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ABSTRACT

Many probability models have been proposed to describe rankings. One of these is the Bradley-

Terry model, which is based on observed pairwise preferences. For this study, we reverse the case

and propose a new approach for estimating pairwise preference probabilities based on observed

rankings. The new approach uses logistic regression with zero intercept as the statistical model

that fits this situation. In order to implement the model, we first estimate the parameter using

maximum likelihood estimation. Then we evaluate this estimation using numerical approximation

procedures. We consider three such procedures: bisection method, Newton-Raphson method, and

improved Newton’s method. Using simulated data, we compare the three procedures based on the

number of iterations required for convergence, as well as CPU time. We identify the improved

Newton’s method as the fastest of the three methods.
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CHAPTER 1

INTRODUCTION

For this study, we propose a statistical model that can estimate or predict preference

probability of a pairwise comparison using known rankings; that is, we are estimating the

probability that one item is preferred to another given each item’s rank. Let us say that we have

two equally ranked brands Bα and Bβ; in this case either brand should have equal chances of

being chosen. That is, the probability either brand’s product is selected by some consumer is 0.5,

so both brands have equal chances of being selected by some consumer. According to Holland and

Wessells (1998) [4], predicting preference can be based on some specific attributes of the goods or

product. But for this study, we do not intend to go into details as to other factors that could

influence the consumer’s preference except for the given rank.

Another instance can be found in the sporting context. If we have two teams Aα and Aβ that

are ranked first in their respective leagues, it is logical to say that both teams would have equal

chances of winning. Thus the probability that team Aα beats team Aβ (and vice-versa) is 0.5. We

know that there are various factors that can influence the chances of a team winning a game,

some of which were considered by Willoughby (2002) [16] with respect to Canadian Football.

However, we take the position that the ranks incorporate all these factors and, thus, we intend to

base the preference probability on these ranks alone. In fact, we will base preference probabilities

on only the difference between the two ranks. Another example is racetrack betting as discussed

by Lo, Bacon-Shone and Busche (1995) [9]. Further examples can be found in tennis, soccer, and

other team sports.

Considering the historical use of ranking models in paired comparisons, we observe that the

most popular of such models is the Bradley-Terry model. This probability model is used to

predict the outcome of a pairwise comparison. As discussed by Jong-June and Yongdai (2014) [7],

the Bradley-Terry model has been used to estimate ranking probabilities which are based on

observed preferences.

Now, we intend to reverse this concept by estimating preference probabilities which are based

on observed rankings. Then we consider a situation in which it is possible to apply this concept,
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stating all the properties our proposed model should satisfy. We would explore a particular

regression method - logistic regression - and show that a special case in which the intercept is zero

satisfies all the required properties. Our choice of logistic regression model is based on its use for

analyzing data with categorical or binary outcome.

In the following chapters, we will do a review of the Bradley-Terry model and logistic regression

model. Then we will identify all the required properties for the situation considered and then

prove that logistic regression model with zero intercept satisfies all of the required properties.

Then we apply the method of maximum likelihood estimation to fit our model. Afterwards, we

will discuss and compare three numerical approximation procedures we have chosen to estimate

the parameter β1, identifying the fastest and most efficient of the three procedures. We illustrate

this by simulating data to compare these numerical procedures, by fixing the values of β1 and x

but with varying values of y. We explore the distribution of the estimator for small samples. And

finally, we conclude by stating our findings, and some limitations encountered that lead to future

work.
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CHAPTER 2

PREFERENCE PROBABILITY USING LOGISTIC REGRESSION

In this section, we review the application of the Bradley-Terry model, study logistic regression,

fit the special case of zero intercept and examine how it applies to this study.

2.1 The Bradley-Terry Model

The Bradley-Terry model, though studied in the 1920s by Ernst Zermelo, is named after R.A

Bradley and M.E Terry who presented the model in 1952 in their paper titled “Rank analysis of

incomplete block designs: I. The method of paired comparisons” [1]. Bradley-Terry model is one

of several models used in the analysis of categorical or dichotomous data and can be viewed as a

special case of generalized linear models. The Bradley-Terry model is for paired comparison or for

analyzing pairwise preference data. For any pair of entities u and v, selected from some sample,

the probability that u ranks higher than v can be estimated using this model.

Now, let us consider a situation where k entities are in pairwise comparisons to one another,

given their order of preference: τ1, · · · , τk. For this model, we have the condition that every τi ≥ 0

with

k∑
i=1

τi = 1

(which implies that there is no chance for a tie), so that it is expressed as:

P (u ranks higher than v) =
τu

τu + τv
.

where τu and τv are positive real-valued score functions assigned to u and v respectively. In using

this model, entities from the sample are considered to have true ratings (or preferences); thus, the

estimated ranking is based on these preferences.

