Scorpions of Sri Lanka
(Arachnida: Scorpionidae). Part III.
Heterometrus yaleensis sp. n. (Scorpionidae)

František Kovařík, Kithsiri B. Ranawana, V. A. Sanjeewa Jayarathe, David Hoferek & František Šťáhlavský

August 2019 — No. 283
Euscorpius
Occasional Publications in Scorpiology

EDITOR: Victor Fet, Marshall University, ‘fet@marshall.edu’
ASSOCIATE EDITOR: Michael E. Soleglad, ‘msoleglad@gmail.com’

Euscorpius is the first research publication completely devoted to scorpions (Arachnida: Scorpiones). Euscorpius takes advantage of the rapidly evolving medium of quick online publication, at the same time maintaining high research standards for the burgeoning field of scorpion science (scorpiology). Euscorpius is an expedient and viable medium for the publication of serious papers in scorpiology, including (but not limited to): systematics, evolution, ecology, biogeography, and general biology of scorpions. Review papers, descriptions of new taxa, faunistic surveys, lists of museum collections, and book reviews are welcome.

Derivatio Nominis
The name Euscorpius Thorell, 1876 refers to the most common genus of scorpions in the Mediterranean region and southern Europe (family Euscorpiidae).

Euscorpius is located at: https://mds.marshall.edu/euscorpius/
Archive of issues 1-270 see also at: http://www.science.marshall.edu/fet/Euscorpius

(Marshall University, Huntington, West Virginia 25755-2510, USA)

ICZN COMPLIANCE OF ELECTRONIC PUBLICATIONS:
Electronic (“e-only”) publications are fully compliant with ICZN (International Code of Zoological Nomenclature) (i.e. for the purposes of new names and new nomenclatural acts) when properly archived and registered. All Euscorpius issues starting from No. 156 (2013) are archived in two electronic archives:
• Biotaxa, http://biotaxa.org/Euscorpius (ICZN-approved and ZooBank-enabled)
• Marshall Digital Scholar, http://mds.marshall.edu/euscorpius/. (This website also archives all Euscorpius issues previously published on CD-ROMs.)

Between 2000 and 2013, ICZN did not accept online texts as “published work” (Article 9.8). At this time, Euscorpius was produced in two identical versions: online (ISSN 1536-9307) and CD-ROM (ISSN 1536-9293) (laser disk) in archive-quality, read-only format. Both versions had the identical date of publication, as well as identical page and figure numbers. Only copies distributed on a CD-ROM from Euscorpius in 2001-2012 represent published work in compliance with the ICZN, i.e. for the purposes of new names and new nomenclatural acts.

In September 2012, ICZN Article 8. What constitutes published work, has been amended and allowed for electronic publications, disallowing publication on optical discs. From January 2013, Euscorpius discontinued CD-ROM production; only online electronic version (ISSN 1536-9307) is published. For further details on the new ICZN amendment, see http://www.pensoft.net/journals/zookeys/article/3944/.

Publication date: 3 August 2019

Euscorpius — Occasional Publications in Scorpiology. 2019, No. 283

Scorpions of Sri Lanka (Arachnida: Scorpionidae). Part III.
Heterometrus yaleensis sp. n. (Scorpionidae)

František Kovařík¹,², Kithsiri B. Ranawana³, V. A. Sanjeewa Jayaratne³,
David Hoferek² & František Šťáhlavský²

¹P. O. Box 27, CZ-145 01 Praha 45, Czech Republic; http://www.scorpio.cz
²Department of Zoology, Charles University, Viničná 7, CZ-128 44 Praha 2, Czech Republic
³Department of Zoology, Faculty of Science, University of Peradeniya, Sri Lanka

Summary

Heterometrus yaleensis sp. n. from Sri Lanka, Southern Province, Yale National Park is described and compared with other species of the genus. The presence of a unique dorsointernal carina on the pedipalp chela distinguishes H. yaleensis sp. n. from all other Heterometrus species. Additional information is provided on the taxonomy and distribution of the genus Heterometrus in Sri Lanka, fully complemented with color photos of specimens of both sexes of the new species, as well as of their habitat. In addition to external morphology and hemispermatophore, we also describe the karyotype of H. yaleensis sp. n. (2n=99).

