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Abstract 
 

Modeled Red Spruce Distribution Response to 
Climatic Change in Monongahela National Forest 

 
By James Michael Stanton 

 

In Monongahela National Forest of West Virginia, red spruce grows in high-elevation 

island ecosystems that are particularly sensitive to changes in climatic conditions. The ecological 

niche modeling application Maxent was used to project the distribution response of red spruce to 

climatic change for the purposes of conservation planning. Red spruce distribution data was 

acquired from the United States Forest Service. Three sets of nineteen bioclimatic variables, 

corresponding to present, 2050, and 2080 conditions, were derived from 1961-1990 monthly 

temperature and precipitation means and the IPCC A2 emissions scenario of HadCM3. The 

modeling revealed rapidly diminishing red spruce habitat suitability from southwest to northeast, 

while the border region between Randolph and Pendleton Counties displayed consistent 

suitability over time. Conservation efforts for red spruce should focus in the areas projected to 

maintain habitat suitability in the longer term, while alternative species planting may be 

necessary elsewhere to preserve forest integrity.
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Chapter One: Introduction 
 

The distribution of terrestrial plant communities is inextricably linked to factors of 

climate and physical landscape. Natural climatic variations have directly influenced the native 

ranges, biological adaptations, and extinction rates of tree and other plant species throughout the 

history of the planet. Additionally, alterations in vegetation typology and density, resulting from 

either climate-induced impacts or anthropogenic land use changes, have produced feedback 

effects upon the climate at multiple scales. 

While still controversial, evidence exists that anthropogenic emissions of the greenhouse 

gases carbon dioxide and methane are significant forcing agents in the trend of global climatic 

warming over the past century (IPCC, 2007). These gases absorb longwave radiation and reflect 

it back towards the surface, increasing air temperatures and potentially altering precipitation 

patterns. As it has throughout geologic history, modern climatic change could alter regions of 

habitat suitability for tree species, causing them to shift ranges, adapt to new conditions in place, 

or diminish to extinction (Holt, 1990). As forest vegetation forms an important habitat for many 

other organisms, and plays environmental regulation roles through transpiration, carbon 

sequestration, soil retention, and ground shading, entire ecosystems could be impacted as well. 

Biodiversity conservation efforts for forests in a changing climatic environment will be of 

increasing importance. The development of appropriate conservation strategies will require 

accurate and precise models that predict species distribution changes at regional and local scales, 

and will also require updated information about species range shifts already underway at specific 

sites (Hannah, et al., 2002). 
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The primary objective of this study is to utilize the Maximum Entropy Species 

Distribution Modeling application, or Maxent, to predict changes in the spatial distribution of red 

spruce in Monongahela National Forest, West Virginia, due to currently projected climatic 

changes. The study aims to estimate the set of environmental conditions most favorable to the 

growth of red spruce in the region of eastern West Virginia based on its natural distribution, and 

projects future distributions using altered sets of environmental conditions. The study tests 

potential migration rather than adaptation or extinction possibilities. Distribution changes at 

certain locations and in certain directions are examined. Implications of a shifting red spruce 

ecosystem for regional biodiversity conservation efforts are also considered. 
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Chapter Two: Literature Review 
 

Monongahela National Forest 

The Monongahela National Forest is comprised of approximately 917,000 acres of 

federally owned and managed forest land in the Appalachian Mountains of east central West 

Virginia. An additional 586,000 acres of land under private or other ownership exists within the 

National Forest proclamation boundary. The Forest is administered by the United States 

Department of Agriculture Forest Service, and the Forest headquarters is located in the city of 

Elkins, West Virginia (Figure 1). The boundary area is vast by regional standards, containing 

portions of ten West Virginia counties along with highly variable topography, soils, and climatic 

conditions. Elevations range from approximately 1,000 feet near Petersburg, Grant County, to 

4,863 feet at the summit of Spruce Knob, Pendleton County (Mueller, 1992). The area is 

bordered by George Washington National Forest to the southeast in Virginia. 

 

 

Figure 1: Location of Monongahela National Forest (Musser, 2009) 
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Following extensive logging of the Appalachian forests in the late 1800s and early 1900s, 

the 1911 Weeks Act was passed to authorize federal acquisition of land for natural resource 

protection and recovery. In 1915, an initial area of 7,200 acres near Parsons, Tucker County, was 

purchased by the federal government. The Monongahela National Forest was officially 

designated on April 28, 1920 (United States Forest Service, 2008). Over time, parcels of land 

within the 1.5 million acre proclamation boundary have been purchased by the federal 

government to enhance the protective value and public benefits of the Forest (Figure 2). 

