
Marshall University
Marshall Digital Scholar

Theses, Dissertations and Capstones

2018

A Novel IEEE 802.11 Power Save Mechanism for
Energy Harvesting Motivated Networks
Yigitcan Celik
yigitcancelik91@gmail.com

Follow this and additional works at: https://mds.marshall.edu/etd

Part of the Systems Architecture Commons

This Thesis is brought to you for free and open access by Marshall Digital Scholar. It has been accepted for inclusion in Theses, Dissertations and
Capstones by an authorized administrator of Marshall Digital Scholar. For more information, please contact zhangj@marshall.edu,
beachgr@marshall.edu.

Recommended Citation
Celik, Yigitcan, "A Novel IEEE 802.11 Power Save Mechanism for Energy Harvesting Motivated Networks" (2018). Theses,
Dissertations and Capstones. 1162.
https://mds.marshall.edu/etd/1162

https://mds.marshall.edu?utm_source=mds.marshall.edu%2Fetd%2F1162&utm_medium=PDF&utm_campaign=PDFCoverPages
https://mds.marshall.edu/etd?utm_source=mds.marshall.edu%2Fetd%2F1162&utm_medium=PDF&utm_campaign=PDFCoverPages
https://mds.marshall.edu/etd?utm_source=mds.marshall.edu%2Fetd%2F1162&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=mds.marshall.edu%2Fetd%2F1162&utm_medium=PDF&utm_campaign=PDFCoverPages
https://mds.marshall.edu/etd/1162?utm_source=mds.marshall.edu%2Fetd%2F1162&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:zhangj@marshall.edu,%20beachgr@marshall.edu
mailto:zhangj@marshall.edu,%20beachgr@marshall.edu


A NOVEL IEEE 802.11 POWER SAVE MECHANISM FOR ENERGY HARVESTING 

MOTIVATED NETWORKS 

 

  

Marshall University 

May 2018 

 

A thesis submitted to 

the Graduate College of 

Marshall University 

In partial fulfillment of 

the requirements for the degree of 

Master of Science 

In 

Computer Science 

by 

Yigitcan Celik 

Approved by 

Dr. Cong Pu, Committee Chairperson 

Dr. Wook-Sung Yoo 

Dr. Jamil Chaudri 

 



ii 
 



iii 

ACKNOWLEDGMENTS 

 

First of all, I would like to thank my advisor Dr. Cong Pu, Dr. Wook-Sung Yoo and Dr. 

Jamil Chaudri for supporting me and sharing their knowledge and experiences through the 

process of this master thesis. 

Furthermore, I am grateful to my friends Cihan Secinti and Alper Yagiz Demirbas who 

supported me during stressful times throughout this master thesis process. 

 Lastly but most importantly, I am very grateful to my parents and my sister for their 

support and love. This master thesis would never have been completed without them.       

  



iv 

TABLE OF CONTENTS 

 

List of Figures ................................................................................................................................. v 

Abstract .......................................................................................................................................... vi 

I. Introduction ................................................................................................................................. 1 

II. Related Work.............................................................................................................................. 4 

III. The Proposed Approach ............................................................................................................ 6 

A. Overview of the IEEE 802.11 Power Saving Mechanism ............................................. 6 

B. System Model ................................................................................................................. 8 

C. Energy Harvesting Aware Power Saving Mechanism ................................................... 8 

IV. Performance Evaluation.......................................................................................................... 12 

A. Simulation Testbed ...................................................................................................... 12 

B. Performance Comparison ............................................................................................. 13 

V. Conclusion ............................................................................................................................... 17 

References ..................................................................................................................................... 18 

APPENDIX A: APPROVAL LETTER ........................................................................................ 20 

APPENDIX B: SIMULATION SOFTWARE SOURCE CODE ................................................. 21 

  



v 

LIST OF FIGURES  

Figure 1. A snapshot of the power saving mechanism of IEEE 802.11. ........................................ 7 

Figure 2. An example of longer contention window for a device in energy harvesting mode. ...... 9 

Figure 3. An example of node in energy harvesting mode extends awake period. ...................... 10 

Figure 4. The pseudocode of EH-PSM. ........................................................................................ 12 

Figure 5. The performance of packet delivery ratio (PDR) against packet rate and number of 

nodes. ............................................................................................................................................ 13 

Figure 6. The performance of throughput against packet rate and number of nodes. .................. 14 

Figure 7. The performance of packet transmission latency against packet rate and number of 

nodes. ............................................................................................................................................ 15 

Figure 8. The performance of total active time period against packet rate and number of nodes. 16 

 

  



vi 

ABSTRACT 

The spread of wirelessly connected computing sensors and devices and hybrid networks are 

leading to the emergence of an Internet of Things (IoT), where a myriad of multi-scale sensors 

and devices are seamlessly blended for ubiquitous computing and communication. However, the 

communication operations of wireless devices are often limited by the size and lifetime of the 

batteries because of the portability and mobility. To reduce energy consumption during wireless 

communication, the IEEE 802.11 standard specifies a power management scheme, called Power 

Saving Mechanism (PSM), for IEEE 802.11 devices. However, the PSM of IEEE 802.11 was 

originally designed for battery-supported devices in single-hop Wireless Local Area Networks 

(WLANs), and it does not consider devices that are equipped with rechargeable batteries and 

energy harvesting capability. In this thesis, the original PSM is extended by incorporating with 

intermittent energy harvesting in the IEEE 802.11 Medium Access Control (MAC) layer 

specification, and a novel energy harvesting aware power saving mechanism, called EH-PSM, is 

proposed. The basic idea of EH-PSM is to assign a longer contention window to a device in 

energy harvesting mode than that of a device in normal mode to make the latter access the 

wireless medium earlier and quicker. In addition, the device in energy harvesting mode stays 

active as far as it harvests energy and updates the access point of its harvesting mode to enable 

itself to be ready for receiving and sending packets or overhearing any on-going communication. 

The proposed scheme is evaluated through extensive simulation experiments using OMNeT++ 

and its performance is compared with the original PSM. The simulation results indicate that the 

proposed scheme can not only improve the packet delivery ratio and throughput but also reduce 

the packet delivery latency. 

 



1 

I. INTRODUCTION 

With recent technological advances in portability, mobility, low-power microprocessors, 

and high speed wireless Internet, embedded computing devices capable of wireless 

communication are rapidly proliferating. The growing presence of WiFi and 4G Long-Term 

Evolution (LTE) enable users to pursue seemingly insatiable access to Internet services and 

information wirelessly. It is predicted that 30 billion wirelessly connected devices will be 

available by 2020, nearly triple the number that exists today (Intelligence, 2013). The spread of 

these devices and hybrid networks is leading to the emergence of an Internet of Things (IoT), 

where a myriad of multi-scale sensors and devices are seamlessly blended for ubiquitous 

computing and communication (Palattella et al., 2016). The prevalence of cloud, social media, 

and wearable computing and the reduced cost of processing power, storage, and bandwidth are 

fueling explosive development of IoT applications in major domains (i.e., personal and home, 

enterprise, utilities, and mobile), which have the potential to create an economic impact of $2.7 

trillion to $6.2 trillion annually by 2025 (Gubbi, Buyya, Marusic, & Palaniswami, 2013; Al-

Fuqaha, Guizani, Mohammadi, Aledhari, & Ayyash, 2015). It is envisioned that wirelessly 

connected smart devices under the IoT will not only enhance flexible information accessibility 

and availability but also improve our lives further. 

To realize this vision, however, a limited lifetime of the battery to power wireless devices 

must be overcome. For example, the TMote™ Sky node consumes 64.68 mW in receive mode 

(Raymond, Marchany, Brownfield, & Midkiff, 2009). Using two standard 3,000 mAh AA 

batteries, the network lifetime is only 5.8 days if nodes are heavily utilized (Pu, Gade, Lim, Min, 

& Wang, 2014). In addition, rapidly proliferating wearable devices implanted to anywhere of 

user (e.g., glasses, clothes, shoes, accessories, or even under skin) are directly affected by the 



2 

lifetime of batteries (“Google Glass,” n.d.; Richmond, 2013). In order to extend the lifetime of 

the batteries, energy harvesting from surrounding environmental resources (e.g., vibrations, 

thermal gradients, lights, wind, etc.) has been given considerable attention as a way to either 

eliminate replacing the batteries or at least reduce the frequency of recharging the batteries. For 

example, ambient vibration-based energy harvesting has been widely deployed because of the 

available energy that can be scavenged from an immediate environment, such as the pulse of a 

blood vessel, or the kinetic motion of walking or running. Piezoelectric-based energy harvesting 

is favored when vibration is the dominant source of environmental energy and solar light is not 

always available. Though energy harvesting from photo-voltaic cells is popular and well-studied, 

it is inefficient because of the unpredictable availability of solar irradiation, such as installed 

location (e.g., a shaded area), initial position (e.g., seasonal variations between the sun’s angle 

and solar panel), weather conditions (e.g., a rainy season), and harvesting period (e.g., daytime 

only). 

Thus, it is anticipated that energy harvesting will play a pivotal role in making possible 

self-sustainable wireless devices ranging from nano-scale sensors to hand-held mobile devices, 

and serve as a major building block for emerging IoT applications. Although environmental 

energy harvesting has been well studied in civil and mechanical engineering, research on energy 

harvesting sensitive communication algorithms and protocols embedded into link layer (i.e., 

IEEE 802.11 Medium Access Control (MAC)) is still in its infancy. Thus, key research 

motivations of this paper are summarized: (i) Prudent energy efficient mechanisms have been 

proposed to extend the network lifetime. Despite the prior best effort-based approaches, 

manually replacing the batteries or recharging the batteries is ultimately unavoidable. Disposable 

batteries can address this issue but they may pose a potential environmental hazard; (ii) Energy 



3 

harvesting from immediate environmental sources may radically shift the paradigm on energy 

management from reducing energy consumption to maximizing the utilization of opportunistic 

energy; (iii) With the increasing prevalence of wearable computing, the adoption of energy 

harvesting techniques to multi-scale wireless sensors and mobile devices is essential to the 

design of IoT applications. 

In this thesis, a novel Power Saving Mechanism (PSM) of IEEE 802.11 for self-

sustainable devices supported by intermittent energy harvesting is designed and proposed. The 

proposed research will shift the paradigm of energy management from conserving limited battery 

energy to maximizing the utilization of harvested energy, and provide design considerations to 

the broader IoT community seeking new applications. The major contribution is briefly 

summarized in two-fold: 

 A novel energy harvesting aware power saving mechanism of IEEE 802.11, called EH-

PSM, is designed and proposed incorporating with intermittent energy harvesting from 

environmental resources. The basic idea of EHPSM is to assign a longer contention 

window to a device in energy harvesting mode than that of a device in normal mode to 

make the latter access the wireless medium earlier and quicker. In addition, the device in 

energy harvesting mode stays awake as far as it harvests energy and updates the access 

point of its harvesting mode to enable itself to be ready for receiving and sending packets 

or overhearing any ongoing communication. 

