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ABSTRACT 

Obesity is a public health problem and is associated with salt-sensitive hypertension, kidney 

inflammation and fibrosis. N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) is a tetra-peptide 

with anti-inflammatory and anti-fibrotic properties but its effect on kidney damage in obesity is 

unknown. We hypothesized that high salt fed Zucker obese (ZO) rats develop renal damage, 

inflammation and fibrosis and that Ac-SDKP prevents these changes. Zucker lean (ZL) rats 

served as controls. Animals were treated with Ac-SDKP while maintained on either a normal-salt 

or HS diet for 8 weeks. Systolic blood pressure (SBP), albuminuria, renal inflammation and 

fibrosis were evaluated. HS diet increased macrophage infiltration in the kidneys of both ZL and 

ZO rats but was significantly higher in HS fed ZO rats. Ac-SDKP prevented macrophage 

infiltration in ZO rats. Similarly, glomerulosclerosis, cortical and medullary interstitial fibrosis 

were increased in ZO rats fed the HS diet, and Ac-SDKP attenuated these alterations. SBP was 

increased in HS-fed ZO rats, and was significantly decreased with Ac-SDKP treatment. Ac-

SDKP treatment failed to improve albuminuria ZO rats. Conclusion: Ac-SDKP treatment in HS-

fed ZO rats prevented renal damage by reducing inflammation, fibrosis, and SBP. Additionally, 

we studied the renal hemodynamics in ZO rats. ZO rats have higher glomerular capillary 

pressure (PGC) that can cause renal damage. PGC is controlled by the afferent arteriole (Af-Art) 

resistance which in turn is regulated by two intrinsic feedback mechanisms, tubuloglomerular 

feedback (TGF) that causes Af-Art constriction and connecting tubule glomerular feedback 

(CTGF) that causes Af-Art dilatation in response to an increase in sodium chloride (NaCl) 

transport in the connecting tubule via the epithelial sodium channel (ENaC). Since CTGF is a 

dilatory mechanism, we hypothesized that increased CTGF contributes to TGF attenuation and 

decreases PGC in ZO rats. We measured stop-flow pressure (PSF), surrogate of PGC in ZO rats 



xv 

using in-vivo renal micropuncture. Maximal TGF response was attenuated while CTGF was 

elevated in ZO rats compared to ZL rats. CTGF inhibition with ENaC normalized the maximum 

PSF change in ZO rats indicating an important role of CTGF in TGF attenuation. Conclusion: 

enhanced CTGF contributes to TGF attenuation in ZO rats and potentially contributes to 

progressive renal damage. 
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CHAPTER 1 

INTRODUCTION 

According to the National Institute of Health, obesity should be considered the most 

important factor for the end-stage renal disease due to its strong association with diabetes and 

hypertension. Furthermore, incidence of obesity related kidney damage has increased 10-fold in 

the decade from 2005 to 2015 and is expected to rise further in the coming years (Kovesdy, 

Furth, & Zoccali, 2017; Mathew, Okada, & Sharma, 2011). In the United States alone, almost 

70% of the population is overweight and among them approximately 35% of the people are 

obese with body mass index above 30 kg/m2 (J. E. Hall, do Carmo, da Silva, Wang, & Hall, 

2015). Obese individuals have been also linked to the salt sensitive hypertension both clinically 

and in experimental settings (Ali, Patel, & Hussain, 2015; DeMarco, Aroor, & Sowers, 2014). In 

the obese population, salt-sensitivity is strongly associated with progression of hypertensive 

target-organ damage, including end-stage renal disease (Quigley et al., 2009). Obesity 

predisposes the population to be hypertensive and initiates a cascade of associated cardio-renal 

and metabolic disorders. The Framingham Study by Garrison et al. suggests that almost 70% of 

essential hypertension can be due to excessive weight gain (Garrison, Kannel, Stokes, & Castelli, 

1987). Rising incidence of obesity is a crucial factor for the increased incidence of diabetes and 

hypertension that is a major risk factor for cardiovascular and renal disease. The underlying 

mechanism of obesity related salt sensitivity and its association with renal injury remains 

unclear. However, inflammation is thought to play a key role in the development of obesity 

related kidney damage (Harrison et al., 2011; Schiffrin, 2014). Previous studies have shown that 

obesity induced renal injury is associated with increased albuminuria, infiltrating immune cells, 
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tubulointerstitial injuries, and glomerulosclerosis and it gets further aggravated by high salt diet 

(Dobrian, Schriver, Lynch, & Prewitt, 2003; M. E. Hall et al., 2014).  

N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) is a naturally occurring tetra-peptide 

that is released from its precursor thymosin β4, by two enzymatic steps mediated by meprin-α 

and prolyl oligopeptidase (Cavasin, Rhaleb, Yang, & Carretero, 2004; Kumar et al., 2016). Ac-

SDKP is found in human plasma, circulating mononuclear cells (Pradelles et al., 1990) and 

various other organs in the body (Junot et al., 1999). Ac-SDKP is hydrolyzed mainly by 

angiotensin converting enzyme (ACE) and its endogenous levels are increased by ACE inhibitors 

(ACEi) in the plasma, urine, kidney, and heart (Azizi et al., 1996). We previously demonstrated 

that part of the anti-inflammatory and anti-fibrotic effects of ACEi are mediated by an increase 

in endogenous Ac-SDKP (Peng, Carretero, Liao, Peterson, & Rhaleb, 2007; Peng et al., 2005). 

Studies in several experimental animal models have demonstrated that Ac-SDKP has anti-

inflammatory and anti-fibrotic properties (Rhaleb, Pokharel, Sharma, & Carretero, 2011; Worou 

et al., 2015), and that a decrease in endogenous Ac-SDKP levels promoted fibrosis of heart and 

kidney (Cavasin, Liao, Yang, Yang, & Carretero, 2007). Recently, we have also shown that Ac-

SDKP can delay the onset of hypertension in systemic lupus erythematosus (Nakagawa et al., 

2017). However, the effect of Ac-SDKP in obesity related kidney damage and hypertension is 

still unknown. 

Clinical trials demonstrated that treatment with ACEis improves clinical outcome in 

patients suffering from obesity related progressive renal disease (Mallamaci et al., 2011). ACEis 

ameliorate glomerular hypertension by reducing the efferent arteriole resistance (Bosma, 

Krikken, Homan van der Heide, de Jong, & Navis, 2006). However, the beneficial effect of 

ACEi might not only be dependent upon the suppression of renin angiotensin system but also on 
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other biochemical effects including a peptide known as N-acetyl-seryl-aspartyl-lysyl-proline 

(Ac-SDKP) (Peng et al., 2007; Peng et al., 2005). 

We used Zucker obese (ZO) rats to study obesity related kidney damage. This model 

exhibits many phenotypic traits common for obesity related kidney damage observed in human 

population and is associated with a progressive decline of renal function and albuminuria 

(Kasiske, O’Donnell, & Keane, 1992; Kurtz, Morris, & Pershadsingh, 1989). These rats exhibit 

hyperinsulinemia but are normoglycemic representing the prediabetic state in the human beings. 

Zucker lean (ZL) rats were used as the control animals in our experiments. 

Based on all the findings mentioned above, we hypothesized that in Zucker obese rats on 

high salt diet Ac-SDKP prevents renal damage by decreasing renal fibrosis, albuminuria, and 

glomerulosclerosis as well as delays the onset of hypertension. 

Additionally, we also studied the role of renal hemodynamics in obesity related kidney 

damage. Alterations in renal hemodynamics have been implicated as one of the key factors for 

the renal damage observed in obese individuals, but the mechanisms of the alterations in renal 

hemodynamics are unknown (Bondar, Klimontov, & Simakova, 2011; Bosma et al., 2006; 

Leggio et al., 2017). These hemodynamic changes include increased renal blood flow, 

glomerular capillary pressure (PGC), and glomerular filtration rate (Bondar et al., 2011; Bosma et 

al., 2006; Sebekova, Klassen, Bahner, & Heidland, 2004). Sustained elevation in PGC in 

particular can cause stretch in the glomerular cells and cause glomerular barotrauma that can lead 

to enhanced renal damage (Riser et al., 1992; Sebekova et al., 2004). 

In a normal kidney, renal blood flow is tightly controlled due to the existence of renal 

autoregulatory mechanisms that include tubuloglomerular feedback (TGF), connecting tubule 

glomerular feedback (CTGF), and myogenic response (Carlstrom, Wilcox, & Arendshorst, 2015; 
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Monu et al., 2017). Afferent arterioles (Af-Art), glomerular capillaries and efferent arterioles 

(Ef-Art) are arranged in series, and thus, their dynamics are closely interconnected (Monu et al., 

2017).  

Arrangement of two resistance vessels, the Af-Art and the Ef-Art, regulate inflow and 

outflow of blood through the glomerular capillaries, and thus, regulate both PGC and single 

nephron glomerular filtration rate (Figure 1) (Monu et al., 2017). Af-Art constriction can reduce 

PGC and glomerular plasma flow downstream that in turn can decrease glomerular filtration. 

Likewise, constriction of the Ef-Art can build the pressure upstream and may increase PGC and 

single nephron glomerular filtration rate (Ren, Garvin, & Carretero, 2001; H. Wang et al., 2015). 

Af-Art resistance is controlled by two renal intrinsic feedback mechanisms: 1) TGF that causes 

Af-Art constriction in response to increased NaCl in the macula densa, via the sodium–

potassium-2-chloride cotransporter-2 (NKCC2), and 2) CTGF that causes Af-Art dilatation and 

is initiated by the epithelial sodium channels (ENaC) in the connecting tubule (CNT) (Figure 1) 

(Monu et al., 2017; H. Wang et al., 2015). 
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Figure 1. Schematic Representation of the Feedback Mechanisms (TGF and CTGF) in the 

Kidney. (Af-Art-Afferent arteriole, PT- Proximal tubule, DCT- Distal convoluted tubule, TGF- 

Tubuloglomerular feedback, CTGF- Connecting tubule glomerular feedback, RBF- Renal blood 

flow, PGC- Glomerular capillary pressure). © Wang et al. 2013, Hypertension. 

 

Previous studies suggest that there is increased PGC (measured using the stop flow 

pressure method) in ZO rats (Park & Kang, 1995; Park & Meyer, 1995). TGF attenuation has 

been hypothesized for the enhanced pressure transmission from systemic circulation to the 

glomerulus leading to increased PGC, but to our knowledge, no direct study has been done to 

evaluate the TGF mechanism in obesity. TGF attenuation could make the kidney susceptible to 

barotrauma and eventual glomerulosclerosis (Azar, Johnson, Hertel, & Tobian, 1977). However, 

the mechanism of enhanced PGC in obesity is poorly defined. 

Since CTGF is a vasodilator mechanism, we therefore investigated whether CTGF plays 

a role in TGF attenuation in obesity. We used ZO and ZL rats in our study. We hypothesized that 
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increased CTGF contributes to TGF attenuation, which in turn increases PGC in ZO rats. To test 

this hypothesis, in-vivo renal micropuncture studies were performed in these Zucker rats (8-10 

weeks old) using the stop-flow technique.  

 

Aims of the Study 

Aim (1). To determine whether Ac-SDKP ameliorates the high salt induced hypertension 

in obesity. 

Aim (2). To determine whether Ac-SDKP ameliorates the high salt induced renal damage 

by decreasing inflammation and fibrosis in obesity. 

Aim (3). To determine if elevated CTGF contributes to TGF attenuation in obesity 
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CHAPTER 2 

REVIEW OF LITERATURE 

 

N-Acetyl-Seryl-Aspartyl-Lysyl-Proline (Ac-SDKP) Synthesis and Metabolism  

 

N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) is a naturally occurring tetra-peptide 

inside the body, which was originally isolated from the fetal calf bone marrow (Lenfant et al., 

1989). Ac-SDKP is found in human plasma, circulating mononuclear cells (Pradelles et al., 

1990), and various other organs of the body (Junot et al., 1999). Studies in several experimental 

models have demonstrated that Ac-SDKP has anti-fibrotic and anti-inflammatory properties 

(Rhaleb et al., 2011; Worou et al., 2015). The details for the synthesis of endogenous Ac-SDKP 

are not very clear but most studies suggest that thymosin β4 (Tβ4) is the most likely precursor of 

Ac-SDKP. Tβ4 contains the Ac-SDKP sequence in its NH2 terminal and is a G-actin-

sequestering 43 amino acid long peptide (J. M. Liu et al., 2010). The formation of Ac-SDKP 

involves enzymatic degradation of Tβ4 in two steps (Figure 2). An enzyme called meprin that 

releases amino terminal intermediate peptides that are less than 30 amino acids long mediates the 

first step. Meprin-α is a metalloprotease and is highly expressed in the mammalian kidney and 

intestine, and it is reported to hydrolyze other peptides and proteins, such as growth factors, 

peptide hormones and extracellular matrix proteins (Broder & Becker-Pauly, 2013). Meprin-α 

plays a role in the physiological processes involved in renal and intestinal diseases. Meprin-α has 

been shown to possess pro-angiogenic properties in both in-vivo and in-vitro studies (Lottaz et 

al., 2011; Schutte, Hedrich, Stocker, & Becker-Pauly, 2010). Additionally, clinical and animal 

studies have shown that it has anti-inflammatory properties (Banerjee et al., 2011; Banerjee et 

al., 2009). The second step is mediated by an enzyme called prolyl oligopeptidase (POP), which 

acts on these short peptides and leads to the formation of Ac-SDKP (Kumar et al., 2016). POP is 
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a serine protease present in various organs including kidney, heart, liver, muscles and brain. POP 

hydrolyzes peptide bonds in angiotensin, substance P, neurotensin, bradykinin, arginine-

vasopressin, and oxytocin. POP may play an important role in the biological maturation or 

degradation of these peptide hormones (Polgar, 2002). POP is involved in a variety of 

pathophysiological processes such as inflammation, fibrosis and angiogenesis (Cavasin et al., 

2004). Ac-SDKP gets hydrolyzed in the presence of Angiotensin Converting Enzyme (ACE). 

The endogenous levels of Ac-SDKP in plasma are minimal. Ac-SDKP concentration increased 

fivefold after the administration of ACE inhibitors like captopril and enalapril (Azizi et al., 

1996). There are two catalytic domains of ACE, namely C-terminus and N terminus, which 

cleave the target substrate. Ac-SDKP is hydrolyzed by the N- terminal domain of ACE 

(Kanasaki, Nagai, Nitta, Kitada, & Koya, 2014). 

Additionally, Tβ4 possesses anti-fibrotic and tissue protective effects (Huff, Muller, Otto, 

Netzker, & Hannappel, 2001). Tβ4 is present ubiquitously in the body and participates in various 

biological activities (Hannappel, 2010; Huff et al., 2001).  

Figure 2. Synthesis and Metabolism of Ac-SDKP © Mani Maheshwari, 2018. 
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Relationship Between ACE and Ac-SDKP Content in Different Organs 

Though Ac-SDKP is reported to be present in kidney and heart, the highest concentration 

of Ac-SDKP is found in lymphoid organs such as spleen and thymus. Interestingly, Ac-SDKP 

precursor Tβ4 is also present in relatively high concentration in these lymphoid organs 

(Pradelles, Frobert, Creminon, Ivonine, & Frindel, 1991). The two major regulators of Ac-SDKP 

concentration in tissues are 1) presence of its precursor and the enzymes that degrade it, and 2) 

the amount of ACE that degrades it. Studies reported that tissues such as lungs have a relatively 

higher Tβ4 per milligram of the tissue, compared to thymus and bone marrow; however, Ac-

SDKP concentration is found to be lower in the lungs due to higher ACE activity (Pradelles et 

al., 1991). Similarly, lymphoid organs such as spleen, thymus, and bone marrow have either very 

low ACE activity or ACE is absent in these organs and thus have higher Ac-SDKP (Junot et al., 

1999). Testis has higher levels of Ac-SDKP compared to other tissues and it is because of lack of 

N terminal domain of ACE in testis (Stephan et al., 2000). It is well known that lack of N 

terminal domain of ACE is involved in the degradation of Ac-SDKP (Kanasaki et al., 2014). 

Properties of Ac-SDKP 

A Anti-Fibrotic Effects of Ac-SDKP 

In physiological conditions, fibrosis is defined as the formation of excess connective 

tissue and it is a mechanism involved in wound healing and tissue repair, but in pathological 

conditions, there is an accumulation of extracellular matrix (ECM) proteins that leads to the 

thickening of the affected tissue and eventually to tissue damage. Ac-SDKP has been shown to 

have anti-fibrotic effects in various experimental models. Ac-SDKP prevents mesangial matrix 

expansion in diabetic db/db mice (Nitta et al., 2016). Ac-SDKP has been shown to reduce renal 

interstitial fibrosis in Dahl salt sensitive rats (Worou et al., 2015). Fibroblasts play a major role 
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in fibrosis; Ac-SDKP has been shown to suppress the proliferation of renal and cardiac 

fibroblasts (Rhaleb, Peng, Harding, et al., 2001).  

