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ABSTRACT 

 

 

Metabolic syndrome is one of the fastest growing health problems in the world. The medical costs 

associated with treating this disorder are staggering. Allowed to proceed untreated, metabolic 

syndrome can lead to a markedly decreased quality of life and a variety of medical conditions 

including heart and kidney failure. Whether the sodium glucose co-transporter-2 (SGLT-2) 

inhibitor Empagliflozin can be used to prevent the development of metabolic syndrome is not well 

understood. This proposal is specifically designed to address this gap in our knowledge. The 

expected outcomes of this work will identify the time course and degree of interrelatedness 

between changes in insulin sensitivity / obesity, alterations in expression of the mitogen activated 

protein kinases (MAPK), and the effects of Empagliflozin treatment on these parameters in the 

fast twitch extensor digitorium longus (EDL) and the slow-twitch soleus muscles in lean and obese 

Zucker rats. Male five-week-old lean and obese Zucker rats were randomly assigned to one of the 

four groups- lean control, lean treated, obese control, and obese treated. Animals were treated with 

either Empagliflozin (10 mg/kg BW / day) or placebo for 25 weeks. Compared to that seen in the 

obese controls, Empagliflozin treatment in the obese animals was associated with decreased body 

weight and improvements in glucose tolerance. Empagliflozin treatment did not appear to affect 

EDL or soleus muscle weight or the expression of ERK1/2-, p38- or JNK-MAPK. Taken together, 

these data suggest that the long-term use of Empagliflozin in diabetic obese Zucker rats does not 

appear to affect the expression / activation of MAPK proteins in the EDL and soleus.  
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CHAPTER 1 

INTRODUCTION 

 
The major health problems worldwide, obesity and Type - 2 diabetes mellitus, are considered 

to be closely related [1-6]. Type - 2 diabetes is one component within a group of disorders called 

the metabolic syndrome. More than 171 million people worldwide are estimated to have diabetes 

and this number is expected to increase to 366 million by 2030 [7]. High levels of blood glucose 

resulting from defects in insulin production, insulin action, or both are characteristics of a serious 

lifelong condition known as diabetes mellitus (DM) which is a complication of metabolic syndrome 

[8]. 

Metabolic syndrome, also known as Syndrome X or insulin resistance syndrome, is one of 

the fastest growing health problems in the United States. The incidence of metabolic syndrome is 

rapidly growing worldwide, and it is estimated that more than one out of every three US adults 

suffers from this disorder [9, 10]. The price of treating this disorder is staggering (>$150 billion per 

year) and is compounded by the fact that metabolic syndrome is a primary risk factor for the 

development of cardiovascular disease [11, 12]. The molecular mechanism(s) by which metabolic 

syndrome increases the risk of developing cardiovascular disease is not well understood.  

The obese Zucker rat (fa/fa) exhibits hyperlipidemia, hyperglycemia and hyperinsulinemia 

with abdominal adiposity. The genetically obese Zucker (fa/fa) rat is usually considered the most 

appropriate model for early diabetes related studies as individuals that suffer from Type - 2 diabetes 

usually exhibit attributes of metabolic syndrome [13]. Mitogen activated protein kinases (MAPKs) 

are involved in a myriad of protein signaling cascades, which are initiated in direct cellular response 

to changes in various stimuli. These cascades help the cell regulate various cellular functions 

including, but not limited to cell differentiation, mitosis, proliferation, gene expression and 

apoptosis. Several articles have suggested that diabetic and normal rat muscle differ in the 
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expression and regulation of MAPK proteins [14-19]. These differences in muscle response between 

diabetic and non-diabetic muscle are not fully understood but may provide insight into why glucose 

regulation may differ with diabetes. The changes in the phenotype of diabetic muscle due to 

Empagliflozin treatment have not been studied. Whether treatment of Type - 2 diabetes 

pharmacologically alters signal transduction processes in muscle is unknown, but the existence of 

differences, if present, may help to provide new targets for drug therapies to better regulate blood 

glucose levels in diabetic populations. 