Introduction

Kovařík et al. (2016, 2018) summarized data about all 19 known scorpion species of Sri Lanka. These species are members of four families; Buthidae (13 species of genera Buthoscorpio Werner, 1936; Charmus Karsch, 1879; Hottentotta Birula, 1908; Isometrus Ehrenberg, 1828; Lychas C. L. Koch, 1845; and Reddyanus Vachon, 1972), Chaerilidae Pocock, 1893 (one species, Chaerilus ceylonensis Pocock, 1894), Hormuridae Laurie, 1896 (one species, Liocheles australasiae (Fabricius, 1775)), and Scorpionidae Latreille, 1802 (4 species of the genus Heterometrus Ehrenberg, 1828).

During a 2nd scorpiological expedition in the period of 4 – 17 March 2018 to survey 17 carefully selected localities, we found several new localities for the genus Heterometrus (Fig. 53), and discovered in Yale National Park (Southern Province) a new species described here as Heterometrus yaleensis sp. n.

Methods & Material

Specimens collected during the scorpiological expedition between 4 – 17 March 2018 are cited as „leg. Kovařík et al.“ These scorpions were collected by a research team consisting of the following members: František Kovařík, David Hoferek, František Šťáhlavský, and Matyáš Hiřman (Czech Republic); Kithsiri B. Ranawana, Sanjeewa Jayaratne, and Sanjaya Karunaratne (University of Peradeniya, Sri Lanka).

Specimens examined here were collected and exported legally, via permit R&E/RES/NFSRCM/2018-01 issued by the Forest Department, Sri Lanka. We only collected samples needed for taxonomic revisions of each species. For conservation purposes, additional samples of species that were encountered at various sites were not taken, but were recorded photographically in the field.

Nomenclature and measurements herein follow Stahnke (1971), Kovařík (2009), and Kovařík & Ojanguren Affilastro (2013), except for trichobothriotaxy (Vachon, 1974), hemispermatophore (see legends of Figs. 40–45), and sternum (Soleglad & Fet, 2003).

Karyotype analyses were based on chromosome preparations prepared by the spreading technique which is frequently used in scorpions (e. g., Kovařík et al., 2009; Plíšková et al., 2016). The chromosomes were stained by 5% Giemsa solution in Sörensen phosphate buffer for 30 min. Five spermatocyte nuclei were measured using the software Image J 1.45r (http://rsbweb.nih.gov/ij) with the plugin Levan (Sakamoto & Zacaro, 2009).

Systematics

Family Scorpionidae Latreille, 1802

Heterometrus Ehrenberg, 1828
(Figs. 1–53, Table 1)

Buthus (Heterometrus) Ehrenberg in Hemprich & Ehrenberg, 1828: pl. 1, figs 1–2 (part, only fig. 2); Hemprich & Ehrenberg, 1829: 351.

Type species. *Buthus* (*Heterometrus*) *spinifer* Ehrenberg, 1828, by subsequent designation (Karsch, 1879: 20).

Diagnosis: Pedipalp femur with three trichobothria, only one of which is on the internal surface. Patella of pedipalp with 19–20 trichobothria, three on ventral surface, and 13 on external surface. Chela of pedipalp with 26 trichobothria. Retrolateral pedal spurs absent. Lateroapical margins of tarsi produced into rounded lobes. Metasomal segments I to IV with paired ventral submedian carinae. Stridulatory organ located on opposing surfaces of pedipalp coxa and first leg. Total length 60 to 180 mm.

Heterometrus yaleensis sp. n. (Figures 1–53, Table 1)

http://zoobank.org/urn:lsid:zoobank.org:act:DC95D39E-5F59-4AE1-9387-562B5C4AF0EA

Table 1. Comparative measurements of *Heterometrus yaleensis* sp. n. types. Abbreviations: length (L), width (W, in carapace it corresponds to posterior width), depth (D).