We note that for mutually independent events, the probability puv = P (u beats v) satisfies the

logit model (and removing ties):

log
puv

1− puv
= ψu − ψv,
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where ψu = log τu, as expressed by Bradley and Terry (1952) [1].

According to Jong-June and Yongdai (2014) [7], it was explained that the popularity of the

Bradley-Terry model is gained not only due to its easy computation but also because of how it

exhibits some nice asymptotic properties when the model is misspecified. Model misspecification

generally means that there is an omission of relevant variables or inclusion of irrelevant variables.

We also realized that this model can be constructed to fit a dataset simply by constructing an

appropriate matrix with response vector for some binomial regression model; we could do this

from scratch for a single dataset. Another approach is to construct functions or quantities that

make the data more specified and in a nice form. In addition to these, the Bradley-Terry model

can address some specific questions, such as, what is the estimated value of the probability that u

beats v? In illustrating these ideas, Drakos (1995) [15] was able to fit a Bradley-Terry model to

the results for the eastern division of the American league for the 1987 baseball season.

Conclusively, the Bradley-Terry model is used for estimating ranking probabilities of a finite

number of items by pairwise comparison, which is based on a known order of preference. Some of

the real-world applications of the Bradley-Terry model are:

1. Ranking documents based on relevance for any given query by information retrieval,

Jong-June and Yongdai (2014) [7].

2. Quantification of the influence of statistical journals, Stigler(1994) [14].

3. Prediction of the results of FIFA 2010 South Africa World Cup, Hong, Jung and Lee (2010)

[5].

4. Transmission/disequilibrium test in genetics, Sham and Curtis (1995) [13], amongst others.

2.2 Logistic Regression

Logistic regression is one of the regression methods that have been largely used for any data

analysis involving the description of the relationship between a response variable and one or more

explanatory variables. The logistic regression model has been the standard method of analysis for

several years, and put to use in many fields for this type of case. Just like every other regression

method, the goal of the analysis using logistic regression is to find the best fitting and most

4



reasonable model to describe the relationship between a response and a set of predictor variables.

It is also worthy of note that logistic regression has an outcome response that is dichotomous or

binary. This largely differentiates logistic regression from linear regression and other regression

methods, although it follows the same general principles as used in linear regression. Also, many

distribution functions have been suggested for use in the analysis of categorical response variables.

But the logistic distribution has been popular because it is very flexible and can be easily used,

and it tends to give a meaningful interpretation as described by Hosmer and Lemeshow (1989) [6].

Before we discuss logistic regression, let us formally state the familiar linear regression model.

Let Y and X be response and predictor variables respectively.A simple linear model is expressed

as

E(Y |X) = µ = β0 + β1X,

with real-valued constants β0 and β1.

The simple linear model is a special case of the generalized linear model, which is given by

f
(
E(Y |X)

)
= β0 + β1X ⇒ f(µ) = β0 + β1X,

where f is the link function.

Logistic regression is another special case of the generalized linear model, used for a categorical

or binary outcome. We will consider the fixed effects case. So, let our predictor assume a fixed

numerical value x, and let the random response variable Y be a categorical outcome “Yes/No” or

0/1. Suppose that the distribution of Y given x is Bernoulli(p), where p depends on the value of

x. The probability function for Y is then given by

P (y) = py(1− p)1−y. (2.1)

This implies that P (Y = 1) = p and P (Y = 0) = 1− p.

By exploring its graph, we could see that a linear model is bad for this case because we get

values of p that are less than 0 or greater than 1 against varying values of x. So we replace p with

the odds quantity (
p

1− p

)
.

5



This is to guarantee we always have a positive number. Taking the natural log gives,

ln

(
p

1− p

)
,

which is called the logit function. Now this guarantees that it no longer has to be a positive

number, but can be any real number. Hence, the model for logistic regression is

ln

(
p

1− p

)
= β0 + β1x. (2.2)

By solving for p in equation 2.2, we end up with the logistic function

p =
e(β0+β1x)

1 + e(β0+β1x)
. (2.3)

By exploring the graph of the logistic function, we can see that 0 ≤ p ≤ 1 which makes sense for

this kind of regression. And β0 determines the location, while β1 determines direction

(increasing/decreasing) and steepness.

2.3 Fitting the Logistic Regression Model with Zero Intercept

Let us suppose that we want to develop a model that can predict the outcome probabilities of

an inter-league competition in which both leagues have n teams. For such a contest, each team

will have a known rank within its league. Now, suppose that these ranks are given by i and j, and

let pij denote the probability that the team with rank i defeats the team with rank j. Then, a

model for the probabilities must satisfy some definite properties:

Property 1: pij + pji = 1 for all i, j ∈ {1, 2, · · · , n}.

This must be true because, provided that ties are not allowed, the events that team i wins and

that team j wins are complementary events.

