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Identifying the physiological and genetic basis of stress tolerance in plants has proven to be critical to understanding adaptation
in both agricultural and natural systems. However, many discoveries were initially made in the controlled conditions of
greenhouses or laboratories, not in the field. To test the comparability of drought responses across field and greenhouse
environments, we undertook three independent experiments using the switchgrass reference genotype Alamo AP13. We
analyzed physiological and gene expression variation across four locations, two sampling times, and three years. Relatively
similar physiological responses and expression coefficients of variation across experiments masked highly dissimilar gene
expression responses to drought. Critically, a drought experiment utilizing small pots in the greenhouse elicited nearly identical
physiological changes as an experiment conducted in the field, but an order of magnitude more differentially expressed genes.
However, we were able to define a suite of several hundred genes that were differentially expressed across all experiments. This
list was strongly enriched in photosynthesis, water status, and reactive oxygen species responsive genes. The strong across-
experiment correlations between physiological plasticity—but not differential gene expression—highlight the complex and
diverse genetic mechanisms that can produce phenotypically similar responses to various soil water deficits.

Crop productivity and wild plant distributions are
governed by the availability of soil moisture (Axelrod,
1972; Boyer, 1982; Ciais et al., 2005). The impact of
drought and soil water deficit in agriculture is esti-
mated to be the largest abiotic determinant of yield

(Boyer, 1982; Araus et al., 2002), while drought is also
considered a primary cause of speciation and adapta-
tion in nature (Stebbins, 1952). Dehydration avoidance
and other drought adaptive strategies permit plants to
survive or maintain growth during periodic droughts
(Blum, 1996; Chaves et al., 2003; Chaves and Oliveira,
2004). Specifically, phenotypic plasticity of stomatal
conductance, water foraging, and growth traits (among
many others) may effectively maintain homeostasis of
leaf water potential despite soil water deficits.

Leaf water potential is a bellwether of the physio-
logical impact of water deficit (Jones, 2007). Under
drought, decreasing water availability results in re-
duced leaf water potentials and a sequence of physio-
logical responses including reduced photosynthesis,
growth rate, and ultimately, fitness (Taiz and Zeiger,
2014). Plants therefore seek to maintain homeostasis of
leaf water potential, with the highest (least negative)
values supporting the most efficient functioning of
photosynthesis and other metabolic processes in most
species (Lawlor and Fock, 1978; Turner and Begg, 1981;
Kramer and Boyer, 1995; Cornic and Massacci, 1996;
Jones, 2007). Plants that exhibit dehydration avoidance
strategies compensate for soil water deficit through
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phenotypic plasticity of gene expression (Verslues et al.,
2006; DesMarais and Juenger, 2010; DesMarais et al.,
2013; Lovell et al., 2015) and downstream physiological
phenotypes (Levitt, 1980), among others.
To understand plant stress responses, it is critical to

determine the physiological and genetic underpinnings
of drought adaptation in both field and laboratory con-
ditions (Travers et al., 2007; Gaudin et al., 2013). A
common finding among such studies is that physiologi-
cal and gene expression responses to drought vary con-
siderably depending on the severity and temporal
dynamics of drying soil (Chaves et al., 2003; Barker et al.,
2005; Malmberg et al., 2005; Mittler, 2006; Mishra et al.,
2012). Natural soil moisture variation, which has shaped
adaptive responses to drought in wild populations, is not
necessarily recapitulated by controlled (often, “shock”)
laboratory experiments. For example, single abiotic stresses
rarely occur in isolation in the field (Mittler, 2006). In-
stead, wild and crop plants respond to the combination
of diverse stressors such as drought, heat, and salinity,
simultaneously and at both molecular (e.g. Rizhsky
et al., 2002; Rizhsky et al., 2004; Suzuki et al., 2005) and
physiological (e.g. Heyne and Brunson, 1940; Craufurd
and Peacock, 1993; Machado and Paulsen, 2001) levels.
Therefore, inquiries into evolved plant stress responses
are perhaps best served by experimental conditions that
emulate selective agents in the field. Given that the
extent and severity of stress causes qualitatively dif-
ferent physiological responses, it is not surprising that
several studies have found relatively weak genetic
correlations between laboratory phenotypes and those
collected in the field (e.g. Weinig et al., 2002; Malmberg
et al., 2005; Anderson et al., 2011; Mishra et al., 2012).
Soil properties and biota can also affect plant growth

and physiology (Meisner et al., 2013; Schweitzer et al.,
2014), which may be exacerbated by contrasts between
growth in potting mix or in native soil (Rowe et al.,
2007; Heinze et al., 2016). The observation that field-
grown plants have different root systems and greater
total water storage than those in greenhouse pots is of
particular importance to water relations (Poorter et al.,
2012a). Short-term drought stress in the field may be
buffered by access to larger volumes of soil and more
complex root-soil-water dynamics, conditions poorly
represented in most controlled settings.
The field of experimental design has been funda-

mentally shaped by a central problem of biology: that it
is notoriously difficult to control environmental factors
in the field (Jones, 2013). A classic solution is to increase
biological replication, but this is generally not feasible
with costly and time-sensitive physiological and genetic
assays (Poorter et al., 2012b; Marchand et al., 2013).
Despite these difficulties, understanding the effects of
drought in field conditions is necessary because it is in
these settings that yield is impacted and selection is
acting to shape adaptive responses to stress. Here, we
determine how the interplay between drought severity,
planting condition (e.g. field, potted, greenhouse) and
sampling timing impacts physiological and genomic
responses to drought in the C4 perennial grass, Panicum

virgatum (switchgrass). To accomplish this, we used
observations collected from clonally replicated individ-
uals of the “AP13” switchgrass genotype (derived from
the Alamo cultivar), which is the genome reference for
this important biofuel crop and dominant member of
mesic tall grass prairie ecosystems. TheAlamo cultivar is
a southern lowland accession that has high vigor and
performance across a variety of climatic conditions. Rep-
licates were grown in three separate soil moisture manip-
ulation experiments with distinct rooting environments: in
medium sized pots in a greenhouse, in large containers
in a field setting, and in native soil under rainout shel-
ters. In all three of these experiments, we collected leaf-
level physiological and whole-genome gene expression
data from droughted and control plants.

Combined, the three experiments represent contrasts
in drought experimental manipulations (i.e. the extent,
timing, and duration of drought), plant characteristics
(i.e. age, maturity, and size), and broadly fit with the
concepts of best practice for physiological analysis of
drought responses (Poorter et al., 2012b). Contrasting
these experimental design considerations allows us to
address how edaphic and climactic conditions impact
links between gene expression and physiological phe-
notypic plasticity. Specifically, we assessed three funda-
mental questions pertaining to physiological genomics
in the field: (1) How consistent is phenotypic plasticity to
drought across experiments? (2) Which soil moisture
deficit responses vary across sites, years, and timing of
sampling? (3) How does plasticity of physiological and
gene expression phenotypes covary within and across
experiments? To assess these questions, we tested how
leaf physiology and whole-genome gene expression
responded to the effects of drought treatments, leaf water
potential, and sampling time (midday and predawn).
These analyses permitted inference of the number, rela-
tive effect size, and identity of differentially expressed
(plastic) genes. Overall, our results suggested that dif-
ferences in leaf water potential and diurnal patternswere
the major drivers of gene expression variation. Further-
more, we observed consistent physiological plasticity
across greenhouse dry-down and field precipitation
manipulation experiments, but extreme variability in the
number of differentially expressed genes.

