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ABSTRACT 

Metallocenophanes are metallocenes in which the cyclopentadienyl ligands are connected by a 

molecular bridge. Recently, metallocenophanes have received increasing attention because of 

their structure, chemical reactivity, and potential use as building blocks for new materials. Even 

though metallocenophanes have been synthesized by different methods, the majority of these 

methods involved the use of iron with rare examples of other metals. Therefore, a new method 

was employed that in addition to making ferrocenophane, will allow us to synthesize 

metallocenophanes with V, Cr, Mn, Co, and Ni as central metals. This thesis reports the 

synthesis of [4]ferrocenophane via a “flytrap” route. The reaction of sodium cyclopentadienide 

with 1,4-dibromobutane afforded the ligand 1,4-bis(cyclopentadienyl)butane (86% yield of crude 

product). The ligand was deprotonated by butyllithium which after treating it with ferrous 

chloride afforded the final product as an orange solid in overall of (13% yield of crude product). 

The 
1
H NMR confirmed the synthesis of [4]ferrocenophane. UV-Visible data analysis was used 

to confirm the parallel planar structure of the cyclopentadienyl rings in this compound.  
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CHAPTER ONE 

 

INTRODUCTION 
 

The Discovery of Metallocenes 

A metallocene may be thought of as “sandwich complex,” in which a metal lies between 

two parallel cyclopentadienyl ligands (Cp, Figure 1).  

 

Figure 1: Metallocene structure 

The first metallocene discovered was ferrocene in the early 1950’s.
1 

In an attempt to synthesize 

fulvalene, Kealy and Pauson reacted dicyclopentadienyl magnesium bromide (CpMgBr) with 

anhydrous iron (III) chloride. Sublimation of the resulting mixture yielded orange crystals with a 

formula of C10H10Fe.
1 

Because of its unusual stability and special characteristics, the new iron 

compound attracted much attention. Kealy and Pauson’s hypothesis was that the iron metal 

bonded to one carbon of each of the Cp rings ionically (Figure 2) as occurs in a Grignard 

reagent.
 1

 

 

Figure 2: The iron compound structure proposed by Pauson and Kealy 

  Shortly after this, Wilkinson and Fischer separately proposed a ‘sandwich structure’ in 

which the iron metal is bound to all of the five carbon atoms of each of the Cp rings. Soon, the 

proposed structure was confirmed by the X-ray diffraction studies (Figure 3).
2,3,4 

The name 
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ferrocene was given to the new iron compound due to ferrocene possessing aromatic properties 

similar to those of benzene.
2 

 

Figure 3: The ferrocene structure as it was proposed by Wilkinson and Woodward 

Ferrocene is very symmetrical and can have two limiting conformations; eclipsed (D5h) 

and staggered (D5d) (Figure 4). The latter was found to be slightly more stable.
5
  

                          

                                        Eclipsed (D5h)                               Staggered (D5d) 

Figure 4: Ferrocene conformational structures: eclipsed (D5h), and staggered (D5d) 

In addition to parallel Cp metallocenes, bent metallocenes have also been synthesized and 

found to be very interesting.
6 

In these complexes, the Cp rings tilt from the parallel orientation of 

ferrocene (Figure 5).  

 

Figure 5: The structure of bent metallocenes 
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This tilt causes the orbitals of the Cp ligands to interact differently with the d-orbitals of the 

central metal than those in parallel metallocenes.  Bent metallocenes can be prepared by bonding 

groups to the central metal in between the two Cp ligands or by connecting the two Cp rings with 

a short bridging group.
6 

Crystallographic studies had shown that carbon bridges shorter than four 

carbon atoms leads to strained metallocenes.
7
  

 Ferrocene has many interesting properties. For example, it is highly stabile even at high 

temperatures and soluble in most organic solvents despite having metal-carbon bonds.
8 

Therefore, ferrocene and its derivatives can be used in a variety of applications and conditions 

without the fear of breaking up the parent molecule. 

 Bonding in metallocenes 

 Metallocenes exhibit unusual stability and a unique structure.
8
 Two approaches have 

been proposed to explain these interesting characteristics of metallocenes. The first approach was 

the 18 valence electron (18 VE) rule. The central metal has nine valence orbitals (one s, two p, 

and five d) which can accommodate 18 electrons. Some of these electrons come from the metal, 

and the rest are contributed from the ligands. The 18 electron rule is similar to that of the octet 

rule in which a complex achieves its highest stability if it possesses 18 electrons in its valence 

shell. In other words, these complexes have a closed shell structure which is isoelectronic with 

the noble gas in the period.  

