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ABSTRACT

The Knuth transformations on words, the jeu de taquin moves on tableaux, and the

Robinson–Schensted–Knuth algorithm produce the same equivalence classes for words. By

observing the connections between these three methods we find and prove there exists connections

between the Assaf–Knuth transformations, our extension of the jeu de taquin, and p-RSK. We

know there exists an algebraic way to expand Macdonald polynomials in terms of the Schur

functions. The form of the expansion implies there should be a combinatorial way to find the

expansion. Loehr found a Robinson–Schensted–Knuth like algorithm that works in some cases.

By finding an extension of jeu de taquin, we will try to expand the number of cases covered.
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CHAPTER 1

INTRODUCTION

Algebraic combinatorics is the study of combinatorial structures that have algebraic

applications. Two kinds of combinatorial objects used throughout this paper are words and

tableaux. Words are sequences of positive integers. Tableaux are diagrams of squares filled with

positive integers. For example 213 and 3412 are words, while 2

1 3
and 3 4

1 2
are tableaux.

When given a set of words and a method to show words are equivalent, we can split the set into

smaller collections so that any two words in the same collection are equivalent to each other.

These collections are called equivalence classes. Equivalence classes can also be found when we

start with a set of tableaux. Depending on the method we use to separate the set into equivalence

classes, we can look to see if the equivalence classes of the words can be matched with the

equivalence classes of the tableaux that correspond to words.

We study a collection of algorithms that extend several classical algorithms which produce

equivalence classes of words and tableaux. The Knuth relations give rise to the equivalence

relation on words that we study. For the purpose of determining the equivalence classes of words

under the Knuth relations we can use the jeu de taquin algorithm or the

Robinson–Schensted–Knuth (RSK) algorithm [5]. The jeu de taquin allows us to determine

equivalence classes of words by making a tableau from each word and sliding entries in a

prescribed manner. The jeu de taquin produces the same equivalence classes as Knuth

relations [5]. The Robinson–Schensted–Knuth algorithm takes a word and, using a defined set of

rules called an insertion algorithm, creates a pair of tableaux (P,Q). The set of permutations

with the same P tableau are in the same Knuth equivalence class. The RSK algorithm has several

other applications which are described fully in Sagan [5] and we describe briefly here. The

classical RSK algorithm is a key component of the bijective proof of the identity ⌃
�`n(f�)2 = n!.

This identity states that the size of the set of permutations of n is equal to the set of pairs of

standard tableaux of shape � where � is all possible partitions of n. By using RSK, we can

compare the length of the longest increasing subsequence and longest decreasing subsequence of a
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permutation to the length of the first row and first column respectively of the P tableau formed

by applying RSK to the permutation.

Loehr studied the Assaf–Knuth relations in an e↵ort to identify the combinatorial method to

obtain the Schur expansion of modified Macdonald polynomials [3]. Assaf–Knuth relations, when

compared to traditional Knuth relations, have two additional transformations which are based on

consecutive triple entries and a parameter p > 0. Loehr [3] found an extension of the RSK

algorithm, called p-RSK, which uses the parameter p, and a newly defined insertion algorithm

which includes two special rules. We define a new jeu de taquin on tableaux with properties that

parallel the traditional jeu de taquin. We call this algorithm p-jeu de taquin. The p-jeu de taquin

algorithm uses the parameter p and includes modified rules from the traditional jeu de taquin

algorithm, as well as two additional rules that work with consecutive triple entries.

In order to find the number of standard tableaux of shape �, we can use the hook length

formula, f� = n!
⇧(i,j)2�hi,j

. A modification of the jeu de taquin aids in the bijective proof of the

hook length formula [4]. Motivations for defining the p-jeu de taquin algorithm include

completing the combinatorial picture, having another strategy to approach extending the

combinatorial methods for the Schur function expansion of H̃
µ

, and giving options for bijectively

proving a Macdonald q-analogue of the hook length formula [2].
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CHAPTER 2

KNUTH RELATIONS, JEU DE TAQUIN, AND RSK

We are looking at the equivalence classes on words which are provided to us by the traditional

versions of the Knuth relations, the jeu de taquin algorithm, and the Robinson–Schensted–Knuth

(RSK) algorithm. For these three algorithms we use the conventions of Sagan [5]. We first define

each of the algorithms and how they are used. From there, we explain some of the connections

between the equivalence classes formed by the three algorithms. Before we begin we review the

background information needed to understand the sets of objects the Knuth relations, the jeu de

taquin algorithm, and the RSK algorithm act upon.

Definition 1. A word w = w1 . . . w
k

is a sequence of positive integers called letters.

Example 1. An example of a word is w = 2133521.

Definition 2. A word with no repeated letters using 1, 2, . . . , k exactly once is a permutation of

{1, . . . , k}.

Example 2. Given the word w = 23516748, we can see w has each letter 1, . . . , 8 appear exactly

once in it. Therefore w is a permutation of {1, . . . , 8}.

Definition 3. A word w = w1 . . . w
k

of length k  n is a partial permutation if every letter is

distinct, and {w1, . . . , w
k

} ⇢ {1, . . . , n}.

Definition 4. The set of words of length n , n 2 Z+
, is denoted W

n

.

Definition 5. A relation ⇠ on set A is an equivalence relation if and only if:

1. ⇠ is reflexive: a ⇠ a for all a 2 A,

2. ⇠ is symmetric: if a ⇠ b then b ⇠ a for all a, b 2 A, and

3. ⇠ is transitive: If a ⇠ b, b ⇠ c then a ⇠ c for all a, b, c 2 A.

3



The relations we will be looking at in this chapter are the Knuth relations. The Knuth

relations, or Knuth transformations, act on W
n

. The Knuth relations are a set of rules used to

determine if x, y 2W
n

are in the same equivalence class.

Definition 6. Let w1 and w2 be words of length n. Let a and b be words where either a or b can

be empty. Let x, y, z 2 Z+
.

Let x < y  z. Then w1 and w2 di↵er by a Knuth relation of the first kind, denoted K1, if

w1 = ayzxb and w2 = ayxzb or vice versa.

Let x  y < z. Then w1 and w2 di↵er by a Knuth relation of the second kind, denoted

K2, if w1 = axzyb and w2 = azxyb or vice versa.

Example 3. An example of two words di↵ering by a K1 Knuth relation is w1 = 1343521 and

w2 = 1343251. An example of two words di↵ering by a K2 Knuth relation is w2 = 1343251 and

w3 = 1433251.

Definition 7. A word w1 is Knuth equivalent to a word w2, denoted w1⌘Kw2, if and only if

w2 can be obtained from w1 by applying a sequence of Knuth relations, or if w1 = w2.

Example 4. Consider the words w1 = 25681374 and w2 = 21563874. Start with w1. If we apply

a K1 Knuth relation to the 681 part of w1 we obtain 25618374. Applying another K1 Knuth

relation to 561 provides 25168374. Applying a K2 Knuth relation to 837 gives 25163874. Finally,

applying a K1 Knuth relation to 251 gives 21563874 = w2. Since we can obtain w2 from w1 by

applying a sequence of Knuth relations, we have shown that w1⌘Kw2.

The following theorem can be found in Sagan [5].

Theorem 1. For each n, Knuth equivalence is an equivalence relation on the set of words W
n

.

Proof. Consider the relation ⌘K on the set W
n

. Let w, x, y 2W
n

. By definition 7, w⌘Kw.

Hence, ⌘K is reflexive. Let w⌘K x. Then there exists a sequence of Knuth transformations that

allow us to obtain x from w. To get from x to w we can apply the same transformations used, but

in opposite order. Hence we have a sequence of Knuth transformations which allows us to obtain

w from x. Therefore x⌘Kw. Thus ⌘K is symmetric. Suppose w⌘K x and x⌘K y. Then there
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exists a sequence of Knuth transformations that allows us to get from w to x. We will denote this

sequence as s1. There also exists a sequence of Knuth transformations that allows us to get from

x to y. We will denote this sequence as s2. Now we can create a sequence s3 which is s1 followed

by s2 which allows us to get from w to y. Thus w⌘K y. Hence ⌘K is transitive. Since the relation

⌘K is reflexive, symmetric, and transitive, ⌘K is an equivalence relation.

The jeu de taquin and the RSK algorithms use semi-standard and standard tableaux, which are

arrays of positive integers following certain rules.

Definition 8. A partition � of a positive integer n is a sequence where � = (�1, . . . ,�
k

) with

�1 � �2 � · · · � �
k

> 0 and

P
k

i=1 �i

= n. Each �
i

is called a part of �.

Example 5. There are seven partitions of 5: (5), (4, 1), (3, 2), (3, 1, 1), (2, 2, 1), (2, 1, 1, 1), and

(1, 1, 1, 1, 1).

Definition 9. A partition diagram of µ = (µ1, µ2, . . . , µ
k

), denoted dg(µ), is a collection of

left-justified boxes with µ
i

boxes in the ith row from the bottom of the diagram.

