Marshall University

Marshall Digital Scholar

Biological Sciences Faculty Research Biological Sciences

12-1-2016

Effects of Excess Nitrogen on Biogeochemistry of a Temperate
Hardwood Forest: Evidence of Nutrient Redistribution by a Forest
Understory Species

Frank S. Gilliam
Jake H. Billmyer
Christopher A. Walter

William T. Peterjohn

Follow this and additional works at: https://mds.marshall.edu/bio_sciences_faculty

Cf Part of the Forest Biology Commons, and the Other Forestry and Forest Sciences Commons


https://mds.marshall.edu/
https://mds.marshall.edu/bio_sciences_faculty
https://mds.marshall.edu/bio_sciences
https://mds.marshall.edu/bio_sciences_faculty?utm_source=mds.marshall.edu%2Fbio_sciences_faculty%2F170&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/91?utm_source=mds.marshall.edu%2Fbio_sciences_faculty%2F170&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/94?utm_source=mds.marshall.edu%2Fbio_sciences_faculty%2F170&utm_medium=PDF&utm_campaign=PDFCoverPages

Atmospheric Environment 146 (2016) 261-270

Contents lists available at ScienceDirect

ATMOSPHERIC
ENVIRONMENT

Atmospheric Environment

journal homepage: www.elsevier.com/locate/atmosenv

Effects of excess nitrogen on biogeochemistry of a temperate @CmssMark
hardwood forest: Evidence of nutrient redistribution by a forest
understory species

Frank S. Gilliam ® ", Jake H. Billmyer ?, Christopher A. Walter °, William T. Peterjohn °

2 Department of Biological Sciences, Marshall University, Huntington, WV 25755, USA
b Department of Biology, West Virginia University, Morgantown, WV 26506, USA

HIGHLIGHTS GRAPHICAL ABSTRACT

o Excess nitrogen (N) deposition nega-
tively impacts eastern U.S. hardwood
forests.

e Our study studied biogeochemical
effects via foliar analysis of herb layer
species.

e Aerial N additions were made to an
entire watershed for a 25-yr period.
e Early-dominant Viola and late-
dominant Rubus were higher in N,

lower in Ca.

e N-mediated increases in Rubus
appeared to redistribute Mn to sur-

face soils.
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years, atmospheric concentrations of reactive N remain high in areas within this region. Excess N in
forests has been shown to alter biogeochemical cycling of essential plant nutrients primarily via
enhanced production and leaching of nitrate, which leads to loss of base cations from the soil. The
purpose of our study was to investigate this phenomenon using a multifaceted approach to examine
foliar nutrients of two herbaceous layer species in one N-treated watershed (WS3—receiving aerial

ﬁgﬁ‘:ﬁ;ﬁriems applications of 35 kg N/ha/yr as ammonium sulfate, from 1989 to the present) and two untreated
Nitrogen saturation reference watersheds at the Fernow Experimental Forest, WV, USA. In 1993, we analyzed foliar tissue of
Viola Viola rotundifolia, a dominant herb layer species and prominent on all seven sample plots in each
Rubus watershed. In 2013 and 2014, we used foliar tissue from Rubus allegheniensis, which had become the
Calcium predominant species on WS3 and had increased, though to a lesser extent, in cover on both reference
Manganese watersheds. Foliar N and potassium (K) were higher and foliar calcium (Ca) was lower on WS3 than on
Nutrient redistribution the reference watersheds for both species. Magnesium (Mg) was lower on WS3 for Viola, but was not

different among watersheds for Rubus. Results support the stream chemistry-based observation that
excess N lowers plant-available Ca and, to a lesser degree, Mg, but not of K. Foliar manganese (Mn) of
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Rubus averaged >4 times that of Viola, and was >50% higher on WS3 than on the reference watersheds. A
Mn-based mechanism is proposed for the N-meditated increase in Rubus on WS3. Data suggest that
excess N deposition not only alters herb community composition and biogeochemical cycling of forest
ecosystems, but can do so simultaneously and interactively.

© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Foliar nutrient concentrations of wild plants often, though not
always, reflect the availability of nutrients in mineral soil, since
foliar nutrients are generally indicative of the balance between
nutrient supply in the soil and immediate demand by the plants
(Chapin, 1980; Schreeg et al., 2014). Sources of variation in this
generalization include wuptake of nutrients beyond plant
demand—Iluxury uptake—and a high degree of species-specific
variability in nutrient use and allocation, including resorption
(Chapin and Kedrowski, 1983; Killingbeck, 1996; May et al., 2005;
Baeten et al., 2010). To the extent that this generalization is rele-
vant, foliar nutrient analyses can yield insight into factors (e.g.,
anthropogenic disturbance) that influence nutrient availability, and
others (e.g., plant-soil feedbacks) that control nutrient dynamics
(Reiners, 1992; Schreeg et al., 2014).