RESULTS

Physiological and Gene Expression Variation
Across Experiments

The AP13 P. virgatum accession was clonally repli-
cated and grown in three experiments from 2010–2014:
(1) a greenhouse dry-down in 3.74 L pots (“green-
house,” expression data from this experiment was
published previously, Meyer et al. [2014]), (2) 1400 L
PVC cylinders in field conditions (“cylinder”), and (3)
spaced plants grown directly in the field under 18 m 3
73 m rainout shelters (“shelter”; Figure 1A; Aspinwall
et al. [2013]). The shelter experiment was further sub-
divided into (3a) a 2012 experiment, where six distinct
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watering treatments were employed at a single field site
in Temple, Texas, and (3b) experiments in 2013-2014,
where two drought treatments were contrasted at sites
in Austin and Temple, Texas (Fig. 1A).

Predawn leaf water potential (Cleaf) varied consid-
erably betweenwatering treatments in each experiment
(Table I), reflecting the physiological impacts of
drought. However, plant physiology also varied with
the time of sampling (cylinder and shelter experiment),
location, and year (shelter experiment, Table II). Within
the 2013-2014 shelter experiment, most plants grown in
the Austin site exhibited more negative midday Cleaf
values than those in Temple (Fig. 1B). Consistent with
reductions in midday Cleaf, we also observed plasticity

of both photosynthetic rate (A) and stomatal conduc-
tance (gs); both physiological parameters significantly
declined in the drought treatments of the 2012 shelter,
cylinder, and greenhouse experiments (Table II).

Both the physical effects of water deficit and genetic
control of gene expression may drive physiological
plasticity. To assess the extent of genetic responses to
drought, we quantified gene expression inmature leaves
in each experiment using the previously described high-
throughput “TAG-seq” protocol (Meyer et al., 2011).
We evaluated how distinct each treatment was with
respect to the expression data using principal compo-
nent analyses (PCA; Fig. 1C) and visualized PCAs of
the transposed expression matrix to depict the position

Figure 1. Physiological and gene expression responses to drought across three experiments. A, Replicates of the AP13 switchgrass
genotype were grown in three separate experiments. B, Predawn leaf water potential (Cleaf, MPa) was assessed for each plant.
MiddayCleaf measurementswere pairedwith tissue collection for RNA for all experiments except the greenhouse, where stomatal
conductance (gs) was assayed at midday instead of Cleaf. These midday and predawn measures are plotted with independent
scales for the greenhouse and remaining experiments. C, Expression matrices for genes with a significant effect of any experi-
mental factors (time of sample collection, location and year) were used to conduct principal component analysis (PCA) de-
compositions. The length and direction of the vectors indicates the strength of each experimental level. A vector perpendicular to
the 1st PCA axis is plotted as a dashed line. D, Finally, the principal component score for the transposed expression count matrix is
plotted and grouped by the experimental factors. The percent variance explained by the first two PCA axes accompanies the axis
labels. Note that in the 2012 shelter experiment expression was assayed across six treatments, but physiological phenotypeswere
only measured in the wet, mean, and dry treatments. Levels of replication for each experiment can be found in Table I.
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of each library within genetic space (Fig. 1D). Among
experiments with multiple experimental factors (exclud-
ing the 2012 shelter), the first PCA axis delineated treat-
ment differences only in the greenhouse experiment.
Diurnal patterns were the strongest drivers of gene ex-
pression variation in the cylinder experiment, but were
secondary to the drought treatment in the greenhouse
(Fig. 1C). In the 2013-2014 shelters, differential expression
across years—and to a lesser degree, sites—dominated
(Fig. 1, C and D). Like in the cylinders, drought effects
seemed to contribute a small proportion of expression
variation in the 2013-2014 shelters. In the 2012 shelter
experiment, PCA analyses clearly clustered the two
wetter treatments (“wet” and “75%”) away from the
drier treatments (Fig. 1C); however, gene expression
variation within treatments was considerable (Fig. 1D).
These results demonstrated that differential expression to
drought stress was strongest in the greenhouse and least
observable in the field. Consistent with the multivariate
analysis of gene expression variation (Fig. 1, C andD),we
observed many more genes with significant drought-
induced differential expression in the greenhouse than
the field (Table I).

Phenotypic and Gene Expression Assays Are As Precise in
the Field As in the Greenhouse

We observed ;5500 more differentially expressed
genes (between wet and dry treatments) in the green-
house and cylinders than we did across the shelter ex-
periments (Table I). Here, we qualified differential
expression as any case where the FDR-corrected
P-value of the linear model exceeded alpha = 0.05. It
is important to note that sample sizes were not identical
across experiments (Table I), whichmay alter the power
to detect differential expression. To determine if our
results were biased by sample size inconsistencies, we
subsampled individuals in each experiment to generate
rarefaction curves. These analyses demonstrated that
the observed differences among experiments were not
artifacts of statistical power (Supplemental Fig. S1).
This massive difference in signal was not mirrored in
the physiology data, where predawnCleaf values varied

strongly between treatments and were of similar
magnitude in the greenhouse and the field (Table II).
Furthermore, when both experiments were fit in a
single model, there was only a marginally significant
treatment-by-experiment interaction (F = 2.48, df = 4,
P = 0.06). This indicates that drought treatments elicited
Cleaf responses in the same direction and with similar
effect sizes across experiments.

When comparing treatments,Cleaf was more variable
among droughted plants than those in wet conditions
(Fig. 1B). The coefficient of variation (cv) within ex-
periments and treatments confirms this observation
(Fig. 2A); cv of dry treatment predawn Cleaf was on
average 58% greater than that of the wet treatment.
Increased variability of Cleaf in drought plants may be
due to the physical properties of drying soils. Plants
perceive soil moisture as total soil water potential
(Csoil); however, as soils dry, Csoil exponentially de-
clines. We modeled the progression of soil moisture
decline from observed values of soil volumetric water
content andCsoil in the greenhouse (Fig. 2B). The range
of Csoil predictions in the dry treatment (10.3–1.1 MPa)
was much greater than in the wet treatment (0.14–0.05
MPa) despite a narrower range of volumetric water
content measurements (see marginal line segments in
Fig. 2B). As such, implementing a consistent drought
treatment in terms of Csoil was difficult, even in the
greenhouse experiment. Our physiology data clearly
mirrors the soil water potential measures: there is much
more variability in the drought treatment than in well-
watered conditions across all experiments (Fig. 2A).

We examined the variability of our measurements of
physiology and expression and (surprisingly) found
that those taken in the field were less variable than
those in the greenhouse. In 3/4 of the physiological
phenotypes, cv in the drought treatments was greatest
in the greenhouse and lowest in the cylinders. The cv of
the fourth physiological phenotype, predawnCleaf, was
nearly identical in the greenhouse (0.33), cylinder (0.34),
and shelter (0.36) experiments (Fig. 2A). The cv among
normalized expression phenotypes largely recapitu-
lated the physiology data (Fig. 2C): the greenhouse
experiment produced the most variable data, while the

Table I. Summary of experiments and the effects of drought treatments.

Sample sizes (n) and mean leaf water potentials are displayed for each treatment and experiment.
Accompanying each experimental factor is the number of differentially expressed genes (n DE) due to the
wet-dry treatment contrast therein. *Treatment replication in 2012: dry = 7; 25th = 6; mean = 8; ambient =
7; 75th = 5; wet = 7.