Accumulation of pro-fibrotic cytokines around the kidney results in the ECM-producing 

cell activation responsible for renal fibrosis. Fibroblasts are the major matrix producing cells and 

are a source of fibronectin, Type l and Type lll collagen. Activated fibroblasts are an important 

source for the production of extracellular matrix but almost all cell types are responsible for 

ECM production. ECM includes resident fibroblasts, vascular smooth muscle cells, tubular 

epithelial cells, and macrophages (Strutz & Zeisberg, 2006). Transforming Growth Factor beta 

(TGFβ) is a profibrotic cytokine and is important in ECM production. Blocking either TGFβ or 

the TGFβ stimulated Smad transcriptional factor has been shown to have anti-fibrotic effects 

(Inagaki & Okazaki, 2007). In fibrotic kidneys, fibroblasts expressing alpha smooth muscle actin 

(α-SMA) are called myofibroblasts which possess unique contractile properties; they play a role 

in renal fibrosis (Grande & Lopez-Novoa, 2009).  

Ac-SDKP treatment has been shown to ameliorate renal fibrosis and glomerulosclerosis 

in hypertensive rats and in various other diabetic and non-diabetic models without having an 

effect on blood pressure. Morel et al. have shown that Ac-SDKP reduced the high salt-induced 

interstitial fibrosis and glomerulosclerosis in Dahl salt sensitive rats (Worou et al., 2015). α-

SMA has been shown to decrease with Ac-SDKP treatment (H. Xu et al., 2012). In vitro 

experiments with activated fibroblasts have also shown the anti-fibrotic effects of Ac-SDKP. The 

study done by Peng et al. demonstrated that human cardiac fibroblasts treated with TGFβ 

transformed into myofibroblasts as indicated by the increased expression of α-SMA and the 

embryonic form of smooth muscle myosin when compared to untreated cells (Peng, Carretero, 

Peterson, & Rhaleb, 2010). This study also found that Ac-SDKP administration stopped the 
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TGFβ induced differentiation of cardiac fibroblasts into myofibroblasts. Our lab along with other 

investigators demonstrated that Ac-SDKP shows its anti-fibrotic activity mainly by inhibiting 

Smad 2 phosphorylation; the anti-TGFβ/Smad pathway is a key to understand the anti-fibrotic 

effect of Ac-SDKP (Border & Noble, 1994; Peng et al., 2010; Pokharel et al., 2002).  

B Anti-Inflammatory Effects of Ac-SDKP 

Inflammation is required for tissue repair and is closely linked with regeneration of 

parenchyma cells that fill the tissue defects with fibrous tissue leading to scar formation (Wynn, 

2007). However, in conditions where fibrosis is progressive with sustained inflammation, there is 

an abnormal wound healing (Y. Liu, 2011). In various experimental models, Ac-SDKP has 

shown to reduce inflammation in the heart and kidney ameliorating tissue fibrosis (Omata et al., 

2006; Peng et al., 2007). Rhaleb et al. have shown the anti-inflammatory effect of Ac-SDKP by 

decreasing the inflammatory cell infiltration in deoxycorticosterone acetate-salt hypertensive 

mice (Rhaleb et al., 2011). Although the mechanism by which Ac-SDKP acts as an anti-

inflammatory is not very clear, it may be due to inhibition of monocyte chemoattractant protein-

1 (MCP-1). MCP-1 is one of the key chemokines involved in the regulation of macrophage 

infiltration, and Ac-SDKP has been shown to suppress MCP-1 (M. Wang, Liu, Jia, Mu, & Xie, 

2010). In addition to MCP-1, Ac-SDKP has also been shown to inhibit nuclear factor kappa-

light-chain-enhancer of activated B cells (NFκB), a key pro-inflammatory transcriptional factor, 

along with other associated chemokines (Nakagawa et al., 2012).  

C Angiogenic Effects of Ac-SDKP 

Ac-SDKP is known to stimulate the cell growth and proliferation of vascular endothelial 

cells, and thus promotes angiogenesis both in vivo and in vitro (J. M. Liu et al., 2003). The 

beneficial effects of Ac-SDKP seen in myocardial infarction, hind limb ischemia-reperfusion and 
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stroke may also be due to its pro-angiogenic activity by allowing new blood vessel generation 

and supplying oxygen and nutrients to the damaged tissue (F. Yang et al., 2004; L. Zhang et al., 

2014). Liu et al. demonstrated that Ac-SDKP stimulated in-vitro endothelial cell migration and 

differentiation into capillary-like structures and increased vascular density of abdominal muscles 

(J. M. Liu et al., 2003).  

D Anti-Apoptotic Effects of Ac-SDKP 

Apoptosis is defined as a programmed cell death.  Increased amount of apoptosis is 

associated with fibrosis of the tissues and inhibition of apoptotic pathways is linked with 

inhibition of fibrosis in various organs (Dooley, Harvey, & Thomas, 2011). Originally, Ac-

SDKP was identified as a regulator of stem cells. Studies have shown that Ac-SDKP can 

suppress apoptosis of hematopoietic cells induced by stress like chemotherapy, radiation, and 

high temperature (Bogden et al., 1991; Watanabe et al., 1996).  

Ac-SDKP and Its Renoprotective Effects 

 A Hypertension 

 About 75 million US adults (32%) are hypertensive and more than 50% of hypertensive 

patients are salt sensitive (Weinberger, Fineberg, Fineberg, & Weinberger, 2001). Salt sensitive 

individuals have increased blood pressure on sodium intake and their pressure natriuresis curve 

shifts to the right (J. E. Hall, Mizelle, Hildebrandt, & Brands, 1990). Salt-sensitive hypertension 

is highly prevalent in African-Americans who develop end-stage renal disease at a three times 

higher rate than Caucasians (Whelton et al., 2016). Hypertension is one of the major causes of 

end stage renal disease. But, only approximately 20% of these hypertensive patients respond well 

with anti-hypertensive medications (Whelton et al., 2016). Therefore there is an urgent need for 

novel effective therapies that reduce the target organ injury caused by high blood pressure. In 
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deoxycorticosterone acetate (DOCA) salt form of hypertension in rats and mice, elevated blood 

pressure for 6-8 weeks caused significant renal fibrosis and damage. Ac-SDKP ameliorated renal 

fibrosis by reducing collagen synthesis without affecting the blood pressure (Peng et al., 2001). 

In DOCA-salt hypertension in mice, Ac-SDKP reduced urinary albuminuria by increasing 

nephrin expression in the kidney. Nephrin is a key protein that forms the integral part of the 

glomerular filtration barrier in the kidney (Rhaleb et al., 2011). Low expression of renal nephrin 

is associated with increased urinary albuminuria, which is an early marker for renal damage. 

Additionally, Morel et al. have shown in Dahl salt-sensitive rats that treatment with Ac-SDKP 

ameliorated renal injury by reducing urinary albuminuria, fibrosis and infiltration of 

macrophages and T-cells in the kidney (Worou et al., 2015). 

B Renal Diseases 

In the chronic kidney disease model generated by 5/6 nephrectomy in rats, Ac-SDKP 

treatment not only prevented but even reversed the tissue damage in the kidney. In 5/6 

nephrectomy, Ac-SDKP reduced urinary albumin by increasing renal nephrin content and 

improved renal function by restoring glomerular filtration rate (GFR). In addition, Ac-SDKP 

reduced the renal collagen content, glomerulosclerosis, and infiltration of macrophages (Liao et 

al., 2010). In the unilateral ureter obstruction (UUO) model in rodents, Ac-SDKP treatment for 

two weeks in Wistar rats significantly attenuated renal interstitial inflammation and fibrosis (M. 

Wang et al., 2010). In UUO C57BL/6 mice, Ac-SDKP treatment reduced renal fibrosis in the 

early and late phases by decreasing profibrotic plasminogen activator inhibitor-1 expression. 

Similar renoprotection was observed in UUO BALB/C genetic background mice, where Ac-

SDKP partly mediated the anti-fibrotic effect of captopril (Chan et al., 2018). Munich Wistar 

Fromter (MWF) rats develop spontaneous progressive nephropathy. In these rats, microRNA 



14 

(MiR)-324-3p was the most upregulated MiR in the microdissected glomeruli and POP was 

found to be the target of MiR-324-3p (Macconi et al., 2012). ACE inhibitor treatment attenuated 

the renal fibrosis in MWF rats which was accompanied by the downregulation of MiR-324-3p. 

Decreased MiR-324-3p expression was associated with increased POP activity (Macconi et al., 

2012). In this study, high plasma and urinary Ac-SDKP content following ACE inhibition was 

suggested to be the combined result of 1) blockade in endogenous Ac-SDKP degradation by 

inhibiting ACE, and 2) increased endogenous Ac-SDKP synthesis by increased POP activity 

(Macconi et al., 2012).  

C Diabetes 

Diabetic nephropathy is one of the leading causes of end-stage renal disease worldwide 

(Ghaderian, Hayati, Shayanpour, & Beladi Mousavi, 2015). ACE inhibitor therapy is usually 

prescribed in this condition. In db/db mice, Ac-SDKP treatment showed renoprotection by 

preventing mesangial matrix expansion and reduced expression of pro-fibrotic molecules in the 

TGFβ/Smad signaling pathway (Shibuya et al., 2005). In streptozotocin (STZ) induced type-1 

diabetic rats, Ac-SDKP treatment improved renal fibrosis by decreasing renal interstitial and 

perivascular fibrosis (Castoldi et al., 2013). Endothelial-mesenchymal transition (EndMT) has 

emerged as an important source of collagen producing myofibroblasts and may contribute to the 

progression of renal fibrosis. STZ induced diabetes in CD-1 mice showed lower amount of 

urinary Ac-SDKP, compared to non-diabetic control mice (Nagai et al., 2014). Ac-SDKP 

treatment reduced EndMT in the kidney of the diabetic animals. These effects were associated 

with an upregulation of anti-fibrotic MiR let-7b and fibroblast growth factor receptor (Nagai et 

al., 2014). In a different study involving mice with type-1 diabetes (STZ-induced) and type-2 

diabetes (db/db), oral administration of Ac-SDKP showed similar levels of renal anti-fibrotic 
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effects by upregulating anti-fibrotic let-7b and MiR-29 levels (Nitta et al., 2016). Ac-SDKP 

beneficial effects in STZ-induced diabetic mice were proposed to be the result of a crosstalk 

between anti-fibrotic microRNAs involving the let-7b/MiR-29 axis (Srivastava et al., 2016). 

D Autoimmune Disorder 

Systemic lupus erythematosus (SLE) is an autoimmune disorder with excessive renal 

inflammation. It is characterized by deposition of anti-nuclear antibodies along the glomerular 

basement membrane resulting in glomerulonephritis and possible development of renal failure. 

MRL/lpr lupus mice mimic the human form of SLE and are used extensively to study the 

mechanisms responsible for renal inflammation in autoimmune diseases. It has been reported 

that in MRL/lpr lupus mice, Ac-SDKP reduced renal infiltration of macrophages and T-Cells and 

improved proteinuria (Tan et al., 2012). Ac-SDKP reduced expression of inflammatory markers 

TNF-α and NF-κb and reduced expression of fibrotic markers TGFβ1, α-SMA, fibronectin, and 

activated Smad2/3 (Tan et al., 2012). A study by Tang-Dong et al. recently observed that Ac-

SDKP renoprotective effects in MRL/lpr were, in part, due to the decreased expression of renal 

complement system C5/C5a and C5b-9 and reduction in pro-inflammatory intercellular adhesion 

molecule ICAM-1 in the kidney (Liao et al., 2015). Additionally, Ac-SDKP treatment 

ameliorated the progression of renal damage and fibrosis by reducing urinary albuminuria, 

glomerulosclerosis, renal interstitial collagen and infiltration of renal ED-1 positive macrophages 

in a rat model of nephritis generated by administration of anti-glomerular basement membrane 

antibody (Omata et al., 2006). 
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Ac-SDKP and Its Cardioprotective Effects 

A Heart Failure and Dysfunction 

One of the most common causes of the heart failure is atherosclerosis and it is the leading 

cause of deaths worldwide (Low Wang, Hess, Hiatt, & Goldfine, 2016). In atherosclerosis, the 

plaque (made up of fat, cholesterol, calcium and other substances formed in blood) is formed 

inside the arteries and potentially limit the blood-supply to the coronary circulation. The other 

causes of heart failure or heart damage may result from pre-existing comorbidities including high 

blood pressure, diabetes, obesity, viral infection, environmental, and genetic factors. It has been 

shown that in most of the models of cardiac damage, infiltration of lymphocytes, monocytes and 

neutrophils marks the first steps that are essential for the tissue repair, fibrosis and remodeling. 

Ac-SDKP has been shown to have protective effects in various models of cardiac damage. For 

example, in a myocardial infarction model in Sprague Dawley rats, Ac-SDKP treatment 

prevented and reversed inflammation in the non-infarcted area of the left ventricle primarily by 

decreasing macrophages and TGFβ (Rasoul et al., 2004). In a different study, combination 

treatment of Ac-SDKP with the stem cell homing factor and stromal derived factor-1 applied 

directly at the border zone of the infarcted area initiated at 4 weeks after myocardial infarction in 

rats, resulted in decreased infarct size, improved cardiac function, and increased angiogenesis 

(Song et al., 2014). 

In 2-kidney 1-clip and DOCA-salt hypertensive rat models, Ac-SDKP prevented and 

reversed collagen deposition in the left ventricle (LV) by limiting cardiac fibroblasts 

proliferation and infiltration of monocytes/macrophages (Peng, Carretero, Brigstock, Oja-Tebbe, 

& Rhaleb, 2003; Peng et al., 2001; Rhaleb, Peng, Yang, et al., 2001). In Ang-II and DOCA-salt 

hypertension, Ac-SDKP reduced LV collagen deposition by decreasing TGFβ and p-Smad2 and 
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these protective effects were blocked by a neutralizing antibody against Ac-SDKP (Peng et al., 

2007; Peng et al., 2005). Cavasin et al. found that blocking the Ac-SDKP synthesis by the 

specific POP inhibitor S17092 exacerbated collagen deposition in the heart suggesting that basal 

Ac-SDKP is required in preventing excessive fibrosis (Cavasin et al., 2007). Ac-SDKP inhibited 

cardiac collagen deposition not only by limiting cardiac fibroblast proliferation but also by 

reducing differentiation of fibroblast into myofibroblasts (Peng et al., 2010).  

Diabetes related heart damage imposes a major health burden globally (Bhutani & 

Bhutani, 2014; Kania, Blyszczuk, & Eriksson, 2009). In STZ-induced diabetic cardiomyopathy 

in rats, Ac-SDKP reduced interstitial and perivascular cardiac fibrosis and also improved 

diastolic function without changes in systolic function (Castoldi et al., 2009). 

 B Myocarditis 

Myocarditis represents the cardiac inflammation and injury, which often result from 

infections with viruses, such as adenoviruses or parvovirus, bacterial infection, toxins or 

autoimmune disorders (Nakagawa et al., 2012). Myocarditis causes immune cells to recognize 

the body’s own heart cells as antigens and elicit an uncontrolled autoimmune response that 

results in dilated cardiomyopathy and heart failure (Kania et al., 2009). Immune cells such as 

neutrophils, monocytes and lymphocytes infiltrate the myocardium and initiate an early immune 

response, which is followed by the resolution of inflammation and cardiac fibrosis 

(Frangogiannis, 2012). In normal homeostasis, a balance is maintained between collagen 

synthesis and its degradation. Degradation of collagen is tightly controlled by the zinc proteases 

known as matrix metalloproteinase (MMP) 2 and MMP-9 and their physiological tissue 

inhibitors tissue inhibitor of metalloproteinases-1 (TIMP)-1 and TIMP-2. A dysregulation of 

MMPs and TIMPs often results in accumulation of collagen and tissue fibrosis (Kania et al., 
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2009). In experimentally induced myocarditis in rats, Ac-SDKP reduced the infiltration of 

macrophages, T-cells, and reduced the expression of pro-inflammatory interleukin (IL) -1β and 

IL-17. Ac-SDKP also reduced cardiac hypertrophy and improved cardiac function (Nakagawa et 

al., 2012). 

