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SHPS-1/SIRPαααα

 

1 is a transmembrane glycoprotein that belongs to the immunoglobulin (Ig) super
family. In the present study, we show that SHPS-1 strongly associates with Concanavalin A (Con A),
a plant lectin obtained from jack beans. Further studies with SHPS-1 mutants reveal that the
extracellular domain of SHPS-1 containing the Ig sequence is responsible for its association with
Con A. Con A treatment induces cross-linking and multimerization of the SHPS-1 protein in the
plasma membrane, accompanied by its tyrosine phosphorylation and recruitment of SHP-2. In
contrast, 

 

Ricinus communis

 

 agglutinin (RCA), another lectin obtained from castor bean, does not
bind or activate tyrosine phosphorylation of SHPS-1. Moreover, Con A activates Akt in a SHP-
2-dependent manner. Treatment of mouse embryonic fibroblasts (MEFs) with Con A induces
secretion of matrix metalloproteinase (MMP)-9, a phenomenon that is inhibited in cells expressing
YF mutant of SHPS-1, a dominant negative form of Akt or in cells pre-treated with an Akt inhibitor,
LY294002 or extracellular-signal regulated kinase (Erk) inhibitor, U0126. In addition, expression
of the YF mutant of SHPS-1 inhibits Con A-dependent activation of Akt and Erk kinases. Taken
together, our results suggest that SHPS-1 is a receptor for Con A that mediates Con A-dependent
MMP-9 secretion through SHP-2-promoted activation of both Akt and Erk pathways.

 

Introduction

 

Lectins are a family of proteins which interact with
specific terminal sugar residues and cross-link cell surface
glycoproteins thereby initiating various cellular responses
(Sharon & Lis 1990; Elgavish & Shaanan 1997). 

 

Conca-
navalin A

 

 (Con A), a potential multi-receptor cross-
linker for TCR and other cell surface receptors, is the
most extensively investigated member of the lectin family
of plant proteins which displays high affinity for terminal

 

α

 

-

 

d-

 

mannosyl and 

 

α−

 

d-

 

glucosyl residues (Gunther 

 

et al

 

.
1973). Con A exhibits cell agglutinating and mitogenic
activities and induces apoptosis (Tamura 

 

et al

 

. 1995;
Cribbs 

 

et al

 

. 1996; Akhand 

 

et al

 

. 1997; Zhao 

 

et al

 

. 2002;
Amin 

 

et al

 

. 2007). In addition, Con A is widely used as
a positive control to study T-cell activation and as a
model to study the regulatory mechanisms that control

secretion and activation of matrix metalloproteinase
(MMP)-2 and MMP-9 (Tamura 

 

et al

 

. 1995; Sein 

 

et al

 

.
2000; Amin 

 

et al

 

. 2003a). Despite its significance, the
precise mechanism by which Con A promotes its biological
responses remains largely unclear.

MMPs, a family of neutral proteinases that catalyze
the destruction of the extracellular matrix, are secreted
from cells as inactive zymogens and activated by Zn or
Ca ion-dependent proteolytic cleavage (Stetler-Stevenson

 

et al

 

. 1989). Among MMPs, MMP-9 (gelatinase B) appears
to play an important role in a wide array of patho-
physiological processes including development, wound
healing, angiogenesis, inflammation, and tumor invasion and
metastasis (Deryugina & Quigley 2006; Mon 

 

et al

 

. 2006).
Increased secretion and activation of MMP-9 is observed
in many human cancers (Sato 

 

et al

 

. 1992; Davies 

 

et al

 

. 1993;
Rao 

 

et al

 

. 1993). Moreover, stimulation of cells with
growth factors, cytokines and lectins including Con
A also activate MMP-9 secretion (Samuel 

 

et al

 

. 1992;
Sein 

 

et al

 

. 2000; Hussain 

 

et al

 

. 2002; Amin 

 

et al

 

. 2003b).
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However, the signaling pathways that regulate MMP-9
secretion are not completely well-understood.