Experiment Location Leaf Taken At n Wet n Dry Cv«t Cdry C Diff. n DE

Greenhouse Greenhouse Predawn 14 24 20.89 22.42 1.53 6623
Midday 13 21 NA NA NA 5918

Cylinder 1.4 m3 Cylinders Predawn 14 9 20.45 21.09 0.64 3285
Midday 10 10 21.88 22.43 0.55 5745

2012 Shelter Field Midday * * 21.32 22.36 1.04 887
2013-2014 Field Austin, 2013 7 6 23.03 23.63 0.6 0

Austin, 2014 7 4 23.1 23.79 0.69 4
Temple, 2013 7 6 21.57 22.91 1.34 319
Temple, 2014 7 7 22.04 22.77 0.73 154

Plant Physiol. Vol. 172, 2016 737

Physiological Genomics of Drought in Switchgrass

 www.plantphysiol.orgon October 25, 2019 - Published by Downloaded from 
Copyright © 2016 American Society of Plant Biologists. All rights reserved.

http://www.plantphysiol.org/cgi/content/full/pp.16.00545/DC1
http://www.plantphysiol.org


large cylinders displayed the least. The field planted
individuals had similarly variable expression pheno-
types as those in the cylinders (Fig. 2C).

The Effects of Drought Treatments Are Modulated by
Time of Sampling

Time of sampling (predawn and midday) in the
greenhouse and cylinder experiments had a substantial

effect on the expression patterns of many genes (Fig. 1,
C and D); however, these effects varied across ex-
periments. For example, in the cylinder experiment,
47% (11880) of all genes differentially responded to
sampling time, compared to only 30% (5278 genes) in
the greenhouse (Fig. 3, A–D). These results revealed
reduced diurnal expression regulation in the green-
house, compared to plants grown in the field in
cylinders.

Figure 2. Physiological, soil and normalized expression variability across experiments and treatments. A, Coefficients of variation
(cv = SD / mean) were calculated for each physiological and gene expression phenotype. Raw cv for each physiological phenotype
is plotted. B, To understand the relationships betweenCsoil and soil volumetric water content, we conducted soil moisture release
curves for the greenhouse potting soil where a soil sample was progressively dried and volumetric water content and Csoil were
repeatedlymeasured; the range of observations for each treatment are presented by themarginal line segments. C, Mean (6 SE) cv
across all expression traits is plotted. The experiments are abbreviated as shelter (shel), greenhouse (gh), and cylinder (cyl).

Table II. ANOVA statistics from models fitting experimental treatments to physiological response varia-
bles.

Time effects were not estimable for conductance (gs) and photosynthetic rate (A), which were only
measured at midday in the cylinder and greenhouse experiments. Timing of Cleaf measurements are de-
fined by subscripts. TypeIII F-statistics and P-values are presented along with absolute effect size, which is
the proportion of differences between group means and the overall mean. Only a subset of all absolute
effect sizes are presented and are indicated by the following: *Predawn, **Midday; ’Temple 2013, ’’Austin
2013, ^Wet- Dry, ^^Mean- Dry

Experiment TypeIII Term Phenotype df Abs. Effect Size F P

Cylinder Treatment gs 1 0.99 78.85 ,0.001
Cylinder Treatment A 1 0.92 60.70 ,0.001
Cylinder Treatment C 1 *0.91, **0.93 79.72 ,0.001
Cylinder Time C 1 273.9 ,0.001
Cylinder Treatment:Time C 1 0.268 0.6080
Greenhouse Treatment gs 1 0.81 43.24 ,0.001
Greenhouse Treatment A 1 0.88 80.20 ,0.001
Greenhouse Treatment Cpredawn 1 0.72 24.65 ,0.001
Shelter 2012 Treatment gs 2 ^1.09, ^^0.17 19.66 ,0.001
Shelter 2012 Treatment A 2 ^2.10, ^^0.52 19.43 ,0.001
Shelter 2012 Treatment Cmidday 2 ^0.20, ^^0.08 36.98 ,0.001
Shelter 2012 Treatment Cpredawn 2 ^0.48, ^^0.01 10.88 0.0010
Shelter 2013-2014 Treatment Cmidday 1 ’0.48, ’’0.22 49.89 ,0.001
Shelter 2013-2014 Location Cmidday 1 17.85 0.0063
Shelter 2013-2014 Year Cmidday 1 2.545 0.1185
Shelter 2013-2014 Treatment:Location Cmidday 1 4.710 0.0357
Shelter 2013-2014 Treatment Cpredawn 1 ’1.21, ’’0.56 20.48 ,0.001
Shelter 2013-2014 Location Cpredawn 1 1.682 0.2425
Shelter 2013-2014 Year Cpredawn 1 1.680 0.2025
Shelter 2013-2014 Treatment:Location Cpredawn 1 7.149 0.0107
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In addition to additive time-of-sampling effects, we
detected complex interactions between drought treat-
ments and sampling time. Drought treatment effects
were directlymodulated by time of sampling (treatment-
by-time interactions in the linear model) in 8.4% (2,125)
and 4.6% (805) of genes in the cylinder and greenhouse
experiments. While expression patterns were generally
conserved between predawn and midday sampling
in the greenhouse (Fig. 3, A and B), the effect of the
drought treatment strengthened from predawn to
midday in the cylinder experiment (Fig. 3, C and D).
Indeed, 67% of drought-responsive genes at midday
were significantly differentially expressed in the same
direction in the predawn sampling in the greenhouse
(Fig. 3E), but only 30% of genes followed this pattern in
the cylinders (Fig. 3F). Interestingly, the effect sizes of
drought treatments were similar (mean = 2.4% smaller)
at midday versus predawn in the greenhouse but 35%
greater in the cylinders (Fig. 3, A–F). Such diurnal-by-
treatment interactions were much stronger in the cyl-
inders than the greenhouse. Specifically, there tended to
be much stronger differential expression across sam-
pling times in wet treatments than dry (Fig. 3, G and H;
Supplemental Fig. S2). This effect was strongest in the
greenhouse, where the drought treatment was extreme
(Fig. 1B). Indeed, in the greenhouse,. 1.73more genes
were diurnal-regulated in wet than in dry conditions
(4,544 vs. 2,548, respectively, Supplemental Fig. S2). It is
possible that the extreme nature of the drought treat-
ment in the greenhouse caused the cessation of diurnal
gene regulation.
Finally, we also detected a small influence of the

precise time at which plants were sampled (i.e. the or-
der that a leaf was harvested for RNA extraction) on
gene expression in the field conditions (Supplemental

Fig. S3). The order of sampling was a significant pre-
dictor of Cleaf variation in 2013-2014 (r2 = 0.12, P =
0.002), but not 2012 (r2=0.01; P . 0.1). Likewise,
21 genes differentially correlated with sampling order
in 2012, but 125 did so in 2013-2014.

Paired Gene Expression and Physiology Permits Inference
of Drought Effects in Variable Environments

So far we have presented statistical tests between
discrete watering treatments; however, due to environ-
mental heterogeneity within soil moisture treatments
(Fig. 1B), it may be more powerful and biologically
relevant to look at associations between a metric of
stress (e.g. Cleaf) and physiological or gene expression
phenotypic responses. Therefore, we augmented our
previous comparisons with regressions of gene ex-
pression against Cleaf measurements for all three of our
experiments. In the cylinder experiment, the effects of
treatment were largely recapitulated by regressing
leaf water potential on expression data. For example,
within the midday sampling, 83% of genes signifi-
cantly associated with water potential were also
detected by a contrast between treatments (Fig. 4, A
and B; Table III). This consistency reflected the strong
experimental effects observed during the midday
harvest (Figs. 1B and 4A).

In contrast, the regression approach and factorial
treatment contrasts produced different outcomes in the
shelters: fitting midday Cleaf across treatments in
2012 increased the number of significantly differentially
expressed genes by 70% (1,510 total genes compared to
887). Additionally, 965 genes responded across the
gradient of midday Cleaf, 623 (85.7%) of which were
significant only whenCleaf was the predictor (Table III).