Ac-SDKP and Its Neuroprotective Effects 

Ac-SDKP has also been shown to have beneficial effects in conditions like stroke. Stroke 

is one of the leading causes of deaths worldwide (L. Zhang et al., 2014). Almost 80% of stroke 

cases are due to cerebral arterial thrombosis (Ding et al., 2014). In clinics, the only treatment 

available to treat cerebral arterial thrombosis is the administration of tissue plasminogen 

activator (tPA). The drawback of using tPA is the risk of brain hemorrhage (Ding et al., 2014). In 

a study performed in Wistar rats subjected to embolic stroke, MRI data showed that the 

combined treatment of Ac-SDKP and tPA initiated at four hours significantly reduced the blood 

brain barrier (BBB) leakage and reduced ischemic lesions compared to the monotherapy of tPA 

(L. Zhang et al., 2014). Inactivation of NF-κb and TGFβ signaling pathway in the brain by Ac-

SDKP are the reasons behind its neuroprotective effects. In a study of traumatic brain injury 

(TBI) induced by controlled cortical impact, Ac-SDKP treatment initiated at one hour 

significantly improved sensorimotor function and spatial learning. Ac-SDKP reduced activation 

of microglia/macrophages, reduced fibrin accumulation, and enhanced neurogenesis (Y. Zhang 

et al., 2017). However, the mechanism of neuroprotection of Ac-SDKP in stroke and brain injury 

is not clear. Further studies are required to elucidate the mechanisms underlying the 

neuroprotective effects of Ac-SDKP.  
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Table 1. Summary of the Anti-Fibrotic and Anti-Inflammatory Effects Mediated by Ac-

SDKP in Kidneys of Various Rat/Mouse Models 

 

Model Effect Reference 

Ang II Induced Hypertension Lowered fibrosis and inflammation (Peng et al., 

2007) 

Aldosterone Induced 

Hypertension 

Lowered fibrosis (Peng et al., 

2001) 

DOCA Salt Induced Hypertension Lowered fibrosis and inflammation, 

reduced albuminuria 

(Rhaleb et al., 

2011) 

Dahl Salt Sensitive Hypertension Lowered fibrosis and inflammation, 

reduced albuminuria 

(Worou et al., 

2015) 

5/6 Nephrectomy Induced 

Hypertension  

Lowered fibrosis and inflammation, 

reduced albuminuria, improved GFR 

(Liao et al., 

2010) 

Lupus Nephritis Lowered fibrosis and inflammation, 

reduced proteinuria, improved renal 

function 

(Tan et al., 

2012) 

Diabetic Nephropathy Lowered glomerulosclerosis, inhibited 

endothelial to mesenchymal transition 

(Nagai et al., 

2014) 

Obesity Induced Hypertension 

(Zucker Obese Rats) 

Lowered fibrosis, inflammation, reduced 

hypertension. 

(Maheshwari et 

al., 2018) 

 

Prevalence of Obesity 

Obesity is considered by the World Health Organization to be a major threat to global 

health. Obesity is associated with diabetes and hypertension which are the two major causes for 

end stage renal disease (M. E. Hall et al., 2014). More than two-thirds (75%) of the US 

population is considered overweight or obese and of these one-third (35%) are obese with a body 

mass index of more than 30kg/m2 (J. E. Hall et al., 2015). In spite of increased awareness, the 

prevalence of obesity has continued to rise and it poses a worldwide problem.  Various factors 

are associated with obesity, in particular an increase in the per capita food supplies and 

consumption, particularly high calorie foods (Hurt, Kulisek, Buchanan, & McClave, 2010). 

Additionally, lack of physical activity and sedentary lifestyle contribute to the cause 
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(Duvigneaud et al., 2007). However, the genetic component associated with obesity cannot be 

ignored. Everyone living in an urban setting is not obese, suggesting that there is an underlying 

genetic mechanism operating at an individual level. Most likely, the genes participating in 

determining energy balance, metabolism and some behavioral traits cooperate with 

environmental changes to either regulate, or fail to regulate, weight gain (Hill, Wyatt, & Peters, 

2012).  

There are various ways to define obesity. Currently, the most widely accepted standard is 

Body Mass Index (BMI).  BMI is defined as weight in kg divided by height in meters, squared. 

Individuals having BMI above 25 are considered overweight and are at risk for cardiovascular 

and renal damage. Nearly two thirds of the US population (66%) is overweight by this definition 

(Flegal, Kruszon-Moran, Carroll, Fryar, & Ogden, 2016). It is accepted that this method has 

limitations, for instance excess fat is not always present with a moderately increased BMI.  In 

contrast, a person with normal BMI might not always be protected from the sequelae of obesity 

(Coutinho et al., 2011). Another limitation is that BMI does not differentiate between upper body 

fat and lower body fat (Yusuf et al., 2005). Most of the studies have shown that the upper body 

fat is correlated with cardiovascular risks and death compared to lower body fat (Gurunathan & 

Myles, 2016). The National Heart, Lung, and Blood Institute considers three key measures to 

assess obesity and health risks: waist circumference, BMI and risk factors for diseases and 

conditions associated with obesity. The waist to hip ratio (WHR) which is an index of upper 

body, tells more about hypertension and cardiovascular diseases compared to other available 

methods to define obesity (Yusuf et al., 2005). No matter how obesity is defined, there is enough 

evidence to indicate that excessive body weight is associated with increased health problems and 

mortality rates. The magnitude of this obesity-associated risk is further influenced by age, 
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gender, and the fat distribution pattern. For example, abdominal obesity appears to 

disproportionately increase the risk of developing certain comorbidities like cardiovascular 

disease and end stage kidney damage (Cornier et al., 2011; Despres, 2012). 

Obesity and Salt Sensitive Hypertension 

In parallel to obesity, the prevalence of hypertension has also increased in the last decade. 

Both obesity and hypertension are major health issues in the United States (Saydah et al., 2014). 

Approximately 30% of hypertension cases are attributed to obesity (Dornfeld, Maxwell, Waks, 

Schroth, & Tuck, 1985). The rise in the prevalence of obesity is a chief factor in the increased 

incidence of hypertension, which is a major risk factor for heart disease, stroke, kidney failure, 

and other serious health complications. The incidence of both obesity and hypertension is more 

common in developed countries but the co-occurrence of these two factors in the same individual 

cannot be explained by a mere random coincidence.  According to the risk estimates from the 

Framingham Heart Study, obesity is linked to about 75% of male and 65% of female cases of 

hypertension (Wilson, D’Agostino, Sullivan, Parise, & Kannel, 2002). Indicators for the risk of 

hypertension include obesity, abdominal fat and weight gain. There is enough evidence to show 

that some individuals can excrete an excess dietary salt intake without an increase in blood 

pressure while others cannot excrete excess dietary salt intake without increasing blood pressure 

(Choi, Park, & Ha, 2015). Salt sensitivity is arbitrarily defined as the 10% increase in the blood 

pressure when an individual is challenged with high salt diet than that with low salt diet (Burnier, 

Wuerzner, & Bochud, 2015). Kawasaki et al. and later on Weinberger et al. were among the first 

to recognize the heterogeneity of the blood pressure response to salt and to develop the concept 

of salt sensitivity and salt resistance in humans (Kawasaki, Delea, Bartter, & Smith, 1978; 

Weinberger, Miller, Luft, Grim, & Fineberg, 1986). 
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Genetic factors such as ethnicity also play a role in the incidences of obesity related 

hypertension. African-American adults are nearly 1.5 times as likely to be obese compared with 

white adults (“National Center for Health Statistics. Health, United States, 2016: With Chartbook 

on Long-term Trends in Health. Hyattsville, Maryland. 2016”). Approximately 47.8 percent of 

African-Americans are obese (including 37.1 percent of men and 56.6 percent of women) 

compared with 32.6 percent of whites (including 32.4 percent of men and 32.8 percent of 

women) (Svetkey, McKeown, & Wilson, 1996). More than 75% of African Americans are 

overweight or obese (including 69 percent of men and 82.0 percent of women) compared with 

67.2 percent of whites (including 71.4 percent of men and 63.2 percent of women) (Svetkey et 

al., 1996). The incidence of hypertension goes in parallel with obesity. More than 40 percent of 

non-Hispanic African-American men and women have high blood pressure. Salt sensitivity is 

more prevalent in African-Americans compared to Caucasians. 73% of all African-American 

hypertensive patients are salt sensitive (Peters & Flack, 2000; Svetkey et al., 1996).  

Mechanisms of Salt Sensitive Hypertension 

A Renal Determinants of Salt Sensitivity 

In the past much work has been done to elucidate the importance of the kidney in the 

pathogenesis of hypertension. In the 1970s, animal experiments performed by Dahl suggested 

that when the kidney from a salt sensitive rat was transplanted in a salt resistant rat, the recipient 

developed hypertension and vice versa suggesting the role of the kidney in the pathogenesis of 

hypertension (Rettig & Grisk, 2005). It was believed that hypertension associated with high salt 

intake is due to the defect in the renal excretion of sodium. Guyton described the pressure 

natriuresis curve first in dogs which reflect the relationship between the salt balance and 

systemic blood pressure in normal and pathological conditions (Guyton, 1989). Pressure 
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natriuresis is defined as the relationship between sodium excretion and mean arterial pressure. In 

normal conditions, an individual requires a certain systemic blood pressure to eliminate sodium 

in order to maintain normal sodium homeostasis but in salt sensitive subjects, this pressure 

natriuresis curve shifts to the right, which indicates that the salt sensitive individuals require 

higher systemic pressure to excrete sodium in order to maintain sodium homeostasis. According 

to his hypothesis, whatever the reason for hypertension, the pressure natriuresis curve is always 

affected. Impaired pressure natriuresis curve implies the importance of sodium and water 

excretion by the kidneys in regulating the blood pressure. Later Kimura and Brenner proposed 

three major mechanisms which cause hypertension: increased pre glomerular vascular resistance, 

a decrease in whole kidney ultrafiltration and an increase in tubular sodium reabsorption 

(Kimura & Brenner, 1993). According to them, preglomerular vascular resistance cause 

hypertension in salt resistance and an alteration in renal sodium handling and the loss of nephron 

mass is responsible for hypertension in salt sensitive individuals. In recent years, Johnson and 

Schreiner have described the role of microvascular injury and tubulointerstitial fibrosis in the 

development of hypertension via shifting the pressure natriuresis curve to the right (Johnson & 

Schreiner, 1997). It has been shown that infusions of Ang II and phenylephrine cause 

microvascular injury and thus the hypertension without the sympathetic or renin angiotensin 

system activity (Johnson et al., 1999; Lombardi et al., 1999). Thus, these hypotheses along with 

animal experiments done in previous years suggest the role of the kidney in the pathogenesis of 

salt sensitive hypertension. 

B Sodium Retaining Mechanisms 

Adrenal and Sympathetic Nervous System: Increased activity of the sympathetic nervous 

system leads to increased sodium retention and decreased sodium excretion (Tuck, 1986). Salt 
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sensitive individuals with essential hypertension showed an abnormal relationship between 

sodium excretion and plasma noradrenaline levels (Campese et al., 1982). In normal and salt 

resistant individuals, a high sodium diet leads to decreased plasma concentrations of 

noradrenaline but in salt sensitive individuals, a high salt diet is accompanied by a rise, no 

change or a decrease in plasma concentrations of noradrenaline (Campese et al., 1982). Obese 

individuals are often associated with both salt sensitive hypertension and increased SNS activity. 

The three major mechanisms, which are associated with the anti-natriuretic effect of increased 

sympathetic nervous system activity, are: - increased renin secretion, reduced renal blood flow, 

and increased renal tubular reabsorption (Fujita, 2014).  

With-no-lysine kinase-4 (WNK-4), a serine threonine kinase, is a negative regulator of 

the thiazide-sensitive sodium chloride cotransporter (NCC) (C. L. Yang, Angell, Mitchell, & 

Ellison, 2003; Zhou et al., 2012). Normally, WNK-4 inhibits NCC activity leading to a decrease 

in sodium reabsorption in distal convoluted tubule to maintain normal blood pressure (Lalioti et 

al., 2006). Various reports showed that the dietary sodium intake modulates the expression of 

WNK kinases and in turn affects NCC activity (Mu et al., 2011; O’Reilly et al., 2006). Excessive 

salt intake in salt sensitive individuals causes an increase renal sympathetic activity. Ang II and 

aldosterone are believed to be involved in switching WNK-4 to a functional state thereby 

promoting NCC activation (Figure 3) (Mu et al., 2011). Ang II acts in a SPS-1 related proline/ 

alanine-rich kinase (SPAK) dependent manner (Castaneda-Bueno et al., 2012) and aldosterone 

activates NCC via either the WNK-4-SPAK- dependent or the WNK-4-extracellular signal-

regulated kinase1/2 (ERK ½) signaling pathway (Ko et al., 2013; Lai et al., 2012). 
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Figure 3. Regulation of NCC Transporter by WNK kinase in Distal Tubule Segment of the 

Nephron © Mani Maheshwari, 2018. 

 

The adrenal system is also involved in the salt sensitive hypertension. Normally levels of 

plasma aldosterone are counterbalanced by dietary salt intake by changes in the levels of 

circulating Ang II. Increased salt intake with a continuous infusion of aldosterone increases 

blood pressure and proteinuria seen in primary aldosteronism. On a low salt diet, aldosterone 

induced hypertension and renal injury do not occur which tells us that salt is indispensable for 

aldosterone induced mineralocorticoid receptor (MR) activation and eventually leads to 

hypertension (Fujita, 2014; Shibata et al., 2011). Studies have shown that in obese hypertensive 

rats, the negative feedback regulation of aldosterone secretion by salt is impaired, which leads to 
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salt sensitive hypertension and renal damage through MR activation (Fujita, 2010). In Dahl salt 

sensitive rats, salt loading inhibits the glucocorticoid-inducible-kinase 1 (SGK1) which is a 

downstream mediator of MRs in spite of the appropriate suppression of aldosterone. Salt loading 

mediated SGK1 inhibition despite lower levels of aldosterone suggests that MRs are activated in 

an aldosterone independent manner. Rac 1, a member of Rho-guanine triphosphate hydroxylases 

family, has been shown to be involved in aldosterone independent MR activation (Aoi, Niisato, 

Sawabe, Miyazaki, & Marunaka, 2006; Farjah, Roxas, Geenen, & Danziger, 2003).  

C Hyperinsulinemia and/or Insulin Resistance 

Insulin resistance is defined as the inability of the cells to respond normally to the insulin 

hormone. Obesity leads to insulin resistance and is often accompanied by hyperinsulinemia.  

African Americans are more salt sensitive and hyperinsulinemic when compared to the white 

population (Sanada, Jones, & Jose, 2011). Normally, insulin has a sodium retaining effect and it 

is because of its direct action on the renal tubules. Sodium retention due to hyperinsulinemia 

could lead to a rise in blood pressure. Insulin is also known to have an acute sympathoexcitatory 

effect and it has depressor effect of peripheral vasodilation (Mendizabal, Llorens, & Nava, 

2013).  

D Renin Angiotensin System 

The renin angiotensin system (RAS) plays a very important role in controlling body fluid 

volume, electrolyte balance, and blood pressure. RAS is a key factor in many cases of essential 

hypertension and it mediates its action via Ang II (Yim & Yoo, 2008). Various studies have 

shown ACE inhibitors and Ang II blockers are used in controlling essential hypertension 

(Baltatzi, Savopoulos, & Hatzitolios, 2011). Renin is the rate-limiting enzyme in Ang II 

formation. When the plasma sodium concentration is lower than the normal or there is decreased 
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renal perfusion, the juxtaglomerular cells in the kidney sense that and convert pro renin to renin 

which enters in the circulation. Plasma renin then converts angiotensinogen, a glycoprotein 

consisting of 429 amino acids produced by hepatocytes in the liver, to the decapeptide 

Angiotensin I. Angiotensin I gets converted to Ang II, an octapeptide, by angiotensin converting 

enzyme (ACE) which is found on the endothelial cells of the capillaries throughout the body, 

within the lungs and the epithelial cells of the kidney (Ichihara, Kobori, Nishiyama, & Navar, 

2004). Ang II is a potent vasoconstrictor, which causes the constriction of the arterioles leading 

to an increased arterial blood pressure.  Ang II exerts its effect via acting on its receptors, 

Angiotensin 1 (AT1) and Angiotensin 2 (AT2). AT 2 receptors counteract the vasoconstrictor 

and growth stimulatory action of AT1 receptors (Yim & Yoo, 2008).  

A high salt diet suppresses Ang II levels through physiological blood pressure control 

mechanisms. In 40-50% cases of essential hypertension, the adrenal and renal vascular responses 

to Ang II are not as expected with the salt intake. They are referred to as “nonmodulators” 

(Williams & Hollenberg, 1989). In salt sensitive individuals there are several structural 

alterations in the genes, which code for various components of RAS. Poch et al. evaluated the 

association between the genetic polymorphisms of the RAS and salt sensitive hypertension in 

humans (Poch et al., 2001). As it is known, salt sensitivity varies with race. African-Americans 

are more prone to develop hypertension compared to Caucasians. It is shown that the RAS of 

African-Americans is more salt sensitive and they develop hypertension with less intake of salt 

compared to the Caucasian population (Luft et al., 1991; Richardson & Piepho, 2000). 