 

Purpose 

Jardiance is a highly potent and specific oral antihyperglycemic drug that inhibits the sodium 

glucose co-transporter-2 (SGLT-2). This molecule has been shown to be an effective inhibitor of 

renal glucose reabsorption as it promotes urinary glucose excretion. Empagliflozin has been shown 

to be quite effective in lowering blood glucose in animals and humans and is currently undergoing 

phase III clinical trials for the treatment of Type - 2 diabetes [20].   

Our long – term goal is to investigate whether Empagliflozin can be used as a therapeutic 

agent for the prevention of metabolic syndrome. The purpose of this study was to determine whether 

prolonged Empagliflozin treatment in obese Zucker rats is associated with alterations in insulin 

sensitivity and glucose related signaling in skeletal muscle. We hypothesized that Empagliflozin 

treatment would be associated with differences in the regulation of the MAPK in the skeletal 

muscles. To test this hypothesis, insulin resistance and the expression of MAPK proteins from 10, 

20 and 30-week-old muscle tissue of obese Zucker rats were assessed.  

Specific Aims 

The economic burden of metabolic syndrome is estimated to be >$150 billion [21]. 

Empagliflozin is effective in lowering blood glucose in animals [22]. However, there have been no 
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studies which have examined the therapeutic effect of Empagliflozin for the prevention of metabolic 

syndrome.  

The objectives of this study were to: (1.) Determine the effects of Empagliflozin on glucose 

regulation in the genetically obese Zucker rat (Leprfa/fa), and (2.) Determine the effects of 

Empagliflozin treatment on the expression of proteins that are involved in regulation of glucose 

uptake into muscle. To test this hypothesis and accomplish the objective of this study, the following 

specific aims are proposed: 

 

Specific Aim #1: 1. To determine the effect of Empagliflozin treatment on the time 

course change in insulin sensitivity and glucose metabolism in the obese Zucker rat. Untreated 

and Empagliflozin treated obese Zucker rats will be subjected to glucose tolerance tests (conducted 

at 5, 10, 20, and 30 weeks of age) to determine how Empagliflozin intervention might affect the 

regulation of blood glucose levels during the early, middle and late stages of metabolic syndrome 

progression.  

 
 
 
Hypothesis:  Empagliflozin treatment will be associated with improvements in insulin 

sensitivity and glucose metabolism.  

 
 
 
Specific Aim # 2:  2. To investigate the effects of Empagliflozin treatment on the 

expression of muscle mitogen activated protein kinase expression. To determine whether 

Empagliflozin treatment can affect the expression of the MAPKs, skeletal muscles from 30-week-

old lean and obese Zucker rats will be subjected to SDS-PAGE and immunoblotting. 
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Hypothesis: Metabolic syndrome will be associated with alterations in the expression and 

basal phosphorylation level of MAPKs in the extensor digitalis and soleus muscles.  

 

The expected outcomes of this work will: Identify the time course and degree of 

interrelatedness between treatment-associated changes in insulin sensitivity and alterations in the 

expression / regulation of muscle MAPK proteins during the progression of metabolic syndrome in 

the obese Zucker rat. 



- 5  

CHAPTER 2 

REVIEW OF LITERATURE 

Introduction  

This chapter frames on the review of literature related to this study. The following topics 

pertaining to this study will be discussed: 1) Type - 1 vs. Type - 2 diabetes vs metabolic syndrome, 

2) animal models of diabetes, 3) role of skeletal muscles in diabetes, 4) molecular regulators of 

insulin signaling, and 5) SGLT2 drugs used to treat diabetes. 

