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Abstract 
Myo-inositol phosphates (phytates) are important biological molecules produced 
largely by plants to store phosphorus. Phytate is very abundant in many different 
soils making up a large portion of all soil phosphorus. This review assesses current 
phytase science from the perspective of its substrate, phytate, by examining the intri-
cate relationship between the phytate-hydrolyzing enzymes and phytate as their sub-
strate. Specifically, we examine available data on phytate’s structural features, distri-
bution in nature and functional roles. The role of phytases and their localization in 
soil and plant tissues are evaluated. We provide a summary of the current biotech-
nological advances in using industrial or recombinant phytases to improve plant 
growth and animal nutrition. The prospects of future discovery of novel phytases 
with improved biochemical properties and bioengineering of existing enzymes are 
also discussed. Two alternative but complementary directions to increase phospho-
rus bioavailability through the more efficient utilization of soil phytate are currently 
being developed. These approaches take advantage of microbial phytases secreted 
into rhizosphere either by phytase-producing microbes (biofertilizers) or by geneti-
cally engineered plants. More research on phytate metabolism in soils and plants is 
needed to promote environmentally friendly, more productive and sustainable agri-
culture. 
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1. Introduction 

Phosphorus is one of the key elements necessary for growth and development of all liv-

How to cite this paper: Balaban, N.P., 
Suleimanova, A.D., Valeeva, L.R., Chastuk-
hina, I.B., Rudakova, N.L., Sharipova, M.R. 
and Shakirov, E.V. (2017) Microbial Phy-
tases and Phytate: Exploring Opportunities 
for Sustainable Phosphorus Management in 
Agriculture. American Journal of Molecu-
lar Biology, 7, 11-29. 
http://dx.doi.org/10.4236/ajmb.2017.71002 
 
Received: July 6, 2016 
Accepted: December 20, 2016 
Published: December 23, 2016 
 
Copyright © 2017 by authors and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

   
Open Access

http://www.scirp.org/journal/ajmb
http://dx.doi.org/10.4236/ajmb.2017.71002
http://www.scirp.org
http://dx.doi.org/10.4236/ajmb.2017.71002
http://creativecommons.org/licenses/by/4.0/


N. P. Balaban et al. 
 

12 

ing organisms. It is essential for biogenesis of phospholipids in cell membranes, nucleic 
acids, ATP and plays an important role in many regulatory and metabolic processes [1] 
[2]. Phosphorus is also an important component of many soils, where it is often found 
in both organic and inorganic forms. Plants utilize mostly inorganic soil phosphates for 
growth and development, but phosphate concentration in many agricultural soils ra-
pidly declines as the demand for more agricultural products intensifies. Insufficient 
amounts of easily extractable inorganic phosphorus is one of the most critical factors 
limiting agricultural yields, a problem that is typically solved by widespread application 
of rock phosphate fertilizer. However, such approach is not sustainable long-term and 
will eventually lead to the depletion of world phosphorus reserves [3]. Indeed, some 
reports predict that rock phosphate deposits will be exhausted by the end of this cen-
tury [4]. In addition, application of rock phosphate is not very efficient, as up to 80% of 
all fertilizer is quickly modified, immobilized or transformed into insoluble organic 
phosphorus derivatives and thus, becomes unavailable to plants. Furthermore, the mas-
sive use of phosphate fertilizers has a substantial negative impact on the environment, 
as runoff from the fields pollutes natural water reservoirs, where it can destabilize eco-
systems through eutrophication and waterlogging.  

In addition to inorganic phosphates, a substantial fraction of total soil phosphorus is 
present in organic form [5] [6]. While the exact numbers may vary from one soil type 
to another, many authors estimate that various organic forms of phosphorus may con-
stitute 30% - 80% of the total soil P [7] [8]. In certain soil types, myo-inositol phosphate 
(phytate) is one of the major forms of organic soil phosphorus making up to 50% of all 
organic P in soil [8] [9] [10] [11]. For example, phytate concentration was shown to 
vary from 3.9% to 25.3% of total extractable P in carbonate-free Cambisol soils and 
calcareous czernosems, respectively [12]. Phytate is a relatively stable compound and is 
often found in precipitated forms and in immobilized aggregates. Such precipitates are 
difficult to solubilize due to phytate’s chelating activity and the formation of inaccessi-
ble complexes with metal cations, amino acids, peptides and various mineral soil com-
ponents [13]. The phytate-peptide complexes are at least partially resistant to proteo-
lytic degradation in gastrointestinal tract of non-ruminant animals [14], which prevents 
extraction of these valuable nutritional factors from plant seeds. Hence, phytate is often 
considered an anti-nutritional factor for animals. Undigested by animals, insoluble 
complexes formed by myo-inositol phosphate and other compounds are excreted and 
accumulate in soil and water, shifting their ecological balance.  

