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Geographic analysis of asbestos exposure and mortality in the United States 

Asbestos is a mineral that is naturally occurring all over the world (asbestos.com). Asbestos use 

in the United States during the 20th century was commonplace in commercial, military, and residential 

applications for its usefulness in fireproofing and as an insulation material. Inhalation of asbestos fibers 

has been demonstrated to cause the respiratory disease asbestosis as well as being implicated in cases 

of malignant mesothelioma, a rare form of lung cancer (Lanphear 1992). Unfortunately, understanding 

the full impact of asbestos-related diseases both today and for the future in the United States 

population is difficult as asbestos exposure and its sequelae are latent and progressive, taking years or 

decades to manifest (Lanphear 1992).  

This research project uses both geographic information systems (GIS) along with statistical 

analysis to determine concentrations of asbestos-related mortality in the US, analyzes both injurious 

exposure and mortality data for correlation, and analyzes the spatial distribution of select occupations 

against modern mortality for correlation. The US is the only developed country without a ban on 

asbestos, with 1.4 million workers directly at risk of injurious exposure to friable asbestos fibers. 

Accordingly, spatial analysis of both modern asbestos mortality as well as exploration of potentially 

predictive analytics from both select employment and exposure datasets appears significant at this 

juncture.  

 

 

Literature Review 



Inhalation of asbestos fibers has been demonstrated to cause the respiratory disease asbestosis 

as well as being implicated in cases of malignant mesothelioma, a rare form of lung cancer (Lanphear 

1992). Asbestos exposure in occupational as well as non-occupational settings, such as home or in the 

environment, have been linked to asbestos-related disease (Goswami et. al. 2013). Unfortunately, 

asbestos-related diseases are latent and progressive, taking years or decades to manifest (Lanphear 

1992). The potential future burden of asbestos-related disease in the United States has numerous 

implications for those sickened as well as the healthcare industry, employers, epidemiologists, and 

stakeholders associated with state occupational disease programs such as insurance carriers and state 

funds. Persons sickened with asbestos-related diseases in more rural or impoverished areas without 

access to care may contribute to data “shadows” or areas of underreporting (Delaunay et. al. 2015).  

Occupational disease statistics are critical to understanding work-related diseases facing the 

workforce, the prevalence of those diseases, and their spatial distribution. Researchers have long 

emphasized that occupational disease prevention is the goal of both industry regulation and health 

initiatives (Hilaski 1980, Freund et. al. 1990, Agtus et. al. 2015). Throughout the history of occupational 

disease’s formal recognition in the United States, including compensation schemes for same, data 

deficiencies continue to plague both occupational disease surveillance and reporting (Melius et. al. 

1989, Leigh 2011, Agtus et. al. 2015). There is demonstrated value in aggregating what occupational 

disease data is available for spatial analysis through use of a Geographic Information System (GIS) 

(Delaunay et. al. 2015).  

Despite certain work-related diseases having been identified even in antiquity, industrial 

recognition of occupational disease and development of compensation schemes for sickened workers 

did not arise until the beginning of the 20th century (Kim et. al. 2013). Since the inception of the first 

occupational disease listing by the International Labour Organization (ILO) in 1925, the list of accepted 

occupational diseases has widened considerably (Kim et. al. 2013). Scholars agree that occupational 



disease continues to be a threat to the health and safety of workers not only in the U.S. but around the 

world (Schroeder, 1986, Kim et. al., 2013). The first dust standards limiting worker exposure to asbestos 

fibers were not implemented in the United States until 1971 (Egilman et. al. 2014). Analysis of both the 

prevalence and impact of occupational disease in the United States informs worker risk, public health 

initiatives, industrial regulation, workers’ compensation, overall cost burden through medical treatment, 

and likely other areas of research and study. (Hilaski 1981, Schroeder 1986, Melius et. al. 1989, Freund 

et. al. 1990, Leigh 2011, Agtus et. al. 2015, Delaunay et. al. 2015, ILO 2015, Franks 2018).   