 

Diabetes And Metabolic Syndrome 

Diabetes mellitus (DM) is a chronic disease that is prevalent in the United States (US) and 

throughout the World.  DM is associated with elevated glucose levels and impaired insulin 

regulation. The prevalence of diabetes globally rose from 4.7% in 1980 to 8.5 % in 2014 [23]. The 

rising number of adults affected by DM is a pressing concern. According to World Health 

Organization, about 2.2 million deaths were caused in 2012 due to high blood glucose. Worldwide, 

nearly 422 million people had diabetes in 2014 [23]. In the United States alone, 9.1% of the 

population in 2016 suffered from diabetes, making diabetes the seventh most prevalent disease in 

the US [24]. 

There are two forms of diabetes: Type - 1 and Type - 2. Type - 1 diabetes is an autoimmune 

disease in which the β-cells in the islets of Langerhans are destroyed resulting in a deficient or 

absent insulin production. There is evidence to support the hypothesis that Type - 1 diabetes may 

be hereditary [25]. This disorder is normally present in early childhood, although there is data to 

support the possibility that an autoimmune response can initiate the development of Type - 1 

diabetes in adults. This form of diabetes is also called juvenile/ childhood-onset diabetes or insulin 

dependent DM. About 5-10% of all the diabetic population are Type - 1 DM. Immunomodulation 
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and insulin therapy are the primary management strategies used for the treatment of Type - 1 DM 

[26].  

Type – 2 diabetes was formerly called “adult-onset diabetes” and is usually seen in obese 

and physically inactive people. It is the most common type of diabetes [27-29]. Type-2 DM is a 

long-term metabolic disorder where the body is ineffective in insulin usage for energy production. 

In this disorder, the pancreas secretes insulin however; the cells in the body become insensitive to 

insulin leading to an increase in insulin secretion by the pancreas. Over time, the body’s cells 

become more resistant to insulin, which leads to hyperglycemia and the hypersecretion of insulin 

which can lead to pancreatic dysfunction [30].  

A pathophysiological condition known as metabolic syndrome has emerged as a risk factor 

for the development of Type - 2 diabetes.  Metabolic syndrome, also called syndrome X, is a cluster 

of symptoms that increase the risk of  cardiovascular diseases and diabetes [31]. Metabolic 

syndrome is not really a disease, but rather a constellation of clinical findings mainly characterized 

by insulin resistance and obesity [32]. The prevalence of metabolic syndrome in the adults of the 

United States was 34.7% in 2011-2012 [33]. The causes of metabolic syndrome are not fully 

understood but believed to be the result of an underlying disorder of energy storage and utilization 

[34]. Metabolic syndrome conveys an increased risk of mortality among susceptible populations. 

Alleviating insulin resistance may be a prophylactic measure to combat the symptoms associated 

with metabolic syndrome [35]. 

 

Animal Models of Diabetes 

For diabetic drug discovery, rats or mice are the most widely used models. Humans and rats 

are omnivores, have a similar neuroanatomy and share many of the different molecular pathways 
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which regulate food intake and energy homeostasis [36]. In addition, the lifespan of rats is rather 

short making them good models to examine the long-term effects of intervention.  

 Within Type - 1 diabetic research, there are four induction methods to produce a Type - 1 

diabetic rodent model: chemical induction, spontaneous autoimmunity, genetically induced, and 

virally induced [36].  

The chemical induction mechanism is achieved by administering a high dose of 

streptozotocin [37, 38], a dose of alloxan [39], or multiple low doses of streptozotocin [40]. These 

drugs destroy a high percentage of the endogenous beta cells resulting in little endogenous insulin 

production. One disadvantage to the model is the potential for chemical toxicity in other organs of 

the body [41].  

The spontaneous autoimmunity models are currently limited to three rodent models: the non-

diabetic (NOD) mouse, the Biobreeding (BB) rat and the LEW.1AR1/Ztm-iddm rat. There are 

several limitations regarding these models. The onset of diabetes in the NOD mouse model usually 

occurs at 10-14 weeks but in some instances, diabetes is not seen until week 30. In addition, the 

females have higher incidence of diabetes than the males [42-51]. The BB rat autoimmune model 

develops lymphopenia, which is not characteristic of human Type - 1 diabetes [52-56]. The 

LEW.1AR1/iddm rats, unlike the NOD and BB model, do not exhibit other autoimmune diseases, 

however limited research had been conducted on this model [57-63]. 