Although inositol phosphate can be viewed as a rich source of phosphorus in soil, 
plants are largely unable to utilize it from the rhizosphere due to the low phytate-   
hydrolyzing (phytase) activity in plant roots [15]. Phytases release inorganic phosphate 
from phytate to generate low-phosphorylated myo-inositols. Phytases are synthesized 
by many microorganisms, including various bacteria, fungi, micromycetes and other 
microbes often collectively called biofertilizers due to their ability to promote plant 
growth. Secreted microbial phytases hold a high potential for biotechnology due to 
their often higher specific activity towards phytate [16] [17] and can potentially be used 
to increase soil phosphorus availability for plant nutrition. In light of this, a promising 
approach in plant biotechnology is to generate transgenic plants engineered to secrete 
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microbial phytases into rhizosphere. In theory, this approach can provide substantial 
amounts of phosphorus for plant nutrition, which would in turn increase plant produc-
tivity and their nutritional value for animal consumption [18]. In addition, such genet-
ically modified plants could potentially help solve ecological problems by reducing 
phytate accumulation in soil and water [19] [20].  

Several excellent reviews on microbial phytases have recently been published and are 
highly recommended [5] [6] [19]-[25]. This review focuses on phytase science from the 
perspective of its substrate, phytate. Specifically, we evaluate the most recent data on 
phytate’s structure, distribution in nature and function, its role in plant nutrition. We 
further discuss promising environmentally friendly and cost effective strategies to in-
crease soil phosphorus bioavailability through the use of biofertilizers or generation of 
transgenic plants capable of secreting microbial phytases into rhizosphere. The advan-
tages and drawbacks of each approach, as well as the likely direction of future research, 
are also discussed. 

2. Structural Features of Inositol Phosphates 

Inositol phosphates were first identified in biological systems over 100 years ago [26] 
[27]. For a long time they remained the subject of intense scientific debates largely be-
cause of lack of clear understanding of their dimensional structures. Specifically, the 
exact three-dimensional model of inositol was unclear until studies using nuclear mag-
netic resonance and X-ray diffraction analysis demonstrated the vast structural diversi-
ty of different isoforms [28]. We now know that the exact conformation of inositol 
(cyclohexane-1,2,3,4,5,6-hexol) varies depending on bond location, leading to the for-
mation of multiple stereoisomers [1] [29]. Hydroxyl groups of stereoisomers are 
oriented either axially or equatorially, thus resulting in nine possible inositol conforma-
tions [29]. The names of all nine inositol stereoisomers are typically highlighted in ital-
ics. Myo-inositol with one axial and five equatorial hydroxyl groups has the most stable 
conformation (the “chair”) (Figure 1) [1] [30] [31] [32]. 

When hydroxyl groups in inositol ring are replaced by phosphate residues the mole-
cule becomes a phosphorylated alcohol-inositol phosphate. Depending on the number 
of phosphates, several different compounds can be formed-from inositol-monophos- 
phate to inositol-hexakisphosphates. For example, myo-inositol hexakisphosphate is 
the phosphate salt of myo-inositol, in which all six hydroxyl groups are substituted by 
phosphate residues (Figure 2). According to the official nomenclature, this compound 
is myo-inositol 1,2,3,4,5,6-hexakis (dihydrogen) phosphate, but often it is also called 
myo-inositol hexakisphosphate or simply phytate. The official abbreviation for this  
 

 
Figure 1. Myo-inositol “chair” conformation. 
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compound is InsP6 or IP6. While sometimes phytate is also called phytic acid, this ter-
minology is not generally applicable to other stereoisomers of phosphorylated inositol. 