The second approach employs molecular orbital theory (MO) to explain the structure of 

metallocenes.
9
 MO theory takes into consideration the interactions between the metal and ligand 

orbitals. Such interactions lead to the formation of bonding and anti-bonding orbitals. If there is 

little or no interaction between these orbitals, a non-bonding orbital is formed. In MO theory, if 

all the bonding orbitals are occupied, the complex is typically in its highest stability. This 
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explains the high stability of ferrocene (18 VE). The π electrons in ferrocene are placed in both 

the bonding orbital (e1g) and non bonding orbitals (a1g), while the anti-bonding orbitals (e
*
1g) 

remain empty (Figure 6). Reducing the number of electrons in bonding orbitals, usually 

decreases the stability of the complex. This is simply because the bond between the metal and 

the ligand is weakened due to the extending of the distance between the metal and the ligand 

(Table 1).  This explains the high reactivity of chromocene (16 VE) and vanadocene (15 VE).
10 

 

Figure 6: MO diagram for ferrocene (D5d)
10 
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Similarly, complexes with more than 18 VE such as nickelocene 19 VE and cobaltocene 20 VE 

are less stable as well. The extra electrons placed in anti-bonding orbitals (e
*
1g) destabilize the 

complex. 

 

M-Cp Bond Length 

V 2.27 Ǻ
 

Cr 2.16 Ǻ 

Fe 2.05 Ǻ 

Co 2.12 Ǻ 

Ni 2.18 Ǻ 

 

Table 1: The M-Cp bond lengths in different metallocenes 

Metallocenophanes  

Metallocenophanes are metallocenes in which the two cyclopentadienyl ligands Cp are 

attached by an atomic or molecular bridge (Figure 7). 

 

Figure 7: Metallocenophane structure 

The first bridged ferrocene (ferrocenophane) was prepared shortly after the discovery of 

ferrocene.
11

 Ferrocenophanes are the most studied complexes among all of metallocenophanes. 

Research has shown that the two Cp ligands cannot connect with a one atom carbon bridge 

because of the strain that would be generated. However, cyclopentadienyl rings have been 
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prepared with two or more bridging atoms.
12

 Strained metallocenophanes can undergo ring-

opening polymerization and yield high molecular weight polymers (Figure 8).
13 

 

Figure 8: Ring-opening polymerization of metallocenophanes 

Ferrocenophanes can be grouped into two major classes. The first class includes 

mononuclear ferrocenophane in which one or more bridging units are introduced. Based on the 

number of the bridges, mononuclear ferrocenophanes can be divided into two subgroups: single 

bridge ferrocenophanes ([m]) and multiply-bridged ferrocenophanes ([m]
n
). 

 The second class is defined as multinuclear ferrocenophanes ([m
n
]) in which ferrocene 

units are connected by one or multiple bridges (Figure 9).
9 

 

Figure 9: Ferrocenophane structures 
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Syntheses of Metallocenophanes 

Metallocenophanes have been prepared via a variety of different synthetic routes. The 

most common methods that were found useful in the synthesis of different metallocenophanes 

include: 

Salt-Metathesis Route (metallocene lithiation): This method involves the deprotonation 

of the parent metallocene, allowing it to react with a dihalide compound which serves as a 

bridging unit, between the two Cp rings. Usually, this method is utilized when preparing strained 

metallocenophanes.  

In 1975, Osborne and co-workers utilized this method to prepare the first 

[1]ferrocenophane with  a silicon bridge (Figure 10).
14

 The parent ferrocene was deprotonated in 

the presence of tetramethylethylenediamine (TMEDA) and the resulting compound 

(dilithioferrocene.tmeda) was reacted with dichlorodimethylsilane (Me2SiCl2) to afford 

[1]ferrocenophane. Similarly, distanna[2]ferrocenophane (1996) and trithia-bridged 

ferrocenophane were successfully synthesized.
15,16

 In addition, different metallocenophanes with 

[1],[2], and [3] bridging units were successfully synthesized as well.
17

   

 

Figure 10: Synthesis of the first [1]ferrocenophane 

Ring-closing Metathesis Route: This method is considered one of the most important 

methods of preparing metallocenophanes. Here, 1,1-dialkylmetallocene is transformed into 

[m]metallocenophane using 3 mol-% of the Grubbs’ catalyst RuCl2-(CHPh)(PCy3)2. This method 
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is commonly used when synthesizing metallocenophanes with four, six, and eight bridging units. 

In 2002, Ogasawara and co-workers reported the preparation of [4]ferrocenophane.
18

 Similarly, 

Buchowicz and co-workers reported the preparation of [4]nickelocenophane.
19

 Figure 11 shows 

the general pathway of preparing [4]metallocenophane.  