These diagrams can be filled with positive integers in a number of ways.

Definition 10. A semi-standard Young tableau (SSYT) is a partition diagram filled with

positive integers, repetitions allowed, such that each row weakly increases from left to right and

each column strictly increases from bottom to top. An example can be found in Figure 2.1.

T1 = 3 5

2 4 4

1 2 2 2

.

Figure 2.1: Semi-Standard Young Tableau
The semi-standard Young tableau T1 has partition shape µ = (4, 3, 2) and rw(T1) = 352441222.

Definition 11. A standard Young tableau is a partition diagram filled with positive integers,

repetitions not allowed, such that each row strictly increases from left to right and each column

strictly increases from bottom to top. An example can be found in Figure 2.2.
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T2 = 9

5

3 7 8

1 2 4 6

.

Figure 2.2: Standard Young Tableau
The standard Young tableau T2 has the partition shape µ = (4, 3, 1, 1) and rw(T2) = 953781246.

Definition 12. Let µ and v be integer partitions such that for each i � 1, v
i

 µ
i

. Then the

skew diagram µ/v is the diagram formed by taking the diagram of µ and erasing the boxes in

the diagram of v. An example of a skew diagram can be found in Figure 2.3.

Skew diagrams can be filled with positive integers following the appropriate conventions to

obtain skew semi-standard Young tableaux and skew standard Young tableaux. An example of a

skew semi-standard Young tableau can be found in Figure 2.4.

µ/v = .

Figure 2.3: Skew Partition Diagram
The skew partition diagram µ/v has partition shape µ/v = (7, 5, 3)/(4, 2).

T3 = 3 4 5

2 2 4

1 2 2

.

Figure 2.4: Skew Semi-Standard Young Tableau
The skew semi-standard Young tableau, T3 has partition shape µ/v = (7, 5, 3)/(4, 2) and rw(T3) =
345224122.

When given a word w we can create a skew semi-standard Young tableau by first placing the
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first letter of the word in a cell. If the second letter is greater than or equal to the first letter it

gets placed in a cell to the right of the first letter in the same row. If the second letter is less than

the first letter then it gets placed below the first letter and starts a new row. Next compare the

third letter to the second. This continues until we have placed all the letters in the word. For

example if w = 3425 then the corresponding skew semi-standard Young tableau is 3 4

2 5
.

Definition 13. Let T be a tableau. The reading word of T , denoted rw(T ), is the word

obtained by listing entries of T row by row left to right starting with the top row.

Example 6. Consider the tableaux from Figure 2.1, Figure 2.2, and Figure 2.4. The reading

words of T1, T2, and T3 are rw(T1) = 352441222, rw(T2) = 953781246, and rw(T3) = 345224122.

Any partition diagram that is not a skew diagram is called a straight shape diagram. Therefore,

tableaux T1 and T2 in Figure 2.1 and Figure 2.2 respectively are called straight shape tableaux.

In order to turn a skew semi-standard Young tableau into a straight shape semi-standard

Young tableau we will use an algorithm called the jeu de taquin, or teasing game.

Definition 14. An inner corner of a skew partition diagram µ/v is any cell in partition

diagram v where if the cell was added to the µ/v diagram the result would be a valid skew partition

diagram. The two inner corners of (7, 5, 3)/(4, 2) can be seen in Figure 2.5.

µ/v =
•

•

.

Figure 2.5: Skew Partition Diagram With Inner Corners

The skew partition diagram µ/v has partition shape µ/v = (7, 5, 3)/(4, 2). The two • symbols
represent the inner corners of the skew partition diagram.

Definition 15. The jeu de taquin algorithm relies on two sliding rules. Given a skew tableau

and an empty cell as shown below, two possible slides can be made. When at the edges of the

tableau, either x or y might be empty. Let • be the cell that is going to be filled.

7



1. If x and y are letters where x  y or y is empty then

x

• y
)

x y
,

2. If x and y are letters where x > y or x is empty then

x

• y
) x

y
.

Algorithm 1. The jeu de taquin algorithm starts with an inner corner of a skew tableau and

applies the two sliding rules repeatedly until a straight shape tableau is obtained. When

performing the jeu de taquin algorithm on a tableau T , the resulting finished straight shape

tableau is called jdt(T ). This is shown in Figure 2.6. When the initial skew tableau comes from a

word w then we use the notation jdt(w) instead.

T = 2 2 4
• 1 2 2

) 2 2 4

1 • 2 2
) 2 2 4

1 2 • 2
) 2 2 4

• 1 2 2

2 2 4
• 1 2 2

) 2 2 4

1 • 2 2
) 2 • 4

1 2 2 2
) 2 4

1 2 2 2
= T 0

Figure 2.6: Jeu de Taquin Example
An example of the jeu de taquin, where we start with the skew semi-standard Young tableau T
and end with a straight shape tableau T 0 = jdt(T ). The cell with symbol • denotes the cell that
will be filled as a result of completing one slide move of the jeu de taquin. Starting with T , since
1 < 2 the 1 will slide to the left one space. Since 2 < 4 the 2 will slide to the left one space. Since
there is no filled cell above the • the 2 will slide to the left to fill the cell. Since 1 < 2, the 1 will
move to the left one space. Since 2  2, the 2 will slide down one space providing a space for the
4 to slide to the left.

The following theorem can be found in Sagan [5].

Theorem 2. All choices of inner corners will result in the same rectified (straight shape)

semi-standard tableau.

We show that the jeu de taquin algorithm on tableaux formed from words and Knuth

equivalence on words produce the same equivalence classes. The two tables, Table 2.1 and
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Table 2.2, show the relationship between performing the jeu de taquin on a skew tableau and the

corresponding word. In Table 2.1 we have x < y  z and rw(T1) = yzx. By applying the jeu de

taquin algorithm to T1 we obtain rw(jdt(T1)) = rw(T2) = yxz. The K1 Knuth relation gives

yzx⌘K yxz, so rw(T1)⌘K rw(jdt(T1)). In Table 2.2 we have x  y < z and rw(T1) = xzy. After

applying the jeu de taquin algorithm to T1 we obtain rw(jdt(T1)) = rw(T2) = zxy. The K2

Knuth relation gives xzy⌘K zxy, so rw(T1)⌘K rw(jdt(T1)).

Word T1 T2 rw(T2)

yzx
y z

x

y

x z
yxz

Table 2.1: Jeu de Taquin Slide 1
Let x < y  z. If we take the word yzx and write it as a skew semi-standard Young tableau, we
obtain the tableau T1 in the first column of the table. By applying the jeu de taquin algorithm to
T1 we get jdt(T1) = T2 where the rw(T2) = yxz. Thus the rw(T1) = yzx and the rw(T2) = yxz
di↵er by a K1 Knuth relation.

Word T1 T2 rw(T2)

xzy x z

y

z

x y
zxy

Table 2.2: Jeu de Taquin Slide 2
Let x  y < z. If we take the word xzy and write it as a skew semi-standard Young tableau, we
obtain the tableau T1 in the first column of the table. By applying the jeu de taquin algorithm to
T1 we get jdt(T1) = T2 which the rw(T2) = zxy. Thus the rw(T1) = xzy and the rw(T2) = zxy
di↵er by a K2 Knuth relation.

Example 7. From Figure 2.6 we can see that jdt(T ) = T 0. The rw(T ) = 224122 and the

rw(T 0) = 241222. Starting with a K1 transformation on 241 in rw(T ) we have 221422. From

here we can apply another K1 transformation on 221 to get 212422. By applying a K2

transformation on 242 we get 214222. Finally, we can apply a K1 transformation on 214 to get

241222 = rw(jdt(T )) = rw(T 0). Since there is a sequence of Knuth transformations that can get
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us from rw(T ) to rw(jdt(T )) then rw(T )⌘K rw(jdt(T )).

Now that we have shown how the jeu de taquin and Knuth relations are connected, we can

prove that the reading word of a skew tableau T is Knuth equivalent to the reading word of the

straight shape tableau formed after applying the jeu de taquin to T . In order to prove this, we

will need the following lemma found in Sagan [5].

Lemma 1. Let a1 < a2 < a3 < · · · < a
n

. Then,

1. If x < a1, then a1a2 . . . anx⌘K a1xa2 . . . an.

2. If x > a
n

, then xa1a2 . . . an⌘K a1a2 . . . an�1xan.

Proof. Let a1 < a2 < a3 < · · · < a
n

.

1. Let x < a1. Consider n = 2. Then a1a2x⌘K a1xa2 by definition of K1. Assume the

property holds for n = k � 1. Thus a1a2 . . . a
k�1x⌘K a1xa2 . . . a

k�1. Then we have

a1a2 . . . a
k�1akx where x < a1 < · · · < a

k�1 < a
k

. Since x < a
k�1 < a

k

we can apply K1 to

see that a1a2 . . . a
k�1akx⌘K a1a2 . . . a

k�1xak. However by assumption we know

a1a2 . . . a
k�1x⌘K a1xa2 . . . a

k�1. Thus a1a2 . . . ak�1akx⌘K a1xa2 . . . a
k�1ak. Therefore, by

mathematical induction, if x < a1, then a1a2 . . . anx⌘K a1xa2 . . . an for all n 2 N, n � 2.