<table>
<thead>
<tr>
<th>Dimensions (MM)</th>
<th>H. yaleensis sp. n.</th>
<th>H. yaleensis sp. n.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>♂ holotype</td>
<td>♀ paratype</td>
</tr>
<tr>
<td>Carapace L / W</td>
<td>12.276 / 12.068</td>
<td>15.781 / 14.485</td>
</tr>
<tr>
<td>Mesosoma L</td>
<td>18.374</td>
<td>39.947</td>
</tr>
<tr>
<td>Tergite VII L / W</td>
<td>4.234 / 9.993</td>
<td>5.861 / 11.748</td>
</tr>
<tr>
<td>Metasoma + telson L</td>
<td>44.657</td>
<td>47.072</td>
</tr>
<tr>
<td>Segment I L / W / D</td>
<td>5.077 / 5.897 / 5.222</td>
<td>5.604 / 6.937 / 5.168</td>
</tr>
<tr>
<td>Segment II L / W / D</td>
<td>5.948 / 5.449 / 4.875</td>
<td>6.130 / 6.119 / 5.067</td>
</tr>
<tr>
<td>Pedipalp L</td>
<td>46.520</td>
<td>46.661</td>
</tr>
<tr>
<td>Femur L / W</td>
<td>10.610 / 4.510</td>
<td>10.248 / 4.717</td>
</tr>
<tr>
<td>Patella L / W</td>
<td>12.519 / 4.951</td>
<td>11.751 / 5.662</td>
</tr>
<tr>
<td>Chela L</td>
<td>23.391</td>
<td>24.662</td>
</tr>
<tr>
<td>Manus W / D</td>
<td>11.458 / 6.039</td>
<td>13.094 / 6.578</td>
</tr>
<tr>
<td>Movable finger L</td>
<td>12.299</td>
<td>14.725</td>
</tr>
<tr>
<td>Total L</td>
<td>75.307</td>
<td>102.80</td>
</tr>
</tbody>
</table>

Heterometrus yaleensis sp. n.

(Etymology. Named after Yale National Park, which includes both localities of the new species.)

Diagnosis. Total length of adults 75 (male) to 103 (female) mm. Base color uniformly reddish brown to black, telson yellow to reddish brown, legs yellow to reddish brown, lighter than body. Chelicerae yellow with dark reticulation, anterior manus and fingers reddish black. Pectines with 13–14 teeth in both sexes. Male pedipalp chela, femur and patella narrower and longer than female, ratio chela length / manus width 2.04 in male, 1.88 in female. Chela lobiform in both sexes, strongly tuberculate with pronounced carination, including dorsointernal carina on chela in both sexes. Patella of pedipalp with several small internal tubercles. Carapace smooth, very sparsely granulated laterally. Metasomal segment I wider than long, length / width ratio 0.80–0.86 in both sexes. Telson hirsute, elongate, ventrally sparsely granulate, vesicle approximately as long as aculeus.

Description. Total length male holotype 75.3 mm, female paratype 102.8 mm. Coloration (Figs. 1–4, 51–52): base color uniformly reddish brown to black; telson and sternoplectal area yellow to reddish brown; legs yellow to reddish brown, lighter than body. Measurements of the carapace, telson, segments of the metasoma and segments of the pedipalps are given in Table 1.

Chelicerae (Figs. 26–27). Chelicerae yellow strongly reticulate, anterior part reddish black. Fingers reddish brown...
Kovařík, Ranawana, Jayarathne, Hoferek & Šťáhlavský: Heterometrus yaleensis sp. n.

3

to black. Dentition typical for the genus, teeth sharp. Tegument basally smooth and glossy without granulation.

Pedipalps (Figs. 5–21). Orthobothriotaxic type C. Pedipalp femur with three trichobothria, only one of which lies on the internal surface. Patella of pedipalp with 19 trichobothria (Figs. 16–18), one internal, two dorsal, three ventral and 13 external. Chela of pedipalp with standard 26 trichobothria (Figs. 13–15). Male with fingers, chela, femur and patella of pedipalp narrower and longer than female, ratio of chela length/manus width 2.04 in male, 1.88 in female. Chela lobiform in male, strongly tuberculate with pronounced carination, including dorsointernal carina in both sexes. Patella smooth with seven obsolete carinae developed, with several small internal tubercles. Femur smooth, with four granulate carinae developed. Fingers extremely short, especially the fixed finger of the female (Fig. 21).