E Oxidative Stress and Renal Infiltration of Immune Cells 

In both experimental and human hypertension, oxidative stress has been shown to play a 

role. Reactive oxygen species (ROS) play a critical role in the development of hypertension and 
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there is evidence showing hypertension leads to the generation of ROS creating a vicious cycle 

(S. Xu & Touyz, 2006). In various models of hypertension such as Ang II induced hypertension, 

DOCA salt hypertension, and spontaneously hypertensive rats (SHRs), stimulation of NAD(P)H 

oxidase is the primary source of the generation of oxidants (Fukui et al., 1997; Landmesser & 

Harrison, 2001; Zalba et al., 2000). In patients with essential hypertension, NAD(P)H is the main 

source of superoxide production in the vascular smooth muscles (Lassegue & Clempus, 2003). 

ROS can inactivate nitric oxide production resulting in the loss of vasodilation. Depending on 

the amount produced and the vascular bed, ROS can exert vasodilatory or vasoconstrictory 

effects but mainly it has vasoconstrictor effects. The vasoconstrictory effect of ROS is mainly 

due to the generation of vasoconstrictive eicosanoids like prostaglandin F2α from the oxidation of 

arachidonic acid and also the inhibition of synthesis of vasodilatory eicosanoids such as 

Prostaglandin I2 (Korbecki, Baranowska-Bosiacka, Gutowska, & Chlubek, 2013). In addition to 

the systemic effects, recent studies suggested that oxidative stress in the kidney is involved in the 

pathophysiology of the sodium retention because it leads to the tubulointerstitial accumulation of 

Ang II-positive cells (Imig & Ryan, 2013; Majid, Prieto, & Navar, 2015).  

F Tubulointerstitial Inflammation and Hypertension 

There is evidence that the immune cells infiltrating in the kidney leads to the sodium 

retention and thus contribute to the hypertension (Wade, Abais-Battad, & Mattson, 2016). 

Tubulointerstitial infiltration of macrophages and lymphocytes is present in almost all the 

experimental models of salt sensitive hypertension such as DOCA-salt hypertension, post-Ang II 

infusion salt-sensitive hypertension, hyperuricemia-induced hypertension, two-kidney one- clip 

hypertension, as well as genetic models of hypertension such as SHR and the double transgenic 

rat harboring the human renin and angiotensinogen genes (Rodriguez-Iturbe, Quiroz, Kim, & 
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Vaziri, 2005; Rodriguez-Iturbe, Vaziri, Herrera-Acosta, & Johnson, 2004; Rodriguez-Iturbe, 

Zhan, Quiroz, Sindhu, & Vaziri, 2003; Tapia et al., 2003). The mechanism by which immune 

cell infiltration leads to hypertension is not clear, but it is speculated that the accumulation of 

immune cells leads to the intrarenal Ang II, and Ang II possesses sodium retaining effects. In 

experimental models of hypertension, it has been shown that infiltrating T cells and macrophages 

express Ang II. Interstitial accumulation of Ang II positive cells has been postulated as a primary 

reason for the sodium retention in patients with nephrotic syndrome. Apart from sodium 

retaining effects of Ang II, there are other potential consequences of Ang II activity in the kidney 

such as the activation of transcription factors and a signaling cascade which may stimulate 

superoxide production mediated by NAD(P)H oxidase (Sonnenberg, Honrath, Chong, & Wilson, 

1986). In models of salt sensitive hypertension, interstitial inflammation is associated with 

increased apoptosis and activation of NF-κB. Inhibition of NF-κB reduces the accumulation of 

inflammatory cells. Several mechanisms that regulate cellular ion transport have been evaluated 

in hypertensive patients. According to the classical hypothesis, hypertension in salt sensitive 

individuals might be due to an impaired renal function, which leads to an increased Na+ 

reabsorption and reduced Na+ excretion. The sodium retention leads to volume expansion and 

subsequently the secretion of an ouabain-like substance. This ouabain-like substance inhibits 

Na+, K+ ATPase in the kidney and maintains Na+ balance, although at higher levels. The 

inhibition of Na+, K+ ATPase activity in vascular smooth muscle cells and brain leads to 

hypertension (Haddy, 1987). The role of Na+, K+ ATPase in hypertension is supported by the 

evidence that long term administration of ouabain induced hypertension in normal rats (Yuan et 

al., 1993). Some other studies have shown contradicting results with circulating levels of this 
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ouabain-like compound (J. Wang, Tempini, Schnyder, & Montani, 1999). There is no conclusive 

evidence that genetic mutation in the sodium pump subunits are involved in hypertension. 

Elevated rates of sodium hydrogen exchanger (NHE) in the cell membrane of blood 

vessels and renal tubules may play a role in the pathophysiology of hypertension (Li, Shull, 

Miguel-Qin, Chen, & Zhuo, 2015). Increased activity of NHE might be due to systemic 

hormonal or metabolic factors (e.g. high Na intake, insulin), to intracellular factors (protein 

kinase C, calcium calmodulin), or to post-translational modifications (Cingolani & Ennis, 2007). 

It has been shown that high sodium intake increases calcium in lymphocytes of salt sensitive but 

not salt resistant hypertensive patients (Alexiewicz et al., 1992). This increase in calcium might 

alter the activity of NHE exchanger (Baartscheer et al., 2008). 

Mechanisms of Progression of Chronic Kidney Disease 

A Systemic and Glomerular Hypertension 

Hypertension is associated with chronic kidney disease (CKD), and controlling blood 

pressure is a key in the treatment of CKD (Judd & Calhoun, 2015). The glomerulus has a unique 

structure with afferent and efferent arteriole working in such a way that in normal conditions, 

modulation of glomerular perfusion does not affect the systemic blood pressure. Studies have 

been done on the remnant kidney models to study chronic kidney disease. In 5/6 nephrectomy, 

there is hyperfiltration, hyperperfusion, hypertrophy, and focal segmental glomerulosclerosis 

(FSGS) (Shimamura & Morrison, 1975). Other models with initial podocyte injury, namely the 

puromycin aminonucleoside model of renal disease, show proteinuria and podocyte damage 

eventually leading to FSGS (Grond, Weening, & Elema, 1984). 

Micropuncture studies at single nephron level have demonstrated that single nephron 

function increases after renal ablation (Hostetter, Olson, Rennke, Venkatachalam, & Brenner, 
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2001). Increased single nephron function after renal ablation led to the hypothesis that 

hyperfitration leads to sclerosis setting a vicious cycle of hyperfitration and glomerulosclerosis. 

Factors that decrease hyperfiltration such as low protein diet, angiotensin converting enzyme 

inhibitors (ACEis), and lipid lowering agents were effective in ameliorating glomerular sclerosis 

whereas the factors that increase glomerular capillary pressure such as high protein diet, and 

glucocorticoids accelerated glomerulosclerosis (Kakinuma et al., 1992). 

 B Renin-Angiotensin-Aldosterone System 

 The components of Renin-angiotensin-aldosterone system (RAAS) have been studied 

extensively in the progression of chronic kidney disease. ACEIs act mainly on the efferent 

arteriole (Bosma et al., 2006) and cause a decrease in glomerular capillary pressure by dilatation 

of the efferent arterioles. The dilatation of efferent arteriole is mainly mediated by the inhibition 

of Ang II and also by an increase in the production of bradykinin which under normal conditions 

gets degraded by angiotensin converting enzyme (Kon, Fogo, & Ichikawa, 1993). Angiotensin 

Type I receptor blockers (ARBs) do not increase bradykinin so they are not able to dilate the 

efferent arteriole or decrease glomerular capillary pressure to the extent of ACEis, but both 

ACEis and ARBs have been shown to be efficient to reduce the progression of chronic kidney 

disease (Lewis, Hunsicker, Bain, & Rohde, 1993; MacKinnon et al., 2006).  

ARBs leave the AT2 receptor active and thus theoretically can lead to increased AT2 

effects by allowing the unbound Ang II to bind to the receptor. The AT2 receptor has an opposite 

effect to the AT1 receptor. AT2 receptors are vasodilatory and mediate growth inhibition and 

apoptosis (Stoll et al., 1995; Yamada, Horiuchi, & Dzau, 1996). Apoptosis mainly decreases the 

injury as the injured cells are removed without the activation of profibrotic cytokines and 

chemokines. Studies have shown the beneficial effects of the AT2 receptor in transgenic mice 
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that over express the AT2 receptor; these mice develop less renal injury than the wild type after 

subtotal nephrectomy (Hashimoto et al., 2004). In clinical studies, combined therapies of ACEis 

and ARBs have shown a beneficial effect on decreasing proteinuria and improving glomerular 

filtration rate (GFR). In a large population study of patients with hypertension along with 

diabetes and microalbuminuria, the combined therapy reduced the blood pressure along with 

albuminuria much greater than the monotherapy (Mogensen et al., 2000). Additionally, the 

combined therapy has an anti-fibrotic effect by an augmented bradykinin and AT2 activities and 

also by decreased urinary TGFβ (Taal & Brenner, 2002). It is possible to have greater RAS 

inhibition with the combined therapy ACE inhibitors and by inhibition of Ang ll binding to its 

AT1 receptor. However, suprapharmacological doses of ACE inhibitors could not inhibit the 

local RAS completely in various experimental models (Nishiyama, Seth, & Navar, 2002). There 

are reports showing that the plasma of patients receiving ACE inhibitors still have measurable 

Ang II which suggests that the non ACE dependent Ang II generation by chymotrypsin sensitive 

generation enzyme occurs in humans (Ahmad et al., 2011). A new area of research includes the 

development of renin antagonists that could obviate these obstacles to optimal inhibition of the 

RAAS.  Most of the profibrotic effects of RAAS are due to Ang II. It promotes the migration of 

endothelial and vascular smooth muscle cells, hypertrophy and hyperplasia of smooth muscle 

cells and mesangial cells (Wolf & Neilson, 1993).  All the components of RAAS are present in 

macrophages, which are another source of Ang II, and they respond to ACEi and ARB. Ang II 

also induces other growth factors like TGFβ, plasminogen activator inhibitor-1 (PAI-1), platelet-

derived growth factor (PDGF), basic fibroblast growth factor (basic FGF). All these growth 

factors have an impact on fibrosis (Ketteler, Noble, & Border, 1995; Oikawa, Freeman, Lo, 

Vaughan, & Fogo, 1997).  
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Recently aldosterone has been shown to promote fibrosis by both genomic and non-

genomic actions regardless of its action to increase blood pressure by salt retention (Brown, 

2005; Epstein, 2006). Aldosterone aggravates Ang II induction of PAI-1 and also has a direct 

effect on fibrosis (Brown, 2005). PAI-1 deficiency decreased the aldosterone induced glomerular 

injury but it could not prevent the cardiac or aortic injury indicating that aldosterone PAI-1 

mediated fibrosis is site specific and also species specific (J. Ma et al., 2006).  

 C Specific Cytokines/Growth Factors 

There are various cytokines/growth factors involved in modulating the glomerular and 

tubulointerstitial fibrosis; they may act at different stages of injury. Altered gene expression of 

these cytokines occurs in pathophysiological conditions e.g., PDGF, TGFβ, Ang II, basic FGF, 

endothelin, various chemokines, peroxisome proliferator-activated receptor gamma (PPAR γ), 

and PAI-1, among others, in progressive renal fibrosis (Fine, Hammerman, & Abboud, 1992; 

Kashgarian & Sterzel, 1992). Newer approaches with proteomic and array analysis of renal 

tissue in animal models and human CKD can identify new targets and markers, and also 

mediators of progression (Schmid, Henger, & Kretzler, 2006; B. J. Xu et al., 2005). Out of 

various potential molecules of interest, only a few that have been investigated in depth are 

discussed below.  

Increased PAI-1 corresponds to increased cardiovascular disease and kidney fibrosis 

(Eddy & Fogo, 2006). Conversely, inhibition of Ang II or aldosterone is linked with a decrease 

in PAI-1 and leads to a decrease in the sclerosis and even regression of the existing kidney 

fibrosis (Aldigier, Kanjanbuch, Ma, Brown, & Fogo, 2005; Oikawa et al., 1997). Ang II and 

aldosterone can also induce PAI-1 expression and subsequent fibrosis independent of TGFβ 

activation (L. J. Ma et al., 2003). Some of the effects of PAI in mediating fibrosis are 
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independent of its effects on proteolysis. PAI-1 has also been shown to increase cell migration 

and epithelial-mesenchymal transition (EMT) and thereby increasing fibrosis in inflammatory 

and interstitial diseases (Eddy & Fogo, 2006). In the glomerulus, the effect of PAI-1 in mediating 

fibrosis is mostly by its ability to modulate extracellular matrix turnover (Eddy & Fogo, 2006). 

Thus, the mechanisms by which PAI-1 mediates fibrosis in the glomerulus versus interstitium are 

not identical, and they involve the interactions of parenchymal and infiltrating cells and 

cytokines, with variable net effects on ECM accumulation. 

TGFβ is a key promoter of fibrosis and extracellular matrix synthesis. Transgenic animals 

overexpressing TGFβ developed progressive kidney injury. TGFβ induces the formation of Ang 

II and PAI-1 (Gaedeke, Peters, Noble, & Border, 2001). Animals transgenic for TGFβ developed 

progressive renal disease (Kopp et al., 1996). Animals which are genetically deficient for TGFβ 

develop lymphoproliferative disease, reflecting a loss of TGFβ immune regulatory effect (Christ 

et al., 1994). There is dose dependent effect of TGFβ: - at lower doses it promotes growth arrest 

and differentiation of podocytes whereas at higher doses it causes podocytes apoptosis which is 

mediated by Smad 7 signaling (Schiffer et al., 2001; Wu, Bitzer, Ju, Mundel, & Bottinger, 2005). 

Podocytes along with mesangial cells are important in maintaining the structure and function of 

the glomerulus. Loss of podocytes is a key factor in progressive kidney fibrosis.  

PPARγ is a transcription factor and a member of the steroid superfamily which is 

involved in modifying numerous cytokines and growth factors including PAI-1 and TGFβ (Guan 

& Breyer, 2001). On activation, it binds to the retinoic acid X receptor, translocates to the 

nucleus and binds to proliferator activated response elements (PPREs) in selected target genes 

modifying their expression. Studies have shown the beneficial effect of PPARγ agonists in 

various animal models especially type 2 diabetes as they increase insulin sensitivity and lipid 
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metabolism thereby decreasing diabetic injury (Buckingham et al., 1998). In non-diabetic and 

non-hyperlipidemic animal models of CKD, PPARγ agonists have shown anti-fibrotic effects. 

PPARγ agonists reduce the development of sclerosis which is linked with a decrease in TGFβ 

and PAI-1 and also a decrease in the infiltrating macrophages, keeping the podocytes intact 

against injury (L. J. Ma, Marcantoni, Linton, Fazio, & Fogo, 2001; H. C. Yang, Ma, Ma, & 

Fogo, 2006).  

 D Podocyte Loss 

 Podocytes play an important role in maintaining glomerular structure and function. 

Together with the endothelial cells of the capillaries in the glomerulus and the glomerular 

basement membrane, they form a filtration barrier. While cooperating with mesangial cells, they 

support the structure and function of glomerulus. Podocytes do not proliferate. Loss of podocytes 

is one of the major factors resulting in sclerosis (Shankland, 2006). This principle was proven by 

conducting studies in experimental models of rats and mice where the podocyte specific injury 

was produced by the genetic manipulation of the podocyte to express a toxin receptor only on 

this cell (Matsusaka et al., 2005; Wharram et al., 2005). Injecting puromycin aminonucleoside 

causes podocyte loss; the severity of loss depends on the dose of the toxin. Animals eventually 

developed progressive sclerosis, but the available data from various studies demonstrated the 

effect of podocyte injury on endothelial and mesangial cells. It is possible that the injury can 

spread from injured podocytes to the intact podocytes within the glomerulus, which can initiate a 

vicious cycle leading to the progressive injury at glomerular level (Ichikawa, Ma, Motojima, & 

Matsusaka, 2005).  