Inositol phosphates are very strong natural poly-anion chelators of biologically im-
portant metal cations. Closely positioned phosphate groups in myo-inositol are able to 
form intramolecular links with metal cations Ca2+, Mg2+, Zn2+, Cu2+, Fe2+, Fe3+, Al3+ and 
Mn2+. A single phosphate group can also form more than one hydrogen bond with 
metal ions, creating stable chelating complexes (Figure 3) [23] [33] [34] [35]. The for-
mation of phytate-metal complexes depends on the cation ionic radius. Bivalent cations 
with a long ionic radius, such as Са2+ (0.99 Å) and Sr2+ (1.12 Ǻ), are associated with two 
adjacent phosphate groups of phytate molecule. In contrast, cations with a short ionic 
radius, such as Mg2+ (0.65 Ǻ), Fe2+ (0.74 Ǻ) and Zn2+ (0.71 Ǻ), can form hydrogen 
bonds with just one phosphate group of phytate [33]. In plant tissues and seeds phytate 
can form complexes with Zn2+, Fe2+, Са2+, Mg2+ and Co2+ with relatively high affinity, 
with Са2+-phytate complex being the most common. Interestingly, phytate complexes 
with bivalent cations are formed in both acid and alkaline conditions and are found in 
either dissolved or precipitated states [23]. Phytate may also form complexes with tri-
valent iron and aluminum cations in vivo [36] [37]. 

Negatively charged phosphate residues in phytate can also bind positively charged  
 

 
Figure 2. Myo-inositol 1,2,3,4,5,6-hexakisphosphate. 

 

 
Figure 3. Phytate complex with bivalent metal cations. 
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amino acid residues in peptides and native proteins leading to the formation of stable 
protein-phytate complexes. A trimeric protein-metal cation-phytate complex can also 
be formed both in acid and alkaline pH conditions [23] [38]. Overall stability of such 
complexes largely depends on pH, concentration and cation type.  

3. Phytate Distribution in Soil  

The most wide-spread phosphorylated inositols in soil are myo-, scyllo-, chiro- and 
neo-inositol phosphates, of which myo-inositol hexakisphosphate is the most common. 
The other three phosphorylated stereoisomers can be ranked from more to less abun-
dant in the order of scyllo > chiro > neo, but these are generally very rare in biological 
systems [39] [40]. Inositol phosphates with low phosphate group content (from mono-
phosphate to tetrakisphosphate) are also uncommon in soil. 

Inositol phosphates can undergo epimerization, when two stereoisomers (for exam-
ple, myo-inositol and scyllo-inositol) that differ by spatial location of only one chemical 
bond can turn into each other. Experiments with labeled carbon isotopes established 
that myo-inositol in certain soil conditions can be phosphorylated by soil microorgan-
isms to yield myo-inositol hexakisphosphate [39]. However, natural chemical synthesis 
of phosphorylated inositol stereoisomers in soil is thought to be rare, mainly because 
such chemical reactions require prolonged heating in strongly acid or alkaline condi-
tions. Instead, most soil inositol phosphates are assumed to be synthesized by living 
organisms, including plants and soil microbes. 

Indeed, myo-inositol hexakisphosphates are widely distributed in various plant tis-
sues (especially seeds), as well as in other eukaryotes. Scyllo-inositols mostly in mono-
phosphate form are found in aleurone layer of barley seeds. D-chiro-inositol hexakis-
phosphates are present in small quantities in pine needles and in leaves of flowering 
trees [39]. Other inositol phosphate stereoisomers have not yet been found in plants. 
Phytate appears to be the main storage form of phosphorus and inositol in plants. Phy-
tate makes up to 30% of all phosphorus fractions in roots, while its fraction increases up 
to 80% in seeds and cereal grains [21] [41] [42]. Phytate mostly accumulates at the last 
stages of plant life cycle and is returned to soil with seeds, where it is again made avail-
able to plants during germination via intrinsic phytases [43] [44]. Seed phytate can of-
ten be found in association with insoluble salts of potassium, magnesium and other 
metals and is stored in globular inclusions (globoids) of aleurone layer and in embryo 
vacuoles. For example, more than 80% of phytate in maize is present in embryo [45]. 
Typically, seed ripening and germination are accompanied by changes in pH, tempera-
ture, metal cation concentration that promote conversion of phytate complexes to a 
more soluble form [46]. 