 

 

Figure 11: Synthesis of [4]metallocenophane via ring-closing metathesis route
18,19

 

Fly-trap Route: This method was first proposed by Lüttringhaus and Kullick in 1960.
20

 

Ferrocenophanes with 3, 4, and 5 hydrocarbon bridges were prepared by this route. In addition, 

wide variety of metallocenophanes were successfully synthesized via the same method. In 2008, 

Mayer, et al. reported the synthesis of first [2]cobaltocenophane, and [3]cobaltocenophane in 8% 

and 9% yields, respectively.
21

 Generally, the mechanism of the reaction includes the formation of 

the ligand (bis-cyclopentadienyl alkane) from the reaction of sodium cyclopentadienide with a 

dibromoalkane, and then the ligand is doubly deprotonated and allowed to react with a metal salt 

(MX2) to give an [m]metallocenophane as a final product. 
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   Figure 12 shows the general pathway of preparing a generic metallocenophane via the 

fly-trap route.  

 

 

 

Figure 12: Metallocenophanes Synthesis via the fly-trap Route 

The Effects of the Tilt Angle (α) in Metallocenophanes 

The introduction of bridging units to metallocenes has a very interesting effect on the 

resulting metallocenophanes and the tilt angle that would be generated (α, Figure 13). 

 

Figure 13: The geometrical parameters (α, β, δ) depictions of metallocenophanes
10 

The size of the angle (α) is caused mainly by two factors: the size of the metal and the elements 

comprising the bridging units.
10

 Large metals push the ligands away from each other which 

increases the tilt angle while small metals decrease the distance between the two Cp ligands 

which result in smaller tilt angle. In addition, the size of the bridging elements can affect the tilt 
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angle in different ways. If two complexes consist of the same central metal, but different 

bridging units, this would result in metallocenophanes with shorter bridges producing larger tilt 

angles while metallocenophanes with longer bridges causing smaller tilt angles. Table 2 shows 

the effect of the increased radius of bridging elements on the tilt angles.   For example, 

[1]ferrocenophane with a boron bridge shows the largest tilt angle which is consistent with its 

small atomic radius (87 ppm).  

E Radius/ppm α[˚] 

B
 87 32.4 

S 88 31.1 

p 98 26.7 

Si
 111 20.8 

 

Table 2: Tilt angles of [1]ferrocenophane with different bridging elements 

   Tilted structures are not necessarily strained.
9
 According to Green, the d-electorn 

configuration of the central metal can influence the (α) angle of [m]metallocene. The parallel 

structures in metallocenes are the result of electrons not occupying the anti-bonding orbitals, 

which minimize electron- electron repulsion. If none of these forces is present, there is no 

inherent weakening of the metal ring bonding upon the tilt angle.
22 

To elaborate on this, Green 

has shown that when comparing the calculated energy of ferocene (Fe(II), d
6
) with the 

hypothetical triplet zirconocene [Cp2Zr] (Zr(II), d
2
), the energy varies with the tilt angle (Figure 

14). In ferrocene, all of the orbitals in the HUMO level are occupied. As a result, the energy of 

the complex is raised above the ring bending. Therefore, the two Cp rings in ferrocene prefer to 

be parallel planar. Zirconocene on the other hand, shows no energy variations when the tilt angle 
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changes. Based on these results, with two or fewer d electrons, metallocenophanes could be 

strain free even if very short bridges are introduced.
22 

 
 

Figure 04: Variation of the total energy of (Cp2Fe) and triplet (Cp2Zr) 

as tilt angle increases.
22

 

Project Goals 

  Over the past 50 years, ferrocenophanes have been prepared by different synthetic routes. 

However, there have been rare examples of applying these methods on different metals other 

than iron.  For instance, in 2007, Buchowicz and co-workers reported the synthesis of 

[4]nickelocenophane via ring-closing metathesis route.
19

 Generally, these methods work quite 

well with iron, but poorly with other metals.
 