 A customized discrete event-driven simulation framework is developed by using 

OMNeT++ and the proposed scheme through extensive simulation experiments is 

evaluated in terms of packet delivery ratio, throughput, packet delivery latency, and total 

active time (Varga, 2014). The original PSM in energy harvesting environment is also 



4 

revisited and implemented for performance comparison. The simulation results indicate 

that the proposed scheme can not only improve the packet delivery ratio and throughput 

but also reduce the packet delivery latency. 

The rest of thesis is organized as follows. The prior approaches are analyzed and 

presented in Related Work. A system model and the proposed energy harvesting aware power 

saving mechanism are presented in The Proposed Approach. Performance Evaluation presents 

extensive simulation results and their analyses. Finally, we conclude the thesis in Conclusion. 

II. RELATED WORK 

In the research conducted by Jung, Qi, Yu, and Suh (2014), an energy saving algorithm is 

proposed to reduce power consumption of tethering smartphone, which plays a role of mobile 

access point temporarily. The basic idea is that smartphone turns off its WiFi interface when 

there is no traffic in order to conserve battery power without increasing the packet delay 

substantially. Ding et al. (2012) propose a system, called Percy, to maximize the energy saving 

of static and dynamic PSM respectively while minimizing the delay of flow completion time. 

The Percy deploys a web proxy at the access point and suitably configures the PSM parameters, 

and is designed to work with unchanged clients running dynamic PSM, unchanged access points, 

and Internet servers. In the research reported by Gupta and Mohapatra (2007), a detailed 

anatomy of the power consumption by various components of WiFi-based phones has been 

provided. Through a measurement-based study of WiFi-based phones, the power consumption 

for various workloads at various components has been analyzed. 

WiFi continues to be a prime source of energy consumption in mobile devices, and 

energy optimization has conventionally been designed with a single access point. However, 

network contention among different access points can dramatically increase client’s energy 



5 

consumption. Thus, Manweiler and Choudhury (2011) design and propose an approach to 

achieve energy efficiency by evading network contention. The basic idea is that the access points 

regular the sleeping window of their clients in a way that different access points are 

active/inactive during non-overlapping time windows. In the research conducted by Liu and 

Zhong (2008), a micro power management is proposed to enable an IEEE 802.11 interface to 

enter unreachable power saving mode even between medium access control (MAC) frames, 

without noticeable impact on the traffic flow. In order to control data lost, the proposed scheme 

leverages the retransmission mechanism in IEEE 802.11 and controls frame delay to adapt to 

demanded network throughput with minimal cooperation from the access point. He, Yuan, Ma, 

and Li (2008) present an experimental study of the IEEE 802.11 power saving mechanism on 

personal digital assistant (PDA) in a Wireless Local Area Network (WLAN), where the power 

consumption of the PDA in both continuous active mode and power saving mode are measured 

under various traffic scenarios, beacon period, and background multicast traffic. In the research 

reported by Eu, Tan, and Seah (2011), the performance of different MAC schemes based on 

carrier-sense multiple access (CSMA) and polling techniques for wireless sensor networks which 

are solely powered by solar energy are studied. In the research conducted by Vithanage, Fafoutis 

Andersen, and Dragoni (2013), the feasibility of powering wireless metering devices (e.g., heat 

cost allocators) by thermal energy harvested from radiators is investigated. 

In summary, there is a significant amount of research effort on the IEEE 802.11 power 

saving mechanism and its variants. However, to the best of author’s knowledge, the proposed 

research focusing on designing energy harvesting aware power saving mechanism and 

integrating it with the original PSM of IEEE 802.11 is new. 

 



6 

III. THE PROPOSED APPROACH 

In this section, first, the IEEE 802.11 Power Saving Mechanism (PSM) is reviewed. Then 

the system model is presented, and a novel energy harvesting aware PSM of IEEE 802.11 for 

self-sustainable devices supported by intermittent energy harvesting is proposed. 

A. OVERVIEW OF THE IEEE 802.11 POWER SAVING MECHANISM 

As proposed in the IEEE 802.11 standard, an IEEE 802.11 based wireless network 

interface can choose to stay in either awake state or sleep state at any time (IEEE Computer 

Society LAN MAN Standards Committee, 1997). In the awake state, the device turns on its 

wireless interface and performs normal data communications, for example receiving or sending 

packets, or just stays in idle. In order to save the residual energy, the device can switch to the 

sleep state, where the radio of a device is turned off and the wireless interface cannot detect or 

sense any wireless communication. Wireless interface in awake state usually consumes an order 

of magnitude more power than that in sleep state (He et al., 2008). 

To reduce the energy consumption of IEEE 802.11 devices during wireless 

communications, IEEE Computer Society LAN MAN Standards Committee (1997) specifies a 

power management scheme, called Power Saving Mechanism (PSM). The basic idea of PSM is 

that the devices sleep most of the time and stay at a low power state (i.e., turn off wireless 

interface) but periodically wake up and switch to a high power state (i.e., turn on wireless 

interface) to receive the packets buffered at the access point (AP). In PSM, the AP buffers 

incoming packets destined for devices in low power state and periodically announces its 

buffering status through the traffic indication map (TIM) contained in the beacon frames. The 

device wakes up at the beginning of beacon interval periodically to listen to the beacon frames. If 

the corresponding bit of the association ID (AID) of the device is set in the TIM, the device will 



7 

stay awake, and wait for the AP to initialize a PS-Poll packet to retrieve data packet from it 

and/or send the buffered packet to it. The AP can issue multiple PS-Poll packets until all 

outstanding packets from the devices have been retrieved. As opposed to the continuously awake 

mode, a device applying power saving mechanism can often have opportunities to turn off its 

wireless interface to save energy when it has no packets buffered at the AP, or no packets need to 

be sent to the AP. Here, a snapshot of the power saving mechanism of IEEE 802.11 is shown in 

Figure 1. For example, the device SA and SB wake up at the beginning of beacon interval and 

listen to the TIM broadcasted by the AP. Suppose that the AP initializes a PS-Poll packet to SA 

first and sends the buffered packet DATAa to it. After receiving the packet DATAa, SA replies an 

ACK packet to the AP after a short time period SIFS, and then switches to power saving mode 

and turns off its wireless interfaces to save energy.  

 

Figure 1. A snapshot of the power saving mechanism of IEEE 802.11. 

 

AP

SA

SB

Awake

Sleep

Awake

Sleep

TIMB

PIFS

Beacon Interval

SIFS

P
O

LL DATA1

To SA

A
C

K

P
O

LL DATA2

To SB

A
C

K DATA
To AP

C
E TIMB

Time

Time

Time

A
C

K
P

O
LL

SIFS SIFS SIFS PIFS

SIFS

SIFS

Contention
Period

Contention Free Period

Contention
Period

Power Saving Mode



8 

B. SYSTEM MODEL 

In this thesis, it is assumed that each IEEE 802.11 device is equipped with an energy 

harvesting component to replenish its rechargeable battery. For example, a piezoelectric fiber 

composite bi-morph (PFCB) W14 based energy harvesting from an immediate environment (e.g., 

disturbance or typical body movements) can generate sufficient power (i.e., 1.3 mW – 47.7 mW) 

for wireless sensors (Starner, 1996; Starner, & Paradiso, 2004.; Wang, 2011). It is envisaged that 

multi-scale piezo devices and integrated self-charging power cells (SCPCs) will enhance the 

efficiency of energy harvesting (Xue, Wang, Guo, Zhang, & Wang, 2012). An energy harvesting 

is modeled by a two-state Markov process with energy harvesting (Sh) and normal (Sn) modes 

(Pu et al., 2014). A device stays in Sn mode for a random amount of time, which is exponentially 

distributed with a mean λn, and changes its mode into Sh mode. After harvesting energy for some 

amount of time in Sh mode, which is also assumed to be exponentially distributed with a mean λh, 

the device changes its mode back to Sn mode. Both Sn and Sh modes are repeated. 

C. ENERGY HARVESTING AWARE POWER SAVING MECHANISM 

The PSM of IEEE 802.11 was originally designed for battery-supported devices in 

single-hop Wireless Local Area Networks (WLANs), and does not consider devices that are 

equipped with rechargeable batteries and energy harvesting component. In this thesis, the 

original PSM is extended by incorporating with intermittent energy harvesting in the IEEE 

802.11 Medium Access Control (MAC) layer specification, and a novel energy harvesting aware 

power saving mechanism, called EH-PSM, is proposed. The basic idea of EH-PSM is to assign a 

longer contention window to a device in energy harvesting mode than that of a device in normal 

mode to make the latter access the wireless medium earlier and quicker. In addition, the device in 

energy harvesting mode stays awake as far as it harvests energy and updates the AP of its energy 



9 

harvesting mode to enable itself to be ready for receiving and sending packets, or overhearing 

any on-going communication. The rationale behind the EH-PSM is to shift the paradigm of 

energy management from conserving limited battery energy to maximizing the utilization of 

harvested energy. Thus, (i) how to assign contention window to a device in energy harvesting 

mode, and (ii) how to extend the awake time period of a device in energy harvesting mode are 

focused on. 

 

Figure 2. An example of longer contention window for a device in energy harvesting mode.  

 

First, in the original PSM, each device uniformly chooses the contention window for 

backoff period before accessing the medium to avoid any potential collision. In the presence of 

energy harvesting, however, each device may need to adjust its contention window differently. 

The basic idea is to intentionally assign a longer contention window to a device in energy 

harvesting mode than that of a device in normal mode. Then a device containing the less amount 

of residual energy or staying in normal mode has more chances to choose a shorter backoff 

period to access the medium earlier and quicker, and then turns off its wireless interface, which 

SA (harvesting)

SB (normal)

DIFS

DIFS

Contention Window

Contention Window

Select slot and decrement backoff
as long as medium stay idle 

slot time

DIFS

DIFS

Busy Medium

Busy Medium

Defer Access

Time

TimeBackoff Window

Backoff Window



10 

finally results in lower energy consumption. Since a device in energy harvesting mode may 

experience a longer delay before initiating the communication, it will have a shorter contention 

window later to access the medium for fairness when it is in the normal mode. For example, as 

shown in Figure 2, suppose that device SA and SB is in energy harvesting mode and normal mode, 

respectively. Since SA is in energy harvesting mode, it intentionally sets a longer contention 

window and randomly chooses a backoff period. However, SB is in normal mode, and it follows 

the original PSM and selects the backoff period from a normal contention window that is shorter 

than that of SA. Thus, SB has more chances to select a shorter backoff period from normal 

contention window, accesses the medium earlier, and finally consumes less amount of residual 

energy.  

 

Figure 3. An example of node in energy harvesting mode extends awake period. 