Carapace (Figs. 36 and 38). Slightly trapezoidal (narrower anteriorly) and slightly longer than wide; anterior margin strongly concave medially. Tegument smooth very sparsely granulated laterally. Median and posteriolateral furrows wide and deep, others absent. Median eyes large and raised; three pairs of lateral eyes of the same size, aligned along each anterolateral corner.

Legs (Figs. 22–25). Retrolateral pedal spurs absent. Lateroapical margins of tarsi produced into rounded lobes. Legs smooth, without carinae and granules, unevenly hirsute.

Figures 1–2: *Heterometrus yaleensis* sp. n., holotype male, dorsal (1) and ventral (2) views. Scale bar: 10 mm.

Metasoma and telson (Figs. 28–35). All segments with carinae developed. All carinae on metasoma V and dorsal carinae on metasoma II-IV granulate, others smooth. Metasomal segment I wider than long, length/width ratio 0.80–0.86 in both sexes. The metasoma I-IV with eight carinae, metasoma V with seven carinae. All metasomal segments completely smooth without granules. Several minute granules present only on dorsal aspect of metasoma V. Metasoma sparsely hirsute with long reddish macrosetae. Telson hirsute with long macrosetae,
Figures 5–12: *Heterometrus yaleensis* sp. n., holotype male, pedipalp chela dorsal (5), external (6), and ventral (7) views, pedipalp patella dorsal (8), external (9), and ventral (10) views, pedipalp femur dorsal (11) and ventral (12) views.
Figures 13–27: *Heterometrus yaleensis* sp. n., paratype female. **Figures 13–21.** Pedipalp chela dorsal (13), external (14), and ventral (15) views, pedipalp patella dorsal (16), external (17), and ventral (18) views, pedipalp femur dorsal (19) and ventral (20) views, and pedipalp movable finger dorsal view (21). The trichobothrial pattern is indicated in Figures 13–19. **Figures 22–25.** Distal segments of legs I–IV, retrolateral views. **Figures 26–27.** Right chelicera dorsal (26) and ventral (27) views.
Figures 28–35: *Heterometrus yaleensis* sp. n., telson and metasoma. Figures 28, 30–32. Holotype male, telson lateral (28), metasoma and telson, lateral (30), ventral (31), and dorsal (32) views. Figures 29, 33–35. Polotype female, telson lateral (29), metasoma and telson, lateral (33), ventral (34), and dorsal (35) views. Scale bar: 10 mm (30–35).
Figures 36–45: Heterometrus yaleensis sp. n. Figures 40–42: H. gravimanus (Pocock, 1894). Figures 36–37. Holotype male, carapace and tergite I (36), and sternopleural region and sternites III–V (37). Figures 38–39. Paratype female, carapace and tergites I–II (38), and sternopleural region and sternites III–IV (39). Figures 40–45. Comparison of right hemispermatophores of H. gravimanus from North Central Province, Anuradhapura District, Mihintale, 08°20’51.8”N 080°30’27.7”E, 156 m a.s.l. (40–42; reproduced from Kovařík et al., 2016) and H. yaleensis sp. n., holotype male (43–45). Convex (40 and 43), anterior (41 and 44) and concave (42 and 45) aspects. Scale bars: 2 mm (40–42 and 43–45). Abbreviations: bl, basal lobe; dl, distal lamina; dtdl, dorsal trough of distal lamina; h, hook; ml, median lobe; mtt, median transverse trough; pl, proximal lobe; t, trunk; tf, truncal flexure.
smooth, sparsely granulated ventrally. Vesicle elongate, lateral profile elliptic or weakly pyriform. Aculeus curved with thick base, distally sharply bent, approximately as long as vesicle.