2. Let x > a
n

. Consider n = 2. Then xa1a2⌘K a1xa2 by definition of K2. Assume the property

holds for n = k � 1. Thus xa1a2 . . . a
k�1⌘K a1a2 . . . xa

k�1. Then we have xa1a2 . . . a
k�1ak

where a1 < · · · < a
k�1 < a

k

< x. By assumption we know xa1a2 . . . a
k�1⌘K a1a2 . . . xa

k�1.

Thus xa1a2 . . . a
k�1ak⌘K a1a2 . . . xa

k�1ak. Since a
k�1 < a

k

< x we can apply K2 to see

that a1a2 . . . xa
k�1ak⌘K a1a2 . . . a

k�1xak. Therefore, by mathematical induction, if x > a
n

,

then xa1a2 . . . an⌘K a1a2 . . . xan for all n 2 N, n � 2.

The following theorem can be found in Sagan [5].

Theorem 3. Let T be a skew tableau and jdt(T ) the result of performing jeu de taquin on T .

Then rw(T )⌘K rw(jdt(T )).

Proof. When performing the jeu de taquin on a tableau, the only rows that are looked at when

performing a single move are the row with the empty cell being filled and the row above it. Thus,
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the proof of this theorem will be by induction on only two row configurations. Also, only one slide

move of the jeu de taquin will be taken into consideration for the proof, since performing more

than one move is performing the same process over again.

Let T be a skew tableau and T 0 be the result of performing one of the two rules of the jeu de

taquin on T . Consider when T has only one entry. Since jeu de taquin moves are slides, no entries

are added or lost while performing one of the rules of the jeu de taquin. Thus, T 0 has only one

entry. Hence, rw(T )⌘K rw(T 0).

Assume that when T has 1 to k entries that rw(T )⌘K rw(T 0). Now consider when T has k + 1

entries. Let x occupy the cell above the empty cell. A single slide rule of the jeu de taquin

algorithm will be applied to fill the cell below the x. Thus T can have two possible configurations.

The first is the configuration in Figure 2.7 and the second is the configuration in Figure 2.8.

T =
y1 . . . yn x v1 . . . vm
u1 . . . un z1 . . . zm

, T2 =
y2 . . . yn x v1 . . . vm
u2 . . . un z1 . . . zm

Figure 2.7: Configuration 1 for Theorem 3
In Figure 2.7 we have T which is configuration 1 for Theorem 3. For this configuration there needs
to be the same number of y

i

and u
i

, as well as the same number of v
i

and z
i

. The second tableau
T2 is the result of removing the first column of T .

l w1 x w2

w3 w4 h

Figure 2.8: Configuration 2 for Theorem 3
Each w

i

where i 2 {1, 2, 3, 4} is a word. Since Figure 2.8 is a skew tableau, the length of w3 must
be less than or equal to the length of w1. Similarly, the length of w2 has to be less than or equal
to the length of w4. Notice either l or h can be empty.

First we will consider the configuration in Figure 2.7. If x does not slide down into the empty

cell then z1 on the bottom row slides to the left resulting in rw(T ) = rw(T 0) and thus

rw(T )⌘K rw(T 0). Now consider when x slides down into the empty cell. Let T , with k + 1 entries

have the configuration in Figure 2.7. If we remove the first column of T we have T2 from Figure

2.7 which has k � 1 entries. By our induction hypothesis rw(T2)⌘K rw(T 0
2). Thus,

y2 . . . ynxv1 . . . vmu2 . . . unz1 . . . zm⌘K y2 . . . ynv1 . . . vmu2 . . . unxz1 . . . zm.

11



Now consider the reading word of T . Notice rw(T ) = y1 . . . ynxv1 . . . vmu1 . . . unz1 . . . zm. Since u1

is less than all letters that are written before it, that is u1 < y1 < · · · < y
n

< x < v1 < . . . v
m

, and

the letters are strictly increasing till u1 in rw(T ), by Lemma 1, we have

y1 . . . ynxv1 . . . vmu1 . . . unz1 . . . zm⌘K y1u1y2 . . . ynxv1 . . . vmu2 . . . unz1 . . . zm.

Since

y2 . . . ynxv1 . . . vmu2 . . . unz1 . . . zm⌘K y2 . . . ynv1 . . . vmu2 . . . unxz1 . . . zm

then

y1u1y2 . . . ynxv1 . . . vmu2 . . . unz1 . . . zm⌘K y1u1y2 . . . ynv1 . . . vmu2 . . . unxz1 . . . zm.

By applying Lemma 1 again we get

y1u1y2 . . . ynv1 . . . vmu2 . . . unxz1 . . . zm⌘K y1 . . . ynv1 . . . vmu1u2 . . . unxz1 . . . zm.

Therefore,

rw(T ) = y1 . . . ynxv1 . . . vmu1 . . . unz1 . . . zm⌘K y1 . . . ynv1 . . . vmu1u2 . . . unxz1 . . . zm = rw(T 0).

Hence, rw(T )⌘K rw(T 0) when T has the configuration of Figure 2.7.

Now consider the configuration in Figure 2.8. Each w
i

where i 2 {1, 2, 3, 4} is a word. Since the

tableau in Figure 2.8 is a skew tableau, the length of w3 must be less than or equal to the length

of w1. Similarly, the length of w2 has to be less than or equal to the length of w4. Let T , with

k + 1, entries have the configuration in Figure 2.8. Without loss of generality let l be a filled cell.

Notice if we remove l and its corresponding cell we get a valid skew tableau called T2 which has k

entries. Notice rw(T ) = l · rw(T2). Since T2 has k entries, by induction rw(T2)⌘K rw(T 0
2). Thus

rw(T ) = l · rw(T2)⌘K l · rw(T 0
2). Since l is the first letter in rw(T ) and it is not in a cell directly

above or to the right of the cell being filled, the position of l will not change from T to T 0.

Therefore l · rw(T 0
2) = rw(T 0). Hence rw(T )⌘K rw(T 0) when T has k + 1 entries and has the
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configuration of Figure 2.8 .

Since rw(T )⌘K rw(T 0) for both Figure 2.7 and Figure 2.8 then rw(T )⌘K rw(T 0) for all valid

skew tableaux.

The following theorem can be found in Sagan [5].

Theorem 4. Let w1 and w2 be words such that w1⌘Kw2. Then jdt(w1) = jdt(w2).

So far, we know two words are in the same equivalence classes if they are Knuth equivalent or if

one is the rw(T ) and the other the rw(jdt(T )). The final way to tell if two words are Knuth

equivalent or are in the same equivalence class, is by using the Robinson–Schensted–Knuth (RSK)

algorithm. Before we can talk about the RSK algorithm we need to define the insertion algorithm.

Algorithm 2. Given a tableau T and a positive integer x, insert x into T , denoted T  x, in the

following way:

1. Starting with the bottom row, let y denote the smallest (left most) letter in the row such

that y > x. Replace y with x.

2. If no such y value exists append x to the end of the current row in a new box.

3. Now insert y into the next row following the same procedure.

4. Repeat until step 2 occurs.

Example 8. We want to insert 1 into

T = 4

3

2 3 4

1 2 2 3

.

The process to do so is laid out in Table 2.3.
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Inserted Row New Tableau Bumped Entry

1 1 4

3

2 3 4

1 1 2 3

2

2 2 4

3

2 2 4

1 1 2 3

3

3 3 4

3 3

2 3 4

1 1 2 3

Nothing, the algorithm has ended.

Table 2.3: Insertion Algorithm Example
Given T from Example 8, the insertion algorithm is shown while beginning by inserting 1 into the
tableau.

Given a word w1w2w3 . . . w
k

we can use insertion to create a tableau. That is,

(((� w1) w2) · · · w
k

). To invert row insertion we need to know the order the boxes were

added. This brings us to the RSK algorithm.

Algorithm 3. The Robinson–Schensted–Knuth algorithm (RSK) starts with a word

w = w1w2 . . . w
k

, and forms P a SSYT and Q a SYT in the following manner:

P1 = (� w1) =
w1 and Q1 = 1 ,

then P
j

= (P
j�1  w

j

) and Q
j

is created from Q
j�1 by placing j in the cell added to P

j

.

The tableau Q is always a standard Young tableau and P is a standard Young tableau when w

14



P
i

Q
i

P1 = 3 Q1 = 1

P2 = 3

2
Q2 = 2

1

P3 = 3

2

1

Q3 = 3

2

1

P4 = 3

2

1 2

Q4 = 3

2

1 4

Table 2.4: Constructing P and Q Tableaux by RSK
Given the word w = 3212 we construct the corresponding P tableau and Q tableau by using the
RSK algorithm.

is a permutation.