 

 

Figure 2: Surface Ownership Distribution of Monongahela National Forest (United States Forest Service, 2009) 
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Red Spruce 

Red spruce (Picea rubens) is a coniferous species of tree that favors cool, moist 

conditions and is particularly tolerant of shade. Mature trees may reach heights of 110 feet and 

live as long as 400 years. Red spruce tends to grow on acidic soils with pH between 4.0 and 5.8, 

and has a shallow root system that spreads laterally, helping to protect top layers of soil from 

erosive processes. The rate of seed production depends on several factors, including forest 

density, sunlight access, and climatic conditions, but the best seed quality on average occurs after 

trees have reached an age of 30 years (Natural Resources Conservation Service, 2004). 

The present range of red spruce extends from the Canadian maritime provinces westward 

into Quebec and southward into northern New England. The range becomes discontinuous in 

New York state, clustering in higher elevation areas where climatic conditions are favorable to 

its growth. The main clusters further south are in West Virginia, western Virginia, and western 

North Carolina. Significant gaps occur in Pennsylvania due to generally lower relief (Figure 3). 

 

Figure 3: Red Spruce Distribution in North America (United States Geological Survey, 1999) 
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A montane forest community dominated by red spruce and balsam fir (Abies balsamea) 

exists as a discontinuous series of island ecosystems at the highest elevations of Monongahela 

National Forest (White & Cogbill, 1992). The ecotone of red spruce forests in this region is 

about 3,500 feet in elevation, although some red spruce is found at lower elevations in the 

vicinity of Canaan Valley in the northeast. These midlatitude forests are related to the vast boreal 

forests of eastern Canada, but contain a distinctly varied set of resident plant and animal species, 

including the endangered Virginia northern flying squirrel (Glaucomys sabrinus fuscus) and the 

rare Virginia varying hare (Lepus americanus virginianus) (Mueller, 1992). 

Red spruce growth is clustered in four general geographical areas in the National Forest. 

The first is in a rugged plateau region in the vicinity of Cranberry Wilderness in the southwest. 

Another exists along the high elevation topography of the central region, following the border 

between Randolph and Pocahontas Counties. A third is in a collection of isolated ridge tops in 

the central east, including Spruce Knob. A fourth is in the vicinity of Canaan Valley and Dolly 

Sods Wilderness in the northeast. Mixed conifer and deciduous forests are typically located at 

lower elevations surrounding the conifer units. Red spruce mostly occurs there with sugar maple, 

beech, and birch, among others (White & Cogbill, 1992). 

The red spruce forest of West Virginia is highly dependent upon and well-adapted to the 

consistently cool and moist climate of the high elevations. Its relative sensitivity to changes in 

environmental conditions, as opposed to the forest communities of lower elevations, places it in a 

unique position to provide early indicators of vegetation response to modern climatic change 

(McLaughlin, et al., 1998). The potential disappearance of this community from the region, and 

the invasion of different tree communities in its wake, would have profound consequences for 

regional wildlife habitat and biodiversity. 
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Species Distribution Change 

Climate and climatic change are regarded as the most significant factors determining the 

distributions of organisms in the context of the present day and recent past (Meadows & Hill, 

2002). Plant communities may respond to climatic warming either by shifting their ranges to 

higher elevations and latitudes, maintaining their ranges through adaptation to new 

environmental conditions, becoming extinct, or a combination of these processes (Holt, 1990). 

An evaluation of fossil and genetic data from forests of the distant past revealed that tree species 

extinctions have occurred primarily during periods of high climatic variability (Petit, et al., 2008). 

Numerous studies have determined that certain plant and animal species are already 

shifting their ranges poleward and upslope due to climatic warming. A study of 58 species of 

North American and European butterfly revealed that two-thirds of the species have shifted their 

ranges northward over the preceding 70 years (Parmesan, 1996). The average range of one 

particular species, the Edith’s Checkerspot butterfly (Euphydryas editha), has moved northward 

by 92 kilometers, and has increased its elevation by 124 meters in California’s Sierra Nevada 

Mountains (Parmesan, 1996). The average ranges of 59 species of bird in the United Kingdom 

have shifted northward by 18.9 kilometers between 1979 and 1999 (Thomas & Lennon, 1999). A 

comparison was made between 1977 and 2007 vegetation surveys of a 2,314 meter elevation 

gradient in California’s Santa Rosa Mountains. It was discovered that increasing surface 

temperatures and widening precipitation variability in the period between surveys had caused the 

average elevation of the dominant plant species to rise by approximately 65 meters (Kelly & 

Goulden, 2008). 
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Ecological Niche Modeling 

In order to increase the accuracy and precision of projected species distributions, steady 

technological developments have been made in vegetation modeling methods at various scales. 