Since the two competing teams are in different leagues, there exists the possibility that they

could have the same rank such that i = j. It then follows from Property 1 that:

Property 2: pii =
1

2
for all i ∈ {1, 2, · · · , n}.

We propose that such model is given by the logistic regression model with zero intercept, where

x = rankA - rankB. From 2.3, if β0 = 0, then the probability that Team A beats Team B is given

6



by

p(x) =
e(β1x)

1 + e(β1x)
. (2.4)

Now suppose that Team A and Team B are equally ranked in their respective leagues. Then

x = rankA - rankB = 0, implying that

P (A beats B) = p(0) =
e0

1 + e0
=

1

2
.

The graph will be symmetric about the point (0,
1

2
) and follows that when x = 0, p(0) =

1

2
. Thus

this model satisfies Property 1.

Also, this model satisfies Property 2, since

P (A beats B) + P (B beats A) = p(x) + p(−x)

=
e(β1x)

1 + e(β1x)
+

e(−β1x)

1 + e(−β1x)

=
e(β1x)

1 + e(β1x)
+

e(−β1x)

(1 + e(−β1x))
· e

(β1x)

e(β1x)

=
e(β1x)

1 + e(β1x)
+

1

1 + e(β1x)

=
1 + e(β1x)

1 + e(β1x)
= 1.

Since all the required properties are satisfied, the logistic regression model with zero intercept is a

good choice to model the probability that Team A beats Team B in an inter-league tournament.

We will next proceed to fitting this model.

We merge equation 2.1 and equation 2.4 into

P (y) =

(
eβ1x

1 + eβ1x

)y
·

(
1

1 + eβ1x

)1−y

=
eβ1xy

1 + eβ1x
. (2.5)

So given a set of data with a finite number of independent observations, to fit the logistic

regression model with zero intercept in equation 2.5 to these data requires us to estimate the

value of the unknown parameters β1. Least squares is the most often used method for estimating

the unknown parameters in linear regression. But this method cannot be applied to a model with

7



dichotomous response variable because it forces the estimators to lose the desirable statistical

properties, as demonstrated by Hosmer and Lemeshow (1989) [6]. So we invoke the method of

maximum likelihood following the approach of Hosmer and Lemeshow (1989) [6]. In a more

general sense, this method produces values for the unknown parameters that maximize the

probability of getting the observed or given set of data. The likelihood function basically

demonstrates the probability of the given data as a function of the unknown parameters and it is

first constructed before applying the method of maximum likelihood. The values that maximize

this function are the maximum likelihood estimators of the parameters. And these resulting

estimators are described to agree most closely with the given data. So, we find these values from

the logistic regression model with zero intercept.

Since we assumed to have independent observations, the likelihood function of equation 2.5 is:

L(β1;Y1, Y2, · · · , Yn) =
n∏
i=1

(
eβ1xiyi

1 + eβ1xi

)
(2.6)

By principle, the method of maximum likelihood estimation requires that we use an estimate of

β1 whose value maximizes equation 2.6. It is mathematically easier to work with the log function

of equation 2.6 as argued by Hosmer and Lemeshow (1989) [6]. Taking the natural log of both

sides of equation 2.6 produces

lnL(β1;Yi) = ln

n∏
i=1

(
(eβ1xi)yi

1 + eβ1xi

)
,

=
n∑
i=1

ln(eβ1xi)yi −
n∑
i=1

ln(1 + eβ1xi),

=
n∑
i=1

yi(β1xi)−
n∑
i=1

ln(1 + eβ1xi).

So, letting l(β1;Yi) = lnL(β1;Yi), we have

l(β1;Yi) = β1

n∑
i=1

xi · yi −
n∑
i=1

ln(1 + eβ1xi). (2.7)

Now, to find the value of β1 that maximizes L(β1;Yi) we differentiate equation 2.7 with respect to

8



β1 and set the result to zero. Taking derivatives yields

∂l(β1;Yi)

∂β1
=

n∑
i=1

xi · yi −
n∑
i=1

(
xie

β1xi

1 + eβ1xi

)

=
n∑
i=1

xi · yi −
n∑
i=1

xi

(
eβ1xi

1 + eβ1xi

)

=
n∑
i=1

xi

(
yi −

eβ1xi

1 + eβ1xi

)
.

Now, setting the derivative to zero gives

n∑
i=1

xi

(
yi −

eβ1xi

1 + eβ1xi

)
= 0. (2.8)

Unfortunately, the form of equation 2.8 makes it unfeasible to solve directly. So, we will need to

apply some numerical approximation procedure to estimate its solution. The value of β1 from

equation 2.8 is denoted by β̂1 and it is called the maximum likelihood estimate of β1. This

represents the predicted or fitted value for the logistic regression model with zero intercept.
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CHAPTER 3

NUMERICAL APPROXIMATION PROCEDURES

In this section, we study, implement, and compare the bisection method, Newton’s method and

improved-Newton’s method as applied to get the estimate of β1 in equation 2.8.