As mentioned earlier, podocytes do not proliferate and it is due to an increased 

expression of the cyclin dependent kinase inhibitor, p27kip1, which is a rate limiting step for the 
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growth response of the podocyte (Combs, Shankland, Setzer, Hudkins, & Alpers, 1998). Either 

too much or too little proliferation of the podocyte in response to genetic manipulation of 

p27kip1 is postulated to be detrimental. Recent studies of the molecular biology of the podocyte 

and the genes mutated in a different form of focal segmental glomerulosclerosis and nephrotic 

syndrome, such as nephrin, phospholipase C, α-actinin-4, and podocin have given a new area to 

study the mechanisms involved in progressive glomerulosclerosis. Nephrin is localized to the slit 

diaphragm of the podocyte and is tightly associated with CD2-associated protein (CD2AP) 

(Huber & Benzing, 2005). Nephrin is a protein that is important for the proper functioning of 

renal filtration barrier in the kidney. The renal filtration barrier consists of fenestrated endothelial 

cells, glomerular basement membrane and the podocytes of epithelial cells. Nephrin is present on 

the tip of the podocyte and maintains the normal relationship between the basement membrane 

and podocytes of the epithelial cells.  CD2AP knockout mice develop congenital nephrotic 

syndrome. Mutation in α-actinin 4 leads to an autosomal dominant focal segmental 

glomerulosclerosis (FSGS) in adults (Kaplan et al., 2000). It is hypothesized that an altered 

actin-cytoskeleton interaction causes FSGS, which is through a gain-of-function mechanism in 

contrast to a loss-of-function mechanism in diseases caused by the mutation in nephrin. Podocin, 

another gene associated with podocytes, when mutated results in autosomal recessive FSGS with 

childhood onset and finally progressing to end stage renal disease (Boute et al., 2000). Studies 

have shown that in various experimental models, there is acquired disruption or polymorphism of 

these complex interacting molecules. In puromycin aminonucleoside nephropathy, a model of 

FSGS, there is alteration of nephrin localization and organization (Kawachi et al., 2000). Morel 

et al. have shown the decreased glomerular nephrin expression in Dahl salt sensitive rats on high 

salt diet (Worou et al., 2015). 
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E Dyslipidemia 

 People with obesity and chronic kidney disease have dyslipidemia and a greater risk for 

cardiovascular events (Cases & Coll, 2005). In rats, abnormal lipid profile is important in 

modulating glomerular sclerosis. In experimental models where excess cholesterol was added, 

glomerular injury was increased (Keane, Mulcahy, Kasiske, Kim, & O’Donnell, 1991). Recent 

clinical trials support the notion that abnormal lipids are associated with an increased loss of 

GFR, and treatment with statins not only improves cardiovascular events but also helps in 

ameliorating chronic kidney disease events (Tonelli, Moye, Sacks, Cole, & Curhan, 2003).  

 F Proteinuria 

 Proteinuria is a significant marker for renal damage and cardiovascular morbidity and 

mortality. Nephrin is a key protein which is involved in the maintenance of the glomerular 

filtration barrier in the kidney. Reduced expression of nephrin leads to a leaking of albumin in 

urine which is a marker for renal damage. Mutations in nephrin are associated with a congenital 

nephrotic disorder in infants that is characterized by massive proteinuria. Proteinuria contributes 

to progressive renal inflammation and is often associated with a worst prognosis (Shankland, 

2006). In the proteinuric state, the other components, which are filtered in the urine such as 

oxidized proteins, cause more injury to tubular epithelial cells and activate pro-inflammatory 

cytokines and chemokines (Perico, Codreanu, Schieppati, & Remuzzi, 2005). Complement and 

various lipoproteins are also present in the urine in the proteinuric state and can cause reactive 

oxygen species activation. Proteinuria may activate various profibrotic pathways due to its 

ability to increase NF-κB and also other pathways (Abbate, Zoja, & Remuzzi, 2006).  

Drugs like ACEis and ARBs have been proven to ameliorate the progression of end organ 

injury. It has not been proven yet whether the beneficial effects of these drugs are due to a 
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reduction in proteinuria as they have multiple parallel effects which aim to reduce fibrosis 

(Abbate et al., 2006). 

Renal Hemodynamics in Obesity 

 Clinically as well as in the experimental models, obesity increases the risk of renal 

damage (D’Agati et al., 2016; Kovesdy et al., 2017). Obesity is associated with abnormal renal 

hemodynamics in the form of increased glomerular capillary pressure. Increased glomerular 

capillary pressure can increase the propensity to cause renal damage due to barotrauma and 

stretch to the glomerular linings (Bondar et al., 2011; Riser et al., 1992). Understanding the 

regulation of the renal microcirculation is important to understand glomerular and renal injury. 

  Normally, the resistance of both afferent and efferent arterioles regulates glomerular 

capillary pressure. Afferent arteriolar resistance is regulated by mechanisms similar to those 

regulating other arterioles including plasma Ang II, sympathetic nervous system, and myogenic 

response (Navar, 2014). In addition, Af-Arts are also regulated by two autoregulatory intrinsic 

feedback mechanisms: 1) tubuloglomerular feedback (TGF) that causes Af-Art constriction in 

response to an increase in NaCl in the macula densa, via the sodium–potassium-2-chloride 

cotransporter-2 (NKCC2) and 2) connecting tubule glomerular feedback (CTGF) mechanism that 

causes Af-Art dilation in response to an increase in NaCl in the CNT segment of the nephron via 

epithelial sodium channel (ENaC) (Ren, D’Ambrosio, Garvin, Wang, & Carretero, 2009; Ren, 

Garvin, Liu, & Carretero, 2009). The CNT segment of the nephron comes in contact with the 

afferent arteriole and this forms the basis for tubule to arteriole signaling resulting in change in 

the afferent arteriolar diameter. During in-vitro perfusion of microdissected Af-Art and the 

adherent CNT, increasing the NaCl concentration in the perfusate of the CNT significantly 

dilated the preconstricted Af-Art and this phenomenon is known as CTGF (Ren, D’Ambrosio, et 
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al., 2009). The phenomenon of CTGF was abolished upon blocking the epithelial sodium 

channel specifically with benzamil confirming that epithelial sodium channels mediate CTGF. 

As far as the mechanism of CTGF is concerned, it is known that CTGF is initiated by epithelial 

sodium channels present at the CT segment of nephron and is mediated by arachidonic acid 

metabolites. Increasing the sodium concentration in the CNT stimulates the release of 

prostaglandins and epoxyeicosatrienoic acids (Ren, D’Ambrosio, et al., 2009). Released 

prostaglandin (PG) E2 from the CT binds to the prostaglandin E2 receptor 4 (EP4) on the 

afferent arteriole wall and induces its dilation. CTGF is increased during high NaCl intake in 

Dahl SS rats and by hormones that stimulate the ENaC, such as aldosterone and Ang II (H. 

Wang et al., 2017). Also in unilateral nephrectomy, CTGF was increased in the remnant kidney 

(Monu et al., 2017). Since CTGF is an afferent arteriolar dilator and TGF is an afferent arteriolar 

constrictor, it is possible that they can mutually influence each other. The interaction between 

TGF and CTGF is evident from studies showing that by blocking the CTGF pharmacologically 

with benzamil, TGF gets further potentiated which further suggests that CTGF indeed opposes 

the TGF mechanism, and it is more evident in the model of salt sensitive rats and unilaterally 

nephrectomized rats. 

  In obesity, there seems to be an alteration in the normal renal hemodynamics as there is 

increased glomerular capillary pressure and increased renal blood flow in obese animals as well 

as obese human beings (Bondar et al., 2011; Leggio et al., 2017). Because of this alteration in 

renal hemodynamics, it is possible that feedback mechanisms such as TGF and CTGF might be 

playing a role in causing this. There are several studies pointing out the possibility of TGF 

attenuation in obesity but none of this has been confirmed yet.   
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Zucker Obese Rats 

Zucker obese (ZO) rats are the best known and the most widely used animal model for 

genetic obesity. The fa mutation was discovered in 1961 by Lois Zucker in a cross between 

Merck M-strain and Sherman rats (Zucker & Zucker, 1963). The animals that are homozygous 

for the fa allele, the fa/fa Zucker rats or ZO rats become obese at 3-5 weeks of age. These 

animals have a mutation in the leptin receptor that is responsible for their characteristic 

phenotype. Leptin is a hormone which is produced by adipose tissue and released in the 

circulatory system and is involved in maintaining the energy balance. ZO rats are morbidly obese 

and hyperphagic. Hyperphagia is mostly seen in the growth period of animals, i.e. during the first 

16 weeks of age.  ZO rats develop proteinuria at 12 weeks of age and by 14 weeks of age, the 

body composition of these rats become 40% weight lipid. These animals are insulin resistant, 

normoglycemic and hyperinsulinemic (Kasiske et al., 1992). There are conflicting results 

whether these animals are hypertensive compared to their lean littermates. Various studies have 

shown that upon high salt diet treatment these animals become hypertensive indicating that they 

develop salt sensitive hypertension and hence they are used as a rodent model to study obesity 

related kidney dysfunction and hypertension.  

We used ZO rats to study obesity related kidney damage in our present study. This model 

exhibits many phenotypic traits common for obesity related kidney damage observed in human 

population and is associated with a progressive decline of renal function and albuminuria. These 

rats exhibit hyperinsulinemia but are normoglycemic representing the prediabetic state in the 

human beings (Kasiske et al., 1992).  Zucker lean (ZL) rats were used as the control animals in 

our experiments.  
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Based on all the findings mentioned above, we hypothesized that in ZO rats on high salt 

diet Ac-SDKP prevents renal damage by decreasing renal inflammation, fibrosis, and 

glomerulosclerosis as well as delays the onset of hypertension. 
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CHAPTER 3 

RENAL PROTECTIVE EFFECTS OF N-ACETYL-SERYL-ASPARTYL-LYSYL-

PROLINE (Ac-SDKP) IN OBESE RATS ON A HIGH-SALT DIET 

This manuscript corresponds to Aim 1 and 2 and is focused on the hypothesis that Zucker 

obese rats on a high salt diet develop renal damage, inflammation, and fibrosis that are prevented 

by Ac-SDKP treatment. 

 

A Manuscript published in the American Journal of Hypertension 

Maheshwari M, Romero CA, Monu SR, Kumar N, Liao TD, Peterson Ed, and Carretero OA 

(2018). 

“Renal Protective Effects of N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) in Obese 

Rats on a High-Salt Diet.” Am J Hypertens, 2018 [Epub ahead of print] 

 

Reprinting for dissertation is part of the author’s rights and permission is not required from 

Multidisciplinary Digital Publishing Institute (MDPI), the copyright holder 

 

Mani Maheshwari1, 2, Cesar A. Romero1, Sumit R. Monu1, Nitin Kumar1, Tang-Dong Liao1, 

Edward L. Peterson3, and Oscar A. Carretero1
. 

1 Hypertension and Vascular Research Division, Dept. of Internal Medicine, Henry Ford 

Hospital, Detroit, MI 

2 Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of 

Medicine, Marshall University, Huntington, WV 

3 Department of Public Health Sciences, Henry Ford Hospital, Detroit, MI 



43 

*Correspondence should be addressed to Oscar A. Carretero, MD, Hypertension and Vascular 

Research Division, Henry Ford Hospital, 2799 West Grand Boulevard, Detroit MI  48202-2689, 

Phone/FAX: (313) 916-2103/1479 Email: ocarret1@hfhs.org 

Abstract 

Obesity is a public health problem associated with salt sensitive hypertension, kidney 

inflammation, and fibrosis. N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) is a tetra peptide 

with anti-inflammatory and anti-fibrotic properties; however, its effect on preventing kidney 

damage in obesity is unknown. We hypothesized that Zucker obese (ZO) rats on a high-salt (HS) 

diet develop renal damage, inflammation, and fibrosis and this is prevented with Ac-SDKP 

treatment. Zucker Lean (ZL) and ZO rats (8 weeks old) were treated with Ac-SDKP (1.6 

mg/kg/day) while maintained on either a normal-salt (NS; 0.4%) or HS (4%) diet for 8 weeks. 

Systolic blood pressure (SBP), albuminuria, renal inflammation, and fibrosis were evaluated. HS 

diet increased macrophage infiltration in the kidneys of both ZL and ZO rats but was 

significantly higher in ZO rats receiving the HS diet (ZL+NS, 13.9±1.3 vs ZL+HS, 19.14±1.5 

and ZO+NS, 25.5±1.4 vs ZO+HS, 87.8 ± 10.8 cells/mm2; P <0.05). Ac-SDKP prevented 

macrophage infiltration in ZO rats (ZO+HS+Ac-SDKP, 32.18±2.4 cells/mm2; P <0.05). 

Similarly, glomerulosclerosis, cortical and medullary interstitial fibrosis were increased in ZO 

rats fed the HS diet, and Ac-SDKP attenuated these alterations (P <0.05). SBP was increased in 

ZO rats fed the HS diet (ZO+NS, 121.3±8.9 vs ZO+HS, 164±6.9 mmHg; P <0.05), and 

significantly decreased with Ac-SDKP treatment (P =0.004). Albuminuria was higher in ZO rats 

than in ZL rats; however, neither HS nor Ac-SDKP treatment affected it. We concluded that Ac-

SDKP treatment in ZO rats fed a HS diet prevented renal damage by reducing inflammation, 

fibrosis, and BP.  

mailto:ocarret1@hfhs.org


44 

Background 

Obesity is a public health problem in the United States, almost 70% of the population is 

overweight; among them, approximately 35% are obese, with a body mass index above 30 kg/m2 

(J. E. Hall et al., 2015). Obesity is an important risk factor for end-stage renal disease due to its 

strong association with diabetes and hypertension. The incidence of kidney damage associated to 

obesity has increased 10-fold in the last 15 years and is expected to rise further in the coming 

years (Kovesdy et al., 2017; Mathew et al., 2011). Obesity is also linked to salt-sensitive 

hypertension in both humans and animals (Ali et al., 2015; DeMarco et al., 2014). In the obese 

population, salt-sensitive hypertension is strongly associated with the progression of target-organ 

damage, including end-stage renal disease (Quigley et al., 2009). The underlying mechanism of 

obesity-related salt sensitivity and its association with renal injury remains unclear. However, 

inflammation plays a key role in the development of hypertension and kidney damage associated 

with obesity (Harrison et al., 2011; Schiffrin, 2014). Previous studies have shown that, in 

obesity, renal injury was associated with glomerulosclerosis, tubule-interstitial damage, 

inflammation and albuminuria. High-salt (HS) intake further aggravated these renal changes (M. 

E. Hall et al., 2014). N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) is a tetra-peptide, naturally 

present in many tissues including kidney (Junot et al., 1999), that is released from its precursor 

thymosin β4 by 2 enzymatic steps that are mediated by meprin-α and prolyl oligopeptidase 

enzymes (Cavasin et al., 2004; Kumar et al., 2016). Ac-SDKP is hydrolyzed mainly by 

angiotensin-converting enzyme (ACE), and its concentration in plasma, urine, kidney, and heart 

is increased by ACE inhibitors (ACEi) (Azizi et al., 1996).  We previously demonstrated that 

some of the anti-inflammatory and anti-fibrotic effects of ACEi are mediated by an increase in 

endogenous Ac-SDKP concentration (Peng et al., 2007). Studies using several experimental 
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animal models have demonstrated that Ac-SDKP has anti-inflammatory and anti-fibrotic 

properties (Rhaleb et al., 2011; Worou et al., 2015) and that a decrease in endogenous Ac-SDKP 

levels promoted fibrosis in the kidney and heart (Cavasin et al., 2007). Recently, we have also 

shown that Ac-SDKP can delay the onset of hypertension in systemic lupus erythematosus 

(Nakagawa et al., 2017). However, the effect of Ac-SDKP on obesity-related kidney damage and 

hypertension is still unknown. 

Zucker Obese (ZO) rats exhibit many phenotypic traits that are common in the obesity observed 

in humans such as hyperinsulinemia with normoglycemia, and is associated with albuminuria 

and a progressive decline of renal function (Kasiske et al., 1992).  

Therefore, we hypothesized that Zucker obese (ZO) rats on a HS diet develop renal damage, 

inflammation, and fibrosis which are prevented with Ac-SDKP treatment.  

Materials and Methods 

Animals  

Male ZL and ZO rats at 5 weeks of age (Charles River Laboratories, Wilmington, MA, 

USA) were housed in an air-conditioned room with a 12-hour light/dark cycle and received 

standard laboratory rat chow and tap water. Rats were allowed 7 days to acclimatize to the new 

environment before the experiments were performed. All surgical procedures were performed 

under anesthesia (50 mg/kg of sodium pentobarbital, intraperitoneal). The study was approved by 

the Henry Ford Hospital Institutional Animal Care and Use Committee.  

Experimental Protocols 

ZL and ZO rats (8 weeks old) were placed on either a normal-salt (NS; 0.4% NaCl) or HS 

(4% NaCl) diet (Teklad diets, Harlan, Madison, WI) and were subcutaneously infused with 

vehicle (0.01 N acetic acid 0.9% saline solution) or Ac-SDKP (1.6 mg·kg−1·day−1) for 8 weeks 
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using osmotic mini-pumps (Alzet, Cupertino CA). ZL and ZO rats were divided into 6 groups: 1) 

NS infused with vehicle (NS+vehicle, n = 6); 2) HS infused with vehicle (HS+vehicle, n = 6); 

and 3) HS infused with Ac-SDKP (HS+Ac-SDKP, n=6). Blood pressure was measured weekly 

with a tail-cuff method; 24-hour urine collection was carried out for urinary Ac-SDKP, albumin 

and sodium excretion. At the end of the experiment, the animals were sacrificed, and tissues 

were weighed and collected for biochemical and histological studies. 

Systolic Blood Pressure 

SBP was measured in conscious rats with a noninvasive computerized tail-cuff system 

(CODA, Kent Scientific, Torrington, CT), as described previously (Liao et al., 2010). 