Example 9. We construct the tableaux that corresponds to w = 3212 using the RSK algorithm

in Table 2.4.

When given a word w, if we perform the RSK algorithm on w, the P tableau will be the same

as jdt(w). Therefore, if two words are Knuth equivalent, then the words have the same P tableau

under RSK, since the words would have the same ending straight shape tableaux when the jeu de

taquin algorithm is applied to them. The following theorem can be found in Sagan [5].

Theorem 5. Let w = w1 . . . wn

be a permutation and w�1 = v1 . . . vn be the inverse permutation

of w such that v
j

= i if and only if w
i

= j. Let P and Q be the tableaux formed after applying

RSK to w. Then P = jdt(w) and Q = jdt(w�1).

Example 10. Let w = 532164. Then w�1 = 432615. When we perform the RSK algorithm on w

we obtain the P and Q tableaux in Table 2.5. The P tableau that corresponds to w after

performing RSK is the same as the straight shape tableau formed when the jeu de taquin is

applied to w as seen in Figure 2.9. The Q tableau that corresponds to w after performing RSK is
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5

3

2

1 6
• 4

5

3

2 6

1 4

Figure 2.9: Example of jdt(w)
The jeu de taquin algorithm is performed on the skew tableau that corresponds to the word w =
532164. Since there are four decreases in w there are five rows in the skew tableau that has the
reading word w.

4

3

2 6
• 1 5

4

3

2 6

1 5

Figure 2.10: Example of jdt(w�1)
Given the word w = 532164, we perform the jeu de taquin algorithm on the skew tableau that
corresponds to the word w�1 = 432615. Since there are three decreases in w�1, there are four rows
in the skew tableau that has the reading word w�1.

the same as the straight shape tableau formed when the jeu de taquin is applied to w�1 as seen in

Figure 2.10.
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P
i

Q
i

P1 = 5 Q1 = 1

P2 = 5

3
Q2 = 2

1

P3 = 5

3

2

Q3 = 3

2

1

P4 = 5

3

2

1

Q4 = 4

3

2

1

P5 = 5

3

2

1 6

Q5 = 4

3

2

1 5

P6 = 5

3

2 6

1 4

Q6 = 4

3

2 6

1 5

Table 2.5: Example of RSK
The steps of RSK with word w = 532164. The result of the RSK are the two tableaux P and Q.
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CHAPTER 3

ASSAF–KNUTH RELATIONS, P -JDT, AND P -RSK

The Assaf–Knuth relations on permutations are an extension of the Knuth relations. We will

be using the Assaf–Knuth relations as defined by Loehr [3]. The dual of the relations defined by

Loehr was introduced by Assaf [1]. In order to find a modified version of the jeu de taquin that

corresponds with the Assaf–Knuth relations we must account for the additional relations.

Definition 16. Let p be a fixed value such that p 2 Z+
. Let w1 and w2 be partial permutations.

Let y and z be partial permutations where either y or z can be empty. Let a, b, c 2 Z+
such that

a < b < c.

1. If p > a or a, b, c are not consecutive, then w1 and w2 di↵er by an Assaf–Knuth relation

of the first kind, denoted K1
p

, if w1 = ybcaz and w2 = ybacz or vice versa.

2. If p > a or a, b, c are not consecutive, then w1 and w2 di↵er by an Assaf–Knuth relation

of the second kind, denoted K2
p

, if w1 = yacbz and w2 = ycabz or vice versa.

3. If p  a and a, b, c are consecutive, then w1 and w2 di↵er by an Assaf–Knuth relation of

the third kind, denoted A1
p

, if w1 = yacbz and w2 = ycabz or vice versa.

4. If p  a and a, b, c are consecutive, then w1 and w2 di↵er by an Assaf–Knuth relation of

the fourth kind, denoted A2
p

, if w1 = yacbz and w2 = ybacz or vice versa.

Definition 17. We say a permutation w1 is p-Assaf–Knuth equivalent to a permutation w2,

denoted w1⌘AKp w2, if and only if w2 can be obtained from w1 by a sequence of Assaf–Knuth

relations where p is fixed or w1 = w2.

Since the Assaf–Knuth relations have a parameter p which helps determine which of the

Assaf–Knuth relations we may use, examples of p-Assaf–Knuth equivalent words are provided for

several values of p.

Example 11. Let p = 1. Consider the permutations w1 = 251348679 and w2 = 214573896. Start

with w1. By applying a K11 transformation to 251 in w1 we obtain 215348679. Applying an A11
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transformation to 534 results in 214538679. Applying another A11 transformation to 867 results

in 214537869. Using a K11 transformation on 869 provides 214537896. Finally, we can apply

K11 on 537 to get 214573896 = w2. Since we can obtain w2 from w1 by applying a sequence of

Assaf–Knuth relations, we have shown that w1 ⌘AK1 w2.

Example 12. Let p = 4. Consider the permutations w1 = 251348679 and w2 = 213574896. Start

with w1. By applying a K14 transformation to 251 in w1, we obtain 215348679. While looking at

534 our least element 3 is less than p = 4. Therefore, we will use a K24 transformation on 534 to

obtain 213548679. Since 6 > 4 = p, we can apply an A14 transformation to 867 which results in

213547869. Using a K14 transformation on 869 provides 213547896. Finally, applying K14 on

547 results in 213574896 = w2. Since we can obtain w2 from w1 by applying a sequence of

Assaf–Knuth relations, we have shown that w1 ⌘AK4 w2.

Example 11 and Example 12 both start with w1 = 251348679. After applying Assaf–Knuth

transformations to the same locations and order to w1 in both examples, we find that the

permutation w2 we obtain is di↵erent. In Example 11 when p = 1 we obtain w2 = 214573896, and

in Example 12 when p = 4 we obtain w2 = 213574896. If we fix p to be di↵erent values before

applying the Assaf–Knuth relations to w1, the permutations that are p-Assaf–Knuth equivalent to

w1 change. If p > n� 2, then only K1
p

and K2
p

Assaf–Knuth relations will be used. Since K1
p

and K2
p

are the same moves as the traditional Knuth relations K1 and K2, the equivalence

classes formed will be the same as the traditional Knuth equivalence classes when p > n� 2.

The Knuth equivalence is an equivalence relation on the set of words of length n. Since the

Assaf–Knuth relations are performed on partial permutations, we show that p-Assaf–Knuth

equivalence is an equivalence relation on the set of permutations of length n. The set of

permutations of length n is denoted S
n

.

Theorem 6. The p-Assaf–Knuth equivalence is an equivalence relation on the set of

permutations S
n

.

Proof. Consider the relation ⌘AKp on the set of S
n

. Let p be a fixed positive integer. Let

w, x, y 2 S
n

. By Definition 17, w⌘AKp w. Hence ⌘AKp is reflexive. Let w⌘AKp x. Then there

exists a sequence of Assaf–Knuth transformations that allow us to obtain x from w. To get from
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x to w, we can apply the same transformations used, but in opposite order. Hence we have a

sequence of Assaf–Knuth transformations which allow us to obtain w from x. Therefore x⌘AKp w.

Thus ⌘AKp is symmetric. Consider when w⌘AKp x and x⌘AKp y. Then there exists a sequence of

Assaf–Knuth transformations that allow us to get from w to x. We will denote this sequence as

s1. There also exists a sequence of Assaf–Knuth transformations that allow us to get from x to y.

We will denote this sequence as s2. Now we can create a sequence s3 which is s1 followed by s2

which allows us to get from w to y. Thus w⌘AKp y. Hence ⌘AKp is transitive. Since the relation

⌘AKp is reflexive, symmetric and transitive, ⌘AKp is an equivalence relation.

We construct a jeu de taquin type process that incorporates all of the Assaf–Knuth relations.

As a result, p is an important factor of our new jeu de taquin. Thus our newly defined jeu de

taquin is called p-jeu de taquin. The p-jeu de taquin algorithm relies on two slide rules and two

swapping rules.

Definition 18. The sliding moves needed for the p-jeu de taquin are the following. Let p > 0

and • be the cell that is going to be filled.

1. When given

b c

• a
where c is empty with a < b, or b and c are empty, or a < b < c and not

consecutive, or p > a, perform the following slide,

b c

• a
) b c

a
,

2. When given

a c

• b
where c is empty with a < b, or b and c are empty, or a < b < c and not

consecutive, or p > a, perform the following slide,

a c

• b
) c

a b
.

Definition 19. The swapping moves needed for the p-jeu de taquin are the following. Let

p > 0 and • be the cell that is going to be filled.

1. When given

b c

• a
where p  a < b < c and a, b, c are consecutive and c is not empty,
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perform the following steps,

(a) Swap a and b giving

a c

• b
.

(b) Since a < b, slide a into the empty slot, giving

c

a b
.