In the United States, the 1977 and 1990 amendments of the
Clean Air Act of 1970 have been effective in decreasing emissions of
nitrogen (N) compounds into the atmosphere. Despite this, how-
ever, high concentrations of reactive nitrogen (including NHs, NHZ,
NO, NO,, NO3, 2N,05, HNO3, and several forms of peroxyacetyl
nitrates—Horii et al., 2005) persist, as do high levels of atmospheric
deposition of N, in several regions throughout the world (Galloway
et al., 2008; Sutton et al., 2014; Vet et al., 2014; Keene et al., 2015),
although N remains the nutrient that most commonly limits or co-
limits plant growth globally (Vitousek et al., 1997; Elser et al., 2007).
Conversely, chronic atmospheric deposition of N in many areas
supplies available N in excess of plant and microbial demand,
leading to a phenomenon known as N saturation (Aber et al., 2003).

As discussed by Gilliam (2006), N saturation is a biogeochemical
phenomenon that has direct, sometimes immediate, consequences
for plant communities, thus integrating the ecological disciplines of
both biogeochemistry and vegetation science. Biogeochemically,
excess N alters mobility of a variety of essential nutrients, begin-
ning with increased predominance of NO3, the highly mobile form
of available N. As NO3 accumulates in the available N pool in excess
of plant uptake, it becomes susceptible to leaching below the active
rooting zone, accompanied by cations, particularly Ca™" and Mg* .
The result is an imbalance of increasing availability of N leading to
decreasing availability of Ca** and Mg*™ (Peterjohn et al., 1996;
Gilliam et al., 1996; Moore and Houle, 2013). Studies have also
found that N saturation can initiate phosphorus (P) limitation forest
ecosystems, although the specific mechanism is different than for
cations (Gilisewell, 2004; Gress et al., 2007; Vitousek et al., 2010).

Regarding the plant response to excess N, there are several
possible direct and indirect effects on the species composition of
forest herb strata via alteration of interspecific competition, her-
bivory, mycorrhizal infection, pathogenic fungal infection, and
invasive species (Gilliam, 2006). This can be especially relevant for
the herbaceous layer of forests considering that (1) many, perhaps
most, N-saturated ecosystems are forests (Holland and Lamarque,
1997; Aber et al., 2003; Gilliam, 2014), and (2) the herb layer is
potentially the most sensitive of forest strata to changes in nutrient
availability (Muller, 2014). In addition, the herb layer merits special
attention as the forest stratum with highest plant diversity (Gilliam,

2007).

The site for the current study—Fernow Experimental Forest
(FEF), West Virginia—has been used for several past and on-going
investigations into the ecological sustainability of Appalachian
hardwood forests in the context of natural and anthropogenic
disturbances, one of which is chronically-elevated N deposition
(Adams et al., 2006). Peterjohn et al. (1996) provided clear evidence
that several symptoms of N saturation (cf., Aber, 1992) had devel-
oped on the long-term reference watershed for on-going studies at
FEF (WS4). One such symptom is high absolute and relative (to net
N mineralization) rates of net nitrification, which were shown by
Gilliam et al. (2001) to exist on an N-treated watershed (WS3) and
two untreated reference watersheds (WS4 and WS7). Another
symptom relevant to the present study is increased mobility and
leaching of Ca®* and Mg?* associated with enhanced nitrification
and leaching of NO3 (Peterjohn et al., 1996; Gilliam et al., 1996),
along with evidence of decreased growth rates of dominant tree
species (May et al., 2005; DeWalle et al., 2006). More recent work
using root in-growth bags filled with nutrient-amended soil sug-
gests that N saturation has led to P limitation in several FEF wa-
tersheds (Gress et al., 2007).

The purpose of this study was to enhance insight into the effects
of excess N on the biogeochemistry of a temperate hardwood forest
by examining foliar nutrient concentrations of two dominant herb-
layer species on one N-treated watershed and two untreated wa-
tersheds at two time periods following initiation of N
treatments—4 years and 24—25 years post-treatment. Because
there has been an unprecedented N-mediated shift in herb layer
dominance on these watersheds (Gilliam et al., 2016), this involves
an unavoidable confounding of species and time (i.e., from Viola
rotundifolia Michx. to Rubus allegheniensis Porter dominance—see
Methods). Nevertheless, this study is unique in assessing biogeo-
chemical responses to experimental N additions over such a time
period and doing so using foliar nutrients on the same sample plots.