The genetically induced Type - 1 diabetic models consist of one mouse strain, the AKITA 

mouse. This mouse has a spontaneous mutation in the insulin 2 gene resulting in misfolded pro-

insulin and endoplasmic reticulum stress. This model requires insulin treatment starting at 3-4 

weeks of age and if untreated will rarely survive longer than 12 weeks [64-67]. 

Virus induced models of Type - 1 diabetes have been investigated in a number of studies 

[68-78].   However, the induction of Type - 1 diabetes through viral exposure is complicated and 
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the outcome is dependent on a number of variables including timing of infection and viral 

replication levels [79, 80].     

Within the Type - 2 diabetic rodent models, there are four induction mechanisms which have 

been employed to produce rodent models of Type - 2 diabetes [36]: monogenic obese models [36], 

polygenic obese models [81], induced obesity [82, 83], and non-obese models [84].  

Type - 2 diabetic monogenic obese models include a number of rodent strains, including: 

the Lepob/ob mouse [85], the Leprdb/db mouse [86], the Zucker fatty rats and Zucker diabetic fatty 

(ZDF) rats [87]. Among these models, the ZDF rat is a robust model for  Type – 2 diabetes [88]. As 

seen in humans, diabetic progression in ZDF rat presents with typical signs of insulin resistance 

including hyperinsulinemia, hypertension, and dyslipidemia [89]. These rats also exhibit impaired 

glucose oxidation, glycogen synthesis and glycolysis similar to that seen in human [90]. ZDF rats 

are genetically prone to obesity because of recessive mutation in leptin receptor gene [90]. These 

rats are characterized by modifications to the insulin-signaling pathway, especially in the skeletal 

muscles and have reduced expression of the insulin receptor substrate (IRS). IRS expression is 

required for insulin-stimulated tyrosine phosphorylation and Phosphatidylinositol (PI) 2 kinase 

activity. In obese rats, insulin-mediated AKT and extracellular signal-regulated kinase ( ERK 1/2) 

- MAPK activity are reduced [91]. 

The rodent polygenic obese models of Type - 2 diabetes include the KK mice [92], the 

Otsuka Long-Evans Tokushima Fat rat (OLETF) [93], the New Zealand Obese (NZO) mice [94], 

the TallyHo/Jng mice [95], and the NoncNZO10/LtJ mice [81]. Of these models, many have not 

been fully characterized [81, 95-104]. In addition, it should also be noted that the male sex bias is 

greater in these models, as far more females than males display the Type-2 diabetes phenotype [81]. 

The Type - 2 diabetic rodent models for induced obesity involves feeding the rodents a high 

fat diet [82, 83]. This induction method requires constant monitoring of feed intake to insure the 
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rodents do not reduce their food intake to compensate for increase caloric intake. It is also important 

to note that there is a heterogeneity to the response of the high fat diet even among pure-breed strains 

indicating that the variance in response may not be purely genetic [105-109]. 

 The Type - 2 diabetic rodent non-obese models consist of the Goto–Kakizaki (GK) rats [110] 

and the human islet amyloid polypeptide expressing (hIAPP) mice [111]. These models do not 

develop obesity but are potential models for beta cell inadequacies [84].  

 

Role Of Skeletal Muscles In Diabetes  

Skeletal muscle plays a fundamental role in the homeostasis and regulation of glucose and 

carbohydrate metabolism for the whole-body. Muscular activity is thought to regulate, at least in 

part,  glucose transport in skeletal muscle [112]. The primary tissue for glucose disposal and 

utilization is the skeletal muscle, making it the major site for peripheral insulin resistance [113]. In 

human skeletal muscle, glucose transport is mediated by the insulin-sensitive glucose transporter 4 

(GLUT4) in a rate limiting manner. It is thought that two distinct and separate signaling pathways 

mediate the rate limited uptake of glucose, one stimulated by muscle contraction and the second 

stimulated by insulin [113].  