2. When given

a c

• b
where p  a < b < c and a, b, c are consecutive and c is not empty,

perform the following steps,

(a) Swap a and b giving

b c

• a
.

(b) Since a < b, slide a into the empty slot, giving

b c

a
.

Definition 20. Let p > 0. A single move of the p-jeu de taquin consists of a slide move, or one

or more swap moves followed by a slide move. We choose an inner corner of a skew tableau and

apply both the sliding rules and swapping rules repeatedly by performing one p-jeu de taquin move

at a time until we obtain a straight shape tableau. When performing the p-jeu de taquin on a

tableau T , the resulting finished straight shape tableau is called jdt
p

(T ).

We will now look at an example before proving characteristics of the p-jeu de taquin.

Example 13. Let p = 1. Consider the word w = 34625. In Figure 3.1 we have that p = 1 and

start with the tableau T such that rw(T ) = w. After performing the 1-jeu de taquin on T the

resulting straight shape tableau jdt1(T ) has the reading word 46235. The corresponding sequence

of Assaf–Knuth transformations that get us from w to 46235 is K11, A11,K21,K21. Now let

p = 3. In Figure 3.2 we have that p = 3 and start with the tableau T such that rw(T ) = w. After

performing the 3-jeu de taquin on T the resulting straight shape tableau jdt3(T ) has the reading

word 35246. The corresponding sequence of Assaf–Knuth transformations that get us from w to

35246 is K23,K13, A23,K23.

To help show the connections between the Assaf–Knuth transformations, and the p-jeu de

taquin algorithm, we address each Assaf–Knuth transformation individually in Tables 3.1, 3.2,

3.3, and 3.4. The starting tableau in Table 3.1 has the reading word bca and the ending tableau

after the p-jeu de taquin has the reading word bac. Notice bca and bac di↵er by an Assaf–Knuth

21



Move 1 : 3 4 6
• 2 5

) 3 4 6

2 • 5

Move 2 : 3 4 6

2 • 5
) 3 4 6

• 2 5

Move 3 : 3 4 6
• 2 5

) 2 4 6
• 3 5

) • 4 6

2 3 5
) 4 • 6

2 3 5

Move 4 : 4 • 6

2 3 5
) 4 6

2 3 5

Figure 3.1: p-Jeu de Taquin where p = 1
An example of the p-jeu de taquin, where the p-jeu de taquin is applied to a tableau T whose
reading word corresponds to w = 34625 and p = 1. Since 2 < 4 and 5 < 6 the 2 and 5 slide to the
left under the 4 and 6 respectively. Since 2, 3, 4 are consecutive and 2 � 1 = p we apply swap move
number 1 to the 3, 4, 2. Finally, 4 > 2 and 6 > 3, so the 4 and 6 slide to the left above the 2 and
3, respectively.

Move 1 : 3 4 6
• 2 5

) 3 4 6

2 • 5

Move 2 : 3 4 6
• 2 5

) 3 4 6

2 • 5
) 3 5 6

2 • 4
) 3 5 6

2 4 •
) 3 5

2 4 6

Figure 3.2: p-Jeu de Taquin where p = 3
An example of the p-jeu de taquin, where the p-jeu de taquin is applied to a tableau T whose
reading word corresponds to w = 34625 and p = 3. Since 2 < 4 and 5 < 6 the 2 and 5 slide to the
left under the 4 and 6 respectively. Since 2, 3, 4 are consecutive and 2 < 3 = p we apply slide move
number 1 to the 3, 4, 2. Now 4, 5, 6 and 4 � 3 = p so we apply swap move number 2 to the 4, 5, 6.
Finally, since there are no filled cells to the right of the open cell the 6 can slide down.
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T1 rw(T1) T2 rw(T2)

b c

a
bca b

a c
bac

Table 3.1: p-Jeu de Taquin Slide 1
Let a < b < c where a + 1 6= b or a < p. This is the chart that shows the connection between
Assaf–Knuth transformation K1

p

and the p-jeu de taquin.

T1 rw(T1) T2 rw(T2)

a c

b
acb c

a b
cab

Table 3.2: p-Jeu de Taquin Slide 2
Let a < b < c where a + 1 6= b or a < p. This is the chart that shows the connection between
Assaf–Knuth transformation K2

p

and the p-jeu de taquin.

K1
p

relation. Thus Table 3.1 shows the connection between the p-jeu de taquin and the

Assaf–Knuth K1
p

transformation. The starting tableau in Table 3.2 has the reading word acb and

the straight shape tableau after the p-jeu de taquin has the reading word cab. Since acb and cab

di↵er by an Assaf–Knuth K2
p

relation, Table 3.2 shows the connection between the p-jeu de

taquin and the Assaf–Knuth K2
p

transformation. The starting tableau in Table 3.3 has the

reading word bca and the ending tableau after the p-jeu de taquin has the reading word cab. Since

the two reading words di↵er by an Assaf–Knuth A1
p

relation, Table 3.3 shows the connection

between the p-jeu de taquin and Assaf–Knuth transformation A1
p

. Finally, Table 3.4 gives the

two reading words acb and bac. The Assaf–Knuth transformation A2
p

makes these two words

Assaf–Knuth equivalent. Therefore, Table 3.3 shows the connection between the p-jeu de taquin

and Assaf–Knuth transformation A2
p

.

Since each of the scenarios of Assaf–Knuth relations are covered by the p-jeu de taquin we can

now look to see if rw(T ) and the reading word of rw(jdt
p

(T )) are Assaf–Knuth equivalent. The

following lemma will assist in the proof of the equivalence rw(T )⌘AKp rw(jdtp(T )).

Lemma 2. Let a1 < a2 < a3 < · · · < a
n

and p > 0.

1. If x < a1, and x, a1, and a2 are not consecutive, then a1a2 . . . anx⌘AKp a1xa2 . . . an.
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T1 rw(T1) T2 T3 rw(T3)

b c

a
bca a c

b

c

a b
cab

Table 3.3: p-Jeu de Taquin Swap 1
Let a < b < c where a, b, and c are consecutive and a � p. This is the chart that shows the
connection between Assaf–Knuth transformation A1

p

and the p-jeu de taquin.

T1 rw(T1) rw(T2) T3 rw(T3)

a c

b
acb b c

a
b
a c

bac

Table 3.4: p-Jeu de Taquin Swap 2
Let a < b < c where a, b, and c are consecutive and a � p. This is the chart that shows the
connection between Assaf–Knuth transformation A2

p

and the p-jeu de taquin.

2. If x > a
n

, and x, a
n

, and a
n�1 are not consecutive, then xa1a2 . . . an⌘AKp a1a2 . . . an�1xan.

Proof. Let a1 < a2 < a3 < · · · < a
n

and p > 0. Assume x, a1, and a2 are not consecutive, and

x, a
n

, and a
n�1 are not consecutive. Therefore, only the Assaf–Knuth transformations K1

p

and

K2
p

are used. Thus, we do not need to worry about the value of p in Lemma 2 since p is used to

determine if moves A1
p

and A2
p

should be used on consecutive triples or if K1
p

and K2
p

should

be used on the consecutive triples.

1. Consider n = 2. Let x < a1 and the letters x, a1, and a2 not be consecutive. Then

a1a2x⌘AKp a1xa2 by definition of K1
p

. Assume property 1 holds for n = k � 1, that is,

a1a2 . . . a
k�1x⌘AKp a1xa2 . . . ak�1. Consider a1a2 . . . ak�1akx where

x < a1 < · · · < a
k�1 < a

k

. Since x < a
k�1 < a

k

we can apply K1
p

to see that

a1a2 . . . a
k�1akx⌘AKp a1a2 . . . ak�1xak. However, by assumption, we know

a1a2 . . . a
k�1x⌘AKp a1xa2 . . . ak�1. Thus a1a2 . . . ak�1akx⌘AKp a1xa2 . . . ak�1ak. Therefore,

by mathematical induction, if x < a1 and x, a1, and a2 are not consecutive, then

a1a2 . . . anx⌘AKp a1xa2 . . . an for all n 2 N, n � 2.

2. Consider n = 2. Let x > a2 and the letters x, a2, and a1 not be consecutive. Then

24



xa1a2⌘AKp a1xa2 by definition of K2
p

. Assume property 2 holds for n = k � 1, that is,

xa1a2 . . . a
k�1⌘AKp a1a2 . . . xak�1. Consider xa1a2 . . . ak�1ak where

a1 < · · · < a
k�1 < a

k

< x. By assumption we know xa1a2 . . . a
k�1⌘AKp a1a2 . . . xak�1. Thus

xa1a2 . . . a
k�1ak⌘AKp a1a2 . . . xak�1ak. Since a

k�1 < a
k

< x we can apply K2
p

to see that

a1a2 . . . xa
k�1ak⌘AKp a1a2 . . . ak�1xak. Therefore by mathematical induction, if x > a

n

and

x, a1, and a2 are not consecutive, then xa1a2 . . . an⌘AKp a1a2 . . . xan for all n 2 N.