2. Methods
2.1. Study site

This study is part of long-term, on-going research on the effects
of experimental additions of N on a temperate hardwood forest
ecosystem carried out at FEF, located in Tucker County, West Vir-
ginia (39° 03’ 15”N,7 9° 49’ 15”W). FEF is a ~1900 ha area of the
Allegheny Mountain section the unglaciated Allegheny Plateau.
Precipitation for FEF averages ~1430 mm yr*], with precipitation
generally increasing through the growing season and with higher
elevations. Ambient wetfall deposition of N is ~10 kg N/ha/yr, and
has changed little over the study period (Gilliam and Adams, 1996),
other than declines in NO3 concentrations (Adams et al., 2006).

Soils of the study watershed are predominantly Inceptisols of
the Berks (loamy-skeletal, mixed, mesic Typic Dystrochrept) and
Calvin series (loamy-skeletal, mixed, mesic Typic Dystrochrept),
derived from sandstone, and are generally coarse-textured sandy
loams, well-drained, and ~1 m in depth (Adams et al., 2006). Three
watersheds were used for the location of sample plots: WS3, WS4,
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and WS7, with WS3 serving as the treatment watershed, receiving
aerial additions of (NH4);SO4, and WS4 and WS7 serving as un-
fertilized reference watersheds.

Applications of (NH4)2SO4 to WS3 began in 1989, are currently
on-going, and are made three times per year; historically, these
have been administered by either helicopter or fixed-wing aircraft.
March and November applications are 33.6 kg/ha of fertilizer, or
7.1 kg/ha of N. July applications are 100.8 kg/ha fertilizer (21.2 kg/
ha N). This rate was originally chosen as approximately twice the
ambient rates of N deposited on the watersheds via throughfall. It is
also within the range predicted for future increases in N deposition
for this region (Bobbink et al., 2010). Stands on WS3 and WS7 were
~45 yr-old at the time of most recent sampling in this study; these
are even-aged and developed following clearcutting. WS4 supports
even-aged stands >100 yr old.

All study watersheds generally support mixed hardwood stands.
Overstory dominant species include sugar maple (Acer saccharum
Marsh.), sweet birch (Betula lenta L.), American beech (Fagus
grandifolia Ehrh.), yellow poplar (Liriodendron tulipifera L.), black
cherry (Prunus serotina Ehrh.), and northern red oak (Quercus rubra
L.) (Adams et al., 2006). In the initial phase of this study, species
composition of the herbaceous layer was quite similar between
watersheds, despite differences in stand age (Gilliam et al., 2006),
including species of Viola, Rubus, mixed ferns, and seedlings of Acer
pensylvanicum L. and A. rubrum L. Currently, R. allegheniensis
(hereafter, Rubus) has increased significantly on all watersheds, but
especially on N-treated WS3, where it represents nearly 50% of total
herb-layer cover, in contrast to <15% on reference watersheds
(Gilliam et al., 2016).

2.2. Field sampling and laboratory analyses

Sampling took place within seven circular 0.04-ha plots in each
watershed, for a total of 21 plots. Plots were located to span the
extremes of aspect and elevation of each watershed (Fig. 1). Thus,
the range of elevation was closely similar for sample plots among
watersheds: 735—-860 m, 750—870 m, and 731-850 m for WS3,
WS4, and WS7, respectively.

Foliar material of V. rotundifolia (hereafter, Viola), the dominant
herb-layer species and present on all 21 plots, was sampled in July
1993; these results were reported in part in an earlier paper
(Gilliam et al., 1996). At that time, Rubus was minor component of
the forest herb community of low (~1—2%) cover and frequency.
Similar sampling was repeated in July of 2013 and 2014. However,
by this time, Rubus had replaced Viola as the dominant species on
all plots except in one plot in each of reference watersheds WS4 and
WS7 (Gilliam et al., 2016). By this time, Viola was of low (~5%) cover
and frequency. Accordingly, foliar material of Rubus was taken in
2013 and 2014. Foliar material was sampled in the field by hand-
harvesting using surgical gloves, placed in sterile polyethylene
bags, and stored in chilled, insulated coolers.

Upon return to Marshall University, all foliar material was oven-
dried at 50 °C overnight and ground in a Wiley mill to pass a 40-
mesh screen. Samples were analyzed at the University of Maine
Soil Testing Service and Analytical Laboratory for macronutrient (N,
P, Ca, Mg, K), micronutrient (B, Cu, Fe, Mn, Zn), and Al concentra-
tions. Total Kjeldahl N was determined with autoanalysis following
block digestion with H,SO4 and K;S04/CuSOg4; NBS1 572 Citrus Leaf
was used as standard. All other elements were analyzed with
plasma emission spectrophotometry following dry ashing and
extraction with HCI and HNOs.