In 1986, Bitterwolf reported the synthesis of bridge 

substituted [4]ferrocenophane. The reaction steps are shown in Figure 15.
23
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Figure 15: Synthesis of bridge substituted [4]ferrocenophane 

In other reported ferrocenophanes, similar methods have been employed.
24,25 

In those 

methods, ferrocene often was used to make ferrocenophanes and the reason is related to its 

closed shell structure of ferrocene (18 VE). However, when other metallocenes are utilized, 

specifically open shell complexes, the reaction takes different pathways. Instead of making 

metallocenophanes, the central metal becomes an active site which leads to the reaction between 

the reagents and the metal instead of the Cp rings. To overcome this problem, we propose the use 

of the flytrap route. When utilizing this method, active metals could be involved in the synthesis 

of different metallocenophanes. The flytrap method was first reported by Lüttringhaus and 

Kullick in 1960. They made [3], [4], and [5]ferrocenophane. However, the yields were extremely 

low (vide infra). In this project, we seek to utilize the same route with a modification of the 
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original procedure of Lüttringhaus and Kullick, hoping to increase the overall yield and fully 

characterize the [4]ferrocnenophane, and then apply it to more active metals. The general 

pathway of the reaction is shown below (Figure 16). 
 

 

Figure 16: Synthesis of [4]ferrocenophane via fly-trap route 
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CHAPTER TWO 

EXPERIMENTAL SECTION 

General Data 

All air and moisture sensitive compounds were handled under a nitrogen atmosphere using 

standard Schlenk techniques unless otherwise stated. Solids were handled under argon in a 

Vacuum Atmospheres glovebox equipped with an HE-493 dri-train. Hexane was degassed by 

bubbling nitrogen through it. Tetrahydrofuran (THF) was distilled from potassium/benzophenone 

ketyl under nitrogen. Butyllithium (Aldrich), 1,4-dibromobutane (ACROS), dicyclopentadiene 

(ACROS), iron powder (Aldrich), iron(III) chloride (ACROS) and anhydrous iron(II) chloride 

(Strem) were used as received. NMR spectra were obtained on a Bruker AVANCE III 400 MHz 

instrument. 

Preparation of [(C5H4)(CH2)4[(C5H4)]Fe 

  Preparation of sodium cyclopentadienide, Na(C5H5): This procedure is a modification 

of a previously published paper.
26

 Dicyclopentadiene (88.7 g, 671 mmol) was placed into a 500 

mL Schlenk flask. Sodium metal (2.5g, 109 mmol) was added to the flask, and the system was 

charged with nitrogen. The reaction mixture was heated to reflux at 160 ºC for 9 hours. After 

cooling to room temperature, the resulting solid was filtered through a fritted funnel and washed 

with hexane (20 mL) three times. The resulting white solid was dried in vacuo to yield 9.2 g 

(96%).  

Preparation of 1,4-bis(1,3-cyclopentadienyl)butane, (C5H5)(CH2)4(C5H5): Two 

equivalents of sodium cyclopentadienide (5.2 g, 29.5 mmol ) were placed into a three-neck round 

bottom flask equipped with a magnetic stir bar, a reflux condenser, a N2 inlet, and dropwise 

addition funnel. Tetrahydrofuran (60 mL) was added to the flask via the addition funnel, and the 
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resulting brown mixture stirred for 10 min. Then, 1,4-dibromobutane (6.33 g, 29.3 mmol ) was 

added dropwise to the stirred mixture to afford a creamy yellow solution that was then heated to 

reflux for 5 h. After cooling to room temperature, the solvent was removed in vacuo, leaving a 

light yellow solid. The solid was extracted with hexane (60 mL) and filtered via Buchner funnel 

in the air. The yellow liquid was cooled to (– 10 ºC) overnight. The solvent was removed, and 

the resulting dark yellow oil was filtered through a 1 in layer of silica gel. The hexane was 

removed in vacuo to afford 4.71 g (86%) of 1,4-bis(cyclopentadienyl)butane as a golden oil. 

Preparation of Li2[(C5H4)(CH2)4(C5H4)]: Under nitrogen, (C5H4)(CH2)4(C5H4) (1.8 g, 

9.6 mmol )  was placed in a 250 mL Schlenk flask equipped with a stir bar and a rubber septum. 

Hexane (40 mL) was added to the flask via a syringe. The solution was stirred for 10 min., then 

cooled in a liquid nitrogen/acetone bath to -78 ºC for 15 min. Butyllithum (2.5 M, 5.54 g, 86.5 

mmol) was added dropwise  via syringe to the flask. The mixture was stirred for 10 min., 

warmed to ambient temperature, and stirred for two hours. After 30 min., a white solid began to 

precipitate. After two hours, the resulting white solid was isolated via filtration and dried in 

vacuo and kept in the glovebox. Yield: 1.45 g (76%)      

Preparation of [(C5H4)(CH2)4[(C5H4)]Fe: The deprotonated ligand  

 Li2 [(C5H4)(CH2)4(C5H4)] (0.5 g, 2.5 mmol) was placed into a round bottom flask equipped with 

a rubber septum and a magnetic stir bar. Anhydrous iron(II) chloride (0.32 g, 2.5 mmol) was 

placed into another Schlenk flask that was equipped with a rubber septum and a magnetic stir 

bar. Tetrahydrofuran (THF) (20 mL) was added to each of the flasks. Both solutions were stirred 

for 15 min, then cooled to -78 ºC. The iron(II) chloride suspension was added to the 
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 Li2 [(C5H4)(CH2)4[(C5H4)] via cannula. The mixture turned dark orange and was stirred for 15 

min. at -78 ºC. After warming to room temperature, the solution turned black after an hour. The 

solution was stirred for 16 h.  