4. Phytases as Biological Tools to Harvest Inorganic  
Phosphorus from Phytate 

The enzymes phytases belong to the general class of phosphatases (EC 3.1.3) and hy-
drolyze phytate to release inorganic phosphorus [47]. Phytases are classified into sever-
al families with important differences in structure, substrate specificity, pH-optimum 
and mechanism of hydrolysis. Some of the histidine acid phosphatases (HAPs) have 
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low pH-optimum and a broad substrate specificity, while most known alkaline β-pro- 
peller phytases (BPPs, mostly of bacillar origin) are specific only to phytate molecule 
and its complexes. Phytate-degrading enzymes are commonly found in oilseeds and 
nuts, legumes and in cereal pollen grains. Phytase activity is abundant in cereal seeds 
(rye, triticale, barley, wheat) and in pseudo-cereal fruits (amaranth, buckwheat). Le-
gumes and oilseeds have about 10 times lower phytase activity than grain seeds [48]. 
Phytases from plant seeds are often associated with membrane structures and are 
present in aleurone layer in cereals and in cotyledons in legumes, where large quantities 
of phytate are also found [48] [49]. Some stages of plant life cycle, such as seed germi-
nation, are characterized by increased level of phytase activity which is necessary to 
promote fast growth of seedlings [47]. Most purified and characterized plant phytases 
have acidic pH-optimum averaging around pH 5.0 and are stable up to 55˚C - 60˚C. 
For example, a maize phytase has maximum activity at 55˚C and pH 4.5, while a soy-
bean phytase GmPhy has pH-optimum at pH 4.5 - 5.0 and is stable up to 60˚C [49]. 

The few plant phytases that can be found in roots are characterized by low hydrolytic 
activity and are not secreted into rhizosphere. Phytase activity of Arabidopsis thaliana 
roots represents less than 0.8% of total root acid phosphomonoesterase (phosphatase) 
activity [15]. Furthermore, this phytase does not appear to be an extracellular enzyme. 
Therefore, A. thaliana and other plants are mostly unable to grow on phytate as the on-
ly source of phosphorus in the agar medium [15]. Similarly, experiments with wheat in 
laboratory conditions established that low phytase activity in plant roots is the main 
factor limiting wheat ability to obtain phosphorus from phytate [50]. 

While many soil bacteria and fungi are known to produce extracellular phytate-hy- 
drolyzing enzymes, not all of these enzymes have high catalytic activity. Soil micro- 
mycetes, yeast and members of Bacillus and Enterobacter genera produce some of the 
most active extracellular phytases known to date. Bacterial phytases from Bacillus and 
Enterobacter possess high specific activity, have pH-optimum in a broader range of pH 
3.5 to 7.5 and temperature optimum at 37˚C - 70˚C [19] [51]. Many alkaline bacillar 
phytases are characterized by narrow substrate specificity, which is restricted only to 
phosphomonoester bonds in phytate molecules [33]. In addition, many bacterial phy-
tases, such as histidine acid phytases from A. niger and E. coli and Bacillus β-propeller 
phytases, are resistant to proteolytic degradation by pepsin, papain, pancreatin and 
trypsin [52] [53] [54] [55]. All these features make bacterial phytases a very attractive 
option for animal feed additives.  

5. Microbial Phytases as Molecular Biofertilizers  

High agricultural productivity in the future will largely depend on the continued tech-
nological advances to reduce fertilizer application rates and the cost of food production. 
The use of bacterial phytases is thus envisioned as an effective means to improve plant 
growth and yield. While plants are unable to extract phosphorus from soil phytate,  
this limitation can potentially be overcome if plants are treated with certain phytate-    
degrading bacteria, sometimes also called biofertilizers. A substantial number of rhi-
zosphere bacterial species are now known to be beneficial for plant growth as they in-
crease availability of otherwise insoluble phosphorus-containing soil compounds. For 
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example, the availability of phytate-derived phosphates was improved when wheat 
seeds were pre-incubated with soil bacterium Pseudomonas sp. CCAR59 that is known 
to have extracellular phytase activity [50]. Other known bacterial biofertilizers include 
species of Azotobacter, Rhizobium, Pseudomonas, Azospirillum and Burkholderia [56]. 