We assessed changes in concentrations and spatial patterns of
extractable Mn on WS3 and WS7 (but not WS4) at two points in
time. For the earlier period, we accessed archived data from 1991
wherein extractable Mn was determined at 15 locations spanning

all elevations and slope aspects of each watershed (see Gilliam
et al., 1994 for methodology). For the later period, as part of a
separate investigation in 2011 into within-watershed variation in
soil nutrients and using the same methodology (i.e., surface min-
eral soil sampled with O horizons excluded, extracted by
NH4CH3CO;), extractable Mn was determined at 100 locations
arrayed in a grid in treated WS3 and untreated WS7.

2.3. Data analysis

Our study design is an example of simple pseudoreplication
(Hurlbert, 1984), so interpretation of data should take that into
account. Our contention, however, is that any effects reported are
best interpreted as treatment effects, rather than pre-existing dif-
ferences among watersheds. Indeed, the three experimental wa-
tersheds are similar with respect to several site characteristics, e.g.,
overstory basal area, soil pH, and cation exchange capacity (Adams
et al., 2006; Gilliam et al., 2016).

For the Viola data, means of all measured elements were
compared for significant differences among watersheds using
analysis of variance (ANOVA) and least significant difference (LSD)
tests. For the Rubus data, means were compared for significant
differences among watersheds and sample year using ANOVA and
LSD tests. A priori significant differences were accepted for all sta-
tistical tests at P < 0.10 to accommodate natural spatial variability at
the watershed landscape scale (Zar, 2009).

Data from both 1991 and 2011 soil sampling events were
spatially interpreted with kriging to create maps displaying spatial
variation in concentrations of extractable soil Mn for both time
periods (Stein, 1999). The spatial data were kriged to the spatial
extent of WS3 and WS7 at each sample time using ArcGIS Spatial
Analyst, then clipped using the watershed boundaries as a mask.
Data from 2011 were kriged to a 2 x 2 m cell size with a fixed search
radius of 150 m. Data from 1991 were kriged to a 50 x 50 m cell size
with a 300-m fixed search radius, then resampled to 2 x 2 m cell
size to match the 2011 kriged data. The Mn classes for both maps
were defined by 10 equal intervals, ranging from the lowest to
highest Mn value in each watershed. The display of both maps was
smoothed using a surface bilinear interpolation.

3. Results

For Viola in 1993, mean foliar concentrations on treatment WS3
varied significantly from either or both reference watersheds for all
macronutrients, except P, with N and K higher and Ca and Mg lower
on WS3 relative to WS4 and/or WS7 (Fig. 2). Foliar micronutrient
and Al concentrations did not vary significantly among watersheds,

Fig. 1. Locations of sample plots on study watersheds at Fernow Experimental Forest,
West Virginia: N-treated WS3 and reference WS4 and WS7.
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Fig. 2. Mean foliar concentrations of macronutrients for Viola rotundifolia on N-treated WS3 and reference WS4 and WS7 (left panels) and for Rubus allegheniensis on these
watersheds in each of 2013 and 2014. For V. rotundifolia, means with the same superscript are not significantly different among watersheds at P < 0.10. For R. allegheniensis, means
with the same superscript are not significantly different among watersheds and years at P < 0.10.
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Fig. 3. Mean foliar concentrations of micronutrients and Al for Viola rotundifolia on N-treated WS3 and reference WS4 and WS7 (left panels) and for Rubus allegheniensis on these
watersheds in each of 2013 and 2014. For V. rotundifolia, means with the same superscript are not significantly different among watersheds at P < 0.10. For R. allegheniensis, means
with the same superscript are not significantly different among watersheds and years at P < 0.10.
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with the exception of Mn, which was significantly lower on WS7
than on WS3 and WS4 (Fig. 3).

Mean foliar nutrient concentrations for Rubus did not vary
significantly between 2013 and 2014 for any of the macronutrients.
There were significant N-treatment effects for N, Ca, and K, with N
and K being higher and Ca lower on WS3 versus WS4, WS7, or both
(Fig. 2). Among foliar micronutrient and Al concentrations, only B
and Al exhibited significant inter-annual variation, both generally
lower in 2014 than in 2013 (Fig. 3). There were no significant N-
treatment effects, except for Mn, which was higher on WS3 than on
both reference watersheds in each of 2013 and 2014 (Fig. 3).