The solvent was removed in vacuo, leaving a viscous black solid. The solid was extracted 

with 60 mL hexane at 60 ºC for 30 min and filtered to produce an orange liquid. The orange 

liquid was concentrated by removing half of the hexane in vacuo. The resulting concentrated 

dark orange liquid was stored in a refrigerator (-10 ºC) overnight, and 0.08 g (13%) of 

[(C5H4)(CH2)4(C5H4)]Fe precipitated as an orange solid. NMR (C6D6) 1H: δ 1.6 (d, CH2), 2.3 (s, 

CH2), 3.98 (d, Cp-Cp). 
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CHAPTER THREE 

RESULTS AND DISCUSSION 

Synthesis of sodium cyclopentadienide: This compound was prepared in a minor 

modification of the procedure that was previously reported by Panda et al.
26

 Dicyclopentadiene 

and sodium metal were used as a starting materials. After approximately 6 hours at reflux, the 

reaction was incomplete and sodium particles were still seen in the reaction mixture. However, 

allowing the reaction to extend to 9 hours afforded sodium cyclopentadienide as a white solid in 

overall yield of 96%. 

 

Synthesis of 1,4-bis(dicyclopentadienyl)butane: This compound was also obtained  by 

modifying  a previous procedure.
27

 Sodium cyclopentadienide reacted with 1,4-dibromobutane, 

to give a yellow-orange oil. After the product was purified by filtering the yellow oil through a 1 

inch layer of silica gel and removing the solvent in vacuo, a golden oil was obtained in overall 

yield of 86%. This yield assumes the total mass of product is the expected product.  As will be 

shown, the material is not pure and the actual yield is lower, possibly by a significant amount. 

 

 

The ligand was characterized by 
1
H NMR spectroscopy (Figure 22 in the Appendix). 

However, it was not fully interpreted due to the complexity of the spectrum. The protons on the 

Cp rings should display two doublets near (6-6.5 ppm). What was observed was more complex. 

(1) 

(2) 
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In addition, the protons of the carbon chain should generate two triplets, but the aliphatic region 

of the NMR (0.8-3 ppm) was much more complex than this. One explanation for the complexity 

of the spectra is that the ligand is expected to have six isomers (Scheme 1).
27

 

 

Scheme I: The Six Isomers of 1,4-bis(dicyclopentadienyl)butane 

The deprotonation of the ligand was achieved in a cold bath (acetone/liquid nitrogen -78 

ºC), using n-butyllithium with hexane as the solvent.  The resulting compound was obtained as a 

white solid. The overall yield was 76% of the expected mass. 

    

Synthesis of [4]ferrocenophane: This compound was obtained by following a procedure 

reported earlier by Luttringhaus et al.
20

 The deprotonated ligand was reacted with ferrous 

chloride in THF at (-78 ºC) to afford [4]ferrocenophane as an orange solid in an apparent overall 

yield of 13%.  

 

(3) 
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Surprisingly, when attempting to sublime the orange solid, it liquefied as the temperature 

approached 100 ºC.  

 
1
H NMR spectroscopy confirmed the synthesis of [4]ferrocenophane (Figure 23 in the 

Appendix). This spectrum will be interpreted based on a hypothesis proposed by Rinehart et al.
28

 

In tilted ferrocenophanes, it is suggested that the α-protons of the Cp rings are closer to iron atom 

than the β-protons (Figure 17). As a result, α-protons would experience  greater shielding than 

the β-protons. This effect would cause a small splitting of the Cp protons. Figure 24 in the 

Appendix shows a spectrum of [3]ferrocenophane with the cyclopentadienyl proton splitting 

pattern.  

 

Figure 17: The location of α and β protons in ferrocenophanes 

Using a similar approach, the 
1
H NMR spectrum of [4]ferrocenophane  shows three 

signals. The first appeared at ca. 4 ppm. This signal was assigned for the protons of the Cp rings. 