Researchers note that data on occupational disease incidence in the U.S. has numerous 

deficiencies (Hilaski 1981, Freund et. al. 1990).  For instance, there is no national reporting mechanism 

for occupational disease and so any researcher that wants to analyze data must aggregate it from 

multiple sources (Freund et. al. 1990, Leigh 2011). Different sources of occupational disease data likely 

have different areas of interest for that data’s analysis and use. For instance, workers’ compensation 

data wouldn’t reflect true disease burden because not everyone sickened by occupational disease files a 

claim for benefits. Those that do file may find their claim time-barred or otherwise be ineligible for filing 

(Leibman et. al 1985). Another potential issue with workers’ compensation claims is that state coverage 

of occupational diseases varies and there are no universal federal workers’ compensation systems for all 

occupational disease (Schroeder 1986). State variances in occupational disease compensation may also 

affect reporting (Schroeder 1986).  

Certain industries, such as coal, oil, and gas, are acknowledged by researchers as having a higher 

risk of injurious exposure that can result in disease (Melius 1989, Agtus et. al. 2015, Franks 2018) so 

states where higher-risk employment is found would be expected to have higher incidences of 

occupational disease. Identifying regions of asbestos-related mortality concentration through spatial 

analysis could help to inform epidemiological surveillance programs and other outreach efforts. For 

instance, the potential effects of numerous substances used in workplaces on human health is not yet 



fully known (Schroeder 1986, Delaunay et. al. 2015). Peipins et. al. has written on mining exposure to 

asbestos-contaminated vermiculite in Libby, Montana, focusing on radiographic findings (Peipins 2003). 

Henley et. al. in a published study notes that, as asbestos use has declined in the US, rates of 

mesothelioma should also go down with time.  

Another major issue identified by researchers is that occupational disease is not something that 

usually occupies the public consciousness. Many occupational diseases are latent, developing many 

years or decades after exposure and often affect lower socioeconomic demographics disproportionately 

(Schroeder 1986). However, researchers note that the overall cost burden to society created by 

occupational disease is enormous and that “workers’ compensation covers less than 25 percent of these 

costs” (Leigh 2011). The latency of disease and the prevailing demographics of those affected means 

that not a lot of public attention is paid to the issue of occupational illness and disease (Schroeder, 

1986).  

Researchers have approached the issue of aggregating and analyzing data on occupational 

disease in various ways. Leigh, in performing a cost analysis on occupational disease, obtained data from 

the Bureau of Labor Statistics (BLS), the Centers for Disease Control (CDC), as well as more specialized 

data such as estimates of “Attributable Fractions of diseases with occupational components” (1). Melius 

also recommends sources to mine for occupational disease data, such as “state death certificates, 

cancer registries, state workers’ compensation files, hospital discharge records [. . .]” (Melius et. al. p 

.46).  Freund et. al. informs that the “current primary data source for occupational injuries and illness is 

the Bureau of Labor Statistics Annual Survey [sic]” (22).  

Delaunay et. al. utilized the ‘micro’ and ‘macro’ approach and how the occupational disease 

data “related to economic activity, occupational health service coverage, compensated ODs [. . .]” (3). 

The ‘macro-level’ focused on the French microelectronics industry while the ‘micro-level’ looked at the 



application of a GIS in aggregating occupational safety and health information at a secondary aluminum 

plant (3). The researchers generated thematic maps on the microelectronics activity sector in France, in 

the French Rhone-Alpes region, and in the Grenoble area of France. At the ‘micro-scale’, a computer-

aided drafting (CAD) map of the aluminum plant was created and “enriched [. . .] by layers containing 

agents to which workers may potentially be exposed” (5). The researchers noted that “discrepancies and 

gaps in data were visible that would normally not be detected in the traditional formats” (5). This 

supports my hypothesis that integrating and illustrating occupational disease data using a GIS can help 

identify areas of potential underreporting.  