Urinary Ac-SDKP, Sodium Excretion and Albuminuria  

Animals were placed in metabolic cages for a 24-hour period for acclimatization before 

24 hours urine collection. The ACEi captopril was applied to the collecting funnels and tubes at 

the final concentration of 10-5 M to prevent Ac-SDKP degradation by urinary ACE. The total 

volume of collected urine was measured; aliquots were prepared and centrifuged twice at 4°C 

and 1200 g for 10 minutes (Eppendorf centrifuge 5415R). The supernatants were filtered and 

stored at -80°C until further analysis. Urinary Ac-SDKP was measured using competitive 

enzyme linked immunosorbent assay (ELISA) kit according to the manufacturer’s protocol (SPI 

Biolaboratories, France) as previously described (Liao et al., 2008). Urinary albumin was 

determined with an ELISA kit according to the manufacturer’s protocol (GenWay Biotech Inc, 

San Diego). The 24-hour sodium excretion values were calculated from the 24-hr urine volumes 

and the sodium concentrations measured with a Nova Biomedical 1 electrolyte analyzer 

(Waltham, MA). Urine albumin excretion was calculated as the urine albumin concentration 

multiplied by the 24-hour urine volume output.  
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Renal Macrophage Infiltration 

Frozen kidney sections (6 µm) were fixed with acetone (4°C) for 20 minutes. 

Endogenous peroxidase activity was blocked with 0.3% hydrogen peroxide. Nonspecific 

antibody binding was blocked with 1% bovine serum albumin. Primary antibody mouse anti-rat 

CD68, a marker for macrophages (clone: ED-1, 1:200, Millipore), was applied, and samples 

were incubated overnight at 4°C. The following day, sections were incubated with biotinylated 

secondary horse anti-mouse immunoglobulin G antibodies. Immunoreactivity was detected with 

ABC peroxidase kit (Vectastain Elite, Vector Laboratories, Burlingame, CA) and visualized with 

3-amino-9-ethylcarbazole (Zymed Laboratories, San Francisco, CA). Reddish-brown staining 

was considered positive. Sections were counterstained with hematoxylin to see the nucleus of the 

cell. Twenty randomly chosen regions of the section were examined under the ×20 objective of a 

Nikon Eclipse E600 microscope and evaluated with a computerized image analysis system 

(Microsuite Biological Imaging, Olympus America, Center Valley, PA). Positive cells with 

clearly visible nuclei were counted at high power for each section and expressed as cells per 

square millimeter. All histological studies were performed with blinded analysis. 

Renal Fibrosis 

Picrosirius Red staining (PSR) was used to quantify the renal cortical and medullary 

interstitial collagen deposition as described previously (Nakagawa et al., 2012). Sequential 4-μm 

paraffin-embedded sections were stained. Briefly, tissues were postfixed in Bouin’s fluid and 

then stained with 0.1% Picrosirius Red for 1 hour. Samples were then washed twice in 0.5% 

acetic acid. Nuclei were counterstained with hematoxylin. For cortical and medullary renal 

interstitial collagen fraction, 30 images were taken with the ×20 objective of a Nikon Eclipse 

E600 microscope with Nikon DS-Ri1 digital camera (Nikon Instruments Inc.). Images were 
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analyzed by computerized image analysis (Microsuite Biological imaging software, Olympus 

America) and expressed as the ratio of the area stained positive for collagen to the entire area of 

the captured field.  

We also determined the total collagen content of the renal cortex using the 

hydroxyproline assay, as described previously (Peng et al., 2007). Briefly, samples were dried 

and weighed, homogenized, and hydrolyzed with 6 N HCI for 16 hours at 110°C. A standard 

curve of 0 to 5 μg of hydroxyproline was used. Data were expressed as micrograms of collagen 

per milligram of dry weight, assuming that collagen contains an average of 13.5% 

hydroxyproline. 

Glomerular Injury 

The glomerular matrix was evaluated by periodic acid-Schiff (PAS) staining (Sigma), 

according to the manufacturer’s protocol. A trans-mural section was taken from the upper mid-

kidney section. Sequential 4-μm paraffin-embedded sections were stained with PAS. Glomeruli 

(30 to 50) within the randomly chosen fields of the renal cortex were photographed under the 

×20 objective. The dark purple color within the glomeruli was considered a positive signal 

representing the extracellular matrix. The degree of glomerulosclerosis was determined as a 

percentage of the glomerular tuft area.  

Intraperitoneal Glucose Tolerance Test (ipGTT) 

On week 8 of the treatment, rats were fasted overnight, blood samples were taken from 

the tail vein, and glucose was measured using a glucometer (Bayer Contour Blood glucose 

meter) at 0 (fasting), and  15, 30, 60, 90 and 120 minutes after giving an intraperitoneal injection 

of glucose (2 g/kg). The total area under the curve (AUC) for glucose during the ipGTT (2-hr 

glucose area under curve) was calculated using the Graph pad Prism software version 5.01. 
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Statistical Analysis 

A nonparametric two-sample Wilcoxon test was used to compare contrasts of interest in 

all the data. To adjust for multiple testing, Hochberg’s method was used to determine the 

significance. The adjustment was made on groups of similar tests. A P-value less than 0.05 was 

considered evidence of significant differences.  

Results 

Body Weight and Urinary Ac-SDKP 

ZO rats showed a significantly higher body weight than ZL rats (Table 2). Neither HS 

diet nor Ac-SDKP treatment showed any effect on body weight in ZL or ZO rats.  Compared to 

ZL rats, ZO rats showed significant glucose intolerance (Table 2). We observed that the high-salt 

diet further increased the glucose intolerance in ZO rats, but it had no effect on ZL rats. Ac-

SDKP treatment showed no effect on glucose intolerance. As we expected, 24-hr urinary Ac-

SDKP excretion was significantly higher (10 to 20-fold) in ZL and ZO rats receiving Ac-SDKP 

treatment than in the vehicle-treated groups. No effects of high salt were observed in Ac-SDKP 

excretion. Upon high salt diet, ZO rats have significantly higher urine volume compared to ZL 

rats but Ac-SDKP treatment did not affect it.  
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Table 2 Effect of High Salt and Ac-SDKP in Zucker Rats at 8 weeks of HS Diet and Ac-

SDKP Treatment 

 
 Zucker Lean Rats Zucker Obese Rats 

Parameters Normal 
Salt 

High Salt High Salt+Ac-
SDKP 

Normal Salt High Salt High salt+Ac-
SDKP 

Body Weight 
(grams) 

357.8±12.5 354.67±10.2 351.5±10.46 637.4±14.9≠ 587.3±17.1 576±16.64 

Renal 
Collagen 
Content 
(µg/mg dry 
weight) 

17.7±0.65 25.2±2.6§ 17.1±1.14¶ 20.4±1.2 33.87±6.19* 21.46±2.5† 

Albuminuria 
(mg/24hr) 

0.53±0.23 0.97±0.43 2.25±1.34 62.3±22.97≠ 85.73±15.1 43.47±15.65 

Urinary Ac-
SDKP 
(nmol/24hr) 

1.35±0.06 1.73±0.21 73.56±7.3±,¶ 3.56±1.38 2.6±0.37 117.63±23.75#,† 

Urinary 
Sodium 
(mMol) 

1.76±0.08 8.14±1.3§ 7.2±0.6± 4.1±1.2 13.5±0.8* 16.4±1.5# 

24 hr Urine 
Excretion (ml) 

12.3±1.43 19.2±1.9§ 18.3±1.8 24.3±8.6 49.8±4.6* 47±5.8 

Fasting 
Glucose 
(mg/dl) 

74.2±3.3 85.8±3.7 81.6±4.6 94.8±2.5 96.6±4.5 98.3±6.0 

GTT (Area 
Under Curve) 

1516±125.6 1349±74.36 1276.75±111.6 2188.5±126.5≠ 2537.8±71.9* 2383.67±78.9 

*P<0.05 (n=6) ZO+NS vs ZO+HS;
 
†P<0.05 ZO+HS vs ZO+HS+Ac-SDKP ; ≠P<0.05 ZL+NS vs 

ZO+NS; § P<0.05 ZL+NS vs ZL+HS; ±P<0.05 ZL+NS vs ZL+HS+Ac-SDKP;¶ P<0.05 ZL+HS vs 

ZL+HS+Ac-SDKP; # P<0.05 ZO+NS vs ZO+HS+Ac-SDKP 

GTT: Glucose Tolerance Test 

 

Renal Inflammation 

Macrophage infiltration was examined by immunohistochemistry. Compared to ZL rats, 

ZO rats showed increased numbers of CD68+ positive cells (macrophages) infiltrating the renal 

parenchyma (Figure 4). The HS diet significantly increased the number of infiltrating 

macrophages in both ZL and ZO rats, but this increase was markedly higher in ZO rats fed HS. 

Ac-SDKP treatment significantly decreased the infiltrating renal macrophages in ZO rats but not 

in ZL rats. These data indicated that HS diet exaggerated the renal inflammation, markedly in 

obese animals, and that was prevented by Ac-SDKP treatment.  

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4658233/figure/F3/?report=objectonly
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Figure 4.  Effect of Ac-SDKP on Renal Macrophages Induced by a HS Diet in Obesity. (A) 

Representative images of renal macrophages infiltration in ZL and ZO rats fed a HS diet and 

receiving Ac-SDKP (Scale bar = 50 µm). Red staining in the cytoplasm indicates a positive 

immunohistochemistry staining for macrophages (anti-CD68 antibody). A HS diet increased the 

CD68+ positive cells in the kidney, and this increase was markedly important in obese rats. Ac-

SDKP prevented macrophages infiltration in obese rats. Inset is showing a group of macrophages 

at higher magnification in the interstitial renal space.  (B) Quantitative analysis of macrophages 

infiltration. Both in ZO and ZL rats, the HS diet increased macrophages infiltration in the kidney. 

Ac-SDKP significantly reduced HS-induced renal macrophage infiltration in ZO rats but not in 

ZL rats. Data were calculated as the number of cells per millimeter2 and expressed as the mean ± 

standard error of measurement. N = 6 in each group. §P < 0.05 ZL + NS vs ZL + HS, ≠P < 0.05 

ZL + NS vs ZO + NS, *P < 0.05 ZO + NS vs ZO + HS, †P < 0.05 ZO + HS vs ZO + HS + Ac-

SDKP. Abbreviations: Ac-SDKP, N-acetyl-seryl-aspartyl-lysyl-proline; HS, high-salt; ZL, 

Zucker lean; ZO, Zucker obese. 

 

Renal Fibrosis  

Both the cortical and medullary interstitial fibrosis quantified by PSR staining was 

similar in ZL and ZO rats fed a normal diet at 16 weeks of age (Figure 5). A high-salt diet in ZO 
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rats showed a significant increase in the cortical and medullary interstitial fibrosis compared to 

ZL rats and Ac-SDKP treatment attenuated this increase in ZO rats. In addition, analysis of total 

renal collagen content by a hydroxyproline assay confirmed our finding that a high-salt diet 

significantly increased the total renal collagen content in both ZL and ZO rats, which was 

significantly decreased by Ac-SDKP treatment (Table 2).  

Figure 5.  Effect of Ac-SDKP on Renal Cortical and Medullary Interstitial Fibrosis in 

Obese Rats Fed a HS Diet. (A and C) Representative images of renal cortical and medullary 

interstitial fibrosis. Red color indicates collagen deposition revealed by Picrosirius Red Staining. 

(Scale bar = 100 µm). Interstitial fibrosis was increased in ZO rats fed with HS in both the cortex 

and medulla, and that was prevented by Ac-SDKP. (B and D) Quantitative data analysis. In ZO 

rats, Ac-SDKP significantly prevented HS-induced renal cortical and medullary collagen 

deposition. Data are calculated as a percentage of the fibrotic area and expressed as the mean ± 

SEM. N=6 in each group. *P<0.05 ZO+NS vs ZO+HS, # P<0.05 ZO+HS vs ZO+HS+Ac-SDKP. 
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Glomerular Damage 

The effect of Ac-SDKP on glomerulosclerosis was assessed by Periodic Acid-Schiff 

staining (PAS). Compared to ZL rats, ZO rats exhibited glomerulosclerosis, which was detected 

as dark purple regions of extracellular matrix deposition within the glomerular tufts (Figure 6). A 

high-salt diet for 8 weeks showed a significant increase in glomerulosclerosis in ZO rats but not 

in ZL rats, and this increase was significantly attenuated by treatment with Ac-SDKP in ZO rats.  

Albuminuria, which is a marker of glomerular damage, was significantly higher in ZO 

rats compared to ZL rats (Table 2). Interestingly, there was a trend for HS to increase 

albuminuria in ZO rats and Ac-SDKP treatment decreased it but it did not reach the statistical 

significance.  

Figure 6.  Effect of Ac-SDKP on Glomerular Matrix Deposition in Obese Rats Fed a HS 
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Diet. (A) Representative images of the glomerular matrix. Dark-purple regions indicate the 

extracellular matrix stained within the glomerular tufts by Periodic Acid-Schiff staining. Shown 

are images captured using the x20 microscope objective. Scale bar = 25 µm. Glomerulosclerosis 

was increased in ZO rats in comparison with the ZL control. A HS diet increased the 

glomerulosclerosis in ZO rats, and that was prevented by Ac-SDKP. (B) Quantitative data 

analysis. In ZO but not in ZL rats, glomerulosclerosis was significantly increased by a HS diet 

compared to a NS diet. Ac-SDKP significantly prevented HS-induced glomerulosclerosis in ZO 

rats. Data are expressed as the mean ± standard error of measurement. N = 6 in each group.  ǂP < 

0.05 ZL + NS vs ZO + NS, *P< 0.05 ZO + NS vs ZO + HS, †P < 0.05 ZO + HS vs ZO + HS + Ac-

SDKP. Abbreviations: Ac-SDKP, N-acetyl-seryl-aspartyl-lysyl-proline; HS, high-salt; NS, 

normal-salt; ZL, Zucker lean; ZO, Zucker obese. 

 

Systolic Blood Pressure (SBP) 

At baseline conditions, no difference was found in the systolic blood pressures (SBP) of 

the ZL and ZO rats (Figure 7). ZO rats started showing a significant increase in SBP from week 

2 of the HS diet (10 weeks of age), and it continued to increase until week 8 (16 weeks of age). 

In contrast, ZL rats did not show any increase in SBP with the HS diet intake. Ac-SDKP 

treatment did attenuate the increased blood pressure in ZO rats fed a high-salt diet, but it did not 

show any effect on blood pressure in ZL rats. In the last week of the protocol, Ac-SDKP still 

decreased the blood pressure in ZO rats, but the difference with rats receiving HS was not 

statistically significant. 

The quantification of sodium excretion shows that a high-salt diet increases sodium 

excretion in both ZL and ZO rats and that Ac-SDKP treatment did not affect it, indicating that 

there is no difference in salt intake in these groups of animals upon Ac-SDKP treatment (Table 

2).   
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Figure 7. Effect of Ac-SDKP on Systolic Blood Pressure (SBP) in Obese Rats Fed a HS Diet.  

SBP was measured weekly in conscious rat with a tail cuff method. In ZO rats but not in ZL rats, 

the HS diet increased significantly SBP compared to the NS diet.  Ac-SDKP significantly 

decreased the HS- induced high blood pressure in ZO rats. Data are expressed as the mean ± 

SEM. N=6 in each group.  *P<0.05 ZO+NS vs ZO+HS, # P<0.05 ZO+HS vs ZO+HS+Ac-SDKP. 

 

Discussion 

In the current study, we examined the protective effects of Ac-SDKP on HS-induced 

kidney damage in obesity. Our results showed that HS diet aggravates renal damage in ZO rats, 

inducing renal macrophage infiltration, interstitial fibrosis, and glomerulosclerosis along with 

hypertension and that Ac-SDKP prevented all these effects. Additionally, Ac-SDKP reduced 

both renal cortical and medullary fibrosis but failed to have any beneficial effect on albuminuria.  
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Obese individuals are predisposed to develop salt sensitive hypertension and renal 

damage. In obesity, the kidneys initially become inflamed and eventually develop fibrosis; this 

effect is further aggravated with HS intake. Ac-SDKP is a naturally occurring tetra-peptide that 

has anti-inflammatory and anti-fibrotic properties in several models of cardiovascular and renal 

diseases (Worou et al., 2015; F. Yang et al., 2004) but its effect on obesity-related kidney 

damage is currently unknown. Many studies have provided evidence that infiltrating 

macrophages play a vital role in mediating obesity related kidney damage (Coimbra et al., 2000; 

Tang, Yan, & Zhuang, 2012). Our data indicated macrophage infiltration was markedly 

increased in the kidney of ZO rats compared to the ZL rats at 16 weeks of age, similar to 

previous studies (Lavaud et al., 1996; Rodriguez-Iturbe, Quiroz, Shahkarami, Li, & Vaziri, 

2005). HS diet further exaggerated macrophage infiltration in both ZL and ZO rats. Findings of 

HS induced macrophage infiltration is in line with other studies, wherein HS intake induced 

macrophage infiltration (Wei et al., 2017; Worou et al., 2015). Macrophage infiltration leads to 

the release of proinflammatory cytokines and chemokines such as tumor necrosis factor α, IL-6, 

IL-1β, monocyte chemoattractant protein-1 (MCP-1) (Arango Duque & Descoteaux, 2014). We 

report here that Ac-SDKP treatment significantly reduced macrophage infiltration in ZL and ZO 

rats fed on HS. The beneficial effect exerted by Ac-SDKP on the reduction of macrophage 

infiltration in ZO rats is similar to our previously reported study, wherein Ac-SDKP prevented 

macrophage infiltration in both the Dahl salt-sensitive and resistant rats fed a HS diet (Worou et 

al., 2015). 