The absence of large splitting of the ring’s protons indicates that the two Cp rings are no longer 

tilted. However, the minor splitting of the Cp rings proton resonance can be explained by either 

steric compression or anisotropy effects that can be attributed to the CH2-CH2 bonds. The second 

(4) 

β 
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and third signals appeared at (1- 3 ppm) and were assigned to the methylene groups of the carbon 

bridging units.  

UV-VISIBLE SPECTROSCOPY 

The UV/Visible spectrum of [4]ferrocenophane will be interpreted based on the 

UV/Visible spectra of ferrocene and tilted ferrocenophanes that have been reported previously.
17

 

As was discussed earlier, a hexane solution of ferrocene is amber in color. The UV/Visible 

spectrum of ferrocene shows two weak bands at (325 nm and 440 nm). Previous studies have 

assigned the 325 nm band in ferrocene to the absorption of the Cp rings, while the 440 nm band 

has been attributed to a pure 3d-3d transition.
29,30

   

The two Cp rings shift from their parallel orientation when short bridges are introduced. 

The previously reported [1]ferrocenophanes have extremely strained structures. When a short 

bridge is connecting the two Cp rings such as in [1]ferrocenophane, the d-orbitals rearrange to 

adapt to the new molecular geometry. This means that the non-bonding orbitals on the iron metal 

have to be orthogonal (Figure 18). This tilt causes the energy levels of the d-orbitals to be shifted 

from their original place in which the (a1ꞌ) HOMO is raised while LUMO level is lowered in 

energy.
17

  

 

Figure 18: Molecular orbital for ring-tilted metallocenes (schematic).
31
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As the two Cp rings move away from the parallel structure of ferrocene, the wavelength 

shifts to longer wavelength than the 440 nm of ferrocene. The preparation of [1]ferrocenophane 

with different bridging units such silicon, phosphorus, and sulfur showed long wavelength 

absorption (Figure 19).                                     ……… 

…..                  

                                               

 

 

Figure 19: Color shifts and λmax (nm) absorption of different tilted ferrocenophanes 

The explanation of the peak position shifts from 325 nm band has been attributed to 

symmetry factors since the 325 nm band represents the absorption of the Cp rings. In other 

words, the increased tilt angles of the three [1]ferrocenophanes cause a decrease in the HOMO-

LUMO gap of the d orbitals. Consequently, the energy is lowered which leads to a red shift.
17

  

The UV-Visible spectrum of [4]ferrocenophane shows two weak bands (Figure 20). The 

first band appeared at 326 nm, while the second band occurred at 432 nm. Both bands have been 

marked as symmetry forbidden electronic transitions (N-Q).
29

 As expected, the spectrum of 

[4]ferrocenophane shows significant similarity to the parent ferrocene . They both have the same 

λmax (nm):                          504                        498                             478                                440                       432          
α (˚) :                                 31.1                       26.7                            20.8                                 0                            1 
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color shift which can be attributed to the HUMO-LUMO gap differences. As the tilt angle 

decreases, the HUMO-LUMO gap increases, leading to higher energy and therefore to a yellow 

shift. Since both compounds have the same color shifts and similar λmax absorption, this suggest 

that the two Cp ligands in [4]ferrocenophane are parallel. 

  

Figure 20: The UV-VIS spectrum of [4]ferrocenophane in hexane 
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Low Yield Investigations 

When this project was begun, the aim was to reproduce, and then improve upon, 

Lüttringhaus and Kullick’s work which involved the synthesis of [m]ferrocenophanes. In 1960, 

they were the first to synthesize [m]ferrocenophanes following a method called “flytrap route”. 

However, the yields were extremely low. For instance, ferrocenophane with [3], [4], and [5] 

carbon bridging units were prepared in 2.5%, 0.053%, 0.025% respectively. Our group wanted to 

improve the yields by modifying the original procedure. Over the past six years, many attempts 

have been made to make ferrocenophanes. Wilson was able to make 

[4]octamethylferrocenophane in a crystalline form, but in overall yield of 2 %.
32 

Later, Joudah 

appeared to succeed to increasing the yield, but without purification.
33 

The product was never 

isolated in above trace amounts as a solid, which clearly indicated the presence of impurities. 

Finally, in the current attempts to synthesize [4]ferrocenophane, the same problems were 

encountered: low yield and lack of purification. In the next discussion, possible factors that could 

have affected the reaction steps will be investigated. 