Melius et. al. notes in their research that, because numerous data sources for occupational 

disease information exist, it is important for a researcher to be sure the data available is useful and 

appropriate for the intended analysis. “Conditions related to occupational disease exposure must be 

included in the data system and must be found with some regularity in the geographic area under 

surveillance. Second, information on the occupational or employment setting of persons in the data 

system must be included or accessible in some manner” (Melius et. al. 1989). Agtus et. al. notes that the 

wide variety of data sources yield numerous potential pitfalls concerning integrity and validity (Melius, 

p. 607). This shows that the selection of data for analyzed will require decisions on what parameters and 

types of reports/incidences will be deemed acceptable. For the purposes of showing discrepancies or 

gaps in occupational disease reporting in the United States, it appears best to retrieve data from the 

Bureau of Labor Statistics, the National Institute on Occupational Disease and Health, and the Centers 

for Disease Control. A rich, albeit unfortunate, opportunity for data aggregation and analysis presents 

itself in the case of occupational disease.  

An unfortunate reality surrounding data on occupational disease are the various legal and 

political issues that arise from occupational disease and injury. From the inception of the first state 

workers’ compensation statutes recognizing occupational disease, extensive legal and political 



involvement in the subject has deeply affected both historical and current surveillance reporting (Hilaski 

1981, Schroeder 1986, Freund 1990). Freund et. al. particularly emphasizes how “occupational 

disease[s] are particularly susceptible to underreporting” (22). However, political and legal action has 

led to increased public understanding and better information regarding occupational disease as well. 

Particularly, efforts in the 1960s led to the Coal Mine Health and Safety Act of 1969 which provided a 

federal workers’ compensation remedy to coal miners afflicted with black lung disease (Hilaski 1981). 

The data obtained for analysis must be considered deficient with respect to calculating the full burden of 

asbestos-related mortality in the United States today. However, value exists in evaluation of available 

data regarding exposure and disease reporting to determine if occupational surveillance correlates with 

later mortality and to identify states with higher incidence concentration (Hansell et. al. 2009, Delaunay 

et. al. 2015). 

Researchers’ approach to analyzing occupational disease data has centered around statistical 

approaches. Hilaski reviewed occupational disease as its definitions by the ILO have been refined over 

the years and decades along with valuable insights into statistical analysis. Melius et. al. reviewed causes 

of death, occupation of the decedent, observed vs. statistically-expected mortality rates from a 

particular cause of death, and the application of age-standardized proportionate mortality ratios. The 

ILO notes that “as data on work-related accidents and diseases are essential for prevention, there is a 

strong need [. . .] to improve recording and notification systems and data analysis” (ILO, p. 2). Therefore, 

it will be incumbent for a researcher to ensure the data being considered for usage is appropriate while 

also understanding that, as no central repository for occupational disease data exists, it is nigh 

impossible to analyze the full burden and incidence of all known occupational disease. Instead, focus on 

a sub-set of occupational diseases, such as occupational pneumoconiosis, would allow research to be 

narrower but still useful in the overall context of identifying gaps in reported or surveilled occupational 

disease in the U.S.  



Use of a GIS to organize, view, and map data relating to occupational pneumoconiosis incidence 

reports as well as relevant industry data is supported by research as well. Delaunay et. al. explored the 

use of a GIS to integrate multiple data sources into a presentable and comprehensible format with 

emphasis on disease surveillance. Pfeieffer et. al. note that GIS is a useful tool in understanding spatial 

relationships in disease. While their research centered on wildlife disease and epidemiology, their 

findings on how a GIS augmented their research is probative on the issue of occupational disease 

analysis. They note specifically that “epidemiological investigations gain strength from being able to 

incorporate information about the proximity relationships between animals at risk, and also about the 

context relating to the spatial distribution of risk factors” (91).  

The data available for aggregation and review about occupational disease, and specifically 

pneumoconiosis, is primarily aspatial and/or not integrated for ease of analysis and research. Therefore, 

utilization of a GIS will augment the existing data and communication of same extensively. Further, 

Pfeiffer et. al. note that “the technology [GIS] is becoming an essential component of modern disease 

surveillance systems” (91). GIS will provide a modern spatial perspective on occupational disease which 

should prove very beneficial to researchers and stakeholders across industries and fields. Spatial analysis 

of occupational disease data gaps using a GIS could encourage outreach to gather more data, allowing 

for understanding patterns of occurrence, industrial correlations, public health and treatment issues, 

and numerous other associated sequelae of occupational diseases in the U.S. workforce (Pfeiffer, 2002). 