Ecological niche modeling programs are used to project habitat suitability and distribution 

changes for a single species. These models, such as GARP, Bioclim, Domain, and Maxent, relate 

species distribution data to the set of environmental or ecological characteristics found in its area, 

and to which the species is adapted (Elith, et al., 2006). Some models rely on presence-only data 

while others utilize both presence and absence data (Phillips, et al., 2006). Future distributions 

are projected based on where similar environmental conditions are likely to be found after a 

period of climatic change (Peterson, et al., 2005). 

Alternatively, biogeography models such as BIOME, DOLY, MAPSS, and Holdridge 

Life Zone are used to project shifts in groupings of plant species with similar physiological and 

structural properties known as plant functional types (Peterson, et al., 2005). 

Vegetation models have been used in numerous studies to create multiple scenarios of 

climatic change. A study was performed to determine the expected biological response of 130 

North American tree species to climatic warming (McKenney, et al., 2007). Two scenarios were 

presented, in which species either migrate entirely into future climatic niches or do not migrate 

out of their present niches. In the migration scenario, potential ranges show decreases and 

increases in size, with an average decrease of 12% and northward shift of 700 kilometers. In the 

non-migration scenario, potential ranges decrease in size by 58% and shift northward by 330 

kilometers. Another study examined the vulnerability of 34 species of oaks and pines to the 

effects of climatic change in Mexico (Gomez-Mendoza & Arriaga, 2007). Using the Hadley 

Centre general circulation model HadCM2, databases of herbaria specimens and digital covers of 
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biophysical variables affecting oaks and pines were used to project species distributions under 

both severe and conservative climatic change scenarios for the year 2050. Both scenarios showed 

temperature increases, precipitation decreases, and reductions in the species ranges. 

 
Maximum Entropy Species Distribution Modeling 

Elith, et al. (2006) performed an analysis of 16 major species distribution modeling 

methods to compare their predictive performances. The study considered the distribution changes 

of 226 species and used three output statistics to assess each model’s ability to discriminate 

between species presence and absence. The Maximum Entropy Species Distribution Modeling 

application, or Maxent, ranked among the top three predictive performers due to its complex 

treatment of environmental variables. Other commonly used modeling methods, including GARP, 

Bioclim, and Domain, performed relatively poorly (Elith, et al., 2006). 

The Maxent application operates by assessing a set of environmental variables with a set 

of point locations where a species is known to exist. The habitat suitability of each cell in a grid 

is expressed as a function of the environmental variables at that cell. High values mean there is a 

high probability of presence for the species in those locations (Phillips & Dudik, 2008). Maxent 

is designed to project suitability over areas based on an incomplete set of species presence 

information. Maximum entropy refers to the most likely probability distribution within a set of 

imposed environmental constraints on that distribution (Phillips, et al., 2006). 
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Chapter Three: Methodology 
 

Data Collection 

A set of GIS data depicting the 1988 distribution of red spruce in Monongahela National 

Forest was acquired from the United States Forest Service (Figure 4). This dataset was created 

by the West Virginia University Department of Geography under contract by the United States 

Forest Service Northeast Forest Experiment Station. Although dated twenty years, it represents 

the most current and complete information on red spruce distribution in the National Forest. 

 

 

Figure 4: 1988 Red Spruce Habitat as Forest Categories (United States Forest Service, 1988) 
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Red spruce occurrence was identified through the interpretation and mapping of color 

infrared aerial photographs at a scale of 1:30000, coupled with expert opinion and identification 

in the field. The three criteria used in delineating presence locations were conifer stands with at 

least 50% of the overstory identified as red spruce, mixed conifer and deciduous stands with at 

least 25% of the overstory identified as red spruce, and red spruce plantation stands. 

Climatic data corresponding to the 1988 distribution were acquired from the WorldClim 

Global Climate Data website, operated by the Museum of Vertebrate Zoology, University of 

California at Berkeley (WorldClim, 2005). Climatic rasters were generated through the 

interpolation of mean monthly temperature and precipitation data from all operational collection 

stations between 1961 and 1990. Interpolation was performed using the Shuttle Radar 

Topography Mission (SRTM) elevation database of the Jet Propulsion Laboratory, California 

Institute of Technology, and the ANUSPLIM software developed at The Australian National 

University. The interpolation was set to a resolution grid of 30 arc seconds, or approximately 1 

square kilometer (Hijmans, et al., 2005). 