 

Second, in the original PSM, as shown in Figure 1, a device immediately sleeps back 

after receiving the buffered packets from the AP or sending generated packets to the AP in order 

AP

SA (harvesting)

SB (normal)

Awake

Sleep

Awake

Sleep

TIMB

PIFS

Beacon Interval

SIFS

P
O

LL DATA1

To SB P
O

LL

A
C

K DATA
To AP

C
E TIMB

Time

Time

Time

A
C

K
P

O
LL

SIFS SIFS SIFS PIFS

SIFS

Contention
Period

Contention Free Period

Contention
Period

Power Saving Mode

SIFS

A
C

K

DATA
To AP

Extending Awake Period



11 

to reduce energy consumption. In the EH-PSM, however, the basic idea is that a device in energy 

harvesting mode stays awake as far as it harvests energy and updates the AP of its energy 

harvesting mode. This approach enables the device to be ready for receiving and sending 

packets, or overhearing any on-going communication. In addition, in order to reduce the energy 

consumption of a device in normal mode, the AP can specify non-harvesting device as early 

polled device in the Traffic Indication Map (TIM) and send the PS-Poll packet and buffered 

packets immediately after broadcasting the TIM. After receiving buffered packets from AP or 

sending the outstanding packet to AP, the device in normal mode can switch to power saving 

mode and turn off its wireless interface to save energy. For example, as shown in Figure 3, SA is 

in energy harvesting mode while SB is in normal mode. In order to reduce the energy 

consumption of SB, the AP first polls SB’s packet and sends the buffered packet to it after 

broadcasting the TIM. After receiving the buffered packet from AP and replying the ACK with 

the outstanding packet to AP respectively, SB switches to power saving mode and turns off its 

wireless interface to reduce energy consumption. However, SA stays awake as far as it harvests 

energy in energy harvesting mode, and extends awake time period to overhear any on-going 

communication, e.g., PS-Poll packet. Since SA extends awake time period, whenever it has a 

newly generated packet for AP, it can directly send the packet after overhearing the PS-Poll 

packet. Here, major operations of the EH-PSM are summarized in Figure 4.  

 

 

 



12 

 

IV. PERFORMANCE EVALUATION 

A. SIMULATION TESTBED 

A customized discrete-event driven simulator using OMNeT++ is developed to conduct 

our experiments. A 600×400 m2 network area is considered, where 5 to 9 devices which belong 

to one access point (AP) are distributed in the network. The communication range of each device 

is 500 (m). The radio model simulates CC2420 with a normal data rate of 2 Mbps. The access 

point generates data traffic with packet injection rate 0.1 to 1.0 pkt/sec and the packet size is 60 

Bytes. The periods of energy harvesting and normal states are assumed to be exponentially 

distributed with mean λh (50 seconds) and λn (25 seconds), respectively. The total simulation 

Figure 4. The pseudocode of EH-PSM. 



13 

time is 5000 seconds. In this thesis, the performance is measured in terms of packet delivery ratio 

(PDR), throughput, packet delivery latency, and total awake time by changing key simulation 

parameters, including number of nodes (N) and packet rate (rpkt). For performance comparison, 

the proposed scheme EH-PSM is compared with the original PSM of IEEE 802.11. 

                                                                                                

(a)                                                                                (b) 

 

B. PERFORMANCE COMPARISON 

First, the packet delivery ratio (PDR) is measured by varying packet rate and number of 

nodes in Figure 5. In Subfigure 5(a), as the packet rate increases from 0.1 to 0.5 pkt/sec, the PDR 

of EH-PSM and original PSM decreases from 95% and 92% to 93% and 87%, respectively. 

Since each node generates more packets with larger packet rate, packets could have more 

chances to collide with each other, and the PDR decreases. The EH-PSM shows the higher PDR 

than that of original PSM because each node stays awake as far as it is in energy harvesting 

mode and overhears on-going communication, it can forward the packets to AP directly with a 

shorter contention window based on the overhearing network traffic. However, the PDR is not 

Figure 5. The performance of packet delivery ratio (PDR) against packet rate and number 

of nodes. 



14 

sensitive to the number of nodes in the network, and thus, a slightly lower PDR is observed with 

larger number of nodes. In Subfigure 5(b), the overall PDR of EH-PSM and original PSM 

decreases as the number of nodes increases, because more number of nodes will content for the 

medium for sending packets to the AP during the contention period, packets have more chances 

to collide with each other, and the number of packets received by the AP is reduced. As the 

packet rate increases, a lower PDR is observed, because more number of packets are generated 

and forwarded to the AP, more packets collide with each other at the AP, which results in a 

lower PDR. 

 

(a)                                                                                   (b) 

 

Second, Figure 6 shows the throughput of EH-PSM and original PSM with varying 

packet rate and number of nodes. As shown in Subfigure 6(a), the overall throughput increases as 

the packet rate increases, because each node can generate more number of packets and send them 

to the AP. However, the EH-PSM shows a higher throughput than that of original PSM with 

different number of nodes, because each node in energy harvesting mode can extend their awake 

time period to be ready for receiving and sending more packets. When the number of nodes 

increases, a higher throughput is observed by EH-PSM and original PSM, respectively, because 

more number of nodes could send more packets to the AP, the throughput is increased. However, 

Figure 6. The performance of throughput against packet rate and number of nodes. 



15 

the EH-PSM still performs better than original PSM, because more nodes could stay awake for a 

longer time period in energy harvesting mode and overhear on-going communication, and more 

packets can be delivered to the AP when the medium is free. In Subfigure 6(b), as the number of 

nodes increases, the throughput of EHPSM and original PSM increases, respectively. Since more 

number of nodes are associated with the AP and could generate and send more packets, finally a 

higher throughput is achieved. However, our scheme still achieves a better performance than 

original PSM, because more number of nodes can switch to energy harvesting mode and then 

stay awake as far as they harvest energy, more packets can be generated and sent to the AP, 

which result in a higher throughput. 

                                                                                

(a)                                                                              (b) 

Third, the packet delivery latency is measured by varying packet rate and number of 

nodes in Figure 7. Overall, the packet delivery latency increases as the packet rate increases in 

Subfigure 7(a). With a larger packet rate, the AP can generate more packets for each node in the 

network. However, packet receiver could be in normal mode and switch to power saving mode 

Figure 7. The performance of packet transmission latency against packet rate and number of 

nodes. 



16 

(i.e., turn off wireless interface) after receiving all buffered packets from the AP. The newly 

generated packets at the AP have to be buffered until the next beacon period, thus, a higher 

packet delivery latency is observed. On the other hand, EH-PSM scheme shows a lower packet 

delivery latency than original PSM, because each node could be in energy harvesting mode, 

extend awake time period, and then receive more newly generated packets from the AP quickly. 

As shown in Subfigure 7(b), the overall packet delivery latency of EH-PSM and original PSM 

increases as the number of nodes increases. This is because more number of nodes could be in 

normal node and switch to power saving mode after receiving all buffered packets from the AP, 

the newly generated packets have to be buffered at the AP and experience a longer packet 

delivery latency. However, the EH-PSM still provides the better performance than that of 

original PSM because the node in energy harvesting mode extends its awake time period and 

enables itself to be ready for receiving packets. Thus, the AP can directly send the newly 

generated packets quickly, which results in a lower packet delivery latency. 

 

Figure 8. The performance of total active time period against packet rate and number of 

nodes. 



17 

Fourth, the total active time against packet rate and number of nodes are measured in 

Figure 8. Overall, the proposed EH-PSM achieves a much higher total active time than the 

original PSM, because the EH-PSM enables each node in energy harvesting mode to extend its 

awake time period, a larger total active time period can be observed compared to that of original 

PSM. As the number of nodes increases, the total active time is increased because more number 

of nodes could stay in energy harvesting mode and extend their active time period. 

V. CONCLUSION 

In this thesis, the power saving mechanism incorporating with intermittent energy 

harvesting in the IEEE 802.11 Medium Access Control (MAC) layer specification was 

investigated, a novel energy harvesting aware power saving mechanism, called EH-PSM, was 

proposed. In the EH-PSM, a longer contention window is assigned to a device in energy 

harvesting mode than that of a device in normal mode to make the latter access the wireless 

medium earlier and quicker. In addition, the device in energy harvesting mode stays awake as far 

as it harvests energy and updates the access point of its energy harvesting mode to enable itself 

to be ready for receiving and sending packets, or overhearing any on-going communication. The 

performance of the proposed scheme was evaluated through extensive simulation experiments, 

and compared with the original PSM of IEEE 802.11. Extensive simulation results indicate that 

the proposed scheme achieves better performance in terms of packet delivery ratio, throughput, 

and packet delivery latency. 

 

 

 

 



18 

REFERENCES 

Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Internet of 

things: A survey on enabling technologies, protocols, and applications. IEEE 

Communications Surveys & Tutorials, 17(4), 2347-2376. 

Ding, N., Pathak, A., Koutsonikolas, D., Shepard, C., Hu, Y. C., & Zhong, L. (2012, March). 

Realizing the full potential of psm using proxying. In INFOCOM, 2012 Proceedings 

IEEE(pp. 2821-2825). IEEE. 

Eu, Z. A., Tan, H. P., & Seah, W. K. (2011). Design and performance analysis of MAC schemes 

for wireless sensor networks powered by ambient energy harvesting. Ad Hoc 

Networks, 9(3), 300-323. 

Google Glass, http://www.google.com/glass/start/. 

Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A vision, 

architectural elements, and future directions. Future generation computer systems, 29(7), 

1645-1660. 

Gupta, A., & Mohapatra, P. (2007, June). Energy consumption and conservation in wifi based 

phones: A measurement-based study. In Sensor, Mesh and Ad Hoc Communications and 

Networks, 2007. SECON'07. 4th Annual IEEE Communications Society Conference 

on (pp. 122-131). IEEE. 

He, Y., Yuan, R., Ma, X., & Li, J. (2008, March). The IEEE 802.11 power saving mechanism: 

An experimental study. In Wireless Communications and Networking Conference, 2008. 

WCNC 2008. IEEE (pp. 1362-1367). IEEE. 

IEEE Computer Society LAN MAN Standards Committee. (1997). Wireless LAN medium 

access control (MAC) and physical layer (PHY) specifications. IEEE Standard 802.11-

1997. 

Intelligence, A. B. (2013). More than 30 billion devices will wirelessly connect to the internet of 

everything in 2020. New York, NY, USA.: Allied Business Intelligence (ABI) Research. 

Retrieved November, 10, 2014. 

Jung, K. H., Qi, Y., Yu, C., & Suh, Y. J. (2014, April). Energy efficient wifi tethering on a 

smartphone. In INFOCOM, 2014 Proceedings IEEE (pp. 1357-1365). IEEE. 

Liu, J., & Zhong, L. (2008, June). Micro power management of active 802.11 interfaces. 

In Proceedings of the 6th international conference on Mobile systems, applications, and 

services (pp. 146-159). ACM. 

Manweiler, J., & Roy Choudhury, R. (2011, June). Avoiding the rush hours: WiFi energy 

management via traffic isolation. In Proceedings of the 9th international conference on 

Mobile systems, applications, and services (pp. 253-266). ACM. 

http://www.google.com/glass/start/


19 

Palattella, M. R., Dohler, M., Grieco, A., Rizzo, G., Torsner, J., Engel, T., & Ladid, L. (2016). 

Internet of things in the 5G era: Enablers, architecture, and business models. IEEE 

Journal on Selected Areas in Communications, 34(3), 510-527. 

Pu, C., Gade, T., Lim, S., Min, M., & Wang, W. (2014, October). Lightweight forwarding 

protocols in energy harvesting wireless sensor networks. In Military Communications 

Conference (MILCOM), 2014 IEEE (pp. 1053-1059). IEEE. 