3.1 Bisection Method

Sauer (2012) [12] discussed that the bisection method uses the intuitive concept of bracketing

the root, which is done first to ensure that a root exists for an equation. This method converges

to only one root of the equation and does not give any clue whether there are additional

solution(s) for the equation or how to find them, as shown by Levy (2010) [8], and by Gerald and

Wheatley (2004) [3]. Hence, it is said to be linearly convergent.

Sauer (2012) [12] showed with an example that the bisection method is one of the linearly

convergent methods, by observing the solutions from the point they begin to converge. That is, it

was observed that the number of accurate decimal places increases by one for each iteration.

Definition 1. Linear Convergence:

An iterative method is said to satisfy linear convergence at rate R if

lim
j→∞

Ψj+1

Ψj
= R < 1,

where Ψj is the error at iteration j.

Sarra (2018) [11] made mention of the fact that many other numerical approximation

procedures also share significant characteristics with the bisection method. This idea is

summarized in a corollary of the Intermediate Value Theorem(IVT). (See Appendix B.) The

general algorithm for the bisection method developed by Sauer (2012) [12] can be used to find

solutions of equations manually. Some applications of this method are also described by Sauer

(2012) [12], and by Gerald and Wheatley (2004) [3] using MATLAB. So, starting with some

closed interval [u, v] of a function f(x), after m number of iterations, the interval [um, vm] will
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have a length of

(v − u)

2m
.

The best estimate of a solution is obtained by selecting the midpoint;

zc =
u+ v

2
.

Hence, the error of the solution at the mth iteration (Ψm) and function evaluation (Λ) proposed

by Sauer (2012) [12] and by Sarra (2018) [11] now becomes

Ψe = |zc − a| ≤
v − u
2m+1

and Λ = m+ 2,

where zc is the value of the midpoint, and a is the solution of f(x). To assess the efficiency of the

bisection method, Sauer (2012) [12] suggested that we can measure how much accuracy is obtained

for each Λ. And each Λ reduces the uncertainty in the solution by some number divisible by 2.

So, we know a root is accurate within some k decimal places if the value of Ψ is below 0.5 ∗ 10−k.

It is worthy of note that the desired level of accuracy for the solution decides how many iterations

that should be carried out when solving by hand. But when using computer programs, Sauer

(2012) [12] suggested we define the stopping criteria or tolerance (tol), which sets a limit to the

number of possible correct digits. According to Sarra (2018) [11], we can achieve that by setting

m ≥ log2

(v − u
tol

)
.

This formula only exists for the bisection method; other methods require other criteria, and the

importance of this stopping criteria is described by Sarra (2018) [11]. Levy (2010) [8] made us

understand that the bisection method would always converge to a root and described how to

identify how close we get to a solution after some number of iterations. Sarra (2018) [11] proposed

the bisection algorithm in Python as shown in Figure 3.1.

Let us explore this method with the following example:
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# import RootFinders as RF
from math import cos , log , c e i l , fabs , copys ign
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
de f b i s e c t i o n ( f , u , v , t o l=1e−9):

fu , fv = f (u ) , f ( v )
N = i n t ( c e i l ( l og ( ( v−u)/ t o l )/ l og ( 2 . 0 ) ) )

# the number o f i t e r a t i o n s
b = [ ] # an empty l i s t
f o r i in range (N) :

w = ( v + u ) / 2 . 0
b . append (w)
fw = f (w)
i f fu ∗ fw < 0 : # b∗ i s in [ u ,w]

v , fv = w, fw
e l s e : # x∗ i s in [w, v ]

u , fu = w, fw
b . append ( ( u+v )/2) # new midpoint i s the best e s t imate
re turn b

Figure 3.1: Python code for the bisection method.

Example 1. Find the approximate root of xex − 1.

From Figure 3.3, we get an approximate root of 0.567143290390959 after 37 iterations in about

0.03 seconds.

3.2 Newton’s Method

This is also referred to as the Newton-Raphson method. Sauer (2012) [12] stated that it is

known to converge more quickly than the bisection method and other linearly convergent

methods. Sarra (2018) [11] argued that Newton’s method can be extended easily to higher

dimensions. These and many more are the reasons why it is popular and widely used. Sarra

(2018) [11] mentioned that this method resulted from Newton’s solution to Kepler’s equation B.1

and argued that Newton’s method is also a fixed point iteration, but a clever choice of the

iteration function results in its quicker convergence. We understand from Levy (2010) [8] that

Newton’s method does not always converge, for example f(x) = tan−1x. Gerald and Wheatley

(2004) [3] argued that Newton’s method might converge to a different solution or diverge

completely if the initial guess is not quite close enough to the solution or root.