Generally, renal fibrosis is the end result of inflammation, and the same is evident in our 

current study. Renal fibrosis (total renal collagen content) was increased in both ZL and ZO rats 

fed a HS diet, and Ac-SDKP treatment prevented this increase. Several mechanisms may be 
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mediating the anti-fibrotic effects of Ac-SDKP. Along with the anti-inflammatory effects, it is 

known that Ac-SDKP decreases transforming growth factor-beta/Smad signaling, which could 

be the underlying mechanisms associated with the decreased fibrosis (Lavaud et al., 1996; F. 

Yang et al., 2004). Interestingly, we also noticed increased total renal collagen content in HS-fed 

ZL rats, indicating high salt, independent of obesity and hypertension per se, can exert mild renal 

damage.  In ZO rats, increases in glomerulosclerosis are attributed to the high glomerular 

capillary pressure followed by the infiltration of immune cells. In our study, glomerulosclerosis 

was also significantly increased in the ZO rats, and it was further aggravated by a HS diet. Since 

Ac-SDKP has been shown to reduce glomerulosclerosis in numerous studies, including db/db 

mice and Dahl salt-sensitive rats (Shibuya et al., 2005; Worou et al., 2015), we investigated 

whether Ac-SDKP reduced glomerulosclerosis in ZO rats and found that indeed Ac-SDKP 

treatment significantly reduced glomerulosclerosis in ZO rats. 

Parallel to glomerulosclerosis, ZO rats also develop albuminuria, but the HS diet did not 

worsen it in either ZO rats or lean controls. Although Ac-SDKP treatment decreased 

glomerulosclerosis, it failed to ameliorate albuminuria in the ZO rats. Ac-SDKP treatment has 

been shown to decrease albuminuria in several models of renal diseases, such as Dahl salt-

sensitive rats, 5/6 nephrectomy, and deoxycorticosterone acetate-salt induced hypertension (Liao 

et al., 2010; Rhaleb et al., 2011; Worou et al., 2015). One of the possible explanations for Ac-

SDKP not showing any beneficial effect on albuminuria could be related to the animal model 

itself, as ZO rats are obese, hyperinsulinemic, and glucose-intolerant. Thus, the mechanism of 

albuminuria in this animal model could be different from that observed in previously reported 

models. Recent findings have suggested that urinary albumin excretion could result either 

because of the defect in the glomerular filtration barrier and/or defect in the albumin absorption 
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in the proximal tubule (Dickson, Wagner, Sandoval, & Molitoris, 2014; Vallon, 2011). Since Ac-

SDKP treatment improved the glomerular damage observed in ZO rats but did not ameliorate 

albuminuria, one can speculate that part of the albuminuria observed in ZO rats is due to a defect 

in proximal tubule reabsorption. In line with our present finding, Ac-SDKP did not reduce 

albuminuria in db/db mice, a mouse model of hyperinsulinemic diabetes with obesity (Shibuya et 

al., 2005). However, a separate study is required to understand the mechanism of albuminuria in 

these ZO rats. 

  We also showed that a HS diet increases the SBP only in ZO rats but not in ZL rats, 

confirming previous reports that ZO rats are salt sensitive (Ali et al., 2015; Reddy & Kotchen, 

1992). We found that SBP was significantly increased in the ZO rats after 2 weeks of HS feeding 

(at 10 weeks of age) and that it remained elevated until the end of the 8 weeks of treatment (until 

16 weeks of age) compared to the ZO rats fed a NS diet. Ac-SDKP treatment significantly 

reduced systolic blood pressure in the HS-fed ZO rats. In general, Ac-SDKP does not have any 

beneficial effect in lowering the blood pressure in various models of hypertension. (Liao et al., 

2010; Rhaleb et al., 2011; Worou et al., 2015). However, recently, we have reported that Ac-

SDKP delayed the onset of hypertension in an autoimmune model of systemic lupus 

erythematosus (Nakagawa et al., 2017). It is known that inflammation plays a role in blood 

pressure in various hypertension models (Harrison, Marvar, & Titze, 2012; Wenzel et al., 2011) 

and decreasing the inflammation reduces the elevated blood pressure (Guzik et al., 2007; Wenzel 

et al., 2011). Thus, in our study, the reduction in renal inflammation induced by Ac-SDKP could 

be a possible explanation for the decreased blood pressure in the HS-fed ZO rats.  

We did not observe any change in the 24-hour sodium excretion in HS-fed ZL rats or HS-

fed ZO rats with Ac-SDKP treatment. This observation eliminates the potential role of the lower 
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sodium intake in Ac-SDKP-treated animals. At the 8th week on HS, the blood pressure still 

tended to be lower in Ac-SDKP-treated ZO rats than in ZO rats without Ac-SDKP treatment; 

however, this decrement failed to reach statistical significance. In summary, our study provides 

evidence that a HS diet increased the renal damage (macrophage infiltration, fibrosis, and 

glomerulosclerosis) and blood pressure in ZO rats and that Ac-SDKP treatment prevented these 

changes without reducing albuminuria. Additionally, a HS diet per se was sufficient to exert mild 

renal inflammation in ZL rats. The HS diet increased glucose intolerance in ZO rats but the 

mechanism involved in this observation is not clear; however, studies from other labs have also 

shown similar findings (Donovan, Solomon, Seely, Williams, & Simonson, 1993; Ogihara et al., 

2002). 

We conclude that in HS-fed ZO rats, Ac-SDKP reduced renal inflammation and fibrosis 

and prevented/delayed the onset of hypertension.  
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CHAPTER 4 

REGULATION OF GLOMERULAR CAPILLARY PRESSURE IN OBESITY: ROLE OF 

CONNECTING TUBULE GLOMERULAR FEEDBACK 

This manuscript corresponds to Specific Aim 3 and deals with the hypothesis that 

increased CTGF contributes to TGF attenuation, which in turn increases PGC in ZO rats. 
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Abstract 

Zucker obese (ZO) rats have higher glomerular capillary pressure (PGC) which can cause 

renal damage. PGC is controlled by the afferent (Af-Art) and efferent arteriole (Ef-Art) resistance. 

Af-Art resistance is regulated by factors that regulate other arterioles, such as myogenic 

response; in addition, it is also regulated by two intrinsic feedback mechanisms: 1) 

tubuloglomerular feedback (TGF) that causes Af-Art constriction in response to increased NaCl 

in the macula densa and 2) connecting tubule glomerular feedback (CTGF) that causes Af-Art 

dilatation in response to an increase in NaCl transport in the CNT via the epithelial sodium 

channel. Since CTGF is an Af-Art dilatory mechanism, we hypothesized that increased CTGF 

contributes to TGF attenuation, which in turn increases PGC in ZO rats. We performed a renal 

micropuncture experiment and measured stop-flow pressure (PSF), which is an indirect 

measurement of PGC in ZO rats. Maximal TGF response at 40 nl/min was attenuated in ZO rats 

(4.47 ± 0.60 mm Hg) in comparison to the ZL rats (8.54 ± 0.73 mm Hg, P < 0.05), and CTGF 

was elevated in ZO rats (5.34 ± 0.87 mm Hg) compared to ZL rats (1.12 ± 1.28 mm Hg, P < 

0.05). CTGF inhibition with epithelial sodium channel blocker normalized the maximum PSF 

change in ZO rats indicating that CTGF plays a significant role in TGF attenuation (ZO, 10.67 ± 

1.07 mm Hg vs. ZL, 9.5 ± 1.53 mm Hg). We conclude that enhanced CTGF contributes to TGF 

attenuation in ZO rats and potentially contributes to progressive renal damage. 

Background 

Obesity has become an epidemic worldwide and so has the increase in the obesity related 

renal damage. Almost 70% of the US population is overweight and among them more than 35% 

of the population is obese with a body mass index higher than 30 kg/m2 (J. E. Hall et al., 2015). 

Furthermore, obesity is strongly associated with diabetes and hypertension, which are the two 
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top causes of end-stage renal failure (M. E. Hall et al., 2014; Leggio et al., 2017). Alterations in 

renal hemodynamics have been implicated as one of the key factors for the renal damage 

observed in obese individuals, but the mechanisms of the alterations in renal hemodynamics are 

unknown (Bondar et al., 2011; Bosma et al., 2006; Leggio et al., 2017). These hemodynamic 

changes include increased renal blood flow, glomerular capillary pressure (PGC), and glomerular 

filtration rate (Bondar et al., 2011; Bosma et al., 2006; Sebekova et al., 2004). Sustained 

elevation in PGC in particular can cause stretch in the glomerular cells and cause glomerular 

barotrauma that can lead to enhanced renal damage (Bondar et al., 2011; Riser et al., 1992; 

Sebekova et al., 2004).  

In a normal kidney, renal blood flow is tightly controlled due to the existence of renal 

autoregulatory mechanisms that include tubuloglomerular feedback (TGF), connecting tubule 

glomerular feedback (CTGF), and myogenic response (Carlstrom et al., 2015; Monu et al., 

2017). Afferent arterioles (Af-Art), glomerular capillaries, and efferent arterioles (Ef-Art) are 

arranged in series, and thus, their dynamics are closely interconnected (Monu et al., 2017). 

Arrangement of two resistance vessels, the Af-Art and the Ef-Art, regulate inflow and outflow of 

blood through the glomerular capillaries, and thus, regulate both PGC and single nephron 

glomerular filtration rate (Monu et al., 2017). Af-Art constriction can reduce PGC and glomerular 

plasma flow downstream that in turn can decrease glomerular filtration (Monu et al., 2017). 

Likewise, constriction of the Ef-Art can build the pressure upstream and may increase PGC and 

single nephron glomerular filtration rate (Ren et al., 2001; H. Wang et al., 2015). Af-Art 

resistance is controlled by two renal intrinsic feedback mechanisms: 1) TGF that causes Af-Art 

constriction in response to increased NaCl in the macula densa, via the sodium–potassium-2-
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chloride cotransporter-2, and 2) the CTGF that causes Af-Art dilatation and is initiated by the 

epithelial sodium channels (ENaC) in the CNT (Monu et al., 2017; H. Wang et al., 2015). 

Previous studies suggest that there is increased PGC (measured using the stop flow 

pressure method) in Zucker obese (ZO) rats (Park & Kang, 1995; Park & Meyer, 1995). TGF 

attenuation has been hypothesized for the enhanced pressure transmission from systemic 

circulation to the glomerulus leading to increased PGC, but to our knowledge, no direct study has 

been done to evaluate the TGF mechanism in obesity. TGF attenuation could make the kidney 

susceptible to barotrauma and eventual glomerulosclerosis. However, the mechanism of 

enhanced PGC in obesity is poorly defined. 

Since CTGF is a vasodilator mechanism, we therefore investigated whether CTGF plays 

a role in TGF attenuation in obesity. We used ZO and Zucker lean (ZL) rats in our study. We 

hypothesized that increased CTGF contributes to TGF attenuation, which in turn increases PGC in 

ZOR. To test this hypothesis, in-vivo renal micropuncture studies were performed in Zucker rats 

(8-10 week old) using the stop-flow technique.  

Materials and Methods 

Renal Micropuncture Experiment 

The experiments were approved by Henry Ford Health System Institutional Animal Care 

and Use Committee and were conducted in accordance with the National Institutes of Health 

Guidelines for the Care and Use of Laboratory Animals.  

We performed the renal micropuncture studies in ZO and ZL rats of 8-10 weeks of age, 

as described previously (H. Wang et al., 2015) (Figure 8). Briefly, rats were anesthetized with 

inactin intraperitoneally (125 mg/kg body weight for ZL rats and 175 mg/kg body weight for ZO 

rats). The left kidney was overturned and placed in a Lucite cup. Saline-soaked cotton was 
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placed around the kidney to immobilize it, and 30-45 minutes were allowed for equilibration. 

Colored dye was injected into surface tubules, permitting detection of tubule loops with a finding 

pipette. Grease was then injected into an early segment of the proximal tubule causing a tubule 

blockage, after which 2 pipettes were inserted inside the same tubule. First, a perfusion pipette 

was inserted downstream from the grease block and attached to the infusion pump. Second, a 

pipette for measuring PSF was inserted upstream of the grease block and was attached to a micro-

pressure system (model 900A; World Precision 99 Instruments, Sarasota, FL, USA). To generate 

a PSF curve, the late proximal perfusion (in an orthograde manner) rate was increased stepwise 

from 0 to 10, 20, 30, and 40 nl/min while measuring PSF. Each of the perfusion rates was 

maintained until we observed a stable PSF. We performed two consecutive response 

measurements by perfusing the same tubule with vehicle and after with the ENaC inhibitor 

benzamil (1 μM).  

TGF was calculated as a decrease in PSF caused by an increase in nephron perfusion. 

CTGF was calculated as the difference between PSF in the tubule perfused with vehicle and 

benzamil (1µM) as described previously (H. Wang et al., 2015). We also measured proteinuria 

(an early renal damage marker) in ZO rats.  
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Figure 8. Schematic Diagram Explaining the Micropuncture Technique © Oscar A. 

Carretero. 

 

Measurement of Proteinuria 

After 24 hours of adaptation to metabolic cages, both ZL and ZO rats underwent urine 

collection for 24 hours. Total volume of collected urine was measured, aliquots prepared and 

centrifuged twice at 1200 g at 4ºC for 10 minutes. The supernatants were then filtered and stored 

at -80ºC until further analysis. Proteinuria was measured using a Coomassie Protein Assay Kit 

(Thermo Scientific, Massachusetts, USA) following the manufacturer’s instructions. Proteinuria 

was calculated as urine protein concentration, respectively, multiplied by 24-hour urine volume 

output.  
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Statistical Analysis 

Data are expressed as mean ± standard error. We used Student’s two-sample t-tests, and 

for the measurement of repeated data, we used Student’s paired t-tests. Hochberg’s step-up 

procedure for adjusting p-values for multiple comparisons was used to control the family-wise 

type 1 error rate, predefined as 0.05. 

Results 

Time Control TGF Responses 

To determine whether TGF responses varied with time, the late proximal tubule was 

perfused twice while measuring PSF. During the experiment, the perfusion rate was increased 

from 0 to 40 nl/min step-wise at 10 nl/min intervals. We found no difference between the first 

and second curves in both ZL and ZO rats (Fig. 9A) and (Fig. 9B), indicating that this response 

was reproducible over time. We also observed that an increase in tubule perfusion decreased PSF 

more in ZL than ZO rats. 

Figure 9. Time Control Experiments for ZL and ZO Rats. Increasing perfusion rates in the 

late proximal tubule two consecutive times does not affect PSF reproducibly (○, first curve; • 
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second curve) in both ZL (A) and ZO rats (B).  Both the curves were generated using same 

tubule. PSF-Stop flow pressure, ZL-Zucker lean, ZO-Zucker obese  

 

TGF Response (Maximum PSF Change) is Decreased in ZO Rats 

To determine whether obesity causes a decrease in the TGF response, maximum PSF 

change (at 40 nl/min perfusion rate) was measured in both ZL and ZO rats. Maximum PSF 

change was significantly lower (P < 0.05) in ZO compared to ZL rats. This result indicates that 

obesity causes TGF attenuation (Figs. 10A and 10B). We observed that PSF was significantly 

higher in ZO compared to ZL rats. 

Figure 10. TGF Responses in ZL and ZO Rats. (A) TGF responses in ZL rats were 

significantly higher compared to ZO rats, indicating TGF attenuation. (B) Maximum PSF change 

in ZL and ZO rats. *P < 0.05, ZL vs. ZO. PSF-Stop flow pressure, TGF-Tubuloglomerular 

feedback, ZL-Zucker lean, ZO-Zucker obese  
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Benzamil Reduces PSF in ZO Rats 

To study the CTGF response in both ZL and ZO rats, we generated 2 consecutive PSF 

curves from the same nephron tubule. The first PSF response shows perfusion treatment with 

vehicle and the second with the ENaC blocker benzamil. To calculate CTGF, we subtracted the 

vehicle treatment PSF values from benzamil treatment for each perfusion rate. The PSF response 

during vehicle treatment was similar to the benzamil treatment in ZL rats. This result indicates 

that basal CTGF is absent in ZL rats (Fig. 11A). 