The maximum temperature, minimum temperature, and precipitation data for each month 

were used by the WorldClim developers to generate 19 bioclimatic variable rasters for ecological 

niche modeling (Table 1). The variables were created using the ArcInfo workstation script 

“bioclim” and made available on the WorldClim database website (WorldClim, 2005). 

Bioclimatic variables are a means of isolating and working with various aspects of temperature 

and precipitation patterns. They are important for biogeographical applications because they 

represent both average annual climatic conditions and extreme or limiting conditions, which may 

affect species distributions, adaptations, or behaviors in different ways. 
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Most of the variables are self-explanatory calculations of temperature and precipitation 

patterns either throughout the year or in certain parts of the year. Several involve calculations 

between other variables. Mean diurnal range (BIO02) is equal to the overall mean of monthly 

maximum temperatures minus monthly minimum temperatures, and represents the mean 

difference between daytime and nighttime temperatures. Temperature annual range (BIO07) is 

the maximum temperature of the warmest month (BIO05) minus the minimum temperature of 

the coldest month (BIO06). Isothermality (BIO03) is the mean diurnal range (BIO02) divided by 

the temperature annual range (BIO07). Temperature seasonality (BIO04) and precipitation 

seasonality (BIO15) are coefficients of variation for their respective climate factors. 

 
Bioclimatic Variable Units Abbreviation 
Annual Mean Temperature °C BIO01 
Mean Diurnal Range °C BIO02 
Isothermality N/A BIO03 
Temperature Seasonality N/A BIO04 
Maximum Temperature of Warmest Month °C BIO05 
Minimum Temperature of Coldest Month °C BIO06 
Temperature Annual Range °C BIO07 
Mean Temperature of Wettest Quarter °C BIO08 
Mean Temperature of Driest Quarter °C BIO09 
Mean Temperature of Warmest Quarter °C BIO10 
Mean Temperature of Coldest Quarter °C BIO11 
Annual Precipitation mm BIO12 
Precipitation of Wettest Month mm BIO13 
Precipitation of Driest Month mm BIO14 
Precipitation Seasonality N/A BIO15 
Precipitation of Wettest Quarter mm BIO16 
Precipitation of Driest Quarter mm BIO17 
Precipitation of Warmest Quarter mm BIO18 
Precipitation of Coldest Quarter mm BIO19 

 
Table 1: Bioclimatic Variables (WorldClim, 2005) 

Temperature variables are BIO01 through BIO11 and precipitation variables are 
BIO12 through BIO19. Quarters refer to periods of three months during which a 
particular climatic factor has an extreme value compared with the rest of the year. 
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Future climatic data were also acquired from the WorldClim Global Climate Data 

website (WorldClim, 2005). Only projected data for the years 2020, 2050, and 2080 were 

available, and 2050 and 2080 data were selected for this study. The rasters were in the form of 

the same 19 bioclimatic variables, each set to a resolution grid of 30 arc seconds. 

A variety of climate modeling methods are used in the IPCC assessment reports. Each 

method produces a different average projection of climatic warming over this century (Figure 5). 

Data from the Hadley Centre Coupled Model Version 3 (HadCM3), Commonwealth Scientific 

and Industrial Research Organisation Model (CSIRO), and Canadian Centre for Climate 

Modelling and Analysis Model (CCCma) were available for use through the WorldClim database. 

Data from the National Center for Atmospheric Research Climate System Model (NCAR CSM) 

was available through the NCAR GIS database. 

HadCM3 was selected for this study over other available modeling methods due to its 

comparatively average projection of global temperature rise and widespread usage among the 

scientific community. HadCM3 is a coupled atmosphere-ocean general circulation model 

developed by the Met Office Hadley Centre for Climate Change in the United Kingdom. The 

model was among those utilized for both the Third and Fourth Assessment reports of the 

Intergovernmental Panel on Climate Change (IPCC, 2007). HadCM3 output has a spatial 

resolution of 2.50° latitude by 3.75° longitude. This is interpolated to a resolution of 30 arc 

seconds using the aforementioned methods (Hijmans, et al., 2005). 

Emissions scenarios are used by IPCC to describe different economic development and 

globalization situations as pertaining to greenhouse gas emissions and atmospheric 

concentrations (Figure 6). The A2 and B2 scenarios were available for each of the modeling 

methods in the WorldClim database. The A2 scenario family assumes increasing economic  
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Figure 5: Global Warming Projections of Climate Modeling Methods (Rohde, 2006) 
This graph shows a comparison between the global warming projections of eight major global 
climate models using the A2 emissions scenario. The Hadley Centre model (HadCM3) selected 
for this study is shown in light green. 