Figure 3. Differential gene expression due to soil water deficit is affected by the time of sampling. A–D, Differential expression
between treatments was characterized via “volcano” plots, where the log2 fold change of treatment contrasts is plotted on the
horizontal axis and the P-value of the associated test is on the vertical. Points were colored bywhether the FDR-corrected P-value
exceeded alpha = 0.05 threshold. E and F, The total number of significant genes for each of the four contrasts were plotted in Euler
diagrams, where disc size is proportional to the number of genes that were significant for each treatment contrast in the
greenhouse (E) and cylinder experiment (F). The corresponding number of differentially expressed genes can be found in Table I.
G, To visualize the treatment*time interactions that make up these differential responses, we plottedmean normalized expression
values for each of the top 100 treatment*time genes from the cylinder and greenhouse.
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In these field experiments where a more continuous
range of precipitation treatments were applied, signif-
icant gene expression across drought stress intensities
was not fully captured by treatment of precipitation
levels as factorial variable.

The increased power of midday Cleaf relative to dis-
crete treatment variables was even more pronounced in
the 2013-2014 experiments, where 1,758 genes were
significantly differentially expressed across Cleaf but
only 727 genes were differentially expressed across treat-
ments (a 142% increase, Fig. 4, E and F). It is possible
that this across-site effect was due to differential site
characteristics, including soil quality and nutrient
availability, and not drought per se. To further examine
differences between the Temple and Austin shelter

experiments, we split the 2013-2014 dataset by site and
reanalyzed differential expression. Within sites, we
observed differential expression across drought treat-
ments among 665 genes in Temple, but only 3 in Austin.
However, water potential explained differential ex-
pression of 309 (1.13) and 160 (533) additional genes in
Temple and Austin respectively (Table III). These re-
sults indicate that utilizing measurements of physio-
logical variation can account for expression variation
that is not predicted by treatment factors alone.

Leaf-Level Physiological Responses, But Not Differential
Gene Expression, Are Highly Correlated
Across Experiments

The majority of genomic studies of drought have
been conducted in highly controlled laboratory or
greenhouse settings, which are intended to elucidate
the patterns and processes of drought responses in the
field. Here, we find broadly different characteristics of
drought response in the shelters from those in either
cylinder or greenhouse conditions. For example, across
all differentially expressed genes the absolute effect size
(mean absolute log2 fold change) was 75% –148%
greater between treatments in the greenhouse than in
the 2012 and 2013-2014 shelter experiments and the
cylinder experiment; furthermore, more genes signifi-
cantly responded to the drought treatments of the
greenhouse (6597 genes) and cylinders (4,489) than ei-
ther the 2012 (887) or 2013-2014 shelters (752). These
results indicated that, despite similar phenotypic re-
sponses, field-grown plants displayed much weaker
gene expression plasticity than potted greenhouse
plants.

Such weaker responses could be at the gene level, in
which case the direction and effect size of differential
expression in the greenhouse should be highly predic-
tive of that in the field. Alternatively, entirely different
genetic responses may be present in the field. In many
cases, we found strong correlations between expression
in the field and the greenhouse, but r2 between log2 fold
changes in the greenhouse and field never exceeded
0.35 (Supplemental Fig. S4), indicating that much of the

Figure 4. Gene expression variation associated with leaf water poten-
tial. The cylinders, and the shelter experiments represent the experi-
ments that have paired midday Cleaf and expression assays. Principal
components (PC) from the complete gene expression matrix were cal-
culated. Of the top three PC axes, the one which is most strongly
explained by middayCleaf is plotted. A paired Euler diagram displaying
the total amount of genes differentially expressed due to treatment ac-
company the PCA- plots for the cylinder (A and B), 2012 experiment
(C and D) and 2013-14 shelter (E and F) experiments. The total number
of genes presented can be found in Table III.

Table III. The number of significant genes in each experiment.

Treatment (“Trt.”) and Cleaf at midday sampling were characterized
for 2012, 2013-14 and cylinder experiments. The number of significant
genes were determined (a = 0.05) for two models: (1) ; treatment,
(2) ; Cleaf. For consistency, these models were only fit at midday for
the cylinder and greenhouse data and within each site for the 2013-14
shelters.

Experiment Trt. Cleaf

2012 887 965
2013-14 727 1758

Temple 665 309
Austin 3 160

Cylinder at midday 6365 5323
Greenhouse at midday 5584 —
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drought responsive expression in the field was not
predicted by that in the greenhouse.
While greenhouse responses to drought did not en-

tirely predict those in the field, drought-responsive
genes in the field were very clearly differentially ex-
pressed in the greenhouse. Of the 716 genes that were
differentially expressed in the field and quantifiable
in the greenhouse, 549 (76.7%) were also differentially
expressed in the greenhouse, representing a highly sig-
nificant enrichment of overlapping genes (odds ratio =
3.1, P , 0.0001, Supplemental Table S1). Furthermore,
despite relatively weak predictive power across experi-
ments, the genes found in each experiment were much
more likely to be found in other experiments thanwould
be expected by chance. In the extreme case, the overlap
between significant genes in the 2012 and 2013-2014
shelter experiments is 7.13 greater than the null expec-
tation (Supplemental Table S1). Combined, these results
provide a potentially surprising result: the relatively
uncontrolled field environment offered the strictest test
of differential expression.

Genes and Gene Functions Related to Drought

While. 104 genes displayed phenotypic plasticity to
drought, only 546 were differentially expressed in three
or more of our experiments (84 were found in all ex-
periments). Interestingly, with few exceptions, these
“core” genes were consistently up- or down-regulated
across all experiments (Supplemental Fig. S5). Among
this set, 460 genes were homologs of annotated Arabi-
dopsis (Arabidopsis thaliana) genes. However, of the
84 genes that were drought-responsive in all experi-
ments, nine had no annotation, six were annotated only
by protein domain/motif or general process, and two
were annotated as “protein of unknown function”
(PUF). These data suggest that the majority of drought-
responsive genes belong to a well-known group of
genes with specific assigned functions in plant biology.
As expected, we detected a significant enrichment of

genes related to responses to stress and water (P ,
0.0001) among the core set of genes (Supplemental
Table S2). These genes included homologs of dehy-
drins, LEA-type proteins, aquaporins, ascorbate per-
oxidase, and other genes related to reactive oxygen
species (ROS) detoxification, and abscisic acid (ABA)-
responsive phosphatases and transcription factors.
LEA proteins, dehydrin, and aquaporins are induced
by drought and involved in desiccation tolerance
(Supplemental Table S2 and references therein). Among
the ABA-responsive gene families were PP2C genes
(ABI1-2) four members of the AP2 family of transcrip-
tion factors, includingDREB1-2, and anABA-responsive
element-binding element (AREB). In addition, we
detected genes coding GST, L-ascorbate peroxidase,
ascorbate oxidoreductase, and other genes involved in
reactive oxygen radical detoxification. ROS are known
to accumulate during many biotic and abiotic stresses,
and defense against ROS appears to be a common
mechanism during drought (Supplemental Table S2

and references therein). Interestingly, two homologs of
NCED9, a key enzyme in ABA biosynthesis, were also
present in this core set of drought responsive genes
(Supplemental Table S2 and references therein).

Other GO drought-related annotation categories
were enriched in the core set of genes, including pho-
tosynthesis (which was the most highly enriched GO
term, P = 9.13 1029) and several annotations related to
oxidation-reduction status. We detected 7 genes en-
coding light-harvesting complex II and many others
related to C4 photosynthesis, including two Ala ami-
notransferases, a phosphoenolpyruvate carboxykinase,
and two malate dehydrogenases. Additionally, P5CS,
which encodes a key enzyme in the biosynthesis of the
osmoregulator proline, was also present in the identi-
fied list of “core” drought-responsive switchgrass genes.