The first step involved the preparation of sodium cyclopentadiende. The compound was 

obtained as white solid with no purification. The compound was air-sensitive which made it 

difficult to characterize. However, the compound was identified and shown to be sodium 

cyclopentadienide by reacting it with ferrous chloride, which afforded ferrocene in a high yield, 

suggesting  the material is highly pure. 
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The second step involved the preparation of 1,4-bis(dicyclopentadienyl)butane. The 

ligand was obtained as a golden oil. However, the ligand could not be purified further. Besides 

the six isomers that the ligand is expected to have, other products might have also been mixed 

with the ligand as it is shown below: 

 

Usually such a mixture can be identified through spectroscopic methods. Unfortunately, 

the 
1
H NMR spectrum of the ligand was very complex and it was not possible to determine 

which materials were present in the mixture. All of the expected products have similar structures 

so there will be considerable overlap in the 
1
H NMR. For example, vinyl proton exists in all of 

the different products. Therefore, it would not be possible to distinguish one from the other. If 

the ligand was pure, the 
1
H NMR should look similar to that shown in Figure 25 in the 

Appendix.  

The third step involved the deprotonation of the ligand which yielded a white solid. After 

the deprotonation, all of the six isomers of the ligand are transformed to only one anion. 

However, the other expected products from the previous reaction could also be deprontonated or 

reacted with each other. Unfortunately, it was extremely difficult to know if this occurred. In 

addition, it was not possible to know if one of the Cp ring was deprotonated or both of them.  



25 
 

   

The final step involved the preparation of [4]ferrocenophane. However, other compounds 

could be made in this reaction as well (Figure 21). 

                                       

Figure 21: The different compounds that could be mixed with the [4]ferrocenohane 

The reaction of the deprotonated ligand with the ferrous chloride resulted in a viscous 

black solid that, when extracted with hexane, gave a yellow solution. Numerous attempts were 

made to obtain [4]ferrocenophane in a solid form from this solution. Removing the solvent 

afforded a very thin, sticky, orange film that would not sublime or be purified further. However, 

removing half of the solvent, and storing the solution in a refrigerator (-10 ºC) overnight afforded 

an orange solid as a precipitate. The solid was shown to be [4]ferrocenophane by 
1
H NMR 

spectroscopy ( Figure 23 in the Appendix). Unfortunately, sublimation of the resulting solid 

produced a sticky liquid. Furthermore, the 
1
H NMR spectrum of the initial solution was very 

complex and suggested that other compounds could also be present in the solid (Figure 26 in the 

Appendix). 
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 The initial solution was separated in a column chromatography, three bands were 

isolated, but only two bands were obtained (Figure 27 and 28 in the Appendix). Unfortunately, 

the two bands could not be identified. However, the fact that those two bands were isolated from 

the solution confirms the existence of other impurities in the solid which can contribute to 

minimizing the overall yield. 
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CHAPTER FOUR 

CONCLUSIONS 

In this project, [4]ferrocenophane was prepared by following a procedure similar to that 

of Luttringhaus. This method involved employing a short series of simple reactions and 

inexpensive chemical materials. The Iigand 1,4-bis(cyclopentadienyl)butane was obtained from 

the reaction between sodium cyclopentadienide and 1,4-dibromobutane. The ligand then was 

doubly deprotonated with butyllithium and when treated with ferrous chloride, 

[4]ferrocenophane was obtained in 13% apparent yield. 
1
H NMR and UV-Visible spectroscopy 

have confirmed the synthesis of this compound. In addition, identity of this compound was 

verified through the 
1
H NMR and UV-Visible data analysis. Moreover, spectroscopic data 

analysis of previously reported [1]ferrocenophanes supports the parallel structure of 

[4]ferrocenophane through the comparison of both the tilted angles and color shifts.  The UV-

Visible spectrum of [4]ferrocenophane showed two weak bands (326 and 432 nm) similar to that 

of ferrocene. Even though [4]ferrocenophane was synthesized, the spectroscopic measurements 

suggest that “flytrap route” was not ideal for making this compound. While it seems likely that 

this work has improved on Lüttringhaus and Kullick’s 0.053% yield, it is also clear that the 

inability to purify this material simply makes this route of doubtful usefulness.  Also, even if the 

material obtained here was mostly pure, the yield would still be less than 10%, which is of 

questionable value. 
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Figure 29: The 3D structure of [4]ferrocenophane.
33

 

 

 



37 
 

References 

1- Kealy, T.J.; Pauson, P.L. Nature 1951, 168, 1039. 

2- G. Wilkinson, M. Rosenblum, M.C.Whiting, R. B. Woodward, J. Am. Chem. Soc. 1952, 

74, 2125–2126. 

 

3- Fischer, E.O. W. PFAB, Z. Naturforsch.Teil b 1952, 7, 377–379. 