Src homology 2 (SH2)-phosphatase substrate-1 (SHPS-1),
also known as SIRP

 

α

 

1, BIT, MFR or p84, is a trans-
membrane glycoprotein that binds SH2-tyrosine phos-
phatase (SHP)-1 and SHP-2 and serves as their substrate
(Oshima 

 

et al

 

. 2002). SHPS-1 belongs to the Ig super
family and the putative extracellular region of SHPS-1
has three Ig-like domains and multiple N-linked glyco-
sylation sites. The cytoplasmic region of SHPS-1
contains four YXX (L/V/I) motifs, which serve as
putative tyrosine phosphorylation and SH2 domain bind-
ing sites. SHPS-1 is tyrosine phosphorylated by various
growth factors, cytokines, cell adhesion molecules and
mitogens, and subsequently recruits SHP-1/2 (Kharito-
nenkov 

 

et al

 

. 1997; Takada 

 

et al

 

. 1998; Amin 

 

et al

 

. 2002;
Oshima 

 

et al

 

. 2002). Both SHPS-1 and SHP-2 are critical
components of many signal transduction pathways that
lead to cell growth, differentiation, migration and death
(Kharitonenkov 

 

et al

 

. 1997; Oshima 

 

et al

 

. 2002; Neznanov

 

et al

 

. 2003; Feng 2007). However, depending on the type
of cells and stimuli, these proteins display both positive
and negative regulation of the above processes and their
biological importance remains to be elucidated. Moreover,
although many people term SHPS-1 as a receptor, its
ligands are less well characterized and until now CD47
is the only identified ligand of SHPS-1 (Vernon-Wilson

 

et al

 

. 2000).
In this study, we show for the first time that SHPS-1

is a receptor for Con A. Con A directly binds to the
extracellular region of SHPS-1 and this interaction mediates
Con A-dependent activation of Akt and secretion of
MMP-9. Our study also demonstrates that SHP-2 is
recruited to SHPS-1 upon Con A-stimulation which is
required for Con A-dependent Akt activation. In addi-
tion, our results suggest that activation of both Akt and
extracellular-signal regulated kinase (Erk) is required for
the increased secretion of MMP-9 by Con A.

 

Results

 

Con A reversibly binds to SHPS-1 via its 
extracellular domain

 

As a potential multi-receptor cross-linker for various cell
surface receptors, we hypothesized that Con A might
bind to SHPS-1. To test this hypothesis, we prepared
various SHPS-1 mutants along with the wild-type one.
In the YF mutant, all four tyrosine-residues at the C-
terminal cytoplasmic end of SHPS-1 were mutated to
phenylalanine by site directed mutagenesis. In the IC
mutant, the extracellular domain was deleted. Both the

YF and IC mutants were myc-tagged at the C-terminal
end. Wild-type and YF constructs were stably transfected
into mouse embryonic fibroblasts (MEFs) (Fig. 1A).
SHPS-1 and Con A interactions were studied as described
in the Experimental procedures. As shown in Fig. 1B, both
wild-type and YF mutant SHPS-1 protein was able to
associate with Con A, indicating that the C-terminal

Figure 1 Con A binds to SHPS-1 via its extracellular domain.
(A) MEFs were stably transfected with wild-type and myc-tagged
YF-SHPS-1. Upper panel: Total cell lysates (TCL) from
untransfected and wild-type SHPS-1 transfected cells were
immunoblotted with anti-SHPS-1. Lower panel: TCL from
untransfected and myc-tagged YF-SHPS-1 transfected cells were
immunoblotted with anti-myc (9E10). (B) TCL obtained from
wild-type and YF mutant of SHPS-1 expressing cells were
incubated with Con A-agarose beads and the binding proteins
were blotted with anti-SHPS-1 (upper panel) and with anti-myc
(lower panel) as described in the Experimental procedures. (C) Cos7
cells were transiently transfected with myc-tagged IC mutant of
SHPS-1, lysed with RIPA buffer 48 h post-transfection and
incubated with Con A-agarose beads (lane 1) or with anti-SHPS-1
(lane 2) followed by immunoblotting with anti-SHPS-1 (upper
panel) or with anti-myc (lower panel).
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tyrosine residues of SHPS-1 are not important for bind-
ing of Con A. To examine whether the extracellular
domain of SHPS-1 was important for this association,
we transiently expressed the IC mutant in Cos7 cells and
RIPA lysates were incubated with Con A agarose beads
and immunoblotted with anti-SHPS-1 and anti-myc. As
shown in Fig. 1C, Con A could not bind to the IC
mutant, indicating that the association occurs through
the extracellular domain. To establish SHPS-1 as a
“receptor” for Con A, we next examined whether Con
A displayed specific, reversible and saturated binding to
SHPS-1. To rule out the possibility of indirect association
and establish specific binding between the two molecules,
SHPS-1 protein was immunoprecipitated from RIPA lysate
and transferred to PVDF membrane after SDS-PAGE.
The membrane was incubated with HRP-conjugated
Con A and stained with ECL. As shown in Fig. 2A,
SHPS-1 was clearly detectable in both wild-type and
YF-SHPS-1 expressing cells after incubation of the
membrane with HRP-Con A. In contrast, HRP conju-
gated p53 antibody efficiently bound to p53 protein,
but not with SHPS-1 protein (data not shown). These
results confirm the association of Con A with SHPS-1 to

be specific between the two molecules. We next tested
saturated binding between SHPS-1 and Con A by incu-
bating different concentrations of total protein (50, 100,
200, 400 and 600 