Additions of N significantly influenced Ca/Al ratios in Viola, with
WS3 being lower than WS7, whereas the mean for WS4 was in-
termediate between WS3 and WS7 and significantly different from
neither (Table 1). For Rubus, Ca/Al ratios were significantly lower on
WS3 than on WS4 and WS7 for both years and did not vary between
years. Ca/Al did not vary between WS7 and WS4 for either year, but
did vary significantly between years for both watersheds (Table 1).

There was a significant effect of N addition on N/P ratio of Viola,
with WS3 being higher than both WS7 and WS4 (Table 2). For
Rubus, N/P ratios were significantly higher on WS3 than on WS4 for
both years, with WS7 being intermediate between the two water-
sheds (Table 2).

Kriging of extractable soil Mn data revealed contrasts in both
concentrations and spatial patterns between sample periods on
WS7 and WS3. For WS7, soil Mn averaged ~0.15 meq/100 g in 1991
with little spatial variation; a similar pattern was found in 2011,
with a watershed mean of ~0.13 meq/100 g and even less spatial
variation (Fig. 4a). In 1991, Mn was <~0.20 meq/100 g soil
throughout most of WS3, whereas values ranged from nearly
0 meq/100 g up to as high as ~0.50 meq/100 g in 2011, with higher
concentrations occurring in relatively discrete patches (Fig. 4b).

4. Discussion

For two herb-layer species with otherwise sharply contrasting
growth forms, life histories, and habitat requirements (Goodwillie
and Jolls, 2014; Strik, 2008), Viola and Rubus exhibited notably
similar patterns of N treatment effects on foliar nutrients. Similar-
ities in response of foliar macronutrients to added N include
significantly higher N and K concentrations and higher N/P ratios,
significantly lower Ca concentrations, and a lack of effect on P

Table 1

Mean molar ratios (+1 SE of mean) of foliar Ca to foliar
Al (mol:mol) for (A) Viola rotundifolia; means with the
same superscript are not significantly different among
watersheds at P < 0.10; and (B) Rubus allegheniensis;
means with the same superscript are not significantly
different among watersheds and years at P < 0.10.

Watershed Ca/Al ratio
mol/mol
A. Viola rotundifolia
WS3 13.8 £ 0.7°
WS7 25.6 + 7.9?
WS4 19.9 + 1.8%
B. Rubus allegheniensis
WS3
2013 15.5 + 1.2¢
2014 19.3 + 1.4°
WS7
2013 284 +3.8°
2014 38.8 + 4.5°
Ws4
2013 27.6 +3.5°
2014 37.1+£5.3°

Table 2

Mean ratios (+1 SE of mean) of foliar N to foliar P (%:%)
for (A) Viola rotundifolia; means with the same super-
script are not significantly different among watersheds
at P < 0.10; and (B) Rubus allegheniensis; means with the
same superscript are not significantly different among
watersheds and years at P < 0.10.

Watershed N/P ratio
%:%
A. Viola rotundifolia
WS3 209 +0.8°
WS7 18.3 + 1.0°
WS4 15.9 + 0.6
B. Rubus allegheniensis
Ws3
2013 24.1 +0.7°
2014 23.7 +0.7°
Ws7
2013 22.7 + 1.13¢
2014 23.0 + 1.6
Ws4
2013 206 + 0.6
2014 21.1 + 0.5¢
(Fig. 2).
4.1. Nitrogen

Patterns of contrast between watersheds for foliar N are strongly
suggestive of N-enhanced luxury uptake in both Viola and Rubus
(Chapin, 1980). Interestingly, results for Viola were unrelated to
growth response, as mean cover did not vary significantly between
watersheds (Gilliam et al., 1994, 2006). In contrast, N-meditated
increases in foliar N for Rubus were associated with significantly
higher cover—by as much as 10-fold—on treatment WS3 (Gilliam
et al,, 2016). Luxury nutrient uptake is the uptake of a nutrient
beyond the minimum requirement for immediate growth (Lipson
et al., 1996), and is usually associated with increased availability.
Although it is most commonly assessed via foliar analysis, other
studies have examined other plants structures, such as stems and
rhizomes (Lipson et al., 1996; Muller, 2014). Muller (2014) dis-
cussed nutrient uptake for forest herbs, pointing to the potential
importance of enhanced N uptake, especially in early spring, as a
mechanism for ecosystem N retention.