Indeed, soil microorganisms are often viewed as an abundant source of biofertilizers 
[57]. Enterobacter strains selected from the rhizosphere of legumes have a positive ef-
fect on plant growth and phosphorus nutrition and are known to produce phytases 
[58]. Due to the presence of high phytase activity a strain of Pseudomonas sp. from 
Australian agricultural soils was able to release up to 80% of all phosphate from phy-
tate, thus positively affecting plant development [59]. A number of bacteria with phy-
tate-hydrolyzing activity that are able to improve plant phosphorus nutrition was iso-
lated from white lupine (Lupinus albus) rhizosphere in Japan [60]. Almost all of these 
strains were classified as representatives of Burkholderia family. In addition, some 
Pseudomonas, Enterobacter, and Pantoea isolates are also able to release inorganic 
phosphate from phytate [61]. Overall, it is now becoming increasingly clear that phy-
tase-producing soil bacteria (mostly belonging to gamma-proteobacteria) are wide-
spread in the rhizosphere of different plant species. 

In general, bacterial biofertilizers containing live microorganisms are widely used to 
improve crop yield in India, China, Iran and other countries. Specifically, the use of 
nodule bacteria, Azotobactor/Azosporillum and Phosphobacteria-based biofertilizers is 
relatively common [62]. Microbial biofertilizers are typically produced in liquid, powd-
er and granular formats [63]. Biofertilizers as a highly efficient alternative to chemical 
fertilizers are praised for their relative ease of application, non-toxic and eco-friendly 
nature, and cost effectiveness [64]. The positive effect of bacterial biofertilizer cells on 
plant physiology can generally be associated with increased availability of limiting nu-
trients, such as nitrogen, phosphorus, group B vitamins and amino acids. In addition, 
several other positive effects of biofertilizers on plant growth have generally been noted: 
suppression of diseases caused by plant pathogens (possibly through competition with 
pathogenic microorganisms for root colonization), microbial synthesis of plant growth 
regulators, and reduction of ethylene levels in root cells [65]. However, the more wide-
spread commercial use of bacterial biofertilizers is to some degree limited by our insuf-
ficient knowledge of the ecological, molecular and physiological impact of microbial 
communities on plant growth [66]. Nevertheless, the use of natural soil bioresources, 
including soil microorganisms, can serve as a promising alternative to the currently 
standard application of inorganic fertilizers. 

The latest scientific findings are consistent with the notion that microbial phytases 
play a fundamental role in soil phosphorus life cycle. Indeed, due to their potentially 
substantial agronomic and ecological value for plant growth during periods of long- 
term phosphorus deprivation, microbial phytases become an appealing target for in-
dustrial use [61]. For example, treatment of seeds with a fungal extracellular phytase 
promoted plant phosphorus nutrition in soils with high phytate content [67]. Similarly, 
enrichment of phosphate-limited soils with phytase-producing bacteria, such as Bacil-
lus mucilaginosus and B. amyloliquefaciens, was shown to improve growth of tobacco 
and corn, respectively [65] [68]. Finally, bacterial phytases also positively impact plant 
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nutrition by freeing up important soil microelements typically chelated by phytate. 
Thus, the use of biofertilizers in the form of either bacterial culture liquid purified mi-
crobial phytases or live phytase-producing bacterial strains can be viewed as an efficient 
and environmentally friendly approach to increase bioavailability of soil phosphorus 
and reduce the currently widespread use of inorganic phosphate fertilizers. 

6. Transgenic Plants as a Promising Alternative to  
Phosphate Fertilizers 

Several new biotechnological advances now make it possible to utilize phytate as an 
abundant source of phosphorus, especially for farm animals. Many phytases of bacterial 
or fungal origin are traditionally used as animal feed supplements to improve phos-
phorus balance in monogastric farm animals, such as pigs, chicken and fish. These in-
clude phytases from Aspergillus ficuum (niger) (sold as Natuphos), Aspergillus niger 
(All-zyme), Aspergillus awamori (Finase and Avizyme), Aspergillus oryzae (SP, TP, SF, 
AMA-FERM, and Phyzyme), and Peniophora lycii (Ronozyme, Roxazyme, and Bio- 
Feed phytase) [69]. Additional technologies include: pre-processing grains to activate 
endogenous phytases; mutations in phytate metabolism genes that decrease phytate 
synthesis rate in plant seeds; the use of genetically modified farm animals that produce 
phytases in saliva or genetic modification of plants to express microbial phytases [19]. 
The latter is a particularly promising approach as it can serve several purposes. Plants 
engineered to express phytase genes of microbial origin can secrete extracellular en-
zymes to rhizosphere where they can break down soil phytate, leading to improved ac-
cumulation of phosphorus in plants and increased biomass [23] [70]. In addition, 
transgenic plants expressing phytases in seeds are expected to have lower seed phytate 
content and thus represent a more nutritious feed for farm animals.  