Raymond, D. R., Marchany, R. C., Brownfield, M. I., & Midkiff, S. F. (2009). Effects of denial-

of-sleep attacks on wireless sensor network MAC protocols. IEEE transactions on 

vehicular technology, 58(1), 367-380. 

Richmond, S. (2013). Wearable computing is here already: How hi-tech got under our skin. The 

Independent. 

Starner, T. (1996). Human-powered wearable computing. IBM systems Journal, 35(3.4), 618-

629. 

Starner, T., & Paradiso, J. A. (2004). Human generated power for mobile electronics. Low power 

electronics design, 45, 1-35. 

Varga, A. (2014). OMNeT++. http://www.omnetpp.org/. 

Vithanage, M. D., Fafoutis, X., Andersen, C. B., & Dragoni, N. (2013, July). Medium access 

control for thermal energy harvesting in advanced metering infrastructures. 

In EUROCON, 2013 IEEE (pp. 291-299). IEEE. 

Wang, Z. L. (2011). Nanogenerators for self-powered devices and systems. 

Xue, X., Wang, S., Guo, W., Zhang, Y., & Wang, Z. L. (2012). Hybridizing energy conversion 

and storage in a mechanical-to-electrochemical process for self-charging power 

cell. Nano letters, 12(9), 5048-5054. 

  



20 

APPENDIX A: APPROVAL LETTER 

 

 

 

 



21 

APPENDIX B: SIMULATION SOFTWARE SOURCE CODE 

1) network.ini 

[General] 

network = wireless 

 

# status 

seed-set = 1 

sim-time-limit = 5000s 

simtime-resolution = ps 

**.hasStatus = true 

 

**.networkLayer.configurator.networkConfiguratorModule = "configurator" 

*.host*.networkLayer.arpType = "GlobalARP" 

 

*.host*.wlan[0].typename = "Ieee80211Nic" 

wireless[*].mgmtType = "Ieee80211MgmtSTA" 

 

 

*.host*.wlan[*].radioType = "Ieee80211ScalarRadio" 

*.host*.wlan[*].radio.transmitter.bitrate = 2Mbps 

*.host*.wlan[*].radio.transmitter.preambleDuration = 0s 

*.host*.wlan[*].radio.transmitter.headerBitLength = 100b 

*.host*.wlan[*].radio.transmitter.communicationRange = 500m 

*.host*.wlan[*].radio.transmitter.interferenceRange = 500m 

*.host*.wlan[*].radio.transmitter.detectionRange = 500m 

*.host*.wlan[*].radio.receiver.ignoreInterference = false 

 

# access point 

**.ap.wlan[*].mac.address = "10:00:00:00:00:00" 

**.host*.**.mgmt.accessPointAddress = "10:00:00:00:00:00" 

**.mgmt.frameCapacity = 10 

 

*.host1.numPingApps = 1 

*.host2.numPingApps = 1 

*.host3.numPingApps = 1 

*.host4.numPingApps = 1 

*.host5.numPingApps = 1 

*.host6.numPingApps = 1 

*.host7.numPingApps = 1 

*.host8.numPingApps = 1 

*.host9.numPingApps = 1 

*.hostReciever.numPingApps = 10 

*.hostReciever.pingApp[0].destAddr = "host1" 

*.hostReciever.pingApp[1].destAddr = "host2" 

*.hostReciever.pingApp[2].destAddr = "host3" 

*.hostReciever.pingApp[3].destAddr = "host4" 

*.hostReciever.pingApp[4].destAddr = "host5" 

*.hostReciever.pingApp[5].destAddr = "host6" 

*.hostReciever.pingApp[6].destAddr = "host7" 

*.hostReciever.pingApp[7].destAddr = "host8" 

*.hostReciever.pingApp[8].destAddr = "host9" 

*.host*.pingApp[*].destAddr = "hostReciever" 

*.host*.pingApp[*].printPing = true 



22 

*.host1.pingApp[*].sendInterval = uniform(0s,1s) 

*.host2.pingApp[*].sendInterval = uniform(0s,1s) 

*.host3.pingApp[*].sendInterval = uniform(0s,1s) 

*.host4.pingApp[*].sendInterval = uniform(0s,1s) 

*.host5.pingApp[*].sendInterval = uniform(0s,1s) 

*.host6.pingApp[*].sendInterval = uniform(0s,1s) 

*.host7.pingApp[*].sendInterval = uniform(0s,1s) 

*.host8.pingApp[*].sendInterval = uniform(0s,1s) 

*.host9.pingApp[*].sendInterval = uniform(0s,1s) 

*.hostReciever.pingApp[0].sendInterval = uniform(0s,1s) 

*.hostReciever.pingApp[1].sendInterval = uniform(0s,1s) 

*.hostReciever.pingApp[2].sendInterval = uniform(0s,1s) 

*.hostReciever.pingApp[3].sendInterval = uniform(0s,1s) 

*.hostReciever.pingApp[4].sendInterval = uniform(0s,1s) 

*.hostReciever.pingApp[5].sendInterval = uniform(0s,1s) 

*.hostReciever.pingApp[6].sendInterval = uniform(0s,1s) 

*.hostReciever.pingApp[7].sendInterval = uniform(0s,1s) 

*.hostReciever.pingApp[8].sendInterval = uniform(0s,1s) 

 

*.host*.interfaceTable.displayAddresses = true 

 

**.wlan[*].bitrate = 54Mbps 

**.mac.dataBitrate = 54Mbps 

**.mac.basicBitrate = 2Mbps 

**.mac.multicastBitrate = 54Mbps 

**.mac.controlBitrate = 54Mbps 

 

*.host*.**.bitrate = 1Mbps 

 

*.visualizer.mediumVisualizer.signalPropagationAnimationSpeed = 5.000001 

*.visualizer.mediumVisualizer.signalTransmissionAnimationSpeed = 5.0005 

*.visualizer.mediumVisualizer.displayTransmissions = true # enables displaying radio signals propagating through 

the radio medium 

*.visualizer.mediumVisualizer.displayReceptions = true # enables displaying radio signals propagating through the 

radio medium 

*.visualizer.mediumVisualizer.displaySignals = true # enables displaying radio signals propagating through the 

radio medium 

 

2) network.ned 

package inet.examples.mynetwork.testap; 

import inet.networklayer.configurator.ipv4.IPv4NetworkConfigurator; 

import inet.node.wireless.AccessPoint; 

import inet.visualizer.integrated.IntegratedCanvasVisualizer; 

import inet.physicallayer.ieee80211.packetlevel.Ieee80211ScalarRadioMedium; 

import inet.node.inet.WirelessHost; 

import inet.common.lifecycle.LifecycleController; 

import inet.common.figures.DelegateSignalConfigurator; 

 

network wireless 

{ 

    parameters: 

        string hostName = default(""); 

        **.mgmt.numChannels = 2; 

 



23 

        @display("bgb=561,444"); 

    submodules: 

        radioMedium: Ieee80211ScalarRadioMedium { 

            @display("p=51,203"); 

        } 

        visualizer: IntegratedCanvasVisualizer { 

            @display("p=51,49"); 

        } 

        configurator: IPv4NetworkConfigurator { 

            @display("p=51,121"); 

            config = xml("<config><interface hosts='*' address='145.236.x.x' netmask='255.255.0.0'/></config>"); 

        } 

        host1: WirelessHost { 

            parameters: 

                @display("p=503,281"); 

        } 

        host2: WirelessHost { 

            parameters: 

                @display("p=437,333"); 

        } 

        host3: WirelessHost { 

            parameters: 

                @display("p=327,356"); 

        } 

        host4: WirelessHost { 

            parameters: 

                @display("p=229,341"); 

        } 

        host5: WirelessHost { 

            parameters: 

                @display("p=160,291"); 

        } 

        host6: WirelessHost { 

            parameters: 

                @display("p=503,356"); 

        } 

        host7: WirelessHost { 

            parameters: 

                @display("p=437,404"); 

        } 

        host8: WirelessHost { 

            parameters: 

                @display("p=327,412"); 

        } 

        host9: WirelessHost { 

            parameters: 

                @display("p=220,404"); 

        } 

        hostReciever: WirelessHost { 

            parameters: 

                @display("p=327,84"); 

        } 

        lifecycleController: LifecycleController { 

            @display("p=52,286"); 

        } 

        figureHelper: DelegateSignalConfigurator { 



24 

            @display("p=52,376"); 

        } 

        ap: AccessPoint { 

            @display("p=327,202"); 

        } 

} 

 

3) IEEE80211Frame_m.h 

class INET_API Ieee80211Frame : public ::omnetpp::cPacket 

{ 

  protected: 

    short type; 

    bool toDS; 

    bool fromDS; 

    bool retry; 

    bool moreFragments; 

    ::omnetpp::simtime_t duration; 

    short AID; 

    MACAddress receiverAddress; 

    ::omnetpp::simtime_t MACArrive; 

 

  private: 

    void copy(const Ieee80211Frame& other); 

 

  protected: 

    // protected and unimplemented operator==(), to prevent accidental usage 

    bool operator==(const Ieee80211Frame&); 

 

  public: 

    int packagePriority = 0; 

    bool packetLoss = false; 

 

    Ieee80211Frame(const char *name=nullptr, short kind=0); 

    Ieee80211Frame(const Ieee80211Frame& other); 

    virtual ~Ieee80211Frame(); 

    Ieee80211Frame& operator=(const Ieee80211Frame& other); 

    virtual Ieee80211Frame *dup() const override {return new Ieee80211Frame(*this);} 

    virtual void parsimPack(omnetpp::cCommBuffer *b) const override; 

    virtual void parsimUnpack(omnetpp::cCommBuffer *b) override; 

 

    // field getter/setter methods 

    virtual short getType() const; 

    virtual void setType(short type); 

    virtual bool getToDS() const; 

    virtual void setToDS(bool toDS); 

    virtual bool getFromDS() const; 

    virtual void setFromDS(bool fromDS); 

    virtual bool getRetry() const; 

    virtual void setRetry(bool retry); 

    virtual bool getMoreFragments() const; 

    virtual void setMoreFragments(bool moreFragments); 

    virtual ::omnetpp::simtime_t getDuration() const; 

    virtual void setDuration(::omnetpp::simtime_t duration); 

    virtual short getAID() const; 



25 

    virtual void setAID(short AID); 

    virtual MACAddress& getReceiverAddress(); 

    virtual const MACAddress& getReceiverAddress() const {return const_cast<Ieee80211Frame*>(this)-

>getReceiverAddress();} 

    virtual void setReceiverAddress(const MACAddress& receiverAddress); 

    virtual ::omnetpp::simtime_t getMACArrive() const; 

    virtual void setMACArrive(::omnetpp::simtime_t MACArrive); 

}; 

 

class INET_API Ieee80211DataFrame : public ::inet::ieee80211::Ieee80211DataOrMgmtFrame 

{ 

  protected: 

    MACAddress address4; 

    uint16_t qos; 

    int ackPolicy; 

    uint8_t tid; 

    bool aMsduPresent; 

 

  private: 

    void copy(const Ieee80211DataFrame& other); 

 

  protected: 

    // protected and unimplemented operator==(), to prevent accidental usage 

    bool operator==(const Ieee80211DataFrame&); 

 

  public: 

