcumin inducesmitochondria-mediated apoptosis. (A) Tu212, (B) H1299 and (C) H292 cells were treated with the indicated concentration of
curcumin for the indicated times. Whole cell lysates were immunoblotted with PARP and caspase 3 (detects cleaved form only) antibodies. (D) Tu212 cells
were treated with 10 μM of curcumin for the indicated times and whole cell lysates were blotted with caspase 9 antibody. (E) Tu212 cells were treated with
10 μM of curcumin for 24h. Cytoplasmic and mitochondrial fractions were separated and immunoblotted with cytochrome c antibody. COX4 (a mitochondrial
protein) was used to show efficiency of cell fractionation. Representative data from three independent experiments are shown.

doi:10.1371/journal.pone.0124218.g002
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apoptosis by curcumin was further confirmed by inhibition of PARP and caspase 3 cleavage
(Fig 4D).

Curcumin induces apoptosis by inhibiting AKT activation
One of the advantages of natural compounds over targeted agents is their multi-targeted ef-
fects. Most aerodigestive tract malignancies are initiated by oncogene activation, and the subse-
quent activation of AKT through phosphorylation by these oncogenes is a major and common
downstream event. Therefore, we examined the p-AKT level after treatment with curcumin
and found that curcumin treatment strongly inhibited the phosphorylation of AKT as well as
the level of total AKT in all cell lines tested (Fig 5A–5C). We measured the mRNA expression
of AKT after curcumin treatment. As shown in Fig 5D, curcumin also inhibited the level of
AKT mRNA in all cell lines. To confirm that inhibition of p-AKT mediates apoptosis, we over-
expressed constitutively active AKT (CA-AKT) in Tu686 cells and established a pool of cells
expressing the plasmid by G418 selection as described [18]. These cells were treated with cur-
cumin and apoptosis was measured. As shown in Fig 5E, overexpression of CA-AKT signifi-
cantly protected cells from curcumin-induced apoptosis. These results suggest that curcumin-
induced apoptosis is mediated via inhibition of p-AKT.

Role of inhibition of Bcl-2 expression in curcumin-induced apoptosis
Bcl-2 is one of the most potent anti-apoptotic proteins; it is overexpressed in many types of
human tumors and protects cells frommitochondria-mediated apoptosis induced by a wide va-
riety of stimuli, including chemotherapeutic drugs and gamma-irradiation [19]. Since

Fig 3. Curcumin induces p53-independent apoptosis. (A-B) The expression of p53 was ablated in H292 (A) and A549 (B) cells using shRNA as described
in the Methods section and expression of p53 was measured by immunoblotting. (C) H292 and (D) A549 cells were treated with curcumin and cellular growth
was measured by SRB assay.

doi:10.1371/journal.pone.0124218.g003
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curcumin induced mitochondria-mediated apoptosis as evidenced by the release of cyto-
chrome C in the cytoplasm (Fig 2D), we next examined the expression of Bcl-2 in both
SCCHN and lung cancer cell lines. Treatment with curcumin strongly inhibited the expression
of Bcl-2 in all cell lines tested (Fig 6A). To confirm that inhibition of Bcl-2 plays a role in apo-
ptosis, we overexpressed Bcl-2 in 041 cells (Fig 6B) and measured apoptosis. As shown in Fig
6C, overexpression of Bcl-2 significantly protected cells from curcumin-induced apoptosis,
suggesting that inhibition of Bcl-2 is also required for curcumin-induced apoptosis.

Discussion
Accumulated evidence suggests that combination approaches to cancer therapy are much
more successful and are more commonly utilized than single agent approaches because of their
ability to impact multiple pathways. Each component of the combination has different molecu-
lar targets and affects different pathways, thus minimizing primary as well as acquired resis-
tance. Considering this fact, natural compounds, also called “dirty compounds” because of
their undefined and wide/numerous molecular targets, are well suited for the purpose of che-
moprevention and therapy. Most natural compounds context-dependently affect multiple sig-
naling pathways [2]. On the other hand, induction of apoptosis is the key for successful tumor
regression or elimination of abnormal premalignant cells. Other anti-proliferative effects such
as cell cycle arrest may result in stable disease at best. In the current study, we observed that the
natural compound curcumin dose-dependently induced apoptosis in most SCCHN and lung
cancer cells lines as evidenced by Annexin V staining, activation of caspase 3 and cleavage of

Fig 4. Curcumin induces p73-dependent apoptosis. (A) Tu212 (left) and H1299 (right) cells were treated with curcumin and expression of p73 and p73β
weremeasured byWestern blotting. (B-C) p73 was inactivated in H1299 (B) and 041 (C) cells by dominant negative p73 and apoptosis wasmeasured by
annexin V-PE staining. (D) H1299 cells expressing empty vector or dominant negative p73 were treated with curcumin. Whole cell lysates were immunoblotted
with PARP and caspase 3 antibodies. For B and C, average results from three independent experiments were plotted with standard deviation as error bars. p
values were determined by student t-test. p<0.05 was considered statistically significant.

doi:10.1371/journal.pone.0124218.g004
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PARP. We further defined that curcumin-induced apoptosis is mediated by modulation of
multiple molecular targets such as p73, AKT and Bcl-2. We also demonstrated that the apopto-
sis is independent of p53.