 

µ

 

g) with the same amount of Con
A-agarose beads (20 

 

µ

 

L) and measured the binding of
SHPS-1 to Con A as in Fig. 1B. Supernatants obtained
after binding were also examined for SHPS-1. As shown
in Fig. 2B, upper panel, the amount of bound SHPS-1
protein initially increased with increasing concentrations
of total protein (between 50 and 200 

 

µ

 

g), but eventually
became saturated at 200 

 

µ

 

g of total protein. This was also
evidenced by the appearance of SHPS-1 in the superna-
tant at 200 

 

µ

 

g or more protein (lower panel). To further
confirm the specific and saturated binding between the
two molecules, we incubated RIPA-lysate with Con A-
agarose for 30 min and after brief spinning, collected the
beads as sample one. The supernatant was again incu-
bated with Con A-agarose and similarly, the beads were
collected as sample two. In the same manner, a third sample
was collected and the supernatant was treated as sample
four. The samples were subsequently immunoblotted
with anti-SHPS-1 and anti-Erk-2. As shown in Fig. 2C,
upper panel, all the SHPS-1 protein was associated with

Figure 2 Con-SHPS-1 interaction is specific, reversible and becomes saturated. (A) SHPS-1 protein was immunoprecipitated from wild-
type and YF mutant of SHPS-1 expressing cells, transferred to PVDF membrane, incubated with HRP-Con A and stained with ECL.
(B) Indicated concentrations of total protein were incubated with 20 µL Con A-agarose beads and the bound (upper panel) and unbound
(lower panel) proteins were probed with anti-SHPS-1. (C) Samples were prepared as described in the Results section and immunoblotted
with anti-SHPS-1 (upper panel) or anti-Erk-2 (lower panel). TCL was loaded in lane 5. (D) Total cellular proteins were incubated with
Con A-agarose beads, washed 3 times with lysis buffer and the beads were reincubated with 60 µL 0.3 m methyl-α-d-glucoside (upper
panel) or 0.3 m lactose monohydrate (lower panel) for 5 min on ice. The washes (lanes 2–4) and supernatants obtained at this stage (lane 5)
were immunoblotted with anti-SHPS-1. TCL was loaded in lane 1. (E) Cells expressing wild-type SHPS-1 were treated with 15 µg/mL
Con A for 1 h or left untreated, lysed with extraction buffer and cleared by centrifugation. Upper panel: SHPS-1 immunoprecipitates
were probed with anti-SHPS-1. Lower panel: pellet obtained after centrifugation were dissolved in 2× ME sample buffer and after transfer
to PVDF membrane probed with anti-SHPS-1.
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Con A during the first incubation and no SHPS-1 was
detected in the subsequent steps, indicating that SHPS-1
becomes saturated. In contrast, Erk-2 did not associate
with Con A-agarose (lower panel), suggesting that Con
A specifically binds to SHPS-1. We next tested whether
this binding of Con A with SHPS-1 is reversible or
irreversible. We incubated total cell lysates with Con A-
agarose beads. After washing the beads with lysis buffer
3 times, we re-incubated the beads with 0.3 

 

m

 

 methyl-

 

α

 

-

 

d

 

-glucoside (has specific binding affinity to Con A)
and 0.3 

 

m

 

 lactose monohydrate (has no affinity to Con
A) for 5 min on ice. The supernatants obtained after brief
spinning of the beads and the washes were subjected to
immunoblotting with anti-SHPS-1. As shown in Fig. 2D,
most of the bound SHPS-1 was recovered by incubating
the beads with 0.3 

 

m

 

 methyl-

 

α

 

-

 

d

 

-glucoside (upper panel,
lane 5), but not by lactose monohydrate (lower panel).
This results indicate that the interaction between Con A
and SHPS-1 is reversible and occurs specifically between
Con A and SHPS-1. We next examined whether Con A
occupation caused cross-linking of the receptor resulting
in the formation of dimer or multimer. Con A-untreated
and -treated MEFs over-expressing wild-type SHPS-1
were lysed with extraction buffer (Wong 

 

et al

 

. 1999),
which contained only Triton-X100 as a detergent and
the lysates were immunoprecipitated and immunoblotted
with anti-SHPS-1. As shown in Fig. 2E, upper panel,
Con A-treatment caused depletion of SHPS-1 from the
lysate, probably due to the formation of a multimeric
complex. We next dissolved the pellet obtained after
centrifugation of the lysates before immunoprecipitation
with X2 ME (+) sample buffer, resolved them by SDS-
PAGE and immunoblotted with anti-SHPS-1. As shown
in the lower panel, SHPS-1 protein remained in the
pellet in Con A-treated cells. In contrast, most of the
SHPS-1 protein was dissolved with the extraction buffer
in untreated cells. This result suggests that occupation of
SHPS-1 with Con A causes cross-linking of SHPS-1 with
the formation of a multimeric complex.