Hemispermatophore (Figs. 43–45). Lamelliform. Distal lamina long, slender, basal capsular portion short, ca. 10% of total lamina length, wider, dorsal trough nearly flat with slightly elevated transverse strip, bordered internally by strong carina; portion of lamina distal to hook uniform in width throughout most of its length; distal terminus of lamina rounded, slightly tapered, not dilated or expanded. Hook prominent, with curved, sharp tip and wide triangular base, lacking dorsal trough. Median lobe elongate, extending from base of hook to truncal flexure, with fine longitudinal carina and trough along internal side. Inner lobe and median transverse trough large, prominent. Basal and proximal lobes smaller but well developed, blunt, rounded. All lobes of capsule region smooth, without barbs or spicules. Trunk broader than both capsule and distal lamina, parallel-sided, with moderately sclerotized diagonal axial rib.

Karyotype (Figs. 46–48). We analyzed the male holotype. The diploid number of this species is 99 chromosomes (Fig. 46). During pachytene and metaphase I we identified also one quadrivalent and one trivalent in addition to 46 bivalents (Figs. 47, 48). The chromosomes that form multivalents have different lengths. The quadrivalents comprise the two longest chromosomes of the karyotype (1.86 % and 1.71 % of the diploid set) and two shorter chromosomes (1.07 % and 0.89 % of the diploid set). The tetravalent comprises one longer chromosome (1.38 % of the diploid set) and two very short chromosomes (0.71 % and 0.61% of the diploid set). Despite the different lengths, all chromosomes that form multivalents seem to be metacentric. Metacentric morphology of chromosomes predominate also in bivalents (34 pairs). We identified only seven pairs of submetacentric (pairs Nos. 9, 11, 18, 20, 29, 42, 43), three pairs of subtelocentric (pairs Nos. 35, 38, 41) and two pairs of telocentric chromosomes (pairs Nos. 45, 46).

Affinities. The described features distinguish *H. yaleensis* sp. n. from all other species of the genus. *H. yaleensis* sp. n. is reliably distinguished from all other *Heterometrus* species by the unique carination of the chela, with a strongly developed dorsointernal carina (Figs. 5 and 13 versus figs. 180–231 in Kovařík, 2009: 99–101). Other major taxonomically important characters are the shape and granulation of the pedipalp chela with extremely short fixed finger (Figs. 5 and 13) and the spiniform seta formula of tarsomere II 4/4: 4/4: 5/4: 5/4.

Comments on localities and life strategy. At the type locality (Locality No. 18CE, Southern Province, Yale National Park, 06°13'48.1"N 81°20'27.7"E, 7 m. a.s.l.) and locality No. 18CC (Southern Province, Yale National Park, 06°23'46.5"N 81°23'34.1"E, 40 m. a.s.l.) *H. yaleensis* sp. n. constructed oblique 30 to 50 cm long burrows once or twice curved, situated in open terrain (Figs. 49–50). On the ground among leaf litter we also recorded at both of these localities *Lychas srilankensis* Lourenço, 1997 and at locality 18CC *Reddyanus basilicus* (Karsch, 1879).

At locality 18CC we recorded temperature varied from 31 ºC (maximum temperature at day) to 24.7 ºC (minimum temperature at night) and humidity varied between 48% and 78%. At the locality 18CE we recorded a minimum nighttime temperature of 24.3 ºC (temperature) and nighttime humidity of 65%.

Acknowledgments

We thank many local people from Sri Lanka who participated and helped in the expedition to Sri Lanka; Victor Fet and Michael Soleglad for their help in processing the manuscript. The specimens were collected and exported under Permit No. R&E/RES/NFSRCM/2018-01 from Forest Department, Sri Lanka, Conservation, Sri Lanka. The cytogenetic analysis was supported by a grant received from the Ministry of Education, Youth and Sports of the Czech Republic No. SVV 260208/2015. Further, we thank Graeme Lowe and two anonymous reviewers for their comments to the manuscript, and Graeme Lowe for permission to republish photos in Figs. 40–42.
Figures 49–50: *Heterometrus yaleensis* sp. n., locality 15CC (49) and type locality 15CE (50)
Figures 51–52: *Heterometrus yaleensis* sp. n., in vivo habitus. Male holotype (51) and female paratype (52).
Figure 53: Map showing confirmed distribution of the Sri Lankan *Heterometrus* species.
References