    Ieee80211DataFrame(const char *name=nullptr, short kind=0); 

    Ieee80211DataFrame(const Ieee80211DataFrame& other); 

    virtual ~Ieee80211DataFrame(); 

    Ieee80211DataFrame& operator=(const Ieee80211DataFrame& other); 

    virtual Ieee80211DataFrame *dup() const override {return new Ieee80211DataFrame(*this);} 

    virtual void parsimPack(omnetpp::cCommBuffer *b) const override; 

    virtual void parsimUnpack(omnetpp::cCommBuffer *b) override; 

 

    // field getter/setter methods 

    virtual MACAddress& getAddress4(); 

    virtual const MACAddress& getAddress4() const {return const_cast<Ieee80211DataFrame*>(this)-

>getAddress4();} 

    virtual void setAddress4(const MACAddress& address4); 

    virtual uint16_t getQos() const; 

    virtual void setQos(uint16_t qos); 

    virtual int getAckPolicy() const; 

    virtual void setAckPolicy(int ackPolicy); 

    virtual uint8_t getTid() const; 

    virtual void setTid(uint8_t tid); 

    virtual bool getAMsduPresent() const; 

    virtual void setAMsduPresent(bool aMsduPresent); 

 

    bool active; 

}; 

 

 

 

 

 

 



26 

4) IEEE80211Frame_m.cc 

Ieee80211Frame::Ieee80211Frame(const char *name, short kind) : ::omnetpp::cPacket(name,kind) 

{ 

    this->setByteLength(LENGTH_ACK / 8); 

 

    this->type = 0; 

    this->toDS = false; 

    this->fromDS = false; 

    this->retry = false; 

    this->moreFragments = false; 

    this->duration = -1; 

    this->AID = -1; 

    this->MACArrive = 0; 

 

    srand(time(NULL)); 

    this->packetLoss = (rand() % 100) < 5 ? true : false; 

 

    std::string temp = this->getOwner()->getClassName(); 

    if(temp == "inet::ieee80211::Ieee80211MgmtSTA") 

    { 

        Ieee80211MgmtSTA *module = check_and_cast<Ieee80211MgmtSTA *>(this->getOwner()); 

        if(!module->harvestingState) 

        { 

            this->packagePriority = 1; 

        } 

    } 

} 

 

void Ieee80211Frame::copy(const Ieee80211Frame& other) 

{ 

    this->type = other.type; 

    this->toDS = other.toDS; 

    this->fromDS = other.fromDS; 

    this->retry = other.retry; 

    this->moreFragments = other.moreFragments; 

    this->duration = other.duration; 

    this->AID = other.AID; 

    this->receiverAddress = other.receiverAddress; 

    this->MACArrive = other.MACArrive; 

    this->packagePriority = other.packagePriority; 

    this->packetLoss = other.packetLoss; 

} 

 

Ieee80211DataFrame::Ieee80211DataFrame(const char *name, short kind) : 

::inet::ieee80211::Ieee80211DataOrMgmtFrame(name,kind) 

{ 

    this->setByteLength(DATAFRAME_HEADER_MINLENGTH / 8); 

    this->setType(ST_DATA); 

 

    this->qos = 0; 

    this->ackPolicy = 0; 

    this->tid = 0; 

    this->aMsduPresent = false; 

    this->active = true; 



27 

} 

void Ieee80211DataFrame::copy(const Ieee80211DataFrame& other) 

{ 

    this->address4 = other.address4; 

    this->qos = other.qos; 

    this->ackPolicy = other.ackPolicy; 

    this->tid = other.tid; 

    this->aMsduPresent = other.aMsduPresent; 

    this->active = other.active; 

} 

 

5) Contention.cc 

void Contention::startContention(int cw, simtime_t ifs, simtime_t eifs, simtime_t slotTime, ICallback *callback) 

{ 

    startTime = simTime(); 

    ASSERT(ifs >= 0 && eifs >= 0 && slotTime >= 0 && cw >= 0); 

    Enter_Method("startContention()"); 

    cancelEvent(channelGrantedEvent); 

    ASSERT(fsm.getState() == IDLE); 

    this->ifs = ifs; 

    this->eifs = eifs; 

    this->slotTime = slotTime; 

    this->callback = callback; 

 

    if(this->frame->packagePriority > 0){ 

        cw = 1; 

    } 

 

    backoffSlots = intrand(cw + 1);         //change backoffslots here 

    EV_DETAIL << "Starting contention: cw = " << cw << ", slots = " << backoffSlots << endl; 

    handleWithFSM(START); 

} 

 

6) IEEE80211MgmtFrames_m.h 

class INET_API Ieee80211BeaconFrame : public ::inet::ieee80211::Ieee80211ManagementFrame 

{ 

  protected: 

    Ieee80211BeaconFrameBody body; 

 

  private: 

    void copy(const Ieee80211BeaconFrame& other); 

 

  protected: 

    // protected and unimplemented operator==(), to prevent accidental usage 

    bool operator==(const Ieee80211BeaconFrame&); 

 

  public: 

    Ieee80211BeaconFrame(const char *name=nullptr, short kind=0); 

    Ieee80211BeaconFrame(const Ieee80211BeaconFrame& other); 

    virtual ~Ieee80211BeaconFrame(); 

    Ieee80211BeaconFrame& operator=(const Ieee80211BeaconFrame& other); 

    virtual Ieee80211BeaconFrame *dup() const override {return new Ieee80211BeaconFrame(*this);} 

    virtual void parsimPack(omnetpp::cCommBuffer *b) const override; 



28 

    virtual void parsimUnpack(omnetpp::cCommBuffer *b) override; 

    simtime_t atim[20]; 

 

    // field getter/setter methods 

    virtual Ieee80211BeaconFrameBody& getBody(); 

    virtual const Ieee80211BeaconFrameBody& getBody() const {return 

const_cast<Ieee80211BeaconFrame*>(this)->getBody();} 

    virtual void setBody(const Ieee80211BeaconFrameBody& body); 
}; 

7) IEEE80211MgmtFrames_m.cc 

void Ieee80211BeaconFrame::copy(const Ieee80211BeaconFrame& other) 

{ 

    this->body = other.body; 

    for(int i = 0; i < 20; i++) 

    { 

        this->atim[i] = other.atim[i]; 

    } 

} 

 

8) IEEE80211MgmtSTA.h 

class INET_API Ieee80211MgmtSTA : public Ieee80211MgmtBase, protected cListener 

{ 

  public: 

    // 

    // Encapsulates information about the ongoing scanning process 

    // 

    struct ScanningInfo 

    { 

        MACAddress bssid;    // specific BSSID to scan for, or the broadcast address 

        std::string ssid;    // SSID to scan for (empty=any) 

        bool activeScan;    // whether to perform active or passive scanning 

        simtime_t probeDelay;    // delay (in s) to be used prior to transmitting a Probe frame during active scanning 

        std::vector<int> channelList;    // list of channels to scan 

        int currentChannelIndex;    // index into channelList[] 

        bool busyChannelDetected;    // during minChannelTime, we have to listen for busy channel 

        simtime_t minChannelTime;    // minimum time to spend on each channel when scanning 

        simtime_t maxChannelTime;    // maximum time to spend on each channel when scanning 

    }; 

 

    // 

    // Stores AP info received during scanning 

    // 

    struct APInfo : public cObject 

    { 

        int channel; 

        MACAddress address;    // alias bssid 

        std::string ssid; 

        Ieee80211SupportedRatesElement supportedRates; 

        simtime_t beaconInterval; 

        double rxPower; 

 

        bool isAuthenticated; 



29 

        int authSeqExpected;    // valid while authenticating; values: 1,3,5... 

        cMessage *authTimeoutMsg;    // if non-nullptr: authentication is in progress 

 

        APInfo() 

        { 

            channel = -1; 

            beaconInterval = rxPower = 0; 

            authSeqExpected = -1; 

            isAuthenticated = false; 

            authTimeoutMsg = nullptr; 

        } 

    }; 

 

    // 

    // Associated AP, plus data associated with the association with the associated AP 

    // 

    struct AssociatedAPInfo : public APInfo 

    { 

        int receiveSequence; 

        cMessage *beaconTimeoutMsg; 

 

        AssociatedAPInfo() : APInfo() { receiveSequence = 0; beaconTimeoutMsg = nullptr; } 

    }; 

 

  protected: 

    cModule *host; 

    IInterfaceTable *interfaceTable; 

    InterfaceEntry *myIface; 

 

    // number of channels in RadioMedium -- used if we're told to scan "all" channels 

    int numChannels; 

 

    // scanning status 

    bool isScanning; 

    ScanningInfo scanning; 

 

    // APInfo list: we collect scanning results and keep track of ongoing authentications here 

    // Note: there can be several ongoing authentications simultaneously 

    typedef std::list<APInfo> AccessPointList; 

    AccessPointList apList; 

 

    // associated Access Point 

    bool isAssociated; 

    cMessage *assocTimeoutMsg;    // if non-nullptr: association is in progress 

    AssociatedAPInfo assocAP; 

 

  public: 

    Ieee80211MgmtSTA() : host(nullptr), interfaceTable(nullptr), myIface(nullptr), numChannels(-1), 

isScanning(false), isAssociated(false), assocTimeoutMsg(nullptr) {} 

 

  protected: 

    virtual int numInitStages() const override { return NUM_INIT_STAGES; } 

    virtual void initialize(int stage) override; 

 

    /** Implements abstract Ieee80211MgmtBase method */ 

    virtual void handleTimer(cMessage *msg) override; 



30 

 

    /** Implements abstract Ieee80211MgmtBase method */ 

    virtual void handleUpperMessage(cPacket *msg) override; 

 

    /** Implements abstract Ieee80211MgmtBase method */ 

    virtual void handleCommand(int msgkind, cObject *ctrl) override; 

 

    /** Utility function for handleUpperMessage() */ 

    virtual Ieee80211DataFrame *encapsulate(cPacket *msg); 

 

    /** Utility method to decapsulate a data frame */ 

    virtual cPacket *decapsulate(Ieee80211DataFrame *frame); 

 

    /** Utility function: sends authentication request */ 

    virtual void startAuthentication(APInfo *ap, simtime_t timeout); 

 

    /** Utility function: sends association request */ 

    virtual void startAssociation(APInfo *ap, simtime_t timeout); 

 

    /** Utility function: looks up AP in our AP list. Returns nullptr if not found. */ 

    virtual APInfo *lookupAP(const MACAddress& address); 

 

    /** Utility function: clear the AP list, and cancel any pending authentications. */ 

    virtual void clearAPList(); 

 

    /** Utility function: switches to the given radio channel. */ 

    virtual void changeChannel(int channelNum); 

 

    /** Stores AP info received in a beacon or probe response */ 

    virtual void storeAPInfo(const MACAddress& address, const Ieee80211BeaconFrameBody& body); 

 

    /** Switches to the next channel to scan; returns true if done (there wasn't any more channel to scan). */ 

    virtual bool scanNextChannel(); 

 

    /** Broadcasts a Probe Request */ 

    virtual void sendProbeRequest(); 

 

    /** Missed a few consecutive beacons */ 

    virtual void beaconLost(); 

 