 
 

 
 

Figure 6: IPCC Carbon Dioxide Emissions Scenarios (Rohde, 2006) 
The top graph shows projected atmospheric concentrations of carbon dioxide through 2100 among 
the various emissions scenarios. The bottom graph shows projected emissions of carbon dioxide 
through 2100. The A2 emissions scenario selected for this study is shown in blue. The B2 scenario 
shown in green was also available through the WorldClim database. 
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regionalization, increasing income disparities, and greater emphasis by governments on 

economic development than environmental protection, resulting in a relatively high continuance 

of carbon emissions growth (IPCC, 2000). The B2 scenario family also assumes increasing 

economic regionalization, but with a reduced emphasis on national economic development at the 

expense of the environment, resulting in reduced emissions growth (IPCC, 2000). The IPCC 

emissions scenario A2 was selected for this study over B2, due to its closer representation of a 

business-as-usual emissions situation. 

An elevation raster with a resolution of 30 arc seconds was acquired from the WorldClim 

website. Although elevation is a static environmental variable in this study, it is an important 

factor in projecting migration constraints of the red spruce forest. 

 
Model Configuration 

Maxent 3.3.1 utilizes two groups of data inputs in order to project red spruce habitat 

suitability in 1988, 2050, and 2080 (Phillips, et al., 2006). The first group involves comma 

separated values files containing point coordinate information of species presence. There may be 

multiple species contained in a single file, or each species to be modeled may be represented by 

its own file. The second group involves ASCII raster grids which can describe either continuous 

or categorical environmental variables. Sets of environmental variable files must all have the 

same extent and resolution. 

The polygon data in the 1988 red spruce distribution shapefile was converted to point 

data using the Create Random Points function of ArcGIS 9.3.1 (Figure 7). Points were created in 

a random spatial pattern at intervals of 10 meters within the bounds of the former polygons. This 

reflects an average spacing of mature red spruce trees. The conifer, mixed, and plantation 



16 

 

categories were all included in the conversion in order to determine the favorable range of 

climatic conditions in which red spruce grows. Although the points do not accurately reflect the 

actual densities of red spruce in the field, the purpose was to distinguish regions of red spruce 

presence and absence to identify the ecological niche. There were 720,623 total points generated. 

 

 

Figure 7: 1988 Red Spruce Habitat as Occurrence Points 
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The coordinate system of the shapefile was transformed from the original NAD83 UTM 

Zone 17N projected coordinate system to the WGS84 geographic coordinate system, via NAD83 

to WGS84 Method 5. This was necessary as all of the climatic and elevation data files were in 

WGS84. The latitude and longitude coordinates of each point were then added to the shapefile’s 

attribute table using the Add XY Coordinates function of ArcGIS. Finally, the shapefile was 

converted to a comma separated values file for input into Maxent. 

All of the climatic rasters were cut from their global extent to a range around the outside 

of the National Forest boundary. The new latitude range was 37.5°N to 39.5°N and the new 

longitude range was 81.0°W to 79.0°W. These files were then loaded into Maxent as continuous 

environmental variables. 

The elevation input raster is displayed below (Figure 8). On the following page, the 

annual mean temperature inputs (BIO 01) (Figure 9) and annual precipitation inputs (BIO12) 

(Figure 10) are displayed. The temperature and precipitation inputs are given the same respective 

scale to emphasize differences between 1961-1990 conditions and the 2050 and 2080 projections. 

 

 

Figure 8: Elevation (WorldClim, 2005) 
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(a)     (a)  

(b)     (b)  

(c)     (c)  
 
Figure 9: Annual Mean Temperature (WorldClim, 2005)      Figure 10: Annual Precipitation (WorldClim, 2005) 
Map (a) is mean 1961-1990, (b) is 2050, and (c) is 2080.      Map (a) is mean 1961-1990, (b) is 2050, and (c) is 2080. 
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 According to the inputs, the 1961-1990 annual mean temperature within the raster extent 

is 5.9 degrees C to 13.6 degrees C. This becomes 8.6 degrees C to 16.3 degrees C in the 2050 

projection, and 10.9 degrees C to 18.5 degrees C in the 2080 projection. The 1961-1900 annual 

precipitation within the raster extent is 89.1 cm to 159.1 cm. This becomes 97.3 cm to 171.1 cm 

in the 2050 projection, and 99.3 cm to 176.8 cm in the 2080 projection. 