In the cylinder and greenhouse experiments we
confirmed that genes affected by time of sampling
(predawn vs. midday) were enriched for GO terms re-
lated to circadian, or light-responsive, annotations.
Photosynthesis and “regulation of circadian rhythm”
annotations were some of the most overrepresented
categories (Supplemental Table S3).

DISCUSSION

To test the consistency of physiological and gene
expression plasticity to soil moisture variation, we
exposed clones of a single switchgrass genotype to
drought treatments in the greenhouse and field. Pairing
physiological measurements with detailed analyses of
the genes that respond to drought revealed similar
physiological responses but qualitatively different
patterns of molecular plasticity in the field than the
controlled edaphic environments of the greenhouse
and cylinders. For example, plants grown in small pots
in the greenhouse displayed similar leaf water potential
plasticity to plants grown in the field but ;103 more
differentially expressed genes. Combined, these data
indicated that many fewer differentially expressed
genes were responsible for similar physiological plas-
ticity in the field than the greenhouse.

Comparison of Soil Water Deficit Manipulations
across Experiments

Soil moisture manipulation experiments are gener-
ally practiced as “dry-downs” where watering is lim-
ited or ceased and potted plants experience attenuated
soil moisture. Such experiments are the basis of much of
the molecular understanding of drought physiology.
Alternatively, ecologists and agronomists often test
drought physiological responses through precipitation
exclusion (or irrigation supplementation) treatments
that persist through much of the growing season, or
even across years. Both approaches may be ecologically
realistic. For example, many annual species grow and
reproduce with the water remaining from a single
rainfall event, mimicking the progressive dry-down
approach. However, crop breeders or climate change
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biologists may seek to understand how fitness and
yield can be maintained during relatively dry growing
seasons across drought years. This type of “press”
drought treatment imposed in the field is known to
elicit different physiological, gene expression (Barker
et al., 2005), and ultimately community-scale responses
relative to “pulse” droughts such as those imposed by
our cylinder and greenhouse experiments (Hoover
et al., 2015; Hoover and Rogers, 2016).

The analyses presented here contrast not only the
dry-down and field-scale approaches, but also different
climatic (air temperature, vapor pressure deficit, pho-
tosynthetic photon flux density [PPFD], etc.) and
edaphic (soil water retention, particle size, biotic inter-
actions, etc.) characteristics. For example, the highly
controlled aerial environment of the greenhouse eli-
cited weaker diurnal air temperature and vapor pres-
sure deficit progressions compared to plants grown in
larger cylinders in the field (Fig. 3; Meyer et al. 2014).
Consequentially, diurnal patterns of gene expression
dominated drought-responsive expression profiles
in the cylinders but were significantly weaker in
the greenhouse, especially with regard to drought-
responsive genes. Similar patterns, which have been
observed among physiological characters, may be at-
tributable to light-responsive stress pathways includ-
ing phytochemical quenching cycles (Chaves et al.,
2003; Mishra et al., 2012). Such temporal variation is
intentionally dampened in controlled environments,
such as the greenhouse or growth chamber. However,
many drought responsive genes (e.g. PSI and PSII and
other light-responsive pathways) are expected to
modulate expression between predawn and midday
conditions. As such, the cylinder experiment offers a
compromise. While permitting tight control of the soil
environment by using a common soil medium and
uniform drying, the cylinders exposed plants to natural
varying climatic features like temperature, vapor
pressure deficit (VPD), and changing photoperiod cy-
cles. Our results demonstrated that the realistic aerial
environment of the cylinders increased statistical
power to define the diurnal-by-drought interactions
that are critical to soil moisture deficit responses (Fig. 4).

In the shelters, irrigation manipulations were imple-
mented at the plot level over the course of multiple
years. Such long timescales provided time for plants to
acclimate not only to the drought treatments, but also to
the edaphic characteristics of each site. Indeed, among-
site differences were a major driving variable in the
2013-2014 shelter experiment. Most plants in Austin
exhibited lower (more negative) midday Cleaf than any
plants in Temple (Fig. 1B). Despite similar irrigation
levels, both wet and dry treatments in Austin (2014)
clustered with the Temple (2014) dry treatment (Fig.
1C). It is likely that plants grown in the shallow, rocky-
clay soil of the Austin site (;0.2 m depth) experienced
substantial water deficits even in the wettest irrigation
treatments, while deeper soils at the Temple site (;5 m
depth) would have provided much greater buffering
capacity against drought. As such, it is not necessarily

surprising that we did not observe many significantly
drought-induced gene expression responses at the
Austin site.

Synthesis of Drought Responses across Experiments: What
Factors Led to Physiological, but Not Expression, Plasticity
in the Field?

Field experimentation is typically thought to require
greater replication because increased environmental
heterogeneity of field conditions (e.g. variation in soils,
microclimate, timing of sampling, etc.) may produce
more variable measurements. Our analyses generally
rejected this hypothesis and demonstrated that similar
ranges of environmental, physiological, and molecular
heterogeneity existed within treatments across green-
house and field sites. Instead, other factors besides re-
sidual variation must be driving the difference in gene
expression—but not physiological plasticity among
experiments—including (1) different mechanisms of
drought responses, where short term treatments elicit
different gene expression responses than long term
droughts; (2) plant morphological characteristics, such
as the ability to buffer soil water variation through tis-
sue capacitance (water storage); (3) edaphic and cli-
matic variation, such as stronger soil water potential
gradients and temporally variable vapor pressure def-
icit in the field; or (4) physiological acclimatization.

It is possible that plants in the field have acclimated,
following an initial drought responsive phase in which
gene expressionwas similar to that of the plants studied
in the greenhouse (Chaves et al., 2003). For example, the
development of a larger root systemmay permit greater
soil water foraging (e.g. Comas et al., 2013). Such ac-
climation responses are driven by the expression of
many genes (e.g. Werner et al., 2010) and may be ini-
tiated at the time of exposure to drought. Over time,
expression of such genes would no longer be required,
as the necessary structures would already be in place
(Maseda and Fernández, 2006). However, while accli-
mation may play a large role in differential physiology
across experiments, it does not fully explain themassive
disconnect between physiological and gene expression
plasticity we observed. In concert with acclimation,
different genetic pathways may modulate plant re-
sponses to press and pulse droughts. One interest-
ing possibility is that the ecologically unrealistic shock
imposed by the high rate of soil moisture reductions in
the dry-down experiments may elicit programmed
cell death and other shock responsive processes that
are not drought-related per se. Such effects may be less
important in larger field-grown plants if they are
better able to buffer some of these extreme stress ef-
fects because of greater water storage and access to
soil water (Maseda and Fernández, 2006). Genes that
respond across different types of drought experi-
ments seem most likely to offer the clearest picture of
molecular responses to drought, as they may be less
likely to represent treatment specific or shock-induced
responses.
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Defining Drought-Responsive Genes Across Experiments