Data: 

Utilized in this research are asbestos-related death statistics gleaned from the Centers for 

Disease Control’s WONDER, an ad-hoc query system that offers comprehensive public health data and 

information (more information available at wonder.cdc.gov). Asbestos-related death statistics were 

obtained for all 50 states as well as the District of Columbia for the years 2006-2016.  



Also included for analysis are data obtained from NIOSH Occupational Respiratory Disease 

Surveillance, “Asbestos: Geometric mean exposures and percent exceeding designated occupational 

exposure limits by OSHA region and state, OSHA samples, 1979-2003”. The data obtained from OSHA 

illustrates asbestos permissible exposure limits beginning in 1979 of 2 fibers per cubic centimeter (f/cc). 

By 1987, a reduction to 0.2 f/cc was established, and from 1995 forward the permissible exposure limit 

is 0.1 f/cc. For all 50 states and the District of Columbia, OSHA provides the number of samples in the 

period, the number that exceeded the permissible exposure limit of the time, and the percentage that 

exceeded the recommended exposure limit of today, 0.1 f/cc.  

Additionally, 2016 employment statistics for three selected industries known for asbestos 

exposure, by NAIC code, were obtained from American FactFinder, US Census Bureau. These are NAIC 

3366 – Ship and boat building; 21 – Mining, quarrying, and oil and gas extraction; 3324 – Boiler, tank, 

and shipping container manufacturing.  

Inclusion/Exclusion criteria: 

Asbestos-related diseases have very long latency periods, with disease typically not appearing 

until 25-40 years post-exposure or even longer (Bianchi et. al. 1997). Therefore, the OSHA exposure data 

from 1979-1986 was analyzed as most probative for analysis as enough time between exposure and 

current mortality data has elapsed for disease to manifest. The years 2006-2016 were selected from the 

CDC WONDER database as to most effectively capture current reported disease mortality as well as to 

allow for enough latency from the OSHA exposure data period.  

NAIC -coded occupational employment data for ship-builders, boilermakers, and mining 

(including oil and gas) in the US Census Bureau American FactFinder for the 1970s was unobtainable by 

this researcher. It appears the specific data for these categories was not part of their data 

collection/reporting. Therefore, an assumption is made that ship-building employment has not 



significantly changed spatially over 40 years. Boilermaker employment as well as mining (including oil 

and gas), for congruency, was also selected at the 2016 employment spatial distribution statistics.  

Mortality data was selected from years 2006 and 2016 to reflect both the most current statistics 

available and a look-back to 10 years prior to explore shifts in concentration as well as proportion. 

Methods 

To determine areas where asbestos mortality is spatially concentrated, the CDC Wonder 

mortality data was tabulated into a spreadsheet format for each US state, asbestos-related mortality 

total reported for 2006 and 2016 into separate columns, and reported population estimate for the 

corresponding year. Using spreadsheet calculations, a location quotient was calculated.  Lqi = (mi / p) / 

(Mi / N), where:  

 mi   = state asbestos mortality 

 p    = state population 

 Mi   = national asbestos mortality  

 N   = national population 

Where: Lqi >1  : state death rate proportion > national death rate proportion; Lqi <1  : state death rate 

proportion < national death rate proportion; Lqi =1  : state death rate proportion = national death rate 

proportion.  

The resultant location quotients were then formatted for joining to an appropriate US shapefile 

in ESRI ArcMap. Using cartographic techniques, two choropleth maps were generated for years 2006 

and 2016 location quotients, respectively.  