Most of the Maxent settings were kept with their default values, but several settings were 

adjusted for this study. The option to create response curves was enabled, which allowed the 

graphing of the spatial relationships between individual environmental variables and red spruce 

presence. The number of processor threads was set to 4, representing the number of central 

processor cores available for utilization when running the model. The number of random 

background points used in model training was adjusted from 10,000 to 50,000. Due to the very 

large number of species occurrence points, it was necessary to adjust this setting to attain a more 

accurate training of the model. 

The output setting was kept in the default logistic format. In logistic output, cell values 

range between 0 and 1 on a scale of increasing probability of species presence, or relative 

suitability. Unlike the raw output, in which the sum of all cell values in the raster is 1, the logistic 

output scales up values in a non-linear fashion for improved comparison between the suitabilities 

of different areas. 

 
Model Operation 

An initial run was performed with the 1961-1990 climatic data to enable the model to 

evaluate the variables and map the 1988 habitat suitability for red spruce. Subsequent runs with 

the future climatic data projected habitat suitability for the years 2050 and 2080. An additional 
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run for each year was performed in which the elevation files were left out of the environmental 

variable sets. The purpose of this was to allow the model to weight the significance of 

bioclimatic variables alone in influencing the red spruce distribution. The strong correlation 

between elevation and red spruce distribution at this relatively limited regional scale would 

diminish and skew the influences of climatic factors in the analysis. 

The three output rasters, representing habitat suitability in the years 1988, 2050, and 2080, 

were cut to the extent of the Monongahela National Forest land area using the Extract by Mask 

feature of ArcGIS. This permitted more a focused comparison of the outputs. 

Cell values between the maximum and median values in each raster represented the 

regions with the highest likelihood of habitat suitability. These sets of cells were extracted into 

three new rasters using the Extract by Attributes feature. The rasters were then layered with the 

later years on top to reveal the projected change in red spruce habitat suitability over time. 

Each of the shapefiles and rasters appearing as images in this document were projected 

into WGS84 UTM Zone 17N to portray more realistic spatial relationships and usable scales. 
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Chapter Four: Results 
 

Three output rasters were generated by the Maxent model. The first output (Figure 11a) is 

the result of model training between the 1961-1990 averaged climatic data and the 1988 red 

spruce occurrence data, with elevation data factored in. This is the 1988 red spruce habitat 

suitability according to the model. 

The 1988 habitat suitability was layered with the species occurrence points for purposes 

of comparison (Figure 11b). While a visual correlation is strong as expected, there are a few 

areas of warmer color along ridge tops where red spruce is not presently found. This shows that 

the model is considering the environmental conditions at each locality represented by a grid cell, 

and not merely assigning all of the high suitability values to locations with existing red spruce 

growth. It is realistic that some areas favorable to red spruce growth may not have species 

presence, and that less favorable areas may have species presence. 

 The second output (Figure 11c) is the projection of red spruce habitat suitability for the 

year 2050. The third output (Figure 11d) is the projection for the year 2080. Colors are again 

assigned based on 20 equal interval classes for each respective raster, and cell values represent 

suitability relative to each other under the projected climatic conditions. 

While cell values within each raster are scaled based on relative habitat suitability, and 

are able to be quantitatively compared with one another, values are not able to be quantitatively 

compared between separate projections. The values diminish exponentially as environmental 

variables move further from the training range of the model. However, the model takes this into 

account when assigning cell values. 
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(a)         (b)  
 

(c)         (d)  
 

Figure 11: Modeled Red Spruce Habitat Suitability 
These model outputs display (a) 1988 suitability layered with red spruce occurrence points, (b) 1988 suitability, (c) 
2050 suitability, and (d) 2080 suitability. The maximum and minimum cell values in each output are given as well. 
Warmer colors represent areas where environmental conditions are most favorable to red spruce growth based on its 
1988 distribution. Cooler colors represent areas where conditions are unfavorable to red spruce growth. 
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Areas with the highest habitat suitability for red spruce are represented by values between 

the maximum and the median value in each output. The vast majority of the 1988 species 

occurrence points coincide with cell values above this median threshold. When values in each 

output are scaled by equal intervals for display purposes, differences in the range and degree of 

habitat suitability for red spruce may be observed. As previously described, raster cells greater 

than or equal to the median threshold for each year were extracted (Figure 12). This revealed the 

projected change in red spruce habitat suitability over time, which will ultimately affect the 

actual species distribution. 