For any function f(a), to find its root using Newton’s method, we start with an initial guess a0,
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# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
de f newton ( f , fp , b0 , t o l=1e−10,maxIt =50):

i t e r = 0
ba = [ ] # empty l i s t
ba . append ( b0 ) # add i n i t i a l guess to l i s t
b = b0
db = 100 # increment
fb = f (b) # r e s i d u a l
fpb = fp (b)
whi l e abs (db)> t o l and abs ( fb)> t o l and i t e r<=maxIt :

db = −fb / fpb
b += db
fb = f (b)
fpb = fp (b)
ba . append (b)
i t e r += 1

return ba
# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
de f newtonImproved ( f , fp , b0 , t o l=1e−10,maxIt =50): # 3rd order

db , fb = 100 , 100 # f o r the f i r s t i t e r a t i o n
i t e r = 0
ba = [ ] # an empty l i s t
ba . append ( b0 )
b = b0
whi le f abs (db)> t o l and fabs ( fb)> t o l and i t e r<=maxIt :

fb = f (b)
fpb = fp (b)
db = −fb / fpb
fb2 = f (b + db)

# an extra func t i on eva lua t i on
db2 = −( fb+fb2 )/ fpb # extra d i v i s i o n
b += db2
ba . append (b)
i t e r += 1

return ba

Figure 3.2: Python code for two Newton approximation procedures.

13



import RootFinders as RF
import math
from pylab import ∗
de f f ( x ) : r e turn x∗math . exp ( x ) − 1
xStar = 0.567143 # r e f e r e n c e s o l u t i o n
a , b = −2, 2 # search on i n t e r v a l [ a , b ]
t o l = 1e−10 # t o l e r a n c e
x = RF. b i s e c t i o n ( f , a , b , t o l )
p r i n t ( ’ The approximate root i s { : 1 . 1 5 f } ’ . format ( x [ −1 ] ) )

Figure 3.3: Finding the root of xex − 1 with the bisection method.

and then draw a line of tangent at a0 to f , following the works of Sauer (2012) [12] and of Gerald

and Wheatley (2004) [3]. So, invoking the equation of a tangent line formula, given the point

(a0, f(a0)) and slope (f ′(a0)), we have

b− f(a0) = f ′(a0)(a− a0),

which is also a first order Taylor polynomial, according to Sarra (2018) [11]. Now, we set b = 0 to

get the x-intercept, which is the point where the tangent line intercepts with the x-axis, to get:

−f(a0) = f ′(a0)(a− a0)⇒ (a− a0) =
−f(a0)

f ′(a0)
⇒ a = a0 −

f(a0)

f ′(a0)

which is the algebraic formula for Newton’s method. Repeating this procedure to solve for each

ai, i ≥ 1 results in having the following iterative formula.

Letting a0 be the initial guess,

ai+1 = ai −
f(ai)

f ′(ai)
for i ≥ 0. (3.1)

Error at the mth iteration is defined as: em = am − c, where c be a root of f(a). Sauer (2012)

[12] described with an example to show that Newton’s method is one of the quadratically

convergent methods, by observing the solutions from the point they begin to converge. That is, it

was observed that the number of accurate decimal places in ai doubles approximately on each

iteration.
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# run −t newtonExample2 . py
import RootFinders as RF
import math
from pylab import ∗
de f f ( x ) : r e turn x∗math . exp ( x ) − 1
de f fp ( x ) : r e turn x∗math . exp ( x ) + math . exp ( x )
xStar , x0 = 0.567143 , 0 . 3
x = RF. newton ( f , fp , x0 )
p r i n t ( ’ The approximate root i s { : 1 . 1 5 f } ’ . format ( x [ −1 ] ) )

Figure 3.4: Using Newton’s method to find the root of xex − 1.

Definition 2. Quadratic Convergence:

An iterative method is said to satisfy quadratic convergence if

S = lim
j→∞

Ψj+1

Ψ2
j

<∞,

where Ψj is the error at iteration j.

Further discussions on other properties the Newton’s method exhibits such as quadratically

convergent, linearly convergent and how Newton’s method relates to other methods, are discussed

by Sauer (2012) [12], Levy (2010) [8], Gerald and Wheatley (2004) [3], and Sarra (2018) [11].

Gerald and Wheatley (2004) [3] described the general algorithm for Newton’s method. Sarra

(2018) [11] developed Newton’s method in Python as shown in Figure 3.2.

Let us explore this method with the following example:

Example 2. Find the approximate root of xex − 1.

From Figure 3.4, using an initial guess of 0.3, we get an approximate root of

0.567143290409784 after 6 iterations in about 0.02 seconds.

3.3 Improved Newton’s Method

Yao (2014) [17] proposed a concept of accelerating an iterative method for solving algebraic

equation by adding a simple term to the method having an order k convergence rate and increase

the order of convergence to (2k − 1). The order of convergence as defined by Yao (2014) [17], is

simply a measure of how quickly an iterative method converges to the actual solution or root.