For occupational asbestos exposure correlation with mortality, the 1979-1986 OSHA dataset was 

tabulated into a spreadsheet listing US state, number of samples taken, the percentage of exposures 

exceeding the permissible exposure limit (PEL) in effect at the time of measurement and the number 

greater than the recommended exposure limit (REL). REL is the modern standard of 0.1 fibers per cubic 

centimeter (f/cc). As 0.1 f/cc is the level currently recognized as injurious, all exposure testing exceeding 

this threshold was classified as injurious for the purposes of this analysis. 1979-1986 data was used as 

this time period allows for the sufficient latency of 2-4 decades to have elapsed and theoretically 

manifest in modern mortality. A 95% confidence interval (p<0.05) is selected for all Pearson r analysis.  

Asbestos mortality per 100,000 population, within a 95% confidence interval, obtained directly 

from the CDC WONDER asbestos mortality dataset is used for comparison. A preliminary investigation of 

the data finds that it generally follows a normal distribution; therefore, the Pearson r correlation 

coefficient appears appropriate for use. Using statistical software, simple scatterplots and the Pearson r 

are calculated.  

Employment data by state for each category of employment, designated by NAIC code, was 

obtained via American FactFinder query and tabulated into spreadsheet format. The data was tabulated 

into spreadsheet format by state, employment number, and total employment for a ratio. This data was 

then analyzed via statistical software where simple scatterplots and the Pearson r were calculated 

against the 2016 mortality data to determine if a statistically-significant relationship exists.   

 

 

 

 



Results and Analysis 

 

 

Figure 1. Scattergram for the relationship between 1979-1986 Exposure over 0.1 f/cc and asbestos-
related deaths in 2006 (very weak, direct, linear relationship, r = 0.12).  

 

 

Figure 2. Scattergram for the relationship between 1979-1986 Exposure over 0.1 f/cc and asbestos-
related deaths in 2016 (very weak, direct, linear relationship, r = 0.09).  



  

Figure 3. Choropleth map of calculated location quotients for state asbestos-related mortality data, year 
2006. 



 

 

Figure 4. Choropleth map of calculated location quotients for state asbestos-related mortality data, year 
2016.  

 



 

 

 

 

 

 

 

Figure 5. Pearson r analysis for ship – and – boat builder employment in 2016 shows very weak inverse 
correlation with 2016 asbestos mortality among states   (r = -.01) 

 

 

 

 

 

 

 

 

Figure 6. Pearson r analysis for boilermaker employment in 2016 shows a very weak inverse 
relationship with 2016 asbestos mortality among states (r = -.03) 

 

 

 

 

 

 

 

 

Figure 7. Pearson r analysis of mining (including oil and gas) employment in 2016, showing a very weak 
inverse relationship with 2016 asbestos mortality among states (r = -.18) 

 

 



The statistical analysis of OSHA exposure data with mortality yields weak to no meaningful 

correlation. This is not a wholly unexpected finding; the sparseness and inconsistency of OSHA’s 

surveillance for the 1979-1986 figure does not provide a good dataset for analysis.   

Review of the choropleth map from 2006 indicates that the Mid-Atlantic and portions of the 

Northeast reflect higher concentrations of asbestos-related mortality. Hawaii, Montana, and North 

Dakota are also relatively concentrated areas of mortality. Low mortality is reflected in the 

southwestern US, Alaska, and New York state, the latter which appears unusual given that all adjacent 

states have higher location quotients. West Virginia has the highest concentration of asbestos-related 

deaths in the nation. 

The 2016 choropleth map has notable similarities and differences from the 2006 mortality 

distribution. West Virginia remains in first place for mortality, with the Mid-Atlantic also yielding higher 

location quotients – though Virginia and Maryland drop some. Hawaii remains a high concentration 

state as well. The High Plains to Washington State are at or above the median location quotient for this 

year, with the noted exception of Minnesota (much lower). The desert southwest and Alaska remain 

states of low concentration and New York’s position is moderated somewhat – less than but nearer to a 

location quotient of 1 than in the 2006 analysis. The location quotient maps of 2006 and 2016, along 

with the mortality dataset, reveal an incidental but important finding: asbestos-related mortality deaths 

reported are rising, across most states during the period and in the aggregate. The choropleth mapping 

and use of location quotients appears worthwhile for understanding the spatial distribution and 

concentration of mortality.  