    /** Sends back result of scanning to the agent */ 

    virtual void sendScanConfirm(); 

 

    /** Sends back result of authentication to the agent */ 

    virtual void sendAuthenticationConfirm(APInfo *ap, int resultCode); 

 

    /** Sends back result of association to the agent */ 

    virtual void sendAssociationConfirm(APInfo *ap, int resultCode); 

 

    /** Utility function: Cancel the existing association */ 

    virtual void disassociate(); 

 

    /** Utility function: sends a confirmation to the agent */ 

    virtual void sendConfirm(Ieee80211PrimConfirm *confirm, int resultCode); 

 

    /** Utility function: sends a management frame */ 



31 

    virtual void sendManagementFrame(Ieee80211ManagementFrame *frame, const MACAddress& address); 

 

    /** Called by the signal handler whenever a change occurs we're interested in */ 

    virtual void receiveSignal(cComponent *source, simsignal_t signalID, long value, cObject *details) override; 

    virtual void receiveSignal(cComponent *source, simsignal_t signalID, cObject *obj, cObject *details) override; 

 

    /** Utility function: converts Ieee80211StatusCode (->frame) to Ieee80211PrimResultCode (->primitive) */ 

    virtual int statusCodeToPrimResultCode(int statusCode); 

 

    /** @name Processing of different frame types */ 

    //@{ 

    virtual void handleDataFrame(Ieee80211DataFrame *frame) override; 

    virtual void handleAuthenticationFrame(Ieee80211AuthenticationFrame *frame) override; 

    virtual void handleDeauthenticationFrame(Ieee80211DeauthenticationFrame *frame) override; 

    virtual void handleAssociationRequestFrame(Ieee80211AssociationRequestFrame *frame) override; 

    virtual void handleAssociationResponseFrame(Ieee80211AssociationResponseFrame *frame) override; 

    virtual void handleReassociationRequestFrame(Ieee80211ReassociationRequestFrame *frame) override; 

    virtual void handleReassociationResponseFrame(Ieee80211ReassociationResponseFrame *frame) override; 

    virtual void handleDisassociationFrame(Ieee80211DisassociationFrame *frame) override; 

    virtual void handleBeaconFrame(Ieee80211BeaconFrame *frame) override; 

    virtual void handleProbeRequestFrame(Ieee80211ProbeRequestFrame *frame) override; 

    virtual void handleProbeResponseFrame(Ieee80211ProbeResponseFrame *frame) override; 

    //@} 

 

    /** @name Processing of different agent commands */ 

    //@{ 

    virtual void processScanCommand(Ieee80211Prim_ScanRequest *ctrl); 

    virtual void processAuthenticateCommand(Ieee80211Prim_AuthenticateRequest *ctrl); 

    virtual void processDeauthenticateCommand(Ieee80211Prim_DeauthenticateRequest *ctrl); 

    virtual void processAssociateCommand(Ieee80211Prim_AssociateRequest *ctrl); 

    virtual void processReassociateCommand(Ieee80211Prim_ReassociateRequest *ctrl); 

    virtual void processDisassociateCommand(Ieee80211Prim_DisassociateRequest *ctrl); 

    //@} 

 

  public: 

      virtual MACAddress getMyAddress(); 

      bool harvestingState; 

      simtime_t stateStartTime; 

      simtime_t stateEndTime; 

      simtime_t awakeTime; 

      simtime_t goWakeTime; 

      simtime_t sleepingTime; 

      simtime_t goSleepTime; 

      simtime_t delay = SIMTIME_ZERO; 

      simtime_t isDelayed = SIMTIME_ZERO; 

      int recievedPackageCount; 

      bool active; 

      void checkForState(); 

}; 

 

9) IEEE80211MgmtSTA.cc 

void Ieee80211MgmtSTA::initialize(int stage) 

{ 

    Ieee80211MgmtBase::initialize(stage); 



32 

 

    if (stage == INITSTAGE_LOCAL) { 

        isScanning = false; 

        isAssociated = false; 

        assocTimeoutMsg = nullptr; 

        myIface = nullptr; 

        numChannels = par("numChannels"); 

 

        host = getContainingNode(this); 

        host->subscribe(NF_LINK_FULL_PROMISCUOUS, this); 

 

        WATCH(isScanning); 

        WATCH(isAssociated); 

 

        WATCH(scanning); 

        WATCH(assocAP); 

        WATCH_LIST(apList); 

    } 

    else if (stage == INITSTAGE_LINK_LAYER_2) { 

        IInterfaceTable *ift = findModuleFromPar<IInterfaceTable>(par("interfaceTableModule"), this); 

        if (ift) { 

            myIface = ift->getInterfaceByName(utils::stripnonalnum(findModuleUnderContainingNode(this)-

>getFullName()).c_str()); 

        } 

    } 

 

    harvestingState = 0; 

    stateStartTime = simTime(); 

    active = true; 

    awakeTime = SIMTIME_ZERO; 

    goWakeTime = simTime(); 

    sleepingTime = SIMTIME_ZERO; 

    goSleepTime = simTime(); 

    recievedPackageCount = 0; 

} 

 

void Ieee80211MgmtSTA::handleUpperMessage(cPacket *msg) 

{ 

    if (!isAssociated || assocAP.address.isUnspecified()) { 

        EV << "STA is not associated with an access point, discarding packet" << msg << "\n"; 

        delete msg; 

        return; 

    } 

 

 

    Ieee80211DataFrame *frame = encapsulate(msg); 

    frame->active = active; 

    sendDown(frame); 

    if(!harvestingState) 

    { 

        if(active) 

        { 

            goSleepTime = simTime(); 

            awakeTime = awakeTime + (simTime() - goWakeTime); 

        } 

        active = false; 



33 

    } 

} 

 

void Ieee80211MgmtSTA::handleDataFrame(Ieee80211DataFrame *frame) 

{ 

    // Only send the Data frame up to the higher layer if the STA is associated with an AP, 

    // else delete the frame 

    if (isAssociated){ 

        std::string name = frame->getName(); 

        if(frame->getTransmitterAddress().getInt() == 17592186044416 && name.find("reply") == std::string::npos) 

        { 

            if(active && !frame->packetLoss) 

            { 

                recievedPackageCount++; 

                if(!harvestingState) 

                { 

                    active = false; 

                    goSleepTime = simTime(); 

                    awakeTime = awakeTime + (simTime() - goWakeTime); 

                } 

            } 

            else 

            { 

                isDelayed = simTime(); 

            } 

        }// can get rid of lastBeaconTime dont need it anymore 

        //directly check if it is active or not and count package according to it 

 

        PingApp *app; 

        if(getMyAddress().getInt() == 11725260718081) 

        { 

            app = check_and_cast<PingApp *>(getModuleByPath("wireless.host1.pingApp[0]")); 

            app->recievedPackageCount = recievedPackageCount; 

            app->awakeTime = awakeTime; 

            app->sleepingTime = sleepingTime; 

            app->delay = app->delay + (frame->getDuration()); 

            app->delayActual = delay; 

        } 

        if(getMyAddress().getInt() == 11725260718082) 

        { 

            app = check_and_cast<PingApp *>(getModuleByPath("wireless.host2.pingApp[0]")); 

            app->recievedPackageCount = recievedPackageCount; 

            app->awakeTime = awakeTime; 

            app->sleepingTime = sleepingTime; 

            app->delay = app->delay + (frame->getDuration()); 

            app->delayActual = delay; 

        } 

        if(getMyAddress().getInt() == 11725260718083) 

        { 

            app = check_and_cast<PingApp *>(getModuleByPath("wireless.host3.pingApp[0]")); 

            app->recievedPackageCount = recievedPackageCount; 

            app->awakeTime = awakeTime; 

            app->sleepingTime = sleepingTime; 

            app->delay = app->delay + (frame->getDuration()); 

            app->delayActual = delay; 

        } 



34 

        if(getMyAddress().getInt() == 11725260718084) 

        { 

            app = check_and_cast<PingApp *>(getModuleByPath("wireless.host4.pingApp[0]")); 

            app->recievedPackageCount = recievedPackageCount; 

            app->awakeTime = awakeTime; 

            app->sleepingTime = sleepingTime; 

            app->delay = app->delay + (frame->getDuration()); 

            app->delayActual = delay; 

        } 

        if(getMyAddress().getInt() == 11725260718085) 

        { 

            app = check_and_cast<PingApp *>(getModuleByPath("wireless.host5.pingApp[0]")); 

            app->recievedPackageCount = recievedPackageCount; 

            app->awakeTime = awakeTime; 

            app->sleepingTime = sleepingTime; 

            app->delay = app->delay + (frame->getDuration()); 

            app->delayActual = delay; 

        } 

        if(getMyAddress().getInt() == 11725260718087) 

        { 

            app = check_and_cast<PingApp *>(getModuleByPath("wireless.host6.pingApp[0]")); 

            app->recievedPackageCount = recievedPackageCount; 

            app->awakeTime = awakeTime; 

            app->sleepingTime = sleepingTime; 

            app->delay = app->delay + (frame->getDuration()); 

            app->delayActual = delay; 

        } 

        if(getMyAddress().getInt() == 11725260718088) 

        { 

            app = check_and_cast<PingApp *>(getModuleByPath("wireless.host7.pingApp[0]")); 

            app->recievedPackageCount = recievedPackageCount; 

            app->awakeTime = awakeTime; 

            app->sleepingTime = sleepingTime; 

            app->delay = app->delay + (frame->getDuration()); 

            app->delayActual = delay; 

        } 

        if(getMyAddress().getInt() == 11725260718089) 

        { 

            app = check_and_cast<PingApp *>(getModuleByPath("wireless.host8.pingApp[0]")); 

            app->recievedPackageCount = recievedPackageCount; 

            app->awakeTime = awakeTime; 

            app->sleepingTime = sleepingTime; 

            app->delay = app->delay + (frame->getDuration()); 

            app->delayActual = delay; 

        } 

        if(getMyAddress().getInt() == 11725260718090) 

        { 

            app = check_and_cast<PingApp *>(getModuleByPath("wireless.host9.pingApp[0]")); 

            app->recievedPackageCount = recievedPackageCount; 

            app->awakeTime = awakeTime; 

            app->sleepingTime = sleepingTime; 

            app->delay = app->delay + (frame->getDuration()); 

            app->delayActual = delay; 

        } 

        if(getMyAddress().getInt() == 11725260718091) 

        { 



35 

            app = check_and_cast<PingApp *>(getModuleByPath("wireless.host10.pingApp[0]")); 

            app->recievedPackageCount = recievedPackageCount; 

            app->awakeTime = awakeTime; 

            app->sleepingTime = sleepingTime; 

            app->delay = app->delay + (frame->getDuration()); 

            app->delayActual = delay; 

        } 

 

        sendUp(decapsulate(frame)); 

    } 

    else { 

        EV << "Rejecting data frame as STA is not associated with an AP" << endl; 

        delete frame; 

    } 

} 

 

void Ieee80211MgmtSTA::handleBeaconFrame(Ieee80211BeaconFrame *frame) 

{ 

    checkForState(); 

 

    if(isDelayed != SIMTIME_ZERO) 

    { 

        delay += (simTime() - isDelayed); 

        isDelayed = SIMTIME_ZERO; 