This method was demonstrated by Yao (2014) [17] using an easy algebraic equation of 5th order
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convergence but eventually used 4 function values on each iteration. When this method is applied

to Newton’s method with quadratic convergence, it can attain a cubic convergence, which gives us

the improved Newton’s method.

Definition 3. Cubic Convergence:

An iterative method is said to satisfy cubic convergence if

T = lim
j→∞

Ψj+1

Ψ3
j

<∞,

where Ψj is the error at iteration j.

This method is valid for equation 2.8 since it is a system of equation that can be solved by

Newton’s method. We know that obtaining the root of f(a) using the Newton’s method requires

we solve

f(ai) + f ′(ai) · ei = 0. (3.2)

This is second order convergent and follows from equation 3.1, where ei = ai+1 − ai, ei being the

error at each iteration i, i ≥ 0. Hence, to find the root of f(a) using the improved Newton’s

method, we add the term f(ai + ei) to Newton’s iterative formula in equation 3.2 and solve again

to get

f(ai + ei) + f(ai) + f ′(ai) · λi = 0,

where ai+1 = ai + λi. Adding the term improves the formula from being second order convergent

to third order convergent as illustrated by Yao (2014) [17]. Sarra (2018) [11] developed the

improved Newton’s method in Python as shown in Figure 3.2.

Let us explore this method with the following example:

Example 3. Find the approximate root of xex − 1.

From Figure 3.5, using an initial guess of 0.3, we get an approximate root of

0.567143290409784 after 5 iterations in about 0.02 seconds.

We observe from the convergence plot in Figure 3.6 as coded in B.1 that the improved

Newton’s method is the fastest of the three methods, converging after 5 iterations and taking only

about 0.01 seconds.
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# run −t impNewtonExample2 . py
import RootFinders as RF
import math
from pylab import ∗
to l , maxIt = 1e−16, 50
de f f ( x ) : r e turn x∗math . exp ( x ) − 1
de f fp ( x ) : r e turn x∗math . exp ( x ) + math . exp ( x )
xStar , x0 = 0.567143 , 0 . 3 # to avoid f l o a t d i v i s i o n by zero
x = RF. newtonImproved ( f , fp , x0 , to l , maxIt )
p r i n t ( ’ The approximate root i s { : 1 . 1 5 f } ’ . format ( x [ −1 ] ) )

Figure 3.5: Using improved Newton’s method to find the root of xex − 1

Figure 3.6: Convergence plot of the three approximation procedures.
Plot of log(error) against number of iterations for bisection (yellow), Newton’s (red), and improved
Newton’s (green) method.
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Other numerical approximation procedures such as fixed point iteration, secant method,

Muller’s method, etc., were discussed by Sauer (2012) [12], Levy (2010) [8], Gerald and Wheatley

(2004) [3], and Sarra (2018) [11].
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CHAPTER 4

SIMULATION STUDY

In this section we simulate data that fits equation 2.8 to test the goodness of the estimator,

compare the three numerical approximation procedures - bisection, Newton’s and improved

Newton’s methods and to examine if the estimator has a normal distribution. We fix the values of

β1 and x for varying values of y. Using Python, the code for equation 2.8 is shown in figure 4.1.

For this simulation, we consider an inter-league tournament involving six teams from two

different leagues. The rank of each team within its league is given, so we calculate x, which is the

difference in ranks for all 36 possible pairings as shown in Table 4.1.

Ranks 1 2 3 4 5 6

1 0 -1 -2 -3 -4 -5

2 1 0 -1 -2 -3 -4

3 2 1 0 -1 -2 -3

4 3 2 1 0 -1 -2

5 4 3 2 1 0 -1

6 5 4 3 2 1 0

Table 4.1: Difference in ranks in a 6-team inter-league competition

4.1 Simulation Process

With fixed value of β1 and fixed values of x shown above, we simulate the values of y using

Python. (See Figure 4.2.) Our choice of β1 is dependent on the steepness of the logistic regression

curve with zero intercept. (See Figure B.2.) The simulation process is as follows:

1. We set the value of β1 = 0.5 and set the values of x to range from −5 to 5, which follows

from the result in Table 4.1.

2. We evaluate the probability, p for each value of x using the logistic regression with zero

intercept model.

3. Using the result from step 2 above, we generate random binomial values of y for n = 1,

which guarantees a Bernoulli distribution.
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# import func t i on as F
import math
import numpy as np
x = input ( ’ Enter va lue s o f x : ’ )
x i = x . s p l i t ( ) # convert input to an ar r ray
x i = [ f l o a t ( a ) f o r a in x i ]
y = input ( ’ Enter va lue s o f y : ’ )
y i = y . s p l i t ( )
y i = [ f l o a t ( a ) f o r a in y i ]
CP = np . dot ( x i , y i ) # dot product
de f func (b ) :

S = 0
f o r a in x i :

exp = ( ( a ∗(math . exp ( ( b)∗ a )))/(1+math . exp ( ( b)∗ a ) ) )
S += exp
fb = CP − S

return fb

Figure 4.1: Python code for logistic regression model with zero intercept.
This code is for Equation 2.8.