In several recent studies transgenic plants have been established and evaluated for 
changes in organic and inorganic phosphorus accumulation in plant tissues and seeds. 
Histidine acid phytases from Aspergillus niger, A. ficuum, A. fumigates and from other 
fungi and yeast are widely used in these experiments as they are stable in a broad range 
of pH and temperature [20] [71]. Bacterial phytase genes, such as 168phyA from Bacil-
lus subtilis and appA from E. coli, have also been used successfully to generate trans-
genic plants [19] [72] [73] [74] [75]. In some laboratory experiments these genes have 
been successfully expressed in transgenic tobacco, soybeans, alfalfa, corn, wheat, sweet 
potato, canola and Arabidopsis thaliana, often indeed improving utilization of phytate 
as the source of phosphorus [15] [64] [76]-[84]. 

Biochemical properties of recombinant phytases expressed in plants usually differ 
very little from the enzymes expressed by their native hosts. Recombinant phytases are 
often less glycosylated and thus have lower molecular mass, but have otherwise similar 
enzyme activity, substrate specificity and thermal stability [19]. Transgenic soy roots 
expressing A. ficuum histidine acid phytase (аfрhyA) were shown to have 6 and 3.5 fold 
higher catalytic activity and inorganic phosphate content than wild-type control plants, 
respectively [82]. Transgenic A. thaliana plants growing on phytate as the only source 
of phosphorus showed improved growth associated with overexpression of A. niger 
histidine acid phytase gene phyA in roots [79]. Expression of A. niger phytase fused 
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with carrot extensin signal peptide in A. thaliana resulted in recombinant phytase se-
cretion into rhizosphere and 20-fold increase in rhizosphere phytase activity [15]. He-
terologous expression of A. niger phytase in wheat decreased myo-inositol hexakis-
phosphate content in seeds by 86% and had a positive effect on transgenic wheat nutri-
tional properties [78].  

Despite the long history of using fungal phytases for transgenic plant research, soil 
bacteria of the genus Bacillus recently emerged as a potentially better source of recom-
binant phytases. This bacterial genus is characterized by the presence of unique β-pro- 
peller phytases that have several key advantages over their fungal counterparts. Bacillar 
alkaline phytases exhibit narrow substrate preference specific only to phytate, have a 
remarkably high phytate-hydrolyzing activity at physiological pH values, and are also 
resistant to both high temperature and proteolytic degradation. Thus, perhaps not sur-
prisingly, more encouraging results in transgenic plant research were recently obtained 
using bacillar phytases. For instance, transgenic tobacco plants expressing phytase 
168phyA from B. subtilis showed increased biomass (up to 2-fold) and higher number 
of flowers and fruits compared to the wild type when grown on phytate as the only 
source of phosphorus [72]. Similarly, expression of B. subtilis 168PhyA phytase in Ara-
bidopsis thaliana led to a higher shoot dry weight and an increase in phosphorus con-
tent by 100% compared to the wild type [75]. 

Despite these encouraging results in laboratory conditions, the situation in actual 
soils may nevertheless turn out to be less promising. In fact, to date there is limited 
evidence that such transgenic plants are indeed characterized by improved P acquisi-
tion and plant growth in natural soils. One clear example of improved P acquisition 
from natural agricultural soils was the transgenic expression of phytase and APase 
genes in alfalfa using a root-specific promoter, though the effect appeared to vary with 
the type of soil tested [85]. On the other hand, most published reports up to date sup-
port the notion that the situation in real soils may be very different from exciting re-
sults obtained in laboratory media. For example, experiments with transgenic Trifolium 
subterraneum expressing phytase phyA established that improved P uptake and in-
creased plant growth previously observed in agar was compromised when the same 
plants were grown in real soil [86]. Furthermore, transgenic tobacco plants expressing a 
fungal phytase gene did not show improved P acquisition when grown in P-deficient 
soils [87]. Similarly, expression of B. subtilis phytase transgene in tobacco resulted in 
improved phosphorus uptake from phytate only in sterile laboratory conditions but not 
in real soil [88]. In another report, while constitutive overexpression of AtPAP15 gene 
in soybeans did result in higher yield, this phenotype was mainly achieved by increased 
internal P use efficiency rather than by enhanced soil P acquisition [89]. Taken togeth-
er, these data clearly suggest that effectiveness of plants expressing transgenic phytases 
might be limited. One potential explanation is that biochemical properties of recombi-
nant phytases, such as stability or optimum pH, could be substantially modified be-
cause of local soil conditions. Indeed, microbial community in the rhizosphere may not 
support physiological and nutrient changes introduced by plants with transgenic phy-
tases [90]. This apparent failure of genetically engineered plants secreting bacterial 
phytases to demonstrate improved growth in real soil conditions may also stem from 
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the fact that secreted phytases quickly lose activity in soil possibly due to adsorption of 
the enzymes (though this process appears slower in the rhizosphere) [87]. This rapid 
enzyme immobilization may thus quickly limit phytase capacity to interact with phytate 
in soil and undermine all previously envisioned advantages of such transgenic approach 
to improving plant phosphorus metabolism.  