As with the OSHA exposure analysis, the 2016 selected at-risk industry NAIC employment 

statistics for ship-builders, boilermakers, and mining (oil + gas included) also yield no statistically-



meaningful relationship. This was also surprising as a relationship between the mortality data and at 

least one of these employment statistics was theorized as possible.   

Discussion and Conclusion  

This qualitative analysis of asbestos-related mortality in the United States finds that modern 

death rates are rising, significantly spatially variable, and that neither Occupational Safety and Health 

Administration dust monitoring sampling nor a focus on modern noted injurious employment statistics 

correlate with the spatial variance in death. 

Prior studies looked at fibers per millimeter exposure as compared to the OSHA recommended 

exposure limit for extrapolation of disease risk (Hughes et. al. 1986). It is also acknowledged that certain 

industries as having a higher risk of injurious exposure that can result in asbestos-related disease (Agtus 

et. al. 2015). Critically, numerous studies have bemoaned the numerous data deficiencies that plague 

asbestos incidence in the United States (Hilaski 1981, Freund et. al. 1990, Leigh 2011). Focus has also 

been paid on the type of asbestos involved in exposure, which is beyond the scope of this paper 

(Goswami et. al. 2013). Goswami et. al. obtained data from the CDC Wonder system with a focus on 

mesothelioma, lung cancer, and interstitial/pleural abnormality coding, an approach mirrored in this 

work. Well-documented disease latency pursuant to both Lanphear et. al. and Selikoff et. al. were 

assumptions in the data analysis between exposure and expected mortality.  

Workplace exposure monitoring for asbestos fibers for the focus period of 1979-1986 was 

clearly inadequate both in form and function to adequately quantify and protect workers from asbestos 

risk. The direct, weak correlation between worker exposure beyond the current recommended exposure 

limit (REL) with asbestos mortality reveals that data inadequacy, non-surveilled exposure, military 

exposure, and secondary/domestic exposure all play a part in the spatial distribution of asbestos 

mortality in a way that the limited OSHA exposure data alone cannot strongly support.  



Evaluation of asbestos mortality through location quotients reveals both the rise in reported 

deaths from 2006-2016 as well as the dramatic differences in the spatial distribution of asbestos-related 

mortality. The rise in deaths is an important focus point for epidemiology and reporting. The location 

quotients also reveal that historical injurious exposure is impacting some state populations far greater 

than others.  

Focus on three known higher-risk occupations based on 2016 employment data – mining, ship 

building, and boilermakers – occurred due to a lack of NAIC occupational data during the studied 1979-

1986 study period (asbestos.com). Therefore, these occupations were selected under an assumption 

was that spatial concentration of these three industries had not meaningfully changed from the 

beginning of the studied exposure period (1979) through the year of data pull, 2016. The lack of a broad 

correlation between these industries in 2016 and mortality for 2006 and 2016 was surprising and lends 

strong additional support to other studies that discuss numerous other contributing exposure and 

surveillance factors.  

The inadequacy of the available exposure data for 1979-1986 and the inability to correlate 

modern at-risk employment spatially with death, aside from a few individual state examples, leave the 

full epidemiological risk and burden of asbestos exposure difficult to quantify. This is especially 

frustrating due to the extensive risk of secondary and incidental exposure detailed in the referenced 

literature. As noted, this issue has plagued researchers previously and this attempt is no more 

successful. Further research into what impact a national registry for asbestos-related disease incidence 

and mortality would have may prove invaluable, especially since asbestos use remains a risk factor for 

over a million workers in the United States and is not outlawed (see generally: asbestos.com).  

Recommendations for further research attempts include identification of additional extant data 

sets – military exposures would be useful, as would incidental exposure in resource extraction. Further 



investigation into the most recently-active asbestos mining operation locations with disease incidence 

and mortality correlations may also be useful. County-level epidemiological data would reveal more 

meaningful location quotients for public health monitoring, potential workers’ compensation impacts, 

and treatment foci. A national registry for both asbestos-related disease and death, capturing at the 

county level with any employment classification or non-occupational suspected source identified could 

prove invaluable at quantifying future employee and public disease risk. 
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