 The bioclimatic variable with the highest contribution in determining the red spruce 

ecological niche is the minimum temperature of the coldest month (BIO06) (Table 2). Other 

variables with significant contributions are maximum temperature of the warmest month 

(BIO05), mean temperature of the warmest quarter (BIO10), mean diurnal range (BIO02), and 

precipitation of the driest quarter (BIO17). The red spruce distribution is most strongly correlated 

with areas of cold annual temperature extremes as opposed to warm extremes, a minimized 

difference between daytime and nighttime temperatures, and a maximized amount of 

precipitation during the driest portion of the year. 

The bioclimatic variable with the lowest contribution is precipitation of the wettest 

quarter (BIO16). Other variables with little contributions are precipitation of the driest month 

(BIO14), mean temperature of the wettest quarter (BIO08), isothermality (BIO03), and annual 

mean temperature (BIO01). 
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(a)       (b)  
 

(c)      (d)  
 

Figure 12: Extracted Red Spruce Habitat Suitability 
These maps display all cells between the maximum and median values in each output, representing the locations 
with the most favorable habitat suitability under the projected climatic conditions. They show (a) habitat suitability 
change between 1988, 2050, and 2080, (b) 1988 suitability, (c) 2050 suitability, and (d) 2080 suitability. 
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Bioclimatic Variable Contribution Percentage 
Minimum Temperature of Coldest Month (BIO06) 43.5 
Maximum Temperature of Warmest Month (BIO05) 22.3 
Mean Temperature of Warmest Quarter (BIO10) 8.9 
Mean Diurnal Range (BIO02) 7.9 
Precipitation of Driest Quarter (BIO17) 6.9 
Annual Precipitation (BIO12) 2.7 
Precipitation of Coldest Quarter (BIO19) 1.3 
Temperature Seasonality (BIO04) 1.2 
Mean Temperature of Coldest Quarter (BIO11) 1.0 
Temperature Annual Range (BIO07) 1.0 
Precipitation of Wettest Month (BIO13) 0.8 
Precipitation Seasonality (BIO15) 0.7 
Precipitation of Warmest Quarter (BIO18) 0.6 
Mean Temperature of Driest Quarter (BIO09) 0.4 
Annual Mean Temperature (BIO01) 0.3 
Isothermality (BIO03) 0.3 
Mean Temperature of Wettest Quarter (BIO08) 0.2 
Precipitation of Driest Month (BIO14) 0.1 
Precipitation of Wettest Quarter (BIO16) 0.0 

 
Table 2: Bioclimatic Variable Contribution Percentages 

This output gives a ranked estimate of the relative contribution of each variable in 
determining the ecological niche of red spruce, along with the contribution percentage. 

 

A set of 19 species response curves were also generated (Figures 13-15). This is a 

function of Maxent in which a separate species correlation model is run for each environmental 

variable in isolation. The graphs represent the probability of presence of red spruce as each 

variable is altered, and the range of the x-axis is determined by the value range of the input 

rasters. The graphs automatically take into account the effects of possible correlations between 

environmental variables, and dependencies of habitat suitability on these combinations. The 

response curves were used internally by the model to help project future habitat suitability. 

The elevation graph reveals that red spruce probability of presence increases with 

increasing elevation (Figure 13). Figure 11a has a median cell value of 0.413, which corresponds 

to about 1,050 meters, or 3,445 feet, on the graph. This matches the ecotone data in the literature. 
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The graph for annual mean temperature (BIO01) shows that suitability changes little at 

colder temperatures, but quickly decreases as the mean temperature passes a certain threshold. 

This pattern is reflected in the other temperature variables graphs, signifying that red spruce 

favors colder temperatures and smaller annual temperature ranges (Figure 14). 

The graph for annual precipitation (BIO12) shows that suitability is extremely low for 

over half of the precipitation values in the modeled extent. Suitability rises with increasing 

precipitation before trailing off at the highest values in the extent. This pattern is also reflected in 

the other graphs, signifying that red spruce favors areas with an abundance of precipitation 

(Figure 15). The graph for precipitation seasonality reveals that red spruce favors neither highly 

variable rates of precipitation nor periods of drought over the course of a year. 

 

 
Elevation (m) 

 
Figure 13: Red Spruce Response to Elevation 

This graph displays the change in probability of red spruce presence, as measured by the logistic 
output values of the model along the y-axis, to changes in elevation along the x-axis. 