We expected to find similar gene expression re-
sponses across experiments because several evolution-
arily conserved (Rabbani et al., 2003) pathways are
responsible for drought acclimatization, including cell
signaling, transport and communication; plant hor-
mone metabolism; photosynthesis; and carbohydrate
biosynthesis (Schafleitner et al., 2007). However, the
types of genes that responded to drought treatments
varied considerably across experiments (Supplemental
Table S3). This observation is not necessarily surprising,
given the physiological differences between green-
house- and field-grown plants (Chaves et al., 2003;
Mittler, 2006; Mishra et al., 2012). For example, photo-
synthesis and energy production genes dominated the
greenhouse experiment, whereas metabolism biosyn-
thesis and stress response genes were less abundant.
Similar observations have previously been reported in
sunflower (Rengel et al., 2012) among other species. In
contrast, longer term drought treatments dispropor-
tionally induced genes involved in other biological
processes, such as membrane biogenesis, redox mech-
anisms, cellular biosynthesis, and metabolism (Table
IV; Supplemental Tables S2, and S3; Des Marais et al.
2012). In addition, while many transcription factors or
genes related to DNA metabolism were previously
found in the greenhouse dataset alone (Meyer et al.,
2014), very few of them were identified as significant
across all four drought experiments (Table IV;
Supplemental Table S2). It is possible that changes in
transcription factor expression levels resulted in sub-
stantial but short-term effects in plants that experienced
sudden drought in a greenhouse setting. By contrast,
these effects may have been dampened in well-
established and acclimatized plants in the field.
While transcriptional drought responses of AP13

plants varied substantially among different experi-
ments, we detected a set of “core” responsive genes that
were enriched in all four (84 genes) or 3/4 (n = 546)
experiments (Supplemental Table S2). This list of genes
provided a set of candidate pathways necessary to
confer water deficit responses in switchgrass. Homo-
logs of many of these genes have been documented as
drought related in other species. Included in this list
were dehydrin (Lopez et al., 2003) and DnaJ chape-
rones, which are induced under drought inmany plants
and may contribute to better performance under water
stress (Seki et al., 2002; Nguyen et al., 2004). We found
homologs of two NCED9 loci, which are key enzymes
in the ABA biosynthesis pathway (Lefebvre et al., 2006)
and a broad range of ABA responsive enzymes and
transcription factors. These included homologs of
AREB, two PP2C genes (ABI1-2), and several AP2-
binding transcription factors (DREB1-2). Interestingly,
AREB transcription factors have been implicated in
drought-responsive transregulatory divergence in
P. hallii, a close relative of switchgrass (Lovell et al., 2016).
Furthermore, ABI1-2, are known to be transcriptionally
up-regulated in response to ABA and control responses

to drought, heat shock, and oxidative stress (Vranová
et al., 2000; Merlot et al., 2001; Schweighofer et al.,
2004; Schafleitner et al., 2007). DREB (drought re-
sponsive element binding proteins) and other mem-
bers of the AP-2 binding gene family represent some
of the best documented regulators of ABA-dependent
and -independent drought responsive transcription
regulatory elements (Liu et al., 1998).

It is well-documented that reduced transpiration,
which accompanies drought acclimatization, may re-
sult in increased leaf temperature, light damage, and a
need for transcriptional responses to both heat (Bogeat-
Triboulot et al., 2007; Swarbreck et al., 2011) and
ROS stress (Smirnoff, 1993; Schafleitner et al., 2007).

Table IV. List of “core” switchgrass genes enriched in $ 3/4 experi-
ments and with known homologs involved in drought response.

The number of genes found in the core list is presented. For specific
genes, references and additional information, see Supplemental Table
S2.

Functional Category Predicted Gene Function

No. of

Genes

Water stress response Dehydrins 4
LEA proteins 3
Aquaporin 1

Cell rescue, abiotic
stress response,
and senescence

DnaJ-like molecular
chaperones

4

Other chaperones 6
Senescence 2
Response to biotic and

abiotic stress
3

chitinase 1
multidrug resistance 1

ROS detoxification Glutathione S-transferase 2
L-ascorbate peroxidase 1
ascorbate oxidoreductase 1

ABA response
pathway

Protein phosphatase 2C 13
AREB factor 1
NCED9 2
ABA/WDS induced protein 5

Transcription factors Homeobox family 4
AP2 domain 4
Heat shock responsive TF 1
MYB family 4
Zink finger family 10
CCAAT-binding factor 1
MADS box 2

Cell signaling Protein kinases 23
Osmotic stress potassium

transporter
1

GTP-binding 2
Ca2+-binding transmembrane

protein
1

C4 Photosynthesis Auxin response 2
Light harvesting 7
Ala aminotransferase 2
Phosphoenolpyruvate

carboxykinase
1

Malate dehydrogenase 3
Metabolism Pro biosynthesis 1

Suc synthase 2
b-amylase 3
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Interestingly, we observed many genes annotated to
these abiotic stress responses, including heat shock-
responsive transcription factors, which corroborates
the previously proposed link between thermal defense
and drought response in plants (Feder and Hofmann,
1999; Meyer et al., 2014). In addition, we detected genes
coding for GST, L-ascorbate peroxidase, ascorbate oxi-
doreductase and others involved in active oxygen
radical detoxification.

Finally, we found genes from many of the a priori
drought-responsive candidate groups; however, there
were a few notable sets of drought-acclimatization
genes that did not appear in our lists. Transcription
factor families identified in the “core” set of drought
responsive genes include members of the MYB-like,
zinc finger, CCAAT-binding factors, Nuclear Factor Y
(NF-Y), andMADS box. However, despite the apparent
abundance of various types of transcription factors, the
total number of identified genes and gene families with
DNA binding activity was much smaller than detected
previously in other studies (Schafleitner et al., 2007;
Meyer et al., 2014). Specifically, we did not observe
members of WRKY, NAM, TAF, NAC, and CPP1
(among others) families of transcription factors (Meyer
et al., 2014; Rizhsky et al., 2002; Seki et al., 2002). It is
possible that many of these transcription factors are
currently mis- or unannotated due to the very prelim-
inary nature of the Panicum virgatum genome assembly
(84% of the core genes were annotated). WRKY and
many other transcription factors are critical in early
signaling but may not be differentially responsive over
long term acclimation responses in the field.

Discussion of Best Practices in Field-Scale
Physiological Genomics

We found that despite strong physiological and soil-
moisture differences, plants in the field adjusted many
fewer genes than potted plants in the greenhouse or
plants grown in cylinders. It is clear that press droughts
cause qualitatively different patterns of expression than
dry-downs. These genetic differences between sus-
tained and shock drought stress responses offer a
challenge, but also a unique opportunity to study
physiological diversity in the field. We encountered
several significant barriers that are important to ex-
periments addressing these differences. Particularly
important are (1) the effect size of soil water deficit
treatment differences, (2) fine-scale temporal expres-
sion differences, and (3) among-site variation.

In the 2012 shelter experiment we applied six differ-
entwater treatments, but clustering significant genes by
expression profile similarity clearly differentiated
plants under wet (and to a lesser extent 75th percentile)
water treatment from all other treatment levels. At the
whole transcriptome level we observed very weak
differences in gene expression among mean, dry, am-
bient, and 25th percentile water treatment conditions.
Thus, under our 2012 experimental conditions in the
field the observed differences in gene expression could

have been captured by applying just two experimental
water treatments: wet and dry. This result indicates that
fewer, more distinct treatments with stronger within-
treatment replication will result in more statistical
power when using the experimental treatment as a
factor level predictor. However, the stress gradient
present across the six treatment levels proved useful as
it provided a broader distribution of water potentials
and improved power to detect gene expression plas-
ticity to Cleaf.