 

Con A induces tyrosine phosphorylation of SHPS-1 
and recruitment of SHP-2

 

Stimulation of cells with growth factors, cytokines and
mitogens induces tyrosine phosphorylation of SHPS-1.
Being a ligand of SHPS-1, we next examined whether
Con A also induced tyrosine phosphorylation of SHPS-
1. Cells over-expressing wild-type SHPS-1 were treated
with 15 

 

µ

 

g/mL Con A for the indicated time periods and
RIPA lysates were immunoprecipitated with anti-SHPS-1,
and immunoblotted with anti-phosphotyrosine. As shown
in Fig. 3A, Con A-treatment induced tyrosine phos-

phorylation of SHPS-1 in a time-dependent manner.
Initially, there was very little tyrosine phosphorylation of
SHPS-1 without Con A-treatment. Con A-treatment
induced efficient tyrosine phosphorylation of SHPS-1 in
5–15 min, which then declined to the basal level at
30–60 min. In many instances, tyrosine phosphorylation
of SHPS-1 recruits SHP-2. To examine SHPS-1–SHP-2
complex formation by Con A, SHPS-1 immunoprecip-
itates from Con A-untreated and -treated cells were probed
with anti-SHP-2. As expected, Con A also induced
recruitment of SHP-2 with a similar kinetics to SHPS-1
tyrosine phosphorylation (Fig. 3B). Initially, there was little
association of SHP-2 with SHPS-1 which was increased
after Con A-treatment up to 15 min, followed by declining

Figure 3 Con A induces tyrosine phosphorylation of SHPS-1
and recruitment of SHP-2. (A) Upper panel, MEFs were serum
starved for overnight, treated with 15 µg/mL Con A for the
indicated time period or left untreated (NT), lysed with RIPA
buffer and immunoprecipitated with anti-SHPS-1, followed by
immunoblotting with anti-phospho tyrosine. Lower panel, the
same membrane was stripped and reprobed with anti-SHPS-1. (B)
Overnight serum starved cells were stimulated with 15 µg/mL of
Con A for the indicated times or left untreated (NT). RIPA lysates
were immunoprecipitated with anti-SHPS-1 and immunoblotted
with anti-SHP-2 (upper panel) and reprobed with anti-SHPS-1
(lower panel). (C) Cells were treated with Con A as in Fig. 3B,
RIPA lysates were immunoprecipitated with anti-SHP-2 and
immunoblotted with anti-SHPS-1 (upper panel) and reprobed
with anti-SHP-2 (lower panel).
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interactions which reached the basal level at 60 min of
Con A treatment. To further study the interaction of
SHPS-1–SHP-2 after Con A-treatment, we immuno-
precipitated SHP-2 protein by SHP-2 polyclonal antibody
and probed the blot with anti-SHPS-1. As shown in
Fig. 3C, SHPS-1–SHP-2 interaction again showed a
similar kinetics of SHPS-1 tyrosine phosphorylation.

 

Ricinus communis

 

 agglutinin (RCA) does not bind to 
SHPS-1

 

We next examined whether the activation of SHPS-1 was
specific for Con A or occurred upon stimulation with
other lectins. To test this, we incubated total cell lysates
with Con A-agarose or RCA-agarose beads and examined
the interaction as in Fig. 1B. As shown in Fig. 4A, Con A
efficiently associated with SHPS-1 (lane 1); however,
RCA failed to associate with SHPS-1 (lane 2). We also
treated cells with 15 

 

µ

 

g/mL RCA for different times,
immunoprecipitated SHPS-1 protein with anti-SHPS-1
and probed the blot with phosphotyrosine antibody. As
shown in Fig. 4B, RCA did not induce efficient tyrosine
phosphorylation of SHPS-1.