    } 

 

    if(harvestingState && !active) 

    { 

        active = true; 

        goWakeTime = simTime(); 

        sleepingTime = sleepingTime + (simTime() - goSleepTime); 

    } 

    else if(!harvestingState) 

    { 

        bool tempActive = active; 

        int64_t temp = simTime().raw() + 100000000000; 

        int64_t now = simTime().raw(); 

        if(getMyAddress().getInt() == 11725260718081) 

        { 

            if(((frame->atim[0].raw() < temp) && (frame->atim[0].raw() > now)) || ((frame->atim[5].raw() < temp) && 

(frame->atim[5].raw() > now))) 

                active = true; 

            else 

                active = false; 

        } 

 

        if(getMyAddress().getInt() == 11725260718082) 

        { 

            if(((frame->atim[1].raw() < temp) && (frame->atim[1].raw() > now)) || ((frame->atim[6].raw() < temp) &&  

(frame->atim[6].raw() > now))) 

                active = true; 

            else 

                active = false; 

        } 

 

        if(getMyAddress().getInt() == 11725260718083) 



36 

        { 

            if(((frame->atim[2].raw() < temp) && (frame->atim[2].raw() > now)) || ((frame->atim[7].raw() < temp) && 

(frame->atim[7].raw() > now))) 

                active = true; 

            else 

                active = false; 

        } 

 

        if(getMyAddress().getInt() == 11725260718084) 

        { 

            if(((frame->atim[3].raw() < temp) && (frame->atim[3].raw() > now)) || ((frame->atim[8].raw() < temp && 

(frame->atim[8].raw() > now)))) 

                active = true; 

            else 

                active = false; 

        } 

 

        if(getMyAddress().getInt() == 11725260718085) 

        { 

            if(((frame->atim[4].raw() < temp) && (frame->atim[4].raw() > now)) || ((frame->atim[9].raw() < temp) && 

(frame->atim[9].raw() > now))) 

                active = true; 

            else 

                active = false; 

        } 

        if(getMyAddress().getInt() == 11725260718087) 

        { 

            if(((frame->atim[10].raw() < temp) && (frame->atim[10].raw() > now)) || ((frame->atim[15].raw() < temp) 

&& (frame->atim[15].raw() > now))) 

                active = true; 

            else 

                active = false; 

        } 

 

        if(getMyAddress().getInt() == 11725260718088) 

        { 

            if(((frame->atim[11].raw() < temp) && (frame->atim[11].raw() > now)) || ((frame->atim[16].raw() < temp) 

&&  (frame->atim[16].raw() > now))) 

                active = true; 

            else 

                active = false; 

        } 

 

        if(getMyAddress().getInt() == 11725260718089) 

        { 

            if(((frame->atim[12].raw() < temp) && (frame->atim[12].raw() > now)) || ((frame->atim[17].raw() < temp) 

&& (frame->atim[17].raw() > now))) 

                active = true; 

            else 

                active = false; 

        } 

 

        if(getMyAddress().getInt() == 11725260718090) 

        { 

            if(((frame->atim[13].raw() < temp) && (frame->atim[13].raw() > now)) || ((frame->atim[18].raw() < temp 

&& (frame->atim[18].raw() > now)))) 



37 

                active = true; 

            else 

                active = false; 

        } 

 

        if(getMyAddress().getInt() == 11725260718091) 

        { 

            if(((frame->atim[14].raw() < temp) && (frame->atim[14].raw() > now)) || ((frame->atim[19].raw() < temp) 

&& (frame->atim[19].raw() > now))) 

                active = true; 

            else 

                active = false; 

        } 

 

        if(tempActive && !active) 

        { 

            goSleepTime = simTime(); 

            awakeTime = awakeTime + (simTime() - goWakeTime); 

        } 

        else if(!tempActive && active) 

        { 

            goWakeTime = simTime(); 

            sleepingTime = sleepingTime + (simTime() - goSleepTime); 

        } 

    } 

    EV << "Received Beacon frame\n"; 

    storeAPInfo(frame->getTransmitterAddress(), frame->getBody()); 

 

    // if it is out associate AP, restart beacon timeout 

    if (isAssociated && frame->getTransmitterAddress() == assocAP.address) { 

        EV << "Beacon is from associated AP, restarting beacon timeout timer\n"; 

        ASSERT(assocAP.beaconTimeoutMsg != nullptr); 

        cancelEvent(assocAP.beaconTimeoutMsg); 

        scheduleAt(simTime() + MAX_BEACONS_MISSED * assocAP.beaconInterval, 

assocAP.beaconTimeoutMsg); 

 

        //APInfo *ap = lookupAP(frame->getTransmitterAddress()); 

        //ASSERT(ap!=nullptr); 

    } 

 

    delete frame; 

} 

MACAddress Ieee80211MgmtSTA::getMyAddress() 

{ 

    return myAddress; 

} 

 

void Ieee80211MgmtSTA::checkForState() 

{ 

    stateEndTime = simTime(); 

    int timeDif = ((stateEndTime.raw() - stateStartTime.raw())/1000000000000); 

    if(harvestingState && timeDif > 50) 

    { 

         harvestingState = 0; 

         stateStartTime = simTime(); 

         EV << "Harvesting for " << timeDif << " addr:" << this->myAddress.getInt() << std::endl; 



38 

    } 

    else if( !harvestingState && timeDif > 25) 

    { 

        harvestingState = 1; 

        stateStartTime = simTime(); 

        EV << "Active for " << timeDif << " addr:" << this->myAddress.getInt() << std::endl; 

    } 

} 

 

10) IEEE80211MgmtAP.cc 

void Ieee80211MgmtAP::sendBeacon() 

{ 

    EV << "Sending beacon\n"; 

    Ieee80211BeaconFrame *frame = new Ieee80211BeaconFrame("Beacon"); 

    Ieee80211BeaconFrameBody& body = frame->getBody(); 

    body.setSSID(ssid.c_str()); 

    body.setSupportedRates(supportedRates); 

    body.setBeaconInterval(beaconInterval); 

    body.setChannelNumber(channelNumber); 

    body.setBodyLength(8 + 2 + 2 + (2 + ssid.length()) + (2 + supportedRates.numRates)); 

 

    frame->setByteLength(28 + body.getBodyLength()); 

    frame->setReceiverAddress(MACAddress::BROADCAST_ADDRESS); 

    frame->setFromDS(true); 

 

    //getSimulation()->getModule(50) for every host(STA) type of PingApp * (includes nextPingTime) 

    //put that times into beacon frame 

    PingApp *app; 

 

    //send ping times 

    cModule *mod; 

 

    mod = getSimulation()->getModuleByPath("wireless.host1.pingApp[0]"); 

    if(mod) 

    { 

        app = check_and_cast<PingApp *>(mod); 

        frame->atim[0] = app->nextPingTime; 

    } 

 

    mod = getSimulation()->getModuleByPath("wireless.host2.pingApp[0]"); 

    if(mod) 

    { 

        app = check_and_cast<PingApp *>(mod); 

        frame->atim[1] = app->nextPingTime; 

    } 

 

    mod = getSimulation()->getModuleByPath("wireless.host3.pingApp[0]"); 

    if(mod) 

    { 

        app = check_and_cast<PingApp *>(mod); 

        frame->atim[2] = app->nextPingTime; 

    } 

 

    mod = getSimulation()->getModuleByPath("wireless.host4.pingApp[0]"); 



39 

    if(mod) 

    { 

        app = check_and_cast<PingApp *>(mod); 

        frame->atim[3] = app->nextPingTime; 

    } 

 

    mod = getSimulation()->getModuleByPath("wireless.host5.pingApp[0]"); 

    if(mod) 

    { 

        app = check_and_cast<PingApp *>(mod); 

        frame->atim[4] = app->nextPingTime; 

    } 

 

    mod = getSimulation()->getModuleByPath("wireless.host6.pingApp[0]"); 

    if(mod) 

    { 

        app = check_and_cast<PingApp *>(mod); 

        frame->atim[10] = app->nextPingTime; 

    } 

 

    mod = getSimulation()->getModuleByPath("wireless.host7.pingApp[0]"); 

    if(mod) 

    { 

        app = check_and_cast<PingApp *>(mod); 

        frame->atim[11] = app->nextPingTime; 

    } 

 

    mod = getSimulation()->getModuleByPath("wireless.host8.pingApp[0]"); 

    if(mod) 

    { 

        app = check_and_cast<PingApp *>(mod); 

        frame->atim[12] = app->nextPingTime; 

    } 

 

    mod = getSimulation()->getModuleByPath("wireless.host9.pingApp[0]"); 

    if(mod) 

    { 

        app = check_and_cast<PingApp *>(mod); 

        frame->atim[13] = app->nextPingTime; 

    } 

 

    mod = getSimulation()->getModuleByPath("wireless.host10.pingApp[0]"); 

    if(mod) 

    { 

        app = check_and_cast<PingApp *>(mod); 

        frame->atim[14] = app->nextPingTime; 

    } 

    //recieve ping times 

 

    mod = getSimulation()->getModuleByPath("wireless.hostReciever.pingApp[0]"); 

    if(mod) 

    { 

        app = check_and_cast<PingApp *>(mod); 

        frame->atim[5] = app->recieveNextPingTime; 

    } 

 



40 

    mod = getSimulation()->getModuleByPath("wireless.hostReciever.pingApp[1]"); 

    if(mod) 

    { 

        app = check_and_cast<PingApp *>(mod); 

        frame->atim[6] = app->recieveNextPingTime; 

    } 

 

    mod = getSimulation()->getModuleByPath("wireless.hostReciever.pingApp[2]"); 

    if(mod) 

    { 

        app = check_and_cast<PingApp *>(mod); 

        frame->atim[7] = app->recieveNextPingTime; 

    } 

 

    mod = getSimulation()->getModuleByPath("wireless.hostReciever.pingApp[3]"); 

    if(mod) 

    { 

        app = check_and_cast<PingApp *>(mod); 

        frame->atim[8] = app->recieveNextPingTime; 

    } 

 

    mod = getSimulation()->getModuleByPath("wireless.hostReciever.pingApp[4]"); 

    if(mod) 

    { 

        app = check_and_cast<PingApp *>(mod); 

        frame->atim[9] = app->recieveNextPingTime; 

    } 

 

    mod = getSimulation()->getModuleByPath("wireless.hostReciever.pingApp[5]"); 

    if(mod) 

    { 

        app = check_and_cast<PingApp *>(mod); 

        frame->atim[15] = app->recieveNextPingTime; 

    } 

 

    mod = getSimulation()->getModuleByPath("wireless.hostReciever.pingApp[6]"); 

    if(mod) 

    { 

        app = check_and_cast<PingApp *>(mod); 

        frame->atim[16] = app->recieveNextPingTime; 

    } 

 

    mod = getSimulation()->getModuleByPath("wireless.hostReciever.pingApp[7]"); 

    if(mod) 

    { 

        app = check_and_cast<PingApp *>(mod); 

        frame->atim[17] = app->recieveNextPingTime; 

    } 

 

    mod = getSimulation()->getModuleByPath("wireless.hostReciever.pingApp[8]"); 

    if(mod) 