4.2. Calcium and magnesium

Calcium has a multifaceted role in biochemical function and cell
structure in plants, from its requirements in several cellular
metabolic processes (Kauss, 1987) to its use in Ca-pectate salts to
bind plant cell walls (Jarvis, 1984). Furthermore, trees take up and
bind a considerable amount of Ca from forest soils (Thomas, 1969;
McLaughlin and Wimmer, 1999; Juice et al., 2006). Accordingly,
factors that limit or decrease access of plants to soil Ca can nega-
tively impact forest ecosystems. Nitrogen-mediated decreases in
foliar of Ca in both Viola and Rubus are consistent with earlier ob-
servations suggesting that N-enhanced leaching of NO3 has facili-
tated leaching of Ca (Peterjohn et al., 1996; Adams et al., 2006), and
has decreased tree foliar and bolewood Ca (Gilliam et al., 1996;
Jensen et al., 2014).

Although response of foliar Ca is in itself an important metric to
assess effects of excess N on the biogeochemistry of forests, an
additional index of relevance is that of molar ratios of Ca/Al in foliar
tissue. In perhaps the most complete review on the topic, Cronan
and Grigal (1995) discussed the use of ratios of Ca/Al as indicators
of environmental stress in forest ecosystems, using samples that
included soil solution, fine roots of woody species, and foliage.
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Fig. 4. Kriged extractable soil Mn from two sample periods (1991/1992 and 2011/2014) for (a) reference WS7 and (b) N-treated WS3. Soil sampling for the first period was in 1991,
whereas sampling for the second period was in 2011 (see Methods). Shown also for WS3 (data not available for WS7) are spatially-explicit mean cover (%) values for Rubus in the
seven permanent sample plots. Cover for the first period is the mean of 1991 and 1992 sampling, whereas cover for the second period is the mean of 2013 and 2014.

Cronan and Grigal (1995) concluded that molar ratios of foliar Ca/Al
<12.5 represent of 50% risk of Al stress to affect adversely such
processes as tree growth. It is, thus, notable that, although Ca/Al
ratios for neither Viola nor Rubus were below this threshold, both
exhibited significant decreases in the ratio in response to added N
(Table 1). So, our forest stands are not likely experiencing Al stress,
but data suggest that further increases in N deposition may lead to
it.

Magnesium is biogeochemically similar to Ca (e.g., often being
found in identical parent materials such as dolomite), and previous
studies at FEF found similar results for Mg as they did for Ca
regarding N-mediated leaching and tree foliar deficiencies
(Peterjohn et al., 1996; Gilliam et al., 1996; Adams et al., 2006).
Although this pattern was generally supported in Viola data, it is
unclear neither why this was not seen in data for Rubus in general,
nor, in particular, why there was a significant difference between
reference watersheds in 2013 (Fig. 2).

4.3. Potassium

Although long-term stream chemistry at FEF suggest N-
enhanced leaching of K (Adams et al.,, 2006), our data indicate
increased plant uptake of K from experimental additions of N, as
foliar K was significantly higher on WS3 versus WS4 and/or WS7 for
both Viola and Rubus (Fig. 2). Uptake of K has been shown to alle-
viate membrane damage and chlorophyll degradation, thus miti-
gating abiotic stress in plants, such as drought, chilling, and high
light intensity (Cakmak, 2005). In addition, we interpret our results
to indicate the form of N being taken up by forest herbs at FEF,
considering that uptake of K by plant roots can be inhibited by NHZ
(Haynes and Goh, 1978; Waring and Schlesinger, 1985; Maser et al.,
2002). Thus, we might expect that the N addition of (NH4),SO4 to
WS3 would result in less K uptake. However, FEF soils have
extremely high nitrification potential, with relative nitrification
(i.e., percent net nitrification relative to net N mineralization) high
on all watersheds, but far greater on WS3 (Gilliam et al,, 2001;
2015). Indeed, soil NO3 pools—another index of N
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availability—average >40% higher on WS3 than on the reference
watersheds, suggesting that higher availability of NO3 relative to
NH4 may allow greater K™ uptake via less inhibition by NH4 (Maser
et al., 2002) and that the luxury uptake of N observed on WS3
(Fig. 2) was in the form of NO3 (Truax et al., 1994). As with Mg, it is
not clear why there was a significant difference for Rubus foliar K
between reference watersheds (Fig. 2).

4.4. Phosphorus

Several recent studies have shown that alleviation of N limita-
tion often results in P limitation (Elser et al., 2007; Vitousek et al.,
2010; Zhu et al., 2013). Gress et al. (2007) demonstrated the
onset of excess N-driven P limitation on WS3 using several ap-
proaches, including analysis of root-associated activity of phos-
phomonoesterase (PME—an enzyme produced by plants under
extreme P limitation—Duff et al., 1994) in V. rotundifolia (finding
higher PME in plants on WS3), as well as root in-growth bags,
wherein higher fine root biomass was found in bags treated with P
on WS3. Thus, we expected N-related differences in foliar P, yet
found no differences for either species. Because PME increases the
supply of P by releasing organically-bound P, it may be that the
increased “mining” of P was sufficient to meet plant demand,
though at a greater cost associated with enzyme production (Gress
et al., 2007).