 

Con A activates Akt in a SHP-2-dependent manner

 

We have previously reported that SHP-2 is required for
Con A-induced activation of both Erk and p38 MAP
kinases (Amin 

 

et al

 

. 2003a). We next examined the
activation of Akt downstream of the SHPS-1–SHP-2
complex. The activation of Akt was examined in cells
expressing either wild-type SHP-2 or a truncated SHP-2
which is functionally inactive. As shown in Fig. 5A,B,
Con A-treatment induced activation of Akt, as measured

by its phosphorylation level, in a time- and dose-
dependent manner in SHP-2 wild-type cells. In contrast,
this Con A-dependent activation of Akt was severely
impaired in SHP-2 mutant cells. These results suggest
that SHP-2 must be functional for Con A-dependent
Akt activation. Phosphorylation of Akt became obvious
after 15 min of Con A-treatment and then increased
with time up to 1 h, whereas 5 µg/mL was able to activate
Akt and 15–20 µg/mL exhibited optimal activation.
To further confirm that the defective Akt activation in
SHP-2 mutant cells is due to lack of functional SHP-2,
we reintroduced wild-type SHP-2 into SHP-2 mutant
cells (Fig. 5C, C7 and C10). As shown in Fig. 5D, expression
of wild-type SHP-2 in SHP-2 mutant cells rescued the
Con A-dependent Akt activation in two independent
clones. We next expressed a dominant negative mutant of
SHP-2 (CS) in Cos7 cells along with the empty vector
(Fig. 5E). As shown in Fig. 5F, expression of dominant
negative SHP-2 inhibited Con A-dependent activation
of Akt, whereas the vector had no effect. These results
further confirm a critical role of SHP-2 in Con A-dependent
Akt activation.

Tyrosine phosphorylation of SHPS-1 is required for 
Con A-induced MMP-9 secretion and Akt activation

One of the major biological effects of Con A is to induce
secretion of MMP-9. In order to study the role of SHPS-1
in Con A-dependent MMP-9 secretion, we examined
MMP-9 secretion in MEFs by gelatin zymography.
As shown in Fig. 6A,B, Con A induced the secretion of
MMP-9 in a dose- and time-dependent manner. A dose
of 15–20 µg/mL was required to induce efficient MMP-9
secretion at 24 h of stimulation. We also measured the
Con A-dependent secretion of MMP-9 in cells expressing
YF mutant of SHPS-1 and compared these with that of
the mock cells. As shown in Fig. 7A, expression of YF
mutant strongly inhibited Con A-dependent MMP-9
secretion. Similarly, the YF mutant strongly suppressed
Con A-dependent Akt activation (Fig. 7B), but only
slightly inhibited Erk phosphorylation (Fig. 7C). These
results suggest that tyrosine phosphorylation of SHPS-1
is important for the secretion of MMP-9 and activation
of Akt by Con A.

Activation of Akt is required for Con A-dependent 
MMP-9 production

We next examined the involvement of Akt activation
in Con A-dependent MMP-9 production. Upon pre-
treatment of cells with LY294002, a specific PI3K inhibitor,
Con A-induced Akt activation (Fig. 8A) and MMP-9

Figure 4 RCA does not bind to SHPS-1. (A) Total cellular
proteins were incubated with each of 20 µL of Con A-agarose
(lane 1) and RCA-agarose (lane 2) beads and bound proteins were
probed with anti-SHPS-1. (B) Serum starved cells were treated
with 15 µg/mL RCA for the indicated times or left untreated
(NT). Immunoprecipitation and Western blotting were done as in
Fig. 3A.
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production were inhibited (Fig. 8B), suggesting that PI3 K-
dependent activation of Akt is critical for MMP-9
production by Con A. To further confirm the involvement
of Akt activation in Con A-induced MMP-9 production,

we expressed a dominant negative form of Akt in MEFs
by stable transfection (Fig. 8C). As shown in Fig. 8D,E,
expression of dominant negative Akt also strongly suppressed
Con A-induced Akt activation and MMP-9 production,
confirming the importance of Akt activation in Con A-
dependent MMP-9 production. We have previously reported
that both Akt and Erk activations are required for IL-1β-
dependent MMP-9 secretion in Balb 3T3 cells (Amin
et al. 2003b). We next examined the involvement of Erk
signaling in Con A-dependent MMP-9 production using
an inhibitor, U0126, specific for MEK1, the immediate
upstream kinase of Erk activation. As shown in Fig. 9A,B,
pre-treatment of cells with U0126 strongly inhibited
Con A-dependent Erk activation and MMP-9 produc-
tion, indicating that activation of MEK-1/Erk signaling is
also critical for Con A-dependent MMP-9 production.