Nevertheless, with necessary future improvements in phytase choice and growth 
conditions the use of transgenic plants expressing microbial phytase genes may still be a 
substantial step towards solving the problem of utilizing soil phytate as the source of 
phosphorus. As more inorganic soil phosphorus can enter the plants expressing micro-
bial phytases, such plants are expected to have improved nutritional properties for an-
imal or human consumption. Furthermore, transgenic plants expressing microbial 
phytases are expected to have reduced requirement for external supply of rock phos-
phate or treatment by biofertilizers, leading to the overall reduction in the price of final 
agricultural products [72]. Finally, degradation of soil phytate by recombinant phytases 
could also decrease the extent of soil and ground water pollution caused by organic 
phosphorus compounds.  

7. Towards Future Strategies to Improve Plant Phosphorus  
Metabolism 

To feed the ever-growing world population, modern agriculture will continue to rely on 
improvements in biotechnology. Two alternative but often overlapping strategies that 
rely on the use of bacterial phytases should be considered as potentially viable options. 
Bacterial phytases can either be genetically introduced into crops or supplied to soil as 
purified enzymes or through application of microbial biofertilizers. In comparison to 
their eukaryotic counterparts, bacterial phytases are often cheaper to manufacture and 
easier to express in plants using modern molecular and genetic tools. In addition, bac-
terial biofertilizers are often easy to cultivate in large volumes and subsequently use to 
treat plant roots or seeds. When searching for the best way to take advantage of micro-
bial phytases, several factors should first be carefully considered. The first aspect is the 
need to identify, either bioinformatically or through careful microbiological and bio-
chemical screening of soil microorganisms, producers of highly active and thermo-sta- 
ble phytases of microbial origin. Towards this goal, our group has recently sampled a 
number of soils from various ecological habitats (forest, private homesteads, large 
agricultural complexes and urban landscape) and identified a Pantoea sp. 3.5.1 strain 
producing a novel glucose-1-phosphatase dubbed AgpP with high phytase activity and 
unusual activation by metal ions [91]. This novel enzyme, while similar in some aspects 
to several previously characterized fungal phytases, is unique in having a set of bio-
chemical advantages over the well-established industrial enzymes. Specifically, the 
Pantoea sp. 3.5.1 AgpP phytase has pH optimum in the acidic range, suggesting that 
similar to other phytases, AgpP could function in the upper part of the digestive tract of 
poultry [92] [93]. However, unlike many fungal phytases, this novel enzyme is most ac-
tive at 37˚C, much closer to the typical body temperature (37˚C - 42˚C) of most warm- 
blooded animals [94], thus giving researchers another option in the available arsenal of 
bacterial enzymes. Finally, in contrast to most other known phytases, activity of AgpP 
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phytase is stimulated by some metal ions, a desirable feature for an enzyme that breaks 
down phytate-metal ion complexes [91]. The identification of this and other phytases 
with improved or more desirable biochemical characteristics can lead to the develop-
ment of better industrial phosphatases with regulated enzyme activity. 