    { 

        app = check_and_cast<PingApp *>(mod); 

        frame->atim[18] = app->recieveNextPingTime; 

    } 

 



41 

    mod = getSimulation()->getModuleByPath("wireless.hostReciever.pingApp[9]"); 

    if(mod) 

    { 

        app = check_and_cast<PingApp *>(mod); 

        frame->atim[19] = app->recieveNextPingTime; 

    } 

 

    sendDown(frame); 

} 

 

void Ieee80211MgmtAP::handleDataFrame(Ieee80211DataFrame *frame) 

{ 

    // check toDS bit 

    if (!frame->getToDS()) { 

        // looks like this is not for us - discard 

        EV << "Frame is not for us (toDS=false) -- discarding\n"; 

        delete frame; 

        return; 

    } 

 

    // handle broadcast/multicast frames 

    if (frame->getAddress3().isMulticast()) { 

        EV << "Handling multicast frame\n"; 

 

        if (isConnectedToHL) 

            sendToUpperLayer(frame->dup()); 

 

        distributeReceivedDataFrame(frame); 

        return; 

    } 

 

    // look up destination address in our STA list 

    auto it = staList.find(frame->getAddress3()); 

    if (it == staList.end()) { 

        // not our STA -- pass up frame to relayUnit for LAN bridging if we have one 

        if (isConnectedToHL) { 

            sendToUpperLayer(frame); 

        } 

        else { 

            EV << "Frame's destination address is not in our STA list -- dropping frame\n"; 

            delete frame; 

        } 

    } 

    else { 

        // dest address is our STA, but is it already associated? 

        if (it->second.status == ASSOCIATED) 

        { 

            distributeReceivedDataFrame(frame); // send it out to the destination STA 

 

            std::string name = frame->getName(); 

            if(name.find("reply") == std::string::npos && frame->active && !frame->packetLoss) 

            { 

                PingApp *app; 

                if(frame->getTransmitterAddress().getInt() == 11725260718081) 

                { 



42 

                    app = check_and_cast<PingApp *>(getSimulation()-

>getModuleByPath("wireless.hostReciever.pingApp[0]")); 

                    app->recievedPackageCount++; 

                    app->delay = app->delay + (frame->getDuration()); 

                } 

                if(frame->getTransmitterAddress().getInt() == 11725260718082) 

                { 

                    app = check_and_cast<PingApp *>(getSimulation()-

>getModuleByPath("wireless.hostReciever.pingApp[1]")); 

                    app->recievedPackageCount++; 

                    app->delay = app->delay + (frame->getDuration()); 

                } 

                if(frame->getTransmitterAddress().getInt() == 11725260718083) 

                { 

                    app = check_and_cast<PingApp *>(getSimulation()-

>getModuleByPath("wireless.hostReciever.pingApp[2]")); 

                    app->recievedPackageCount++; 

                    app->delay = app->delay + (frame->getDuration()); 

                } 

                if(frame->getTransmitterAddress().getInt() == 11725260718084) 

                { 

                    app = check_and_cast<PingApp *>(getSimulation()-

>getModuleByPath("wireless.hostReciever.pingApp[3]")); 

                    app->recievedPackageCount++; 

                    app->delay = app->delay + (frame->getDuration()); 

                } 

                if(frame->getTransmitterAddress().getInt() == 11725260718085) 

                { 

                    app = check_and_cast<PingApp *>(getSimulation()-

>getModuleByPath("wireless.hostReciever.pingApp[4]")); 

                    app->recievedPackageCount++; 

                    app->delay = app->delay + (frame->getDuration()); 

                } 

                if(frame->getTransmitterAddress().getInt() == 11725260718087) 

                { 

                    app = check_and_cast<PingApp *>(getSimulation()-

>getModuleByPath("wireless.hostReciever.pingApp[5]")); 

                    app->recievedPackageCount++; 

                    app->delay = app->delay + (frame->getDuration()); 

                } 

                if(frame->getTransmitterAddress().getInt() == 11725260718088) 

                { 

                    app = check_and_cast<PingApp *>(getSimulation()-

>getModuleByPath("wireless.hostReciever.pingApp[6]")); 

                    app->recievedPackageCount++; 

                    app->delay = app->delay + (frame->getDuration()); 

                } 

                if(frame->getTransmitterAddress().getInt() == 11725260718089) 

                { 

                    app = check_and_cast<PingApp *>(getSimulation()-

>getModuleByPath("wireless.hostReciever.pingApp[7]")); 

                    app->recievedPackageCount++; 

                    app->delay = app->delay + (frame->getDuration()); 

                } 

                if(frame->getTransmitterAddress().getInt() == 11725260718090) 

                { 



43 

                    app = check_and_cast<PingApp *>(getSimulation()-

>getModuleByPath("wireless.hostReciever.pingApp[8]")); 

                    app->recievedPackageCount++; 

                    app->delay = app->delay + (frame->getDuration()); 

                } 

                if(frame->getTransmitterAddress().getInt() == 11725260718091) 

                { 

                    app = check_and_cast<PingApp *>(getSimulation()-

>getModuleByPath("wireless.hostReciever.pingApp[9]")); 

                    app->recievedPackageCount++; 

                    app->delay = app->delay + (frame->getDuration()); 

                } 

            } 

 

        } 

        else { 

            EV << "Frame's destination STA is not in associated state -- dropping frame\n"; 

            delete frame; 

        } 

    } 

} 

 

11) PingApp.h 

class INET_API PingApp : public cSimpleModule, public ILifecycle 

{ 

  protected: 

    // parameters: for more details, see the corresponding NED parameters' documentation 

    L3Address destAddr; 

    L3Address srcAddr; 

    std::vector<L3Address> destAddresses; 

    int packetSize = 0; 

    cPar *sendIntervalPar = nullptr; 

    cPar *sleepDurationPar = nullptr; 

    int hopLimit = 0; 

    int count = 0; 

    int destAddrIdx = -1; 

    simtime_t startTime; 

    simtime_t stopTime; 

    bool printPing = false; 

    bool continuous = false; 

 

    // state 

    int pid = 0;    // to determine which hosts are associated with the responses 

    cMessage *timer = nullptr;    // to schedule the next Ping request 

    NodeStatus *nodeStatus = nullptr;    // lifecycle 

    simtime_t lastStart;    // the last time when the app was started (lifecycle) 

    long sendSeqNo = 0;    // to match the response with the request that caused the response 

    long expectedReplySeqNo = 0; 

    simtime_t sendTimeHistory[PING_HISTORY_SIZE];    // times of when the requests were sent 

 

    // statistics 

    cStdDev rttStat; 

    static simsignal_t rttSignal; 

    static simsignal_t numLostSignal; 



44 

    static simsignal_t numOutOfOrderArrivalsSignal; 

    static simsignal_t pingTxSeqSignal; 

    static simsignal_t pingRxSeqSignal; 

    long sentCount = 0;    // number of sent Ping requests 

    long lossCount = 0;    // number of lost requests 

    long outOfOrderArrivalCount = 0;    // number of responses which arrived too late 

    long numPongs = 0;    // number of received Ping requests 

 

  protected: 

    virtual void initialize(int stage) override; 

    virtual int numInitStages() const override { return NUM_INIT_STAGES; } 

    virtual void handleMessage(cMessage *msg) override; 

    virtual void finish() override; 

    virtual void refreshDisplay() const override; 

 

    virtual void parseDestAddressesPar(); 

    virtual void startSendingPingRequests(); 

    virtual void stopSendingPingRequests(); 

    virtual void scheduleNextPingRequest(simtime_t previous, bool withSleep); 

    virtual void cancelNextPingRequest(); 

    virtual bool isNodeUp(); 

    virtual bool isEnabled(); 

    virtual std::vector<L3Address> getAllAddresses(); 

    virtual void sendPing(); 

    virtual void processPingResponse(PingPayload *msg); 

    virtual void countPingResponse(int bytes, long seqNo, simtime_t rtt); 

 

    virtual bool handleOperationStage(LifecycleOperation *operation, int stage, IDoneCallback *doneCallback) 

override; 

 

  public: 

    PingApp(); 

    virtual ~PingApp(); 

    simtime_t nextPingTime; 

    simtime_t recieveNextPingTime; 

    int recievedPackageCount = 0; 

    simtime_t sleepingTime = SIMTIME_ZERO; 

    simtime_t awakeTime = SIMTIME_ZERO; 

    simtime_t delay = SIMTIME_ZERO; 

    simtime_t delayActual = SIMTIME_ZERO; 

}; 

 

12) PingApp.cc 

void PingApp::scheduleNextPingRequest(simtime_t previous, bool withSleep) 

{ 

    simtime_t next; 

    if (previous < SIMTIME_ZERO) 

        next = simTime() <= startTime ? startTime : simTime(); 

    else { 

        next = previous + sendIntervalPar->doubleValue(); 

        if (withSleep) 

            next += sleepDurationPar->doubleValue(); 

    } 

    if (stopTime < SIMTIME_ZERO || next < stopTime) 



45 

        scheduleAt(next, timer); 

    nextPingTime = next; 

    if(this->getOwner()->getFullPath() == "wireless.hostReciever") 

    { 

        recieveNextPingTime = next; 

    } 

} 

void PingApp::finish() 

{ 

    if (sendSeqNo == 0) { 

        if (printPing) 

            EV_DETAIL << getFullPath() << ": No pings sent, skipping recording statistics and printing results.\n"; 

        return; 

    } 

 

    lossCount += sendSeqNo - expectedReplySeqNo; 

    // record statistics 

    recordScalar("Pings sent", sendSeqNo); 

    recordScalar("ping loss rate (%)", 100 * lossCount / (double)sendSeqNo); 

    recordScalar("ping out-of-order rate (%)", 100 * outOfOrderArrivalCount / (double)sendSeqNo); 

 

    // print it to stdout as well 

    if (printPing) { 

        cout << "--------------------------------------------------------" << endl; 

        cout << "\t" << getFullPath() << endl; 

        cout << "--------------------------------------------------------" << endl; 

 

        cout << "sent: " << sendSeqNo << "   received: " << numPongs << "   loss rate (%): " << (100 * lossCount / 

(double)sendSeqNo) << endl; 

        cout << "round-trip min/avg/max (ms): " << (rttStat.getMin() * 1000.0) << "/" 

             << (rttStat.getMean() * 1000.0) << "/" << (rttStat.getMax() * 1000.0) << endl; 

        cout << "stddev (ms): " << (rttStat.getStddev() * 1000.0) << "   variance:" << rttStat.getVariance() << endl; 

        cout << "Recieved Package COUNT = " << recievedPackageCount << endl; 

        cout << "Awake Time = " << awakeTime << endl; 

        cout << "Sleeping Time = " << sleepingTime << endl; 

        cout << "Delay = " << delay << endl; 

        cout << "Actual Delay = " << delayActual << endl; 

        cout << "--------------------------------------------------------" << endl; 

    } 

} 

 

 

 


	Marshall University
	Marshall Digital Scholar
	2018

	A Novel IEEE 802.11 Power Save Mechanism for Energy Harvesting Motivated Networks
	Yigitcan Celik
	Recommended Citation


	tmp.1558362988.pdf.49qbQ