Lemma 2 will be used in most cases to show that rw(T )⌘AKp rw(jdtp(T )). There is one case

where Lemma 2 alone is not enough to prove that rw(T )⌘AKp rw(jdtp(T )). For this scenario we

will need the following lemma.

Lemma 3. Let p > 0, a � p and n � 1. Then

a, a+2, . . . , a+2n, a+1, a+3, . . . , a+2n� 1⌘AKp a+1, a+3, . . . , a+2n� 1, a, a+2, . . . , a+2n.

Proof. Let p > 0, a � p and n � 1.

Consider when n = 1. Then a, a+ 2, a+ 1⌘AKp a+ 1, a, a+ 2 by definition of A2
p

.

Suppose this property holds when n = k � 1, that is,

a, a+ 2, . . . , a+ 2(k � 1), a+ 1, a+ 3, . . . , a+ 2(k � 1)� 1

⌘AKp a+ 1, a+ 3, . . . , a+ 2(k � 1)� 1, a, a+ 2, . . . , a+ 2(k � 1).

Consider when n = k. Then we have, a, a+2, . . . , a+2k, a+1, a+3, . . . , a+2k� 1. Since a+2k,

a+ 2(k � 1)� 1, and a+ 2k � 1 are not consecutive, and

a+ 1 < a+ 3 < · · · < a+ 2k � 1 < a+ 2k,

we can apply Lemma 2 part two to obtain

v = a, a+ 2, . . . , a+ 2(k � 1), a+ 1, a+ 3, . . . , a+ 2(k � 1)� 1, a+ 2k, a+ 2k � 1.
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By induction

v⌘AKp a+ 1, a+ 3, . . . , a+ 2(k � 1)� 1, a, a+ 2, . . . , a+ 2(k � 1), a+ 2k, a+ 2k � 1.

Now we can apply the Assaf–Knuth relation A2
p

to get

a+ 1, a+ 3, . . . , a+ 2(k � 1)� 1, a, a+ 2, . . . , a+ 2(k � 2),a + 2k � 1, a+ 2(k � 1), a+ 2k.

Since a+ 2k � 1, a+ 2(k � 1), and a+ 2(k � 2) are not consecutive, and

a < a+ 2 < · · · < a+ 2(k � 1) < a+ 2k � 1, we can apply Lemma 2 part two to obtain

a+ 1, a+ 3, . . . , a+ 2k � 1, a, a+ 2, . . . , a+ 2k.

Thus,

a, a+2, . . . , a+2k, a+1, a+3, . . . , a+2k� 1⌘AKp a+1, a+3, . . . , a+2k� 1, a, a+2, . . . , a+2k.

Therefore, by mathematical induction, if p > 0, a � p and n � 1, then

a, a+2, . . . , a+2n, a+1, a+3, . . . , a+2n�1⌘AKp a+1, a+3, . . . , a+2n�1, a, a+2, . . . , a+2n.

Theorem 7. Let p > 0 and T be a skew tableau. Then rw(T )⌘AKp rw(jdtp(T )).

Proof. When performing the p-jeu de taquin on a tableau, only two rows are considered for each

move, the row with the empty cell being filled and the row above it. Thus, the proof of this

theorem will be by induction on two row configurations. Only one p-jeu de taquin move will be

taken into consideration for the proof since performing more than one move is performing the

same process over again.

Let p > 0. Let T be a skew tableau and T 0 the result of performing one p-jeu de taquin move

on T . Consider when T has only one entry. Since the p-jeu de taquin moves are either one slide or

one or more swap moves followed by a slide, no entries are added or lost while performing the

p-jeu de taquin. Thus, T 0 also has only one entry. Hence, rw(T )⌘AKp rw(T
0).

Assume that when T has 1 to k entries that rw(T )⌘AKp rw(T
0). Consider when T has k + 1
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T =
y1 . . . yn x v1 . . . vm
u1 . . . un z1 . . . zm

, T2 =
y2 . . . yn x v1 . . . vm
u2 . . . un z1 . . . zm

Figure 3.3: Configuration 1 for Theorem 7
In Figure 3.3 we have configuration one for Theorem 7. For this configuration there needs to be
the same number of y

i

and u
i

, as well as same number of v
i

and z
i

. The second tableau T2 is the
result of removing the first column of T .

l w1 x w2

w3 w4 h

Figure 3.4: Configuration 2 for Theorem 7
Each w

i

where i 2 {1, 2, 3, 4} is a word. Since Figure 3.4 is a skew tableau, the length of w3 must
be less than or equal to the length of w1. Similarly, the length of w2 has to be less than or equal
to the length of w4. Notice either l or h can be empty.

entries. Let x be the indicated cell above the inner corner in which the p-jeu de taquin will be

performed on. Thus T can have two possible configurations. The first is in Figure 3.3 and the

second is in Figure 3.4.

Let T , with k + 1 entries, have the configuration in Figure 3.3. For this shape we have to look

at the following cases.

Case 1: Let x, z1 and v1 be not consecutive or x < p. Suppose z1 < x and thus z1 < p.

Therefore, x remains where it is and z1 on the bottom row slides to the left resulting in

rw(T ) = rw(T 0). Thus rw(T )⌘AKp rw(T
0). Consider when x < z1. Then x slides down giving

rw(T 0) = y1 . . . ynv1 . . . vmu1u2 . . . unxz1 . . . zm. If we remove the first column of T , the result is T2

from Figure 3.3, which has k � 1 entries. By assumption we know rw(T2)⌘AKp rw(T
0
2). Thus,

y2 . . . ynxv1 . . . vmu2 . . . unz1 . . . zm⌘AKp y2 . . . ynv1 . . . vmu2 . . . unxz1 . . . zm.

Consider the reading word of T , rw(T ) = y1 . . . ynxv1 . . . vmu1 . . . unz1 . . . zm. Notice u1 is less

than all letters that are written before it, that is

u1 < y1 < · · · < y
n

< x < v1 < · · · < v
m

,

and the letters are strictly increasing till u1. Also, since u1 < y1 < y2 and u1 < u2 < y2, we have
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y2 � u1 > 2 and thus u1, y1 and y2 can not be a consecutive triple. Therefore, by Lemma 2 part 1,

we have rw(T )⌘AKp y1u1y2 . . . ynxv1 . . . vmu2 . . . unz1 . . . zm. By induction,

y1u1y2 . . . ynxv1 . . . vmu2 . . . unz1 . . . zm⌘AKp y1u1y2 . . . ynv1 . . . vmu2 . . . unxz1 . . . zm.

By applying Lemma 2 again we get

y1u1y2 . . . ynv1 . . . vmu2 . . . unxz1 . . . zm⌘AKp y1 . . . ynv1 . . . vmu1u2 . . . unxz1 . . . zm.

Therefore, rw(T )⌘AKp y1 . . . ynv1 . . . vmu1u2 . . . unxz1 . . . zm = rw(T 0). Hence rw(T )⌘AKp rw(T
0).

Case 2: Let p  x. Let z1 < x < v1 such that z1, x and v1 are consecutive numbers. If we

remove the first column of T , the result is T2 from Figure 3.3, which has k � 1 entries. By

assumption rw(T2)⌘AKp rw(T
0
2). By applying one move of the p-jeu de taquin we would have to

apply a swap move followed by a slide, that is apply swap 1 which causes x and z1 to switch

places and z1 to drop down, followed by the slide move which causes the v1 to slide to the left.

Therefore, T 0
2 =

y2 . . . yn v1 v2 . . . vm
u2 . . . un z1 x . . . z

m

, which results in

y2 . . . ynxv1 . . . vmu2 . . . unz1 . . . zm⌘AKp y2 . . . ynv1 . . . vmu2 . . . unz1xz2 . . . zm.

Consider the reading word of T , rw(T ) = y1 . . . ynxv1 . . . vmu1 . . . unz1 . . . zm. Notice u1 is less

than all letters that are written before it, that is u1 < y1 < · · · < y
n

< x < v1 < · · · < v
m

, and the

letters are strictly increasing till u1. Also, since u1 < y1 < y2 and u1 < u2 < y2, we have

y2 � u1 > 2 and thus u1, y1 and y2 can not be a consecutive triple. Therefore, by Lemma 2 part 1,

we have rw(T )⌘AKp y1u1y2 . . . ynxv1 . . . vmu2 . . . unz1 . . . zm. By induction

y1u1y2 . . . ynxv1 . . . vmu2 . . . unz1 . . . zm⌘AKp y1u1y2 . . . ynv1 . . . vmu2 . . . unz1xz2 . . . zm.

By applying Lemma 2 part 1 again we obtain

y1u1y2 . . . ynv1 . . . vmu2 . . . unxz1 . . . zm⌘AKp y1 . . . ynv1 . . . vmu1u2 . . . unz1xz2 . . . zm.
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Therefore, rw(T )⌘AKp y1 . . . ynv1 . . . vmu1u2 . . . unz1xz2 . . . zm = rw(T 0). Hence,

rw(T )⌘AKp rw(T
0).