A more appropriate index of P limitation is the foliar N/P ratio
(Schreeg et al., 2014), with P limitation being positively correlated
with N/P ratio (Garten, 1978; Koerselman and Meuleman, 1996;
Glisewell, 2004). Higher N/P ratios on WS3 (Table 2) support ob-
servations of Gress et al. (2007) regarding N-mediated increases in
P limitation. Indeed, Tessier and Raynal (2003) reported an N/P
ratio threshold (i.e., ~15) for another species of Viola (Viola
macloskeyi F. Lloyd) that is similar to those found for our reference
watersheds. Rubus not only had generally higher N/P ratios than
Viola, but also exhibited less distinct contrasts between treatment
and reference watersheds (Table 2). Our values for Rubus exceed the
range reported by Giisewell (2004) for sites worldwide (~9—18),
and for many manipulation studies as indicative of P limitation
(Tessier and Raynal, 2003). We conclude that, by the time of recent
sampling of Rubus foliage, all watersheds had become limited, or at
least co-limited (Koerselman and Meuleman, 1996), by P, consistent
with chronically-elevated N deposition at FEF (Adams et al., 2006).
Although Rubus foliar P varied significantly between reference
watershed (Fig. 2), the relative amount of this difference was small
(~10%).

4.5. Micronutrients/Al

In general, micronutrients and Al displayed far fewer responses
to experimental additions of N than did macronutrients in both
Viola and Rubus, with significant variation among treatment and
reference watersheds found only for Mn and, for Rubus, only B and
Al varying between years (Fig. 3). Furthermore, for Viola, N-related
variation in foliar Mn was significant only for WS7. The N-mediated
variation in foliar Mn in Rubus is notable, and merits further
consideration, particularly because of (1) the range of foliar con-
centrations found in Rubus (~3000 to 6000 ppm versus ~700 to
1200 for Viola—Fig. 2), and (2) the profound growth response of
Rubus to N treatments on WS3 (i.e, from 1 to 2% cover in
19911994 to ~20% by 2014) in contrast to WS4 (~1% to 4% over the
same period) (Gilliam et al., 2016).

Plant micronutrients vary considerably among each other
regarding biogeochemistry and physiological function in a given
species, but all share the trait of being used by plants in extremely
low concentrations (Kabata-Pendias, 2010). Many are classified as

heavy metals (e.g. Pb, Ag, Cu, Zn, Cd, Mn) and, because of their need
at such low levels, can shift in function from essential element to
phytotoxin, even at moderate concentrations (Kowalenko, 2005;
Nagajyoti et al., 2010). This seems especially apparent for Mn, an
essential element for plants used in several metabolic processes,
including photosynthesis and enzyme function (e.g., antioxidant-
cofactor). However, at high enough concentrations, Mn toxicity
leads to oxidative stress and reduction of photosynthesis and
biomass (Lynch and St. Clair, 2004; Millaleo et al., 2010).

Although typical ranges of foliar concentrations of micro-
nutrients are published (e.g., Nagajyoti et al., 2010), there is often
considerable interspecific variability. Kula et al. (2012) reviewed
Mn concentrations in various tissues of >20 plant species of a
temperate European hardwood forest, including a species of Rubus.
They found foliar Mn concentrations varying from a low of
<500 ppm in sorrel (Rumex acetosa L.) to a high of >8000 ppm in
blackberry (Rubus fruticosus L.). As the latter corroborates our ob-
servations for Rubus at FEF, we suggest that Rubus may act to
accumulate Mn from soil when Mn mobility is enhanced, e.g., by N
deposition.

4.6. Nutrient (Mn) redistribution hypothesis

Kriging maps reveal sharp contrasts between reference WS7
and N-treated WS3 (note: similar analysis was not performed on
WS4) with respect to both the spatial heterogeneity and change
over time in soil Mn. Soil Mn was relatively low in concentration
and heterogeneity on WS7, varying minimally over the 20-yr period
from 1991 to 2011 (Fig. 4a). By sharp contrast, these maps
demonstrate increases in both concentration and spatial hetero-
geneity in extractable soil Mn during this same period on WS3
(Fig. 4b). The pattern for Mn on WS3 is also in sharp contrast to
increased spatial homogeneity in both N and herb community
dynamics in response to experimental N additions to the watershed
(i.e., the N homogeneity hypothesis—Gilliam et al., 2016). Super-
imposing mean cover of Rubus in permanent sample plots of WS3
suggests that Rubus cover and the patchiness in soil Mn are
spatially highly correlated. Based on this observation, we propose
the following—the nutrient redistribution hypothesis—as a mecha-
nism to explain this pattern.