Discussion
In the present study, we demonstrate that the transmem-
brane glycoprotein, SHPS-1 is a receptor for Con A and

mL Con A

mL

Figure 5 SHP-2 is required for Con A-dependent Akt activation. (A, B) SHP-2 wild-type and SHP-2 mutant cells were serum starved
overnight and stimulated with either 15 µg/mL Con A for the indicated time periods or with the indicated doses of Con A for 1 h or
left untreated (NT). Cells were lysed with sample buffer (ME+). TCL were probed with anti-phospho Akt (Ser 473) (upper panels). The
same membranes were reprobed with anti-Akt (lower panels). (C) SHP-2 mutant cells were transfected with wild-type SHP-2 plasmid.
Two independent clones (C7 and C10) stably expressing wild-type SHP-2 were isolated by drug selection. TCL from SHP-2 mutant,
C7, C10 and wild-type SHP-2 cells were probed with anti-SHP-2. (D) Parental SHP-2 mutant cells and wild-type SHP-2 transfected
clones (C7 and C10) were serum starved overnight and stimulated with 15 µg/mL Con A for 1h (Con A, +) or left untreated (Con A,
–). TCL were probed with anti-phospho Akt (upper panel) and the same membrane was reprobed with anti-Akt (lower panel). (E, F)
Cos 7 cells were transiently transfected with vector alone (V) or a dominant negative mutant of SHP-2 (CS). (E) TCL were probed with
anti-HA (upper panel) or anti-SHP-2 (lower panel). (F) 48 h post-transfection cells were treated with 15 µg/mL Con A for 1 h (Con A,
+) or left untreated (Con A, –). Total cell lysates were probed with anti-phospho Akt (upper panel) or anti-Akt (lower panel).

mL Con A

mL Con A

Figure 6 Con A induces secretion of MMP-9. (A, B) MEFs were
serum starved overnight and stimulated with the indicated doses
of Con A for 24 h or with 15 µg/mL Con A for the indicated time
periods or left untreated (NT). The conditioned media were
subjected to gelatin zymography for MMP-9 activity as described
in the Experimental procedures.
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regulates Con A-induced Akt and Erk activation, and
MMP-9 secretion. Our results suggest that Con A directly
binds to SHPS-1 via its extracellular domain. The
association of Con A cross-links SHPS-1 resulting in the
formation of an insoluble multimeric complex. This is
similar to the phenomenon by which growth factors and
cytokines activate their receptors. The most compelling
evidence for the direct association between SHPS-1 and
Con A comes from the fact that the SHPS-1 protein is

specifically detected after incubation of an SDS-PAGE
transferred membrane with HRP-conjugated Con A.
Moreover, the interaction of Con A and SHPS-1 is
reversible and becomes saturated. Methyl-α-d-glucoside
of 0.3 m (has specific binding affinity to Con A), but not
lactose monohydrate (has no affinity to Con A), was
enough to release SHPS-1 from Con A. Therefore, it is
fair to say that SHPS-1 is a receptor for Con A. Occu-
pation of SHPS-1 by Con A-induced tyrosine phos-
phorylation of SHPS-1, although the YF mutant could
also efficiently bind to Con A. These results suggest that
association of the two molecules is the early event, followed
by tyrosine phosphorylation of SHPS-1, which also
strengthens our speculation that Con A is a ligand for
SHPS-1.

As a receptor for Con A, SHPS-1 must have some role
in Con A-induced cell signaling. Indeed, our studies
indicate that cross-linking of SHPS-1 by Con A induces
tyrosine phosphorylation of SHPS-1 and recruitment of
SHP-2. Expression of a YF-SHPS-1 mutant which has
dominant negative effect on SHPS-1-dependent signaling
(Amin et al. 2002) strongly inhibit the Con A-dependent
secretion of MMP-9, activation of Akt and to some
extent Erk, suggesting that SHPS-1 is a receptor for Con
A that regulates activation of Akt and secretion of MMP-9.

Our results demonstrate a critical role of SHP-2 for
Con A-dependent Akt activation. The role of SHP-2 in
signal transduction is highly complicated. This phos-
phatase acts to promote mitogenic stimulation of Erk
activity (Shi et al. 1998). It is also a positive regulator for
Akt (Wu et al. 2001; Amin et al. 2002) or JNK activation
(Fukunaga et al. 2000), while being a negative regulator
for JNK activation by cellular stress (Shi et al. 1998) or
IFN-stimulated activation of JAK/STAT pathway (You
et al. 1999). Moreover, it mediates cytokine-induced
NF-kB activation independently of all these pathways
(You et al. 2001). Previously, we reported that SHP-2 is
critical for Con A-stimulated Ras-Erk and Ras-p38
MAPK activation (Amin et al. 2003a). Our current results
suggest SHP-2 as a positive regulator for Con A-induced
activation of Akt also. However, activation of Akt by Con
A is not Ras-dependent since pre-treatment with the
Ras inhibitor FTI is unable to inhibit Con A-dependent
Akt activation (data not shown) although this inhibitor
efficiently inhibits Con A-dependent Erk and p38
phosphorylation (Amin et al. 2003a).