Case 3: The only time where it is possible to have more than one swap is when z1, x, and v1 are

consecutive and x < z1 < v1. This case will address this scenario. For clarity we use a modified

version of the configuration in Figure 3.3. Instead T will be

y1 . . . y
n x x+ 2 . . . x+ 2s v1 . . . v

m

u1 . . . u
n

x+ 1 . . . x+2s�1 z1 . . . z
m

.

Notice that if s = 1, then there will only be one swap that occurs before a slide move. If s > 1,

then more than one swap will occur in a single move before the slide move happens. First we

consider what happens when m = 0 and then what happens when n = 0.

Let p  x, s > 0 and m = 0. Then T has the following shape:

T =
y1 y2 . . . y

n x x+ 2 . . . x+ 2s
u1 u2 . . . u

n

x+ 1 . . . x+2s�1
.

Performing one move of the p-jeu de taquin on T results in

T 0 =
y1 y2 . . . y

n

x+ 1 . . . x+2s�1

u1 u2 . . . u
n x x+ 2 . . . x+ 2s

.

Then

rw(T ) = y1y2 . . . ynx(x+ 2) . . . (x+ 2s)u1u2 . . . un(x+ 1) . . . (x+ 2s� 1).

Since u1 < y1 < · · · < y
n

< x < x+ 2 < · · · < (x+ 2s), we can apply Lemma 2 part 1 to obtain

rw(T )⌘AKp y1u1y2 . . . ynx(x+ 2) . . . (x+ 2s)u2 . . . un(x+ 1) . . . (x+ 2s� 1).

Since u
i

< y
i

< · · · < y
n

< x < x+2 < · · · < (x+2s), we can apply Lemma 2 part 1 repeatedly to

obtain

rw(T )⌘AKp y1u1y2u2 . . . ynunx(x+ 2) . . . (x+ 2s)(x+ 1) . . . (x+ 2s� 1).
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By applying Lemma 3 we obtain

rw(T )⌘AKp y1u1y2u2 . . . ynun(x+ 1) . . . (x+ 2s� 1)x(x+ 2) . . . (x+ 2s).

Since u
n

< y
n

< x+ 1 < · · · < (x+ 2s� 1), we can apply Lemma 2 part 1 which results in

rw(T )⌘AKp y1u1y2u2 . . . yn�1un�1yn(x+ 1) . . . (x+ 2s� 1)unx(x+ 2) . . . (x+ 2s).

Since u
i

< y
i

< x+ 1 < · · · < (x+ 2s� 1), we can apply Lemma 2 part 1 repeatedly which results

in

rw(T )⌘AKp y1 . . . yn(x+ 1) . . . (x+ 2s� 1)u1 . . .unx(x+ 2) . . . (x+ 2s) = rw(T 0).

Thus rw(T )⌘AKp rw(T
0) for all n > 0.

Now we will consider what happens when n = 0. Let p  x, s > 0 and n = 0. Then T has the

following shape

T =
x x+ 2 . . . x+ 2s v1 . . . v

m

x+ 1 . . . x+2s�1 z1 . . . z
m

.

Performing one move of the p-jeu de taquin on T results in

T 0 =
x+ 1 . . . x+2s�1 v1 . . . v

m

x x+ 2 . . . x+ 2s z1 . . . z
m

.

Then rw(T ) = x(x+ 2) . . . (x+ 2s)v1 . . . vm(x+ 1) . . . (x+ 2s� 1)z1 . . . zm. Since

(x+ 1) < · · · < (x+ 2s� 1) < z1 < · · · < z
m

< v
m

, we can apply Lemma 2 part 2 to obtain

rw(T )⌘AKp x(x+ 2) . . . (x+ 2s)v1 . . . vm�1(x+ 1) . . . (x+ 2s� 1)z1 . . . zm�1vmz
m

.

Since (x+ 1) < · · · < (x+ 2s� 1) < z1 < · · · < z
i

< v
i

, we can repeatedly apply Lemma 2 part 2

to obtain

rw(T )⌘AKp x(x+ 2) . . . (x+ 2s)(x+ 1) . . . (x+ 2s� 1)v1z1v2z2 . . .vmz
m

.
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By applying Lemma 3 we obtain

rw(T )⌘AKp(x+ 1) . . . (x+ 2s� 1)x(x+ 2) . . . (x+ 2s)v1z1v2z2 . . . vmz
m

.

Since x < x+ 2 < · · · < x+ 2s < z1 < v1, we can apply Lemma 2 part 2 to obtain

rw(T )⌘AKp(x+ 1) . . . (x+ 2s� 1)v1x(x+ 2) . . . (x+ 2s)z1v2z2 . . . vmz
m

.

Since x < x+ 2 < · · · < x+ 2s < z
i

< v
i

, we can repeatedly apply Lemma 2 part 2 to obtain

rw(T )⌘AKp(x+ 1) . . . (x+ 2s� 1)v1 . . .vmx(x+ 2) . . . (x+ 2s)z1 . . . zm = rw(T 0).

Thus rw(T )⌘AKp rw(T
0) for all m > 0.

Therefore, no matter how many columns are before x and how many columns are after (x+2s),

rw(T )⌘AKp rw(T
0).

Now consider the configuration in Figure 3.4. Each w
i

where i 2 {1, 2, 3, 4} is a word. Since

Figure 3.4 is a skew tableau, the length of w3 must be less than or equal to the length of w1.

Similarly, the length of w2 has to be less than or equal to the length of w4. Let T , with k + 1,

entries have the configuration in Figure 3.4. Without loss of generality, let l be a filled cell. By

removing l and its corresponding cell we obtain a valid skew tableau called T2 which has k entries.

Notice rw(T ) = l · rw(T2). Since T2 has k entries, by induction rw(T2)⌘AKp rw(T
0
2). Thus

rw(T ) = l · rw(T2)⌘AKp l · rw(T 0
2). Since l is the first letter in rw(T ) and it is not in a cell directly

above or to the right of the cell being filled, the position of l will not change from T to T 0.

Therefore l · rw(T 0
2) = rw(T 0). Hence rw(T )⌘AKp rw(T

0) when T has k + 1 entries and has

configuration from Figure 3.4.

Since rw(T )⌘AKp rw(T
0) for both configuration 3.3 and configuration 3.4, rw(T )⌘AKp rw(T

0)

for all valid skew tableau.

Corollary 1. Let p > 0 and w be a permutation. Then w⌘AKp rw(jdtp(w)).

Proof. Let p > 0 and w be a permutation. Construct a skew standard Young tableau from w and
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apply the p-jeu de taquin algorithm to the skew tableau. Then, by Theorem 7,

w⌘AKp rw(jdtp(w)).

Lemma 4. Let p > 0. If T is a standard tableau and w = rw(T ) then jdt
p

(w) = T.

Proof. Let p > 0 and T be a standard tableau. Thus each row of T is increasing from left to right

and each column is increasing from bottom to top. Let w = rw(T ). Construct a skew tableau J

from w. Recall a new row is formed in the skew tableau only when there is a descent in w. The

only time there is a descent in w is when a row from T ends and the next row from T begins.

Thus the skew tableau will have the same rows as T . Now we can apply the p-jeu de taquin to the

skew tableau. Let

a1 a2 . . . ak

b1 b2 . . . bj

where k  j be two rows of our skew tableau. Since the rows of J have the same entries as T we

know b1 < a1 < a2 < · · · < a
k

and b2 < a2 < · · · < a
k

. Thus b1 will not form a consecutive triple

with any letter from the top row since b1 < b2 < a2. Therefore, the only p-jeu de taquin moves

that will be applied are slide moves. More specifically only horizontal slide moves will be

performed. Hence,

a1 a2 . . . ak

b1 b2 . . . bj

We can then repeat this process and reasoning until we obtain a rectified straight shape tableau.

Since only horizontal slides are needed jdt
p

(w) = T .

Corollary 2. Let p > 0 and w, v be permutations. Then w⌘AKp v if and only if

jdt
p

(w) = jdt
p

(v).

Proof. Let p > 0 and w, v be permutations.

Assume jdt
p

(w) = jdt
p

(v). Then by Corollary 1, w⌘AKp rw(jdtp(w)) = rw(jdt
p

(v))⌘AKp v.

Thus w⌘AKp v.

Assume w⌘AKp v. Note jdt
p

(w) and jdt
p

(v) are standard tableaux. Loehr [3] shows that the

reading words of distinct standard tableaux are not p-Assaf–Knuth equivalent. By Theorem 7

w⌘AKp rw(jdt(w)) and v⌘AKp rw(jdt(v)). Therefore rw(jdt(w))⌘AKp rw(jdt(v)). Thus

jdt
p

(w) = jdt
p

(v). Therefore, if w⌘AKp v then jdt
p

(w) = jdt
p

(v).
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Loehr [3] defines the p-RSK algorithm which is a variant of the Robinson–Schensted–Knuth

algorithm. Loehr’s variant has a modified insertion algorithm.