Time of sampling was an important factor across all
experiments, ranging from within days to across years.
While this is clear from contrasts between predawn and
midday sampling, where . 10k genes were differen-
tially expressed, we also found subtle differences be-
tween expression patterns at the beginning and end of
sampling in any given experiment. For example, the
2012 shelter data presented here comes from a larger
experiment with . 400 individuals in total. Overall
sample collection for all plants took 2 h, from 11 a.m. to
1 p.m.Many genes showed linear changes in expression
over the sampling period of 2 h (Supplemental Fig. S3).
These data clearly demonstrated that the order and
time of sample collection (and likely other micro-
variation factors) could affect gene expression in the
field. However, only 21 genes showed significant ef-
fects of time of sampling in our experiments, which
indicates that carefully planned and carried out exper-
imental design (a narrow and consistent enough sam-
plingwindow) can produce stable estimates of treatment
effects that are not confounded with time-of-sampling
microvariation artifacts. We corrected for the time of
sampling by using the spatial and temporal block in
which each individual was sampled as a random effect;
where spatial and temporal blocking factors do not
covary, correcting for sampling time alone can improve
statistical power to define differentially expressed genes
(Lovell et al., 2016).

Across experiments, we paired leaf water potential
with gene expression assays. The use of physiology as a
covariate for assessment of differential gene expression
permitted inference of effects across harvests, years, sites,
and even experiments. Combined, these results support
the expectation that leaf water potential serves as a
powerful proxy for the degree of drought stress experi-
enced by individual plants. Since most plants strive to
avoid the effects of drought by maintaining leaf water
potential homeostasis, this variable may be a strong
predictor of the perceived stress of the local environment.
Whereas leaf water potential certainly confers greater
power to detect differential expression and assessment of
across-site drought response, using this variable as a
predictor does not permit causal inference (Jones, 2007).
Genes that are correlated with leaf water status may ei-
ther respond to such decreases in water potential or may
have led to the reduction of water potential in the first
place (e.g. Fu et al., 2000). For example, ABA-sensitive
genes in guard cells both cause variation in leaf water
potential through stomatal regulation and respond di-
rectly to water potential (e.g. Tardieu and Davies, 1992;
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Speirs et al., 2013). Therefore, inference regarding leaf
water potential as a predictor should be interpreted
carefully, possibly corroboratedwith comparisons among
treatments. The use of other metrics of plant water status,
like absolute or relative water content, may also be useful
in assessing the molecular impact of water-deficit treat-
ments (Maseda and Fernández, 2006; Jones, 2007).
Despite the long-term nature of our field-scale

droughts, our measures of drought response were
snapshots; taken at a single time point when we per-
ceived drought to have reached a critical point in the
greenhouse and cylinders, or when field conditionswere
optimal for sampling in the shelters. Additionally, there
may be subtle circadian-by-treatment interactions, which
were not be captured by discrete predawn and midday
sampling. By combining leaf physiology and gene ex-
pression measurements at these sampling points, we
endeavored to gain a synthetic picture of how drought
was affecting individuals at a whole-plant scale. Re-
peated sampling across natural progressions of soil
wetting/drying might add further insights.

Conclusions

A major goal of modern plant biology is to better
understand abiotic stress responses to improve crop
plants—especially in the face of climate change (Ahuja
et al., 2010; Tuteja and Gill, 2013). To do so requires that
our fundamental understanding of physiology and
molecular processes be translated from controlled
greenhouse and laboratory experiments into the field.
Methods to emulate field-like conditions in the labora-
tory or greenhouse settings have been developed as an
alternative to traditional soil water dry-downs (Harb
et al., 2010); however, even factorial combinations of
stressors (Suzuki et al., 2014) may fail to capture the
complex interplay of environmental variables experi-
enced in the field. Furthermore, while it is crucial to
relate findings of field studies with those performed
under controlled conditions, only a few studies have
been published that compare physiological traits and
gene expression data in drought treatments in both
field and greenhouse conditions (but see Rengel et al.,
2012; Marchand et al., 2013).
Our study demonstrates how genes and phenotypic

traits differentially respond to soil water deficit across
greenhouse and field trials that impose different se-
verity and duration of drought treatments. We find that
the bulk of differentially regulated genes in the field are
also found in the greenhouse. This indicates that the
molecular and functional understanding of field grown
plants is mirrored in the laboratory. However, a mech-
anistic understanding of how plants achieve similar
physiological responses to drought across laboratory,
greenhouse, and field experiments—while regulating
expression of different and generally fewer genes in field
environments -remains to be developed. A collection of
studies, both linking controlled experiments to the field,
and exploiting natural precipitation and drying (e.g.
Kudoh, 2015) will likely provide critical steps toward

achieving this goal. Finally, biological replication is
critical to detecting physiological and gene expression
variation in the field. New high-throughput tools for
measuring both relevant physiological and genome-
wide expression phenotypes, such as TAG-Seq and
tractor-mounted imaging, may provide an excellent
avenue with which to achieve the replication neces-
sary to compare field and laboratory physiological
genomic studies.

MATERIALS AND METHODS

Overview of Experiments

Experimental design and conditions for the shelter and greenhouse exper-
iments have been published previously (Aspinwall et al., 2013; Meyer et al.,
2014). Relevant details are briefly reiterated below and expanded in the online
Supplemental Data (Supplemental Table S4). The levels of replication for each
experiment are presented in Table I.

2010 Greenhouse Experiment

Plants were grown in 3.78 L pots at the University of TX Brackenridge Field
Laboratory (Austin, Texas) in the greenhouse with mean daytime air temper-
ature of 30°C and relative humidity of 65% (Meyer et al., 2014). Abundant
watering was applied for the first 45 d of growth followed by complete with-
drawal of water for the subsequent 14 d (experimental dry-down treatment
group) or continued abundant watering (control group).

2011 Cylinder Experiment

Plants were grown outside at the University of Texas at Austin J.J. Pickle
Research Facility and experienced natural lighting, photoperiod, humidity, and
temperature changes. At sampling, themaximumair temperaturewas 37°C and
relative humidity was 13%. Plants were grown in 1.22 m tall cylinders con-
structed from 0.61 m diameter gray schedule 40 polyvinyl chloride pipe with a
wall thickness of 13 mm. Cylinders were arranged in 5 3 6 grid, spaced 1.2 m
center-to-center andfilledwith RanchRoseMix (GeoGrowers, Austin, TX). For the
drought treatment, water was withheld from plants for 18 d while the control
treatment continued to receive irrigation. The dry-down began on August 21.
Plants were phenotyped and tissue was sampled on September 8–9, 2011.

2012-2014 Shelter Experiment

This experiment was designed to test the effects of multiple climatically
realistic levels of precipitation and soil moisture on the drought responses of
plants (Aspinwall et al., 2013). The treatments represented five sets of historical
rainfall patterns (Aspinwall et al., 2016): the 10 driest years (“dry”), 25th, 50th,
and 75th percentiles and the 10 wettest years (wet) at each site (Table II). An
ambient precipitation treatment applied amounts falling at the site immediately
after they occurred. The pattern of watering events in these treatments was
produced using the stochastic weather generator, LARS-WG 5.5 (Semenov,
2007), calibrated with an 87 year precipitation record (Aspinwall et al., 2016).
Such climatically relevant drought treatments provide a proxy for the stresses
experienced over the recent history and short-term future climactic scenarios at
these sites (Mearns et al., 2013; Knapp et al., 2015). Due to the drought that
occurred during the 2012 growing season, the ambient treatment clustered
closely with the driest treatments. While gene expression was collected for all
treatments, physiology was only paired with the dry, mean, and wet treat-
ments. In 2013 and 2014, expression data were only assayed for the wet and dry
treatments.