Despite its biological importance, the regulatory
mechanism for MMP-9 secretion remains largely unclear.
Secretion of MMP-9 by FGF requires activation of
MEK1-Erk signaling in breast cancer cell line, MCF-7
(Suyama et al. 2002). In contrast, secretion of MMP-9 by
EGF is dependent on the activation of Erk, p38 and

Figure 7 Tyrosine phosphorylation of SHPS-1 is critical for Con
A-dependent secretion of MMP-9 and phosphorylation of Akt
and Erk. (A) Overnight serum starved mock and YF-SHPS-1
transfected MEFs were treated with 15 µg/mL Con A for 24 h
(Con A, +) or left untreated (Con A, –). Conditioned media were
subjected to gelatin zymography for MMP-9 activity. (B, C)
Mock and YF-SHPS-1 transfected cells were treated with 15 µg/mL
Con A for 1 h for phospho Akt and 15 min for phospho Erk
(Con A, +) or left untreated (Con A, –). Upper panels, TCL were
probed with anti-phospho Akt (B) or anti-phospho Erk (C).
Lower panels, the same membranes were reprobed with anti-Akt
(B) or anti-Erk-2 (C).
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PI3K in ovarian cancer cells, OVCA429 (Ellerbroek
et al. 2001), whereas in a breast cancer cell line (SKBr3)
this is Erk-dependent but PI3K-independent (Reddy
et al. 1999). Yao et al. (2001) reported that secretion of

MMP-9 by heregulin-β1 in human breast cancer cells
(SKBr3) was PKC-, p38- and Erk-dependent, but Akt
independent. It seems that the signaling required for
MMP-9 secretion might differ, in part, depending on
the type of cell or stimuli. In this report, we show for the
first time that the dual signaling pathways, the PI3K-Akt
and the MEK1-Erk, are required for the activation of
MMP-9 secretion by Con A. We found that inhibition
of either of these pathways by their specific inhibitors or
by dominant negative protein expression resulted in drastic
inhibition of MMP-9 secretion. We have previously reported
that secretion of MMP-9 by the proinflammatory
cytokine IL-1β and fibronectin also require dual signaling,
through the Akt and Erk (Thant et al. 2001; Amin et al.
2003b). Results presented in this paper confirm and
extend the previous observations and suggest that the
MEK1-Erk and the PI3K-Akt pathways are common
and essential signals for the activation of MMP-9 by
different types of stimuli.

In summary, we demonstrated for the first time that
SHPS-1/SIRPα works as a functional receptor for Con
A to activate MMP-9 production via the Akt and MAPK
pathways. It should be noted that Con A is a member of
the Con A-like lectins/glucanases superfamily and Yagita
et al. (1992) reported the presence of Con A-like mole-
cule on NK-sensitive target cells in mice. Signaling based
on the Con A-SHPS-1 interaction reported in this paper
might represent other important biological responses of
mammalian cells which are not yet revealed.

M M

Figure 8 Activation of Akt is required for
Con A-dependent MMP-9 secretion. (A, B)
MEFs were serum starved overnight, pre-
treated with 10 µm LY294002 for 1 h and
then stimulated with 15 µg/mL Con A for
1 h for Akt activation and 24 h for MMP-9
activity (Con A, +) or left untreated (Con A,
–). (A) TCLs were probed with anti-phospho
Akt (upper panel) and the same membrane
was reprobed with anti-Akt (lower panel).
(B) Conditioned media were subjected to
gelatin zymography for MMP-9 activity.
(C–E) MEFs were stably transfected with
myc-tagged dominant negative Akt (KD-Akt).
TCLs from mock and KD-Akt transfected
cells were immunoblotted with anti-myc.
(D, E) Mock and KD-Akt expressing cells
were treated with Con A. Cell lysates and
conditioned media were prepared as above.
(D) TCLs were probed with anti-phospho
Akt (upper panel) or anti-Akt (lower panel).
(E) Conditioned media were subjected to
gelatin zymography for MMP-9 activity.