Mobility of Mn is enhanced by increased acidity (Barber, 1995;
Blake and Goulding, 2002), and nitrification in the absence of up-
take of NO3 by plants is an acidifying process (Barber, 1995;
Marschner, 1995). Thus, it is likely that the N treatment to WS3,
wherein net nitrification is ~100% of N mineralization (Gilliam et al.,
2015), has enhanced mobility and availability of Mn. At the same
time, Rubus at FEF responds interactively with both N and light
(Walter et al., 2016), similar to results for other forest herbs
(Elemans, 2004). Although the forest canopy on WS3 is decidedly
closed, there is notable heterogeneity in light availability via can-
opy gaps. An unpublished study by G.G. Parker showed that mean
gap fraction for the two plots with lower Rubus cover on the 2011/
2014 map (i.e., 1 and 6%, Fig. 4b) was 7-times lower than the mean
for the remaining plots wherein Rubus cover ranged from 20 to 37%
(0.2% versus 1.5% gap fraction, respectively). The high Mn tolerance
of Rubus allows foliar accumulation and subsequent release of Mn
during decomposition (Keiluweit et al., 2015), redistributing
extractable Mn from the depths of the rooting zone to the O hori-
zon. Root systems of many species of Rubus have been shown to be
particularly expansive, both laterally and with depth (Bohm, 1979).

Nutrient redistribution has long been observed for dominant
tree species and macronutrients in both native forests and plan-
tations (Thomas, 1969; Jobbagy and Jackson, 2004); more recently,
it has been observed for Mn. Jobbagy and Jackson (2003) used
afforestation of native temperate humid grassland in the Pampas of
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Argentina with Eucalyptus plantations as an experimental system,
wherein grasslands and adjacent plantations of up to 100 yr old had
identical soil types, yet contrasting distributions of macro- and
micronutrients. Their results showed that Mn availability in surface
soils was enhanced three-fold via redistribution by Eucalyptus
roots. Our findings suggest that this may be occurring via Rubus in
response to experimental additions of N to an entire watershed.

5. Conclusions

Several studies, including past and on-going work at FEF, have
demonstrated the multifaceted responses of forest ecosystems to
excess N. Although this often has been shown biogeochemically via
stream and soil water chemical responses (Peterjohn et al., 1996;
Driscoll et al., 2003; Adams et al., 2006), increasingly numerous
studies also show profound changes in forest herb layer communities
(Gilliam, 2006; Bobbink et al., 2010; Clark et al., 2013; Verheyen et al.,
2012; Dirnbock et al., 2014; Gilliam et al., 2016). Results from the
present study indicate that foliar nutrient data from dominant herb
layer species provide an additional—indeed, unique—perspective,
providing insights that cannot be elucidated from solution chemistry
alone, including the replacement of N-efficient Viola with nitrophilic
Rubus and the redistribution of Mn by Rubus.

To our knowledge, this is the first study to suggest nutrient
redistribution for a forest herbaceous layer species. Thus, the
nutrient redistribution hypothesis predicts that herb layer species,
such as Rubus, that respond positively and heterogeneously to
increased N can alter the spatial distribution of other nutrients in
surface soils. Because our particular case involves a micronutrient
with its potential for phytotoxicity, our results have important
implications for forest herb community structure and composition,
given the highly species-specific nature of Mn tolerance (Kula et al.,
2012). Not only is it clear that additions of N to WS3 have created a
competitive advantage for Rubus over more N-efficient species (e.g.,
Viola), but the potential redistribution of Mn by Rubus may further
act to create a positive feedback for dominance, considering that
most other herb layer species exhibit a lower tolerance for Mn.

Rubus and other R-selected species (sensu Grime, 2006) typi-
cally respond sensitively to chronic additions of N and spatial
variation in light (Elemans, 2004; Hedwall et al., 2011; Strengbom
and Nordin, 2012; McDonnell et al., 2014; Neufeld and Young,
2014). Accordingly, predictions of the nutrient redistribution hy-
pothesis can be tested for a variety of macro- and micronutrients
using these species, especially given the wide species-specific
variation in nutrient demand among forest herbs (Muller, 2014).
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