We performed a similar experiment with intratubular vehicle and benzamil in ZO rats to 

evaluate the CTGF response. Benzamil treatment significantly increased the change in PSF 

compared to the vehicle treatment at the 40nl/min perfusion rate indicating presence of CTGF in 

ZO rats (Fig. 11B). 

Figure 11. Effect of Benzamil on PSF Change in ZL and ZO Rats. (A) ZL and (B) ZO rats *P 

< 0.05, ZO vehicle vs. ZO benzamil. PSF-Stop flow pressure. ZL-Zucker lean, ZO-Zucker obese  
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CTGF Response in ZL and ZO Rats 

To compare the CTGF response between ZL and ZO rats, we calculated the CTGF 

response in both ZL and ZO rats by subtracting the vehicle PSF values from the PSF values 

obtained after intratubular benzamil treatment at each perfusion rate. The CTGF value at 40 

nl/min was significantly enhanced (P < 0.05) in ZO compared to ZL rats (Fig.12). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Comparison of Maximum CTGF in ZL and ZO Rats. CTGF is enhanced in ZO 

(black bar) compared to ZL (open bar) *P < 0.05, ZL vs. ZO. CTGF-Connecting tubule 

glomerular feedback, ZL-Zucker lean, ZO-Zucker obese  

 

Absolute TGF Response After Benzamil Treatment in ZL and ZO Rats 

In the presence of benzamil, PSF decreased in response to the increase in the nephron 

perfusion rate in both ZL and ZO rats (Fig.13). This decrease in PSF upon benzamil treatment 

was similar in ZL and ZO rats. These data also show that upon CTGF inhibition, TGF behaves 

similarly in both of the ZL and ZO rat groups. 
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Figure 13. Effect of Benzamil on PSF in ZL and ZO Rats. Inhibition of CTGF eliminates the 

decrease in TGF in the ZO (○, ZL benzamil; • ZO benzamil). CTGF-Connecting tubule 

glomerular feedback, PSF -Stop flow pressure ZL-Zucker lean, ZO-Zucker obese  

 

Measurement of Renal Damage in Zucker Rats 

Proteinuria was found to be significantly elevated starting from the age of 12 weeks and 

onwards in ZO compared to ZL rats, indicating higher renal damage in ZO rats (Fig.14). 
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Figure 14. Measurement of Renal Damage in Zucker Rats. Proteinuria was found to be 

elevated starting from the age of 12 weeks and onwards in ZO compared to the ZL rats 

indicating higher renal damage in obesity. ZO (open circle) and ZL (closed circle), *P<0.05, ZO 

vs ZL rats. 

 

Mean Arterial Pressure and Body Weight in Zucker Rats 

Mean arterial pressure measured during renal micropuncture via intrafemoral arterial 

catheter under anesthesia was found to be mildly elevated in ZO compared to ZL rat controls. 

Additionally, ZO rats weighed significantly higher compared to ZL controls (Fig.15).  
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Figure 15. Blood Pressure and Body Weight in Zucker Rats. Mean arterial pressure measured 

during renal micropuncture via intra-femoral arterial catheter under anesthesia was found to be 

elevated in ZO rats compared to the lean controls (Fig. 15 A). Additionally, ZO rats weighed 

significantly higher compared to the lean controls (Fig.15 B). Mean arterial pressure (A) and 

body weight (B) in ZL and ZO rats. ZL (open bar) and ZO (closed bar). *P<0.05, ZO vs. ZL rats. 

 

Discussion 

In this study, we investigated whether renal intrinsic feedback mechanisms (TGF and 

CTGF) play any role in the regulation of PGC in ZO rats. Our results show that in ZO rats, TGF 

was attenuated and CTGF was enhanced. We also observed higher PGC in ZO rats at 8-10 weeks 

of age, which was followed by proteinuria at 12 weeks of age.  

Our first finding that ZO rats have higher PGC is supported by our renal micropuncture 

results wherein we measured the PSF, a surrogate of PGC. In 8-10 week old Zucker rats, we found 

that PSF was significantly higher in ZO when compared to ZL rats (Fig. 10A). This finding is 

similar to the finding of Park and Kang wherein they found PGC to be higher in ZO rats (Park & 
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Kang, 1995). ZO rats undergo numerous hemodynamic changes that include elevated renal blood 

flow, PGC, and single nephron glomerular filtration rate. Elevated PGC has been implicated in 

causing glomerular barotrauma leading to renal damage in various renal disease models (Monu 

et al., 2017; H. Wang, D’Ambrosio, Garvin, Ren, & Carretero, 2013). Our results show that ZO 

rats develop proteinuria at the age of 12 weeks and that it gets exaggerated with age (Fig. 14). 

Others have also shown ZO rats having higher renal damage when compared to ZL controls. 

Also, in humans, it has been reported that obesity increases the risk of renal damage and humans 

frequently become proteinuric (Kovesdy et al., 2017; Praga & Morales, 2006; Yamahara et al., 

2013). 

Previously, we described renal autoregulatory mechanism acting opposite of TGF at the 

single-nephron level, called CTGF (Monu et al., 2017; Ren, D’Ambrosio, Garvin, Wang, & 

Carretero, 2013). In opposition to TGF, CTGF is a vasodilator mechanism initiated in the CNT 

segment of the nephron via ENaC (Monu et al., 2017). In the current study, we found that 

compared to ZL rats, TGF in ZO rats are significantly attenuated (Figs. 10A and 10B). To our 

knowledge, this is the first study to report an attenuated TGF response in ZO rats. Our current 

data show that intratubular inhibition of CTGF with benzamil significantly reduces PSF in ZO 

rats, but it remains unchanged in ZL rats. These data suggest that TGF resetting in ZO rats is due 

to enhanced CTGF. 

In the ZO rats group, intratubular perfusion of benzamil restored the TGF response to a 

level similar to the ZL rats group (Fig. 13). Thus, these data may suggest that upon blocking 

CTGF, TGF could become operational in ZO rats. Obesity seems to shift the balance between 

vasoconstrictive (TGF) and vasodilatory (CTGF) mechanisms in favor of the latter, resulting in 



74 

high PSF. Enhanced CTGF may also be responsible for the increased glomerular plasma flow rate 

observed in ZO rats (Park & Kang, 1995) due to its Af-Art dilator mechanism. 

The mechanism by which CTGF is enhanced in ZO rats remains elusive. We know that 

CTGF is initiated by sodium transport in the CNT via ENaC. In ZO rats, the expression and 

activity of ENaC channels are enhanced (Bickel, Verbalis, Knepper, & Ecelbarger, 2001; Madala 

Halagappa, Tiwari, Riazi, Hu, & Ecelbarger, 2008). Earlier, we have shown that the effect of 

CTGF is mediated by prostaglandin E2 (Ren et al., 2013) and epoxyeicosatrienoic acid (Ren, 

D’Ambrosio, et al., 2009). Prostaglandin binds on the prostaglandin E2 receptor 4 on the Af-Art 

and causes dilation, thus, eliciting CTGF (Ren et al., 2013).  

Prostaglandins and epoxyeicosatrienoic acid may be playing a role for the mediation of 

CTGF in these ZO rats. Furthermore, it has been shown that cyclooxygenase-2 (precursor of 

prostaglandins) expression is enhanced in the kidney of ZO rats (Komers et al., 2005). 

In our study, we found that PSF is significantly increased in ZO rats in comparison to ZL 

controls even when the perfusion rate was zero; i.e., in the absence of TGF and CTGF. This 

increased PSF could be due to reduced myogenic response, elevated mean arterial pressure or 

constriction of Ef-Art in these ZO rats. In fact, earlier studies have shown that the myogenic 

response is significantly reduced in ZO rats (Hayashi et al., 2002). Another possibility of 

increased basal PGC could be due to enhanced Ef-Art constriction. Direct measurement of Ef-Art 

resistance in ZO rats has been reported to be higher (Roos et al., 2008). Moreover, in-vitro 

experiments suggest a vasodilatory effect of TGF on the Ef-Art; thus, one may speculate that in 

ZO rats, in which TGF is attenuated, the Ef-Art may constrict, resulting in elevation of PGC (Ren, 

Garvin, Liu, & Carretero, 2007). 
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In the current study, we have indirectly measured the PGC as PSF due to a lack of surface 

glomeruli in these rats. To our knowledge, nobody has reported the direct measurement of PGC in 

these ZO rats. Additionally, we have not measured the single nephron glomerular filtration rate 

in our study and apart from an increase in the PGC, increased single nephron glomerular filtration 

rate, increased mean arterial pressure (Fig 15) and elevated single nephron plasma flow per se 

could be involved in playing a role in renal damage (Fig 14) in this obese model.  

In summary, our studies provide direct evidence of TGF resetting in ZO rats and these 

differences are attributed at least in part due to enhanced CTGF. ZO rats also showed higher PGC 

followed by higher renal damage compared to the ZL controls. Increased CTGF may help 

explain the increased PGC, reduced TGF response and increased renal damage in ZO rats. 
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CHAPTER 5 

SUMMARY, CONCLUSIONS AND FUTURE PROSPECTS 

This research study is divided in two parts. In the first part we studied the renoprotective 

role of an anti-inflammatory peptide known as Ac-SDKP in obesity induced renal damage, and 

in Part 2 we studied the role of enhanced connecting tubule glomerular feedback mechanism in 

obesity induced renal damage.  

Obesity is linked to salt sensitive hypertension and renal damage. In obesity, there is 

inflammation of kidney that eventually leads to fibrosis. Ac-SDKP is a naturally occurring 

tetrapeptide that has been shown to have anti-inflammatory and anti-fibrotic properties in various 

models of cardiovascular and renal diseases but its effect on obesity induced renal disease is not 

known. The present study demonstrated that Ac-SDKP treatment prevented high salt induced 

hypertension and renal damage in Zucker obese Rats. We found that high salt diet significantly 

increased the BP in ZO rats and Ac-SDKP significantly reduced the elevated blood pressure in 

ZO rat. Infiltration of macrophages plays an important role in causing obesity related renal 

damage. Our data suggested that macrophage infiltration was significantly increased in ZO rats 

with high salt diet and Ac-SDK attenuated this increase. Inflammation eventually leads to 

fibrosis; we observed that both cortical and medullary interstitial fibrosis was significantly 

increased in ZO rats with high salt. Ac-SDKP could prevent this increase. In line with this, we 

found increased glomerulosclerosis in ZO rats on high salt and Ac-SDKP treatment significantly 

reduced the glomerulosclerosis in these rats.  

Alterations in renal hemodynamics such as increased renal blood flow, and enhanced 

glomerular capillary pressure have been implicated both clinically as well as in experimental 

settings as one of the key factors for the renal damage observed in obesity, but the mechanism of 
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the alterations in renal hemodynamics is largely unknown. Here we show that ZO rats have 

higher glomerular capillary pressure (PGC) that is followed by enhanced renal damage. PGC is 

normally controlled by the afferent (Af-Art) and efferent arteriole (Ef-Art) resistance. Af-Art 

resistance is regulated by two intrinsic feedback mechanisms: 1) tubuloglomerular feedback 

(TGF) that causes Af-Art constriction in response to increased NaCl in the macula densa and 2) 

connecting tubule glomerular feedback (CTGF) that causes Af-Art dilatation in response to an 

increase in NaCl transport in the CNT via the epithelial sodium channel. In our present study, we 

observed an enhanced CTGF that contributes to TGF attenuation in ZO rats. This enhanced 

CTGF may lead to increased dilation of afferent arteriole and thus enhanced systemic pressure 

transmission to the glomerulus leading to kidney damage in ZO rats. 

To summarize, enhanced systemic pressure transmission to glomerulus may lead to 

glomerular barotrauma that in turn may initiate proteinuria and the subsequent inflammation 

cascade leading to renal damage in obesity (Figure 16) 
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Figure 16. Scheme Showing the Mechanisms of Renal Damage in Obesity and Effect of Ac-

SDKP on Preventing the Damage. 

 

Conclusions 

Based on the findings of the first part of the present study, we conclude that Ac-SDKP 

treatment in ZO rats fed a high salt diet prevented renal damage by reducing fibrosis, 

inflammation and blood pressure. 

For Part 2 we conclude that enhanced CTGF contributes to TGF attenuation In ZO rats 

and potentially contributes to progressive renal damage. 

Future Prospects 

Ac-SDKP has been shown to improve the renal damage in various models of renal 

dysfunction, but for the first time in this study, Ac-SDKP decreased blood pressure. The possible 

role of Ac-SDKP in ameliorating the blood pressure could be of immense importance and require 
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further studies. The mechanism involved in ameliorating the blood pressure by Ac-SDKP will be 

an interesting area of future research which could bring new advancements in the field of 

hypertension. Additionally, the long term effects of Ac-SDKP as treatment for renal damage 

should be investigated. 

Our pre-clinical study demonstrates that high salt diet could exert harmful effects not 

only in obese individuals, but also in non-sensitive individuals and that Ac-SDKP exerts strong 

renal protective effects. Angiotensin converting enzyme inhibitors (ACEi) are widely used in 

treating obesity related kidney damage and hypertension; however, some patients cannot tolerate 

ACEi-associated side effects such as hypotension, hyperkalemia, and angioedema. Thus, Ac-

SDKP or its analog, resistant to enzymatic degradation, could be a novel and useful therapeutic 

strategy for treating high salt-induced obesity related renal damages. 

Additionally, inhibiting CTGF may reduce glomerular barotrauma and thus prevent 

glomerular damage and its sclerosis. 
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APPENDIX B: LIST OF ABBREVIATIONS 

α-SMA     Alpha smooth muscle actin 

ACE      Angiotensin converting enzyme 

ACEi      Angiotensin converting enzyme inhibitor 

Ac-SDKP     N-acetyl-seryl-aspartyl-lysyl-proline 

Af-Art      Afferent arteriole 

ARB      Angiotensin Type 1 receptor blocker 

Ang II      Angiotensin II 

AT1      Angiotensin 1 

AT2      Angiotensin 2 

AUC      Area under curve 

BBB      Blood brain barrier 

BMI      Body mass index 

BW      Body weight 

CD2AP     CD2-associated protein  

CKD      Chronic kidney disease 

CNT      Connecting tubule 

CTGF      Connecting tubule glomerular feedback 

DCT      Distal convoluted tubule 

DOCA      Deoxycorticosterone acetate 

ECM      Extracellular matrix 

Ef-Art      Efferent arteriole 

ELISA      Enzyme linked immunosorbent assay 
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EMT      Epithelial-mesenchymal transition 

ENaC      Epithelial sodium channel 

EndMT     Endothelial-mesenchymal transition 

EP4      Prostaglandin E2 receptor 4 

ERK1/2     Extracellular signal-regulated kinase 1/2 

FGF      Fibroblast growth factor 

FSGS      Focal segmental glomerulosclerosis 

GFR      Glomerular filtration rate 

GTT      Glucose tolerance test 

HS      High-salt 

IL      Interleukin 

ipGTT      Intraperitoneal glucose tolerance test 

LV      Left ventricle 

MCP-1      Monocyte chemoattractant protein 1 

MiR      MicroRNA 

MMP      Matrix metalloproteinase 

MR      Mineralocorticoid receptor 

MRI      Magnetic resonance imaging 

MWF      Munich wistar fromter 

NaCl      Sodium chloride 

NCC      Sodium chloride cotransporter 

NFκB nuclear factor kappa-light-chain-enhancer of 

activated B cells 
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NKCC2     Sodium-potassium-2-chloride cotransporter-2 

NHE      Sodium hydrogen exchanger 

NS      Normal-salt 

PAS      Periodic-acid Schiff 

PAI-1      Plasminogen activator inhibitor-1 

PDGF      Platelet-derived growth factor 

PG      Prostaglandin 

PGC      Glomerular capillary pressure 

POP      Prolyl oligopeptidase 

PPAR γ     Peroxisome proliferator-activated receptor gamma 

PPRE      Proliferator activated response element 

PSR      Picrosirius red 

PSF      Stop flow pressure 

PT      Proximal tubule 

RAS      Renin angiotensin system 

RAAS      Renin-angiotensin-aldosterone system 

ROS      Reactive oxygen species  

RBF      Renal blood flow 

SBP      Systolic blood pressure 

SGK1      Glucocorticoid-inducible-kinase 1 

SHR      Spontaneously hypertensive rat 

SLE      Systemic lupus erythematosus 

SNS      Sympathetic nervous system 
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SPAK      SPS-1 related proline/alanine-rich kinase 

STZ      Streptozotocin 

TBI      Traumatic brain injury 

Tβ4      Thymosin beta 4 

TGF      Tubuloglomerular Feedback 

TGFβ      Transforming growth factor beta 

TIMP      Tissue inhibitor of metalloproteinase 

TNF-α      Tumor necrosis factor alpha 

tPA      Tissue plasminogen activator 

UUO      Unilateral ureter obstruction 

WHR      Waist to hip ratio 

WNK-4     With-no-lysine kinase-4 

ZL      Zucker lean 

ZO      Zucker obese 
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