Figure 9 Activation of Erk is required for Con A-dependent
MMP-9 secretion. (A, B) MEFs were serum starved overnight,
pre-treated with 25 µm U0126 for 1 h and then stimulated with
15 µg/mL Con A for 15 min for Erk activation and 24 h for
MMP-9 activity (Con A, +) or left untreated (Con A, –). (A) TCLs
were probed with anti-phospho Erk (upper panel) and the same
membrane was reprobed with anti-Erk-2 (lower panel). (B)
Conditioned media were subjected to gelatin zymography for
MMP-9 activity.
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Experimental procedures

Materials

Con A, Con A-conjugated agarose beads and HRP-conjugated
Con A were purchased from Honen (Tokyo, Japan); U0126
from Promega Corporation (Madison, WI); LY294002 from
Cayman Chemical (Ann Arbor, MI). Phospho-Akt, Akt and
phospho-p42/44 MAPK antibodies were purchased from Cell
Signaling (Beverly, MA), anti-Erk-2 and anti-SHP-2 from
Santa Cruz Biotechnologies (Santa Cruz, CA). Anti-SHPS-1
polyclonal and anti-Myc (9E10) monoclonal antibodies
were prepared as described (Hamaguchi et al. 1988; Machida
et al. 2000).

Cell culture, plasmid preparation and cell 
transfection

MEFs expressing wild-type and a truncated form of SHP-2 in
which 65 amino acids (46–110) at the N-SH2 domain were
deleted by gene targeting making SHP-2 functionally inactive
were generated, immortalized and maintained as described previ-
ously (Shi et al. 1998). Cos7 cells were maintained in Dulbecco’s
modified Eagle’s medium (DMEM) containing 5% FBS in a CO2

incubator at 37 °C. HA-tagged wild-type and dominant negative
SHP-2 plasmids were gifts from Akito Maeda (Institute for Liver
Research, Kansai Medical University, Japan). Transfections were
performed using Gene porter transfection reagent according to
the manufacturer’s instruction.

Treatment of cells with Con A

Before treatment, cells were trypsinized, counted and 1 × 106 cells
were plated in 60 mm culture plate in DMEM containing FBS.
After 24 h, DMEM was replaced with serum free DMEM and
incubated overnight. Just before treatment, the old serum free
media were replaced with fresh serum free media and treated with
the indicated concentration of Con A for the indicated time.
Culture plate containing same number of cells and maintained
identically with the treatment plates except Con A-stimulation
was used as negative control.

Con A-SHPS-1 binding assay

Cells maintained in DMEM containing FBS were harvested
with RIPA buffer (10 mm Tris–HCl, pH 8.0, 1%Triton X-100,
1% DOC, 0.1% SDS, 1 mm EDTA, 0.5 mm Na3VO4 and 1 mm
PMSF) and the lysates were clarified by centrifugation at
2 × 15 000 r.p.m. for 30 min. The supernatants were incubated
with Con A-agarose beads with continuous rotation for 2 h at
4 °C. The beads were washed several times with RIPA buffer
to remove unbound proteins. Finally, 30 µL sample buffer
containing 2-mercaptoethanol was added to the beads, vortex
briefly, centrifuged and the supernatant was subjected to
Western blotting.

Immunoprecipitation, SDS-PAGE and 
immunoblotting

Immunoprecipitation, SDS-PAGE and immunoblotting were
performed as described elsewhere (Hamaguchi et al. 1993). Briefly,
proteins were resolved on SDS-10% polyacrylamide gels and then
transferred to polyvinylidene difluoride (PVDF) membrane.
The membrane was blocked in 5% non-fat skimmed milk and
incubated with the respective antibody, followed by incubation
with the corresponding secondary antibody. Proteins were
visualized by enhanced chemiluminescence (ECL) as described
by the manufacturer (Amersham Pharmacia Biotech). In some
instances, immunoprecipitation of specific protein was done
before SDS-PAGE. For this purpose, cells were lysed with the
corresponding lysis buffer and the lysates were clarified by centri-
fugation at 15 000 r.p.m. for 30 min. The supernatants were then
incubated with the corresponding antibody for 2 h followed by
1 h incubation with protein A-Sepharose beads.

Assay of MMP-9 activity by gelatin zymography

MMP-9 activity in conditioned media was measured by zymo-
graphy as described previously (Hamaguchi et al. 1995). Briefly,
conditioned media were subjected to gel electrophoresis
containing 0.03% gelatin. Gels were then washed twice and
incubated overnight at 37 °C in the reaction buffer (50 mm
Tris–HCl, pH 7.4, 10 mm CaCl2) and stained with Coomassie
Brilliant Blue.
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