The tumor suppressor protein p53 plays a crucial role in apoptosis and patients with wild-
type p53 have better outcome from chemotherapy than those with deleted or mutated 53 [20].
Using isogenic cell lines or p53 siRNA, several studies have clearly demonstrated that curcumin
increased the expression of p53 and induced p53-dependent apoptosis [21, 22], although cur-
cumin also induced apoptosis in cells expressing mutant or no p53. Our findings clearly dem-
onstrate that although curcumin increased p53 protein levels, p53 has no significant role in

Fig 5. Inhibition of p-AKT is required for curcumin-induced apoptosis. (A) H1299, (B) Tu212 and (C) Tu686 cells were treated with the indicated
concentrations of curcumin for the indicated time and expression of p-AKT, AKT and actin were measured by immunoblotting. (D) Tu212 and Tu686 cells
were treated with 10 and 15 μM of curcumin, respectively. Expression of AKT mRNAwas measured by qPCR. (E) CA-AKT was overexpressed in Tu686
cells and apoptosis was measured. Average results from three independent experiments were plotted with standard deviation as error bars. p value was
determined by student t-test. p<0.05 was considered statistically significant.

doi:10.1371/journal.pone.0124218.g005
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apoptosis induction by curcumin in lung cancer cell lines. Knock down of p53 had no impact
on cellular growth in two different lung cancer cell lines. On the other hand, curcumin induced
apoptosis of other cell lines that express mutant p53 (Tu212) or no p53 (H1299, 886LN). Un-
like p53, the family member p73 is frequently functional in cancers and plays important roles
in determining cellular sensitivity to many anti-cancer drugs [23, 24]. In search for the mecha-
nism of curcumin-induced apoptosis, we found that curcumin treatment also induced the ex-
pression of p73, mainly the β-isoform and that inactivation of p73 protected cells from
curcumin-induced apoptosis in two different cell lines. To our knowledge, this is the first report
to show that curcumin increases the expression of p73 and that inactivation of p73 protects
cells from curcumin-induced apoptosis, and is consistent with many other studies showing
that p73 is sufficient to induce apoptosis [10, 13, 14].

After exposure to cytotoxic drugs, cancer cells may undergo apoptosis either through activa-
tion of the death receptor pathway or mitochondrial depolarization. Bcl-2 serves as the mito-
chondrial gate-keeper, is frequently overexpressed in tumors and plays a critical role in chemo-
and radio resistance [19, 25]. The Bax to Bcl-2 ratio is critical for maintaining mitochondrial
membrane integrity. Downregulation of Bcl-2, even without upregulation of Bax, shifts the ratio
towards apoptosis. siRNA-mediated downregulation or small molecule inhibition of Bcl-2 are
sufficient to induce apoptosis in cells that are dependent on Bcl-2 [26–28]. We found that curcu-
min strongly inhibited the expression of Bcl-2 in all cell lines tested. Moreover, overexpression of
Bcl-2 protected cells from curcumin-induced apoptosis. These results suggest that curcumin-in-
duced apoptosis is also mediated via downregulation of anti-apoptotic Bcl-2 protein.

Finally, tobacco-related malignancies, mainly represented by lung cancer and SCCHN, re-
sult from the activation of oncogenic pathways such as EGFR, K-RAS and H-RAS, PI3K-CA
etc. The AKT serine-threonine kinases are common downstream effectors of these oncogenic

Fig 6. Inhibition of Bcl-2 is required for curcumin-induced apoptosis. Tu212, A549 and H292 cells were
treated with curcumin and expression of Bcl-2 was examined by immunoblotting. (B) 041 and 041 Bcl-2
overexpressing cells were treated with 10 μM of curcumin for 48 h and expression of Bcl-2 was measured.
(C) 041 and 041 Bcl-2 overexpressing cells were treated with 10 μM of curcumin for 48 h and apoptosis was
measured by annexin V staining. Average results from three independent experiments were plotted with
standard deviation as error bars. p value was determined by student t-test. p<0.05 was considered
statistically significant.

doi:10.1371/journal.pone.0124218.g006
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pathways and are critical for tumorigenesis [29, 30]. It was previously reported that curcumin
inhibited phosphorylated AKT in many cancer types. Consistent with these reports, we also
found that curcumin strongly inhibited phosphorylated AKT in tobacco-related cancer cell
lines. Interestingly, rescue of phosphorylated AKT through overexpression of CA-AKT signifi-
cantly protected cells, suggesting the critical role of p-AKT inhibition in curcumin-induced ap-
optosis. In conclusion, our study identifies the natural compound curcumin as a multi-targeted
agent. It simultaneously activates the tumor suppressor p53/p73 pathways and inhibits pro-ap-
optotic p-AKT and Bcl-2, thus strongly inducing apoptosis in tobacco carcinogen-induced can-
cer cell lines.

Supporting Information
S1 Fig. Dose dependent growth inhibition of SCCHN cell lines by curcumin. Cells were
seeded in 6-well plates at 30–40% confluency and treated with the indicated concentrations of
curcumin after overnight incubation. Plates were stained with methylene blue after 7 days.
(TIF)
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