4. We estimate the value of β1 by computing equation 2.8 with the fixed values of x and values

of y gotten from step 3.

5. We record the value of the estimate, number of iterations taken to converge, and system

time, for each numerical approximation procedure.

6. We repeat steps 3− 5, 50 times.

7. We repeat steps 1− 6, for β1 = 1.

4.2 Simulation Output

When β1 = 0.5, we observe that the mean estimate is approximately 0.5 which justifies the

goodness of the estimator. (See Table 5.1.) We also found that the average iteration required by

bisection, Newton’s and improved Newton’s method to converge are 36, 6 and 5 respectively. (See

Table 4.2.) And we found that the average system time it took for bisection, Newton’s and

improved Newton’s method to run are 0.025, 0.012 and 0.009 seconds respectively.

When β1 = 1, we observe that the mean estimate is approximately 1 which justifies the

goodness of the estimator. (See Table 5.2.) We also found that the average number of iterations
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#ipython /home/ agboola /Documents/Python/ s i m t r i a l . py \
> /home/ agboola /Documents/Python/ sim data1 . txt

import random
import math
import numpy as np
va lue s = l i s t ( range ( 1 , 7 , 1 ) ) #sequence o f number from 1 to 6
va lues1 = l i s t ( range ( 1 , 7 , 1 ) )
f o r a in va lue s :
f o r b in va lues1 :
x = b−a
p r in t ( x )
p = (math . exp ( 0 . 5∗ x))/(1+math . exp ( 0 . 5∗ x ) )

# p r o b a b i l i t y by log . reg . with zero i n t e r c e p t
y = np . random . binomial (1 , p , 1 )
p r i n t ( y )

Figure 4.2: Python code for simulating values of y.

required by bisection, Newton’s and improved Newton’s method to converge are 36, 7 and 6

respectively. (See Table 4.3.) And we found that the average system time it took for bisection,

Newton’s and improved Newton’s method to run are 0.052, 0.035 and 0.026 seconds respectively.
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Table 4.2: Table of values when β1 = 0.5.
Showing the approximate estimate, number of iterations, and system time for bisection, Newton’s
and improved Newton’s method for β1 = 0.5.

22



Table 4.3: Table of values when β1 = 1.
Showing the approximate estimate, number of iterations, and system time for bisection, Newton’s
and improved Newton’s method for β1 = 1.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

In this section we summarize our results and identify some limitations that were experienced

during this study which lead to future work.

5.1 Conclusion

In statistics, a new model or approach for estimation is considered valid after justifying the

goodness of the estimator and goodness of the model. This study was able to justify the goodness

of the estimator, which followed from the results in Chapter 4. (See Tables 5.1 and 5.2.) We also

used the simulation process to examine whether the estimator has a normal distribution. But,

when β1 = 0.5, we found evidence that the estimator is not normal using the

Kolmogorov-Smirnov test. (See Table 5.1.) This was also complemented by the Q-Q plot and

histogram. (See Table 5.1.) We also observed that the improved Newton’s method is the fastest of

the three numerical approximation procedures, taking an average of 5 iterations and

approximately 0.009 seconds, as shown in Table 4.2. Also, when β1 = 1, we observed that the

estimator is not normal using the Kolmogorov-Smirnov test. (See Table 5.2.) This was also

complemented by the Q-Q plot and histogram. (See Table 5.2.) And similarly, we observed that

the improved Newton’s method is the fastest of the three numerical approximation procedures,

taking an average of 6 iterations and approximately 0.026 seconds, as shown in Table 4.3.

It should be noted that we would not be using the Mean Square Error for logistic regression as

it is being used for linear regression. Michael A. Nielsen (2015) [10] gave a thorough

mathematical explanation in his book, but it was summarized from a Bayesian perspective in [2]

that it is “because our prediction function is non-linear (due to sigmoid transform). Squaring this

prediction as we do in MSE results in a non-convex function with many local minimums.”

5.2 Future work

1. Implementation of the model: This study focused on proposing logistic regression with

zero intercept as a new approach to estimating preference probability based on ranks. As

mentioned earlier, we are yet to determine the goodness of the model as applied to real-life
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Table 5.1: Table of measures and graphs for estimates when β1 = 0.5.
Showing measures of moments, tests for normality and graphs of Q-Q plot and histogram of esti-
mates when β1 = 0.5.
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Table 5.2: Table of measures and graphs for estimates when β1 = 1.
Showing measures of moments, tests for normality and graphs of Q-Q plot and histogram of esti-
mates when β1 = 1.