Second, if a bacterial phytase is chosen for the purpose of generating transgenic 
plants, one important factor to consider is the choice of efficient expression system in 
plants. Often transgenic phytases need to be delivered into rhizosphere to help promote 
degradation of soil phytate and increase soil phosphorus bioavailability. In this case the 
phytase transgene is often fused with a root-specific promoter and a signal peptide, 
such as carrot extensin, for efficient enzyme translocation over the membrane [19] [51]. 
Finally, if the purpose of generating transgenic plants is to reduce phytate content in 
seeds or other plant tissues, it is often necessary to knock out genes of inositol phos-
phate biosynthesis pathway [95] or to engineer plants expressing recombinant microbi-
al phytase under the control of constitutive 35S promoter or seed-specific promoters 
[19] [72] [73] [75]-[80] [83] [84] [96] [97]. Such genetic manipulations are expected to 
result in improvements in feed nutritional quality, especially for animals with single 
chamber stomachs (pigs, chicken, fish, etc.), which are unable to extract phosphorus 
from phytate.  

Overall, the development of transgenic plants expressing recombinant phytases 
(perhaps, induced by phosphate starvation) is often viewed as a promising route to 
solving problems of soil phosphorus availability and increasing the efficiency of phos-
phate nutrition in plants [24]. However, potentially encouraging breakthroughs in this 
area are often limited or stymied due to mistrust of consumers, prohibitive legislation 
in many countries, as well as still substantial technological limitations. Thus, any future 
efforts to capitalize on recent scientific discoveries and achievements in generating 
promising transgenic organisms will need to go hand-in-hand with overall policy 
change and careful consideration of public concerns towards new biotechnologies. 

As an alternative to transgenic plants, phytase-producing microorganisms (bioferti-
lizers) can serve as an efficient path to improving soil phosphorus availability to plants 
[69] [98]. Richardson emphasized two ways by how soil microorganisms can contribute 
to phosphorus bioavailability in plants: directly through expression of soil phytate-  
hydrolyzing enzymes [99]; and through the production of other organic compounds 
that solubilize or modify phytate thus making it more accessible to other organisms. 
Secretion of organic acids by rhizosphere bacteria is an especially important characte-
ristic of sustainable phosphorus management in the soil as some evidence suggests that 
roots of agroforestry species are unable to secrete such acidic compounds [100]. The 
most common compounds secreted by microorganisms that contribute to organic 
phosphorus mobilization in soil are organic acids, such as malate, citrate and oxalate 
[101] [102]. In addition to organic acids, bacteria can produce indole acetic acid (IAA), 
siderophores, vitamins, amino acids, ammonia and cyanide. Furthermore, microorgan-
isms provided in the context of biofertilizers can compete with other microbes for co-
lonization of plant roots, reduce ethylene production and suppress diseases caused by 
pathogenic bacteria and fungi [56]. 

While biofertilizers clearly represent a promising route for modern agriculture, many 
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obstacles still exist to their successful application in the field. Despite the well-docu- 
mented positive effects of bacterial biofertilizers on plant growth in some settings, a 
giant gap needs to be bridged between these successful greenhouse experiments and 
field studies, where many biofertilizers often fail to substantially improve plant growth 
[103] [104]. This discrepancy may be due to several factors, such as unfavorable inte-
raction with other rhizosphere organisms, adverse physical and chemical soil properties 
(e.g., low pH), poor ability of strains to colonize plant roots and other environmental 
factors, such as high ambient temperature and low rainfall during the growing season. 
Many of these factors can negatively affect the outcome of biofertilizer application. One 
possible strategy to overcome these limitations is the use of microorganisms adapted to 
the particular climatic conditions of agricultural region [105]. 

8. Conclusion 

In the last few decades our reliance on non-renewable rock phosphate fertilizers has 
become a major limiting factor affecting environmental, political, and economic aspects 
of modern agriculture. To sustain current and future agricultural needs, several novel 
approaches to phosphorus management in the field have been proposed, including the 
use of biofertilizers and genetically engineered plants. A particularly useful synergistic 
effect could potentially be achieved by the combined use of genetically-modified plants 
secreting efficient bacterial phytases into rhizosphere and simultaneous application of 
biofertilizers that contain microorganisms adapted for local environmental conditions. 
While the ultimate goal of many researchers is to create the best conditions for efficient 
phosphorus nutrition, increased biomass and yield, more studies are clearly necessary 
to chart the best strategies and to develop advanced biotechnologies that rely on micro-
bial or plant-produced phytases. Overall, better mechanistic understanding of the rela-
tionship between phytase properties, phytate availability and roles in plant physiology 
will be required to improve plant nutrition.  
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