 
 



27 

 

Figure 14: Red Spruce Response to Temperature Bioclimatic Variables 
These graphs display the change in probability of red spruce presence, as measured by the logistic 
output values of the model along the y-axis, to changes in the temperature factors along the x-axis. 
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Figure 15: Red Spruce Response to Precipitation Bioclimatic Variables 

These graphs display the change in probability of red spruce presence, as measured by the logistic 
output values of the model along the y-axis, to changes in the precipitation factors along the x-axis. 
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Chapter Five: Discussion 
 

 The outputs generated by the Maxent model, based on the chosen climatological inputs 

and design of the study, reveal a very noticeable diminishing of red spruce habitat suitability in 

most areas of the Monongahela National Forest due to climatic change (Figures 11 and 12). 

Maps for location reference are provided on the following page (Figures 16 and 17). 

The diminishing trend begins most strongly in the vicinity of Cranberry Wilderness in the 

southwestern corner of the Forest. This is the most vulnerable region to red spruce decline at 

present. The most significant climatic factors that explain red spruce distribution are maximum 

temperature of the warmest month, mean temperature of the warmest quarter, and annual mean 

temperature. Regional mean temperature rises and greater temperature extremes at this southern 

location may put significant stresses on the red spruce community. Enhanced evaporation rates 

and increasingly uneven annual precipitation rates could create soil water shortages, and the 

species is particularly sensitive to dry conditions and variable precipitation. Upslope invasion by 

grasses, shrubs, and trees favoring warmer temperatures could occur the soonest in this area. 

Given a relatively slow rate of conifer migration, the warming and drying could begin to induce 

a mass mortality in place by the end of the century. 

 Effects on habitat suitability are not as pronounced further northeast in 2050, and are 

unaffected in the ridge and valley area of the central east. Climatic conditions in the regions of 

Spruce Knob, Seneca Rocks, and Laurel Fork Wilderness remain within the suitability envelope 

of the species. The Dolly Sods Wilderness maintains its suitability, but the model reveals 

indications of increasing red spruce stress in Otter Creek Wilderness and Canaan Valley. 
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   Figure 16: County Map of Monongahela National Forest     Figure 17: Wilderness Areas of Monongahela National 
   (United States Forest Service, n.d.)               Forest (West Virginia Highlands Voice, 2009) 
 

 By the year 2080, nearly all of the red spruce forests are projected to be under significant 

stress, particularly those in the southwest, central, and northwest parts of the National Forest. 

The exception is on the top of ridges along the border between Randolph and Pendleton Counties 

and extending into the far north of Pocahontas County. These are the only areas that are 

projected to maintain habitat suitability. 

Surprisingly, habitat suitability appears to shift eastward across the National Forest area 

rather than solely northward. The red spruce forest is somewhat constrained to the north by 

decreasing elevations, and therefore warmer temperatures. It appears that a combination of 

warming temperature and increasingly variable precipitation factors in the western side of the 

National Forest greatly reduce suitability while factors are stable or even enhanced in the eastern 
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side. One theory is that precipitation increases in this area, while the high elevations help to serve 

as a temporary buffer against temperature spikes at the lower elevations. Red spruce in this area 

could have a longer period of time in which to migrate or otherwise adapt to changing conditions. 

Based on the habitat suitability change maps (Figure 12), red spruce conservation efforts 

will remain critically important in the border region between Randolph and Pendleton Counties 

and extending north to Dolly Sods Wilderness. As red spruce forests in other regions are 

projected to be under significant stress and experiencing decline, spruce plantings and efforts to 

promote animal biodiversity here should be prioritized. At the same time, planting new species 

of trees in areas of mass spruce mortality may be essential in maintaining forest integrity, 

offsetting wildfire susceptibility, and avoiding large-scale soil erosion issues. The addition of 

new federally owned acreage to the National Forest is another potentially important course of 

action in the effort to sustain regional biodiversity. 

The only notable limitation of this study involves a degree of uncertainty in the actual 

distribution change of red spruce. While the model performs a complex analysis on all 

environmental inputs, variable migration rates and highly localized ecosystem interactions could 

affect the distribution in ways the model cannot presently predict. Soil typology and thickness 

along with microclimates could play small roles. The model is also based on a particular 

emissions scenario and general circulation model, and their internal structures and outputs may 

change with time and subsequent IPCC assessment reports. The actual responses of red spruce 

and its broader ecosystem to climatic change must continue to be monitored for additional data. 

The Maxent modeling method and inputs selected for this study are some of the best 

available for making estimations of future ecological conditions. As modeling methods and our 

understanding of climatological processes continue to improve, they will be met with an 
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increasing need for biodiversity conservation planning and practices due to global and regional 

climatic changes. The red spruce forest of Monongahela National Forest is a natural treasure 

worth preserving. 
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