4- Eiland, P.F.; Pepinsky, R. J. Am. Chem. Soc. 1952, 74, 4971.  

5- Haaland, A. Acc. Chem. Res. 1979, 12, 415. 

6- J. W. Laugher; R. Hoffmann, J. Am. Chem. Soc., 1979, 98, 1729.  

 

7- T.H. Barr, W.E. Watts, Tetrahedron, 1968, 24, 6111–6118. 

8- F.A. Cotton, G. Wilkinson, Advanced Inorganic Chemistry,Wiley, New York, 1980, p. 

1164. 

 

9- Henning H.; Rolf G. Modern Cyclophane Chemistry. Wiley-VCH, 2004, 131-132, 416. 

10- Breit, N. C. Metallocenophanes and Metallopolymers with Aluminum, gallium, Silicon, 

and Tin in Bridging Positions. Ph.D. Thesis, University of Saskatchewan, October 2012.  

 

11- Rinehart, K. L.; Curby, R. J. Am. Chem. Soc., 1957, 79, 3290, 3291. 

12- Heo, R. W.; Lee, T. R. Ferrocenophanes with all carbon bridges. J. Organomet. Chem., 

1999, 578, 31-42. 

 

13- Juan L. L.; Alberto T.; Pedro M. Substitution and ring-opening reactions of an 

azasubstituted [5]ferrocenophane:preparation of 1,1-unsymmetrically disubstituted 

ferrocenes. ARKIVOC, 2007, 39-46. 

 

14- A. G. Osborne, R. H. Whiteley, J. Organomet. Chem., 1975, 101, C27. 

15- D. M. Heinekey, C. E. Radzewich, J. Organomet. Chem., 1999, 18, 3070. 

16-  R. Rulkens, D. P. Gates, D. Balaishis, J. K. Pudelski, D. F. McIntosh, A. J. Lough, I. 

Manners, J. Am. Chem. Soc., 1997, 119, 10976. 

 

17- D.E. Herbert, U.F.J. Mayer, I. Manners, Angew. Chem. Int. Ed., 2007, 46, 5060-5081. 

 

18- Ogasawara, M.; Nagano, T.; Hayashi, T. J. Am. Chem. Soc., 2002, 124, 9068. 

19- H. Braunschweig, M. Gross, K. Radacki, J. Organomet. Chem., 2007, 26, 6688-6690. 



38 
 

20- Lüttringhaus, A.; Kullick, W. J. Chem. Phys., 1961, 44-46, 669-681. 

 

21- U.F.J. Mayer, J.P.H. Charmant, J. Rae, I. Manners, J. Organomet. Chem., 2008, 27, 

1524-1533. 

 

22- J. C. Green, Chem. Soc. Rev., 1998, 27, 263. 

23- Bitterwolf, T. E. Inorganica Chimica Acta., 1986, 117, 55-64. 

24- Crawford, L.; Meredith, A.; Lawrence, N.; Jones, Patent Cooperation Treaty- The 

International Patent System Appl. 2013093888, Jun 27, 2013.  
 

25- Sebesta, R.; Almassy, A.; Cisarova, I.; Toma, S. Tetrahedron-Asymmetry, 2006, 17, 

2531-2537. 

 

26- Panda, T. K.; Gamer, M. T.; Roesky, P. W.  J. Organomet. Chem., 2003, 22(4), 877-878. 

 

27- Unpublished synthesis by Caleb Calvary. 

 

28- K. L. Rinehart, Jr., A. K. Frerichs, P. A. Kittle, L. F. Westmann, D. H. Gustafson, R. L. 

Pruett and J. McMahon, J. Am. Chem. Soc.,1960, 82, 4111. 

 

29- D. R. Scott and R.S. Becker, J. Chem. Phys., 1961, 35, 516. 

 

30- H. Hennig and O. Gurtler, J. Organomet. Chem., 1968, 11, 307. 

 

31- C. J. Ballhausen and J. P. Dahl, Acta Chem. Scand., 1961, 15, 1333. 

 
32- Wilson, B. M. Synthesis, Characterization and Computational Study of [4]Octamethyl-

ferrocenophane. M.S. Thesis, Marshall University, May 2009. 
 

33- Joudah, M. T. Synthesis and Characterization of Ferrocenophanes. M.S. Thesis, Marshall 
University, May 2015. 
 

 

 

 

 


	Marshall University
	Marshall Digital Scholar
	2016

	Syntheses and characterization of [4]Ferrocenophane
	Ahmed Sabah Al-doori
	Recommended Citation


	tmp.1472048567.pdf.0c018