Physiological Measurements

In each experiment, predawn Cleaf was measured with a Scholander-type
pressure chamber (PMS 1000, PMS Instruments Company, Oregon) at ap-
proximately 5:00 h local time on the uppermost fully expanded leaf of a tiller
representative of the canopy. For collection, the leaf was excised from the tiller
with a sharp pair of scissors slightly above the ligule and sealed in a Ziploc bag
to prevent transpirationalwater loss until measurement (, 5min). MiddayCleaf

Plant Physiol. Vol. 172, 2016 745

Physiological Genomics of Drought in Switchgrass

 www.plantphysiol.orgon October 25, 2019 - Published by Downloaded from 
Copyright © 2016 American Society of Plant Biologists. All rights reserved.

http://www.plantphysiol.org/cgi/content/full/pp.16.00545/DC1
http://www.plantphysiol.org


was determined following the same protocol between 13:00 and 15:00 h local
time.

Leaf net photosynthesis (A,mmolm-2s21) and stomatal conductance towater
vapor (gs, mmol m-2s21) were measured using portable photosynthesis systems
(LI-6400XT, LI-COR, Inc., Nebraska) on two adjacent uppermost fully ex-
panded leaves from two separate tillers representative of the canopy. In each
experiment, measurements ofA and gs occurred between 11:00 and 14:30 h local
time. In the greenhouse and rainout shelter experiments, leaves measured for
photosynthesis were subsequently measured for midday Cleaf. In the cylinder,
experiment water status was determined for similar but independently sam-
pled leaves.

Leaf Tissue Collection and RNA Sequencing

Tissue for RNA was collected from two leaves similar to those subjected to
physiological measures as follows: (1) two tillers that were representative of the
canopy were chosen, (2) the uppermost fully expanded leaves from each tiller
were excised at the ligule, (3) 2 cmof theproximal portionof the excised leafwere
separated from the midrib, and (4) both leaf samples were combined in a single
2mLEppendorf tube loadedwith three stainless steel beads, immediately frozen
in liquid nitrogen and transported on dry ice to the laboratory. Tissue was
homogenizedwith aGeno/Grinder 2000. RNAwas extractedwith the standard
Trizol protocol and treated with DNase I to remove contaminating genomic
DNA. RNA-Seq library samples were prepared using a modified version of the
TAG-seq protocol (Meyer et al. 2011; Supplementary methods, 1.3). In short,
purified 39 RNA was amplified and tagged prior to sequencing on the Illumina
HiSeq platform. Prepared libraries were submitted to the Genomic Sequencing
and Analysis Facility (University of Texas, Austin, Texas) aiming to obtain
5 million reads per sample. RNA sequencing for the greenhouse experiment
was accomplished on the SOLiD platform and described in detail in (Meyer
et al., 2014).

Differences in library constructionandsequencingchemistrybetweenSOLiD
and Illumina systems have been implicated in producing variation in tran-
scriptomic profiles (Tariq et al., 2011) with library construction expected to
feature heavily in observed qualitative and quantitative differences (Linsen
et al., 2009). Nonetheless, correlations across such samples remain reasonable
(i.e. global transcriptomic profiles remain largely intact; Tyakht et al., 2014), and
within-protocol (between sample) fold change estimates are thought to be ro-
bust to platform bases (i.e. differential expression analysis within a uniform
protocol remains a viable assay (Toedling et al., 2012). Platform biases may
influence the power of differential expression tests at the gene level (and sub-
sequently bias our comparisons of significant genes across experimental de-
signs) through their impact on gene level sequencing depth. However, it is
known that power in gene expression count contexts is primarily driven by
sample size and secondarily by sequencing depth (Ching et al., 2014). We
compared differences in the power to detect differential expression among se-
quencing technologies and experiments (which have slightly different levels of
replication). To do so, we evaluated “significance curves,” where the total
number of individuals in each experiment was rarefied, allowing direct com-
parison of the power of an experiment when replication is identical
(Supplemental Fig. S1).

Bioinformatic Analysis of RNA-Seq Data

Shelter, cylinder (Illumina) and greenhouse (SOLiD) data were processed
into fastq format and poly-A tail and known TAG-SEquation 59 adapter se-
quence was removed using cutadapt (Martin, 2011). The trimmed sequences
were subsequently aligned to the P. virgatum V2.0 reference (http://
phytozome.jgi.doe.gov; Goodstein et al. 2012). Base space reads were aligned
with BWA-mem (Li and Durbin, 2009), and SOLiD were aligned with the
Bowtie color space aligner (Langmead et al., 2009). Hits to genes based on the
P. virgatum V2.1 annotation were assessed using the “union” mode of htseq-
count (Anders et al., 2015). Multiple alignments were utilized in the sam files
and nonuniquely mapping reads were excluded (see Supplemental Methods).
Library preparation and sequencing effort resulted in generally similar levels of
saturation of the transcriptome (Supplemental Fig. S6; Supplemental Methods).

Statistical Analysis

The LIMMARpackage (Ritchie et al., 2015)was used to conduct all statistical
analyses pertaining to gene expression assays and GO annotations. Various
model specifications can be found in the online supplementary material, and

the functions used to streamline our analyses have been written into an R
package (github.com/jtlovell/limmaDE2). For each model, normalization
factors were calculated to scale libraries by total counts after first excluding any
genes with mean expression , 5 raw counts. These factors were used as a
covariate in the “voom” normalization procedure. In addition to the normal-
ized counts, where possible, we also used either a spatial variable or repeated
measures as a blocking variable in the linear model. Gene-wise statistics were
calculated via generalized least squares linearmodels and subsequent empirical
Bayes procedures to infer variance structure across genes. P-values were FDR
corrected via the Benjamini-Hochberg method via the R function, “p.adjust”
(Benjamini and Hochberg, 1995). Both GO and gene overlap enrichments were
inferred via Fisher’s tests.

Statistical analyses of physiological data were treated similarly to expression
counts. We tested the effects of drought treatments while controlling for spatial
and temporal sampling variation inmixed effects linearmodels implemented in
the R lme4 package (see Supplemental Methods; Bates et al. 2014). Type III SS
tests were calculated with the lmerTest package (Kuznetsova et al., 2013).

Multivariate tests of gene expression were conducted via principal com-
ponent analyses (PCA) of normalized expressionmatrices inR. Todetermine the
relative importance of each experimental factor, we culled the expressionmatrix
to genes that were significantly differentially expressed in any factor. We
subsequently applied an ANOVA decomposition of variance via PCA from the
LIMMA fitted linear model (Fresno et al., 2014) on the culled expression matrix.

Accession Numbers

RNA-seq data analyzed here have been deposited in the short read archive
under BioProject ID: PRJNA322529. Accession numbers and metadata are
presented in Supplemental Table S5.

Supplemental Data

The following supplemental materials are available online.

Supplemental Methods. Additional physiological methods, Additional
RNA extraction methods, Additional bioinformatics methods, and Ad-
ditional statistical methods

Supplemental Appendix. Model specifications

Supplemental Table S1. Significance and odds ratios of significantly dif-
ferentially expressed gene overlaps.

Supplemental Table S2. Gene lists and annotations of genes differentially
expressed in 3 or 4 of the experiments with homologs related to drought.

Supplemental Table S3. GO enrichment across experiments.

Supplemental Table S4. Gene lists and annotations of genes differentially
expressed in 3 or 4 of the experiments with homologs related to drought.

Supplemental Table S5. Accession numbers for TAG-seq reads.

Supplemental Figure S1. The number of significant genes detected per
fixed replication level.

Supplemental Figure S2. The differential impact of diurnal patterns on
gene expression in the wet and dry treatments of the shelter experiment.

Supplemental Figure S3. The physiological and gene expression effects of
the order of sample collection.

Supplemental Figure S4. Pairwise expression correlations.

Supplemental Figure S5. Conserved expression across all experiments.

Supplemental Figure S6. Rarefaction analysis of library sequencing depth.
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