Algorithm 4. Let p > 0. Given a tableau T and a positive integer x, insert x into T , denoted

T  x, in the following way: Start by inserting x into the bottom row of T using the following

rules to determine which y value is bumped from the row. Replace y with x. Let S be the row in

T that x is being inserted.

1. Special Rule 1: If p  x and both x+ 1 and x+ 2 are in S then y = x+ 2 is bumped to the

next row.

2. Special Rule 2: If p < x and both x+ 1 and x� 1 are in S and x+ 2 is not in S, let b be

equal the smallest entry in S such that b, b+ 1, . . . , a� 1 are in S then y = max(b+ 1, p+ 1)

is bumped to the next row.

3. Default Rule: If the two special rules do not apply then let y denote the smallest (left most)

letter in S such that y > x.

If no such y value exists, append x to the end of the current row in a new box. If y does exist,

insert y into the next row following the same procedure. Repeat this process till no y value is

bumped.

Thus the p-RSK algorithm is the following algorithm.

Algorithm 5. The p-RSK algorithm is: Given a permutation w = w1w2 . . . w
k

and p > 0, form

two standard Young tableaux P and Q in the following manner: P1 = � w1 =
w1 and

Q1 = 1 , and P
j

= P
j�1  w

j

and Q
j

is created from Q
j�1 by placing j in the cell added to P

j

.

With the p-RSK algorithm the P and Q tableaux are both standard tableaux.

Example 14. We are going to construct the p-RSK tableaux P and Q that corresponds to the

permutation w = 512643 when p = 1 and when p = 3. The corresponding tableaux that are found

using the p-RSK algorithm are in Table 3.5 and Table 3.6 respectively. In Table 3.5, when

inserting 3 into P5 we apply special rule 2 since both 2 and 4 are in the first row of P5 and 3 > 1.

The b value of the row would be 1 since 1 and 2 are in the first row. Thus y = max(2, 1) = 2.
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Therefore, 2 is bumped to the second row and 3 is placed in the first row. In Table 3.6, when

inserting 3 into P5 we do not have to apply special rule 2 since 3 6> 3. Therefore, we use our

default rule and bump 4 to the second row. Since 5 and 6 are in the second row and 4 � 3, we

apply special rule 1 and bump 6 to the next row.

P1 = 5 Q1 = 1

P2 = 5

1
Q2 = 2

1

P3 = 5

1 2
Q3 = 2

1 3

P4 = 5

1 2 6
Q4 = 2

1 3 4

P5 = 5 6

1 2 4
Q5 = 2 5

1 3 4

P6 = 5

2 6

1 3 4

Q6 = 6

2 5

1 3 4

Table 3.5: Constructing P and Q Tableaux by p-RSK, p = 1
Given the word w = 512643 and p = 1 we construct the corresponding P tableau and Q tableau
by using the p-RSK algorithm.
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P1 = 5 Q1 = 1

P2 = 5

1
Q2 = 2

1

P3 = 5

1 2
Q3 = 2

1 3

P4 = 5

1 2 6
Q4 = 2

1 3 4

P5 = 5 6

1 2 4
Q5 = 2 5

1 3 4

P6 = 6

4 5

1 2 3

Q6 = 6

2 5

1 3 4

Table 3.6: Constructing P and Q Tableaux by p-RSK, p = 3
Given the word w = 512643 and p = 3 we construct the corresponding P tableau and Q tableau
by using the p-RSK algorithm.

Loehr [3] shows that reading word of the P tableau of permutation w is p-Assaf-Knuth

equivalent to w, that means w⌘AKp rw(P (w)). Thus the P tableau of permutation w as a result

of p-RSK is equal to the the straight shape tableau jdt
p

(w). Also, the Q tableau of permutation

w as a result of p-RSK is equal to the the straight shape tableau jdt
p

(w�1).

To demonstrate that the Assaf–Knuth relations, the p-jeu de taquin algorithm, and the p-RSK

algorithm produce the same equivalence classes on words we will provide an example. In this

example we first show that the two words are p-Assaf–Knuth equivalent by applying Lemma 3

and Assaf-Knuth relations. Then we demonstrate that by using the p-RSK algorithm the words

will produce the same P tableau. Finally, we apply the p-jeu de taquin algorithm to the two

words to show that we obtain the same standard Young tableau.
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P1 = 1 Q1 = 1

P2 = 1 2 Q2 = 1 2

P3 = 1 2 4 Q3 = 1 2 3

P4 = 1 2 4 6 Q4 = 1 2 3 4

P5 = 2

1 3 4 6
Q5 = 5

1 2 3 4

P6 = 2 4

1 3 5 6
Q6 = 5 6

1 2 3 4

Table 3.7: p-RSK of w1

Given the word w1 = 124635 and p = 1 we construct the corresponding P tableau and Q tableau
by using the p-RSK algorithm.

Example 15. Let w1 = 124635 and w2 = 132546. Let p = 1. By Lemma 3, 24635 ⌘AK1 35246.

Thus, 124635 ⌘AK1 135246. By applying the Assaf–Knuth transformation K11 on 352 we obtain

w1 ⌘AK1 132546 = w2. Since w1 ⌘AK1 w2, when we apply 1-RSK to w1 and w2 we will obtain the

same P tableau. Table 3.7 shows 1-RSK being applied to w1 and Table 3.8 shows 1-RSK being

applied to w2. Notice Table 3.7 and Table 3.8 have the same ending P tableaux. Since

w1 ⌘AK1 w2, when we apply the 1-jeu de taquin algorithm to w1 and w2 we will obtain the same

straight shape standard Young tableau. In Figure 3.5 and Figure 3.6 we start with tableaux T1

and T2 that correspond to w1 and w2 respectively. Then the 1-jeu de taquin is applied to find

that jdt1(T1) = jdt1(T2) or jdt1(w1) = jdt1(w2).
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P1 = 1 Q1 = 1

P2 = 1 3 Q2 = 1 2

P3 = 2

1 3
Q3 = 3

1 2

P4 = 2

1 3 5
Q4 = 3

1 2 4

P5 = 2 4

1 3 5
Q5 = 3 5

1 2 4

P6 = 2 4

1 3 5 6
Q6 = 3 5

1 2 4 6

Table 3.8: p-RSK of w2

Given the word w2 = 132546 and p = 1 we construct the corresponding P tableau and Q tableau
by using the p-RSK algorithm.

Move 1 : 1 2 4 6
• 3 5

) 1 2 4 6
• 3 5

Move 2 : 1 2 4 6
• 3 5

) 1 3 4 6
• 2 5

) 1 3 4 6

2 • 5
) 1 3 5 6

2 • 4
) 1 3 5

• 2 4 6

Move 3 : 1 3 5
• 2 4 6

) 2 3 5
• 1 4 6

) 2 3 5

1 • 4 6
) 2 4 5

1 • 3 6
) 2 4

1 3 5 6

Figure 3.5: Example of jdt
p

(w1)
Let p = 1. Given w1 = 124635 we can construct the skew tableau T1. Since 3 < 4 and 5 < 6 the 3
and 5 will move to the left. Since 2, 3, 4 are consecutive and 2 � p = 1, we need to swap 2 and 3.
Since 2 < 3 the 2 will slide under the 3. Since 4, 5, 6 are consecutive, 4 can not drop down since we
have to swap it with the 5. Since 4 < 5 the 4 will slide under the 5. Since 1, 2, 3 are consecutive
and 1 � p = 1, we need to swap 1 and 2. Since 1 < 2 the 1 will slide under the 2. Since 3, 4, 5 are
consecutive, 3 can not drop down since we have to swap it with the 4. Since 3 < 4 the 3 will slide
under the 4.
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Move 1 : 1 3

2 5
• 4 6

) 1 3
• 5

2 4 6

Move 2 : 1 3
• 5

2 4 6

) 1
• 3 5

2 4 6

Move 3 : 1
• 3 5

2 4 6

) 1 3 5
• 2 4 6

Move 4 : 1 3 5
• 2 4 6

) 2 3 5

1 • 4 6
) 2 4 5

1 3 • 6
) 2 4

1 3 5 6

Figure 3.6: Example of jdt
p

(w2)
Given tableau T2 and p = 1 we can find jdt

p

(T2). Since 2 < 4 the 2 will slide down to fill the cell
with •. Since 3 < 5 and there is nothing to the left of the •, the 1 and 3 will slide down. Notice
1, 2, 3 are consecutive and 1 � p = 1. Thus we need to swap 1 and 2. Since 1 < 2 the 1 will slide
under the 2. Notice 3, 4, 5 are consecutive, but 3 can not drop down since we have to swap it with
the 4. Since 3 < 4 the 3 will slide under the 4. There is nothing to the right of 5 and 5 < 6, so the
5 will slide.
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