26



data. We tried simulating data, hoping it could mimic a real-life scenario and give us a true

representation of the model’s effectiveness but we have no idea whether reality would

conform to our model, and we did not have enough time to dig for real data and implement.

This presents an intriguing area for future research.

2. Comparing varying ranks with preference probability: The preference probability

for equal ranks is most obvious in this study, which is one of the properties our statistical

model satisfies and one of the reasons why the model is considered in this study. But it does

not mention or compare the probability when we have equal or varying values of x with

varying ranks. For instance, P (Rank1 > Rank4) and P (Rank3 > Rank6) or vice-versa. This

is open to further work to see what interesting things happen in the above cases.

3. Structure of Python module for the model: The Python code for equation 2.8 only

permits the user to input corresponding values of x and y. Though it supports the “copy”

and “paste” option, but formatting the data before copying could be painful when dealing

with very large files. This is open to further work if we need to compare numerical

approximation procedures, since we already have statistical packages and software that

estimates logistic regression using Newton’s method, as found in SAS.

4. Unequal number of teams: We assumed we should have equal numbers of teams for the

inter-league competition, which might not always be the case in reality. Hence, further work

could consider how to format the model to suit this special case.

5. Additional predictors: We could explore other factors that can influence the preference

probability asides from known ranking, such as number of wins prior to the game. We can

achieve that by introducing additional predictors to our model.

6. Possibility of ties: We could also explore ways that allow the possibility of ties.
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APPENDIX A

LETTER FROM INSTITUTIONAL RESEARCH BOARD
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APPENDIX B

RELEVANT RESULTS

The concept of the bisection method is rooted in the Intermediate Value Theorem (IVT) from
Calculus 1. The bracketing the root idea is summarized in the corollary of the IVT.

Theorem 1 (Intermediate Value Theorem). Let f be a continuous function on a closed interval
[u, v]. If M is some number between f(u) and f(v), then there exists a number n in (u, v) such
that f(n) = M .

Corollary 1.1. Let f be a continuous function on a closed interval [u, v] so that it satisfies
f(u)f(v) < 0. Then there exists a number n satisfying u < n < v and f(n) = 0 which implies that
f has a root between u and v.

The Kepler’s equation is defined as

θ − γ sin(θ)− k = 0, (B.1)

where θ is the eccentric anomaly, k is the mean anomaly, and γ is the eccentricity.
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# run Example . py
from pylab import ∗
import math
import RootFinders as RF
to l , maxIt = 1e−16, 50
a , b = −2, 2 . 6 # search on i n t e r v a l [ a , b ]
de f f ( x ) : r e turn x∗math . exp ( x ) − 1
de f fp ( x ) : r e turn x∗math . exp ( x ) + math . exp ( x ) # f ’ ( x )

xStar = 0.567143 # exact s o l u t i o n
x0 = 0 .3 # i n i t i a l guess

x = RF. b i s e c t i o n ( f , a , b , t o l )
x = array ( x )
eB = abs ( xStar − x )

x = RF. newton ( f , fp , x0 , to l , maxIt )
x = array ( x )
e = abs ( xStar − x )

x = RF. newtonImproved ( f , fp , x0 , to l , maxIt )
x = array ( x )
eN = abs ( xStar − x )

rho = ( log10 (eB[−1]) − l og10 (eB [ −2 ] ) )/ ( log10 (eB[−2]) − l og10 (eB [ −3 ] ) )
p r i n t ( ’ B i s e c t i o n { : 1 . 1 5 f } ’ . format ( x [ −1 ] ) )

rho = ( log10 ( e [−2]) − l og10 ( e [ −3 ] ) )/ ( log10 ( e [−3]) − l og10 ( e [ −4 ] ) )
p r i n t ( ’ Newton { : 1 . 8 f } ’ . format ( x [ −1 ] ) )

rho = ( log10 (eN[−3]) − l og10 (eN [ −4 ] ) )/ ( log10 (eN[−4]) − l og10 (eN[ −5 ] ) )
p r i n t ( ’ improved Newton { : 1 . 8 f } ’ . format ( x [ −1 ] ) )

semi logy ( range (0 , l en ( e ) ) , e , ’ r ’ , range (0 , l en (eN ) ) , eN , ’ g ’ ,
range (0 , l en (eB ) ) , eB , ’ y ’ )

y l a b e l ( ’ $ log$ ( e r r o r ) ’ ) ; x l a b e l ( ’ Number o f i t e r a t i o n s ’ )

show ( )

Figure B.1: Python code for convergence plot.
Finding the root of xex − 1 and showing the convergence plot of bisection, Newton and improved
Newton’s method
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Figure B.2: Varying graphs of logistic regression model with zero intercept.
Graph of varying values of β1 to compare steepness of logistic regression model with zero intercept
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