Skeletal muscle mitochondrial activity is the primary site of glucose metabolism and 

disposal. In Type - 2 diabetes, findings of reduced oxidative enzymes levels have been reported in 

skeletal muscle suggesting evidence of reduced oxidative capacity [114-117]. Additional studies 

have also reported oxidative enzyme and glycolytic enzyme activity mismatches [116, 118]. The 

earliest hallmark of Type - 2 diabetes is skeletal muscle insulin resistance [119]. Electron 

microscopy has also shown that Type - 2 diabetic patients have altered skeletal muscle 

mitochondrial morphology and reduced mitochondrial size. These mitochondria also show a 40% 

reduction in citrate synthase and rotenone-sensitive NADH2 activity [115, 120]. Type - 2 diabetic 
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patients are reported to have a decrease in the expression of genes involved in oxidative 

phosphorylation [121-123]. Magnetic resonance studies have demonstrated a reduction in inorganic 

phosphate/phosphocreatine ratio and fatty acid oxidation and excess intramuscular lipid 

accumulation which may lead to mitochondrial dysfunction in Type - 2 diabetes [120]. It may be 

suggested from these studies that Type - 2 diabetes is associated with mitochondrial dysfunction. 

Nonetheless, to date, no direct measurements in intact cells from Type - 2 diabetic humans have 

indicated a change in mitochondrial O2 flux capacity [124]. 

In addition to changes associated with Type - 2 diabetes, obesity can cause changes in 

skeletal muscles that increase the risk of developing Type – 2 diabetes. These changes include 

mitochondrial dysfunction, muscular atrophy and slow to fast fiber transformation [125]. Increased 

fatty acid levels have been shown to be due to decreased fatty acid oxidation, which can lead to 

insulin resistance in skeletal muscles. Obesity can also cause impaired glucose uptake [126].  

Muscle atrophy is a physiological condition associated with an imbalance in protein 

synthesis and degradation. The pathways leading to these changes are still an area of great research 

with recent studies suggesting that several different signaling molecules may be  involved including: 

MAPK, I/IGF-1, myostatin, leptin, IL-6, IL-10, TNF-alpha, AGE/RAGE, glucocorticoids, 

angiotensin II, growth hormone, testosterone and estrogen just to name a few [127].  Decrease in 

the mass of the muscle, may lead to further complications as diabetes advances [128]. 

 

Fast And Slow Twitch Muscles 

It is thought that skeletal muscle is the primary site of glucose disposal. Skeletal muscle has 

two primary functions: movement and maintenance of posture. Energetic and mechanical properties 

of muscle are defined by a muscle’s fiber type. Slow twitch muscles are involved primarily in the 

maintenance of posture, therefore, have a relatively low rate of ATP consumption during isometric 
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contraction and low rates of unloaded shortening, relaxation, and force development [129]. In 

contrast, fast twitch muscle fibers consume ATP at a rate seven fold higher than postural muscles 

during isometric contraction, exhibit rapid contraction kinetics, and are  primarily involved in 

dynamic activity [129]. Many molecular and anatomical differences exist between fast and slow 

muscle fiber types including citrate synthase (CS) activity capillary density (CD), and myosin heavy 

chain (MHC) isoform composition [130].  

Within the rodent models, the extensor digitorum longus (EDL) is a predominantly fast-

twitch glycolytic muscle of hind limb. The EDL is made of oxidative as well as glycolytic muscle 

fibers [128].  The EDL contains 53% Type - IIa, 42% Type - IIb and 5% Type - I fibers. The soleus 

is a slow-twitch oxidative muscle, which contains predominately of 77% of Type - I fibers, 18 % of 

Type - IIa fibers and 5% of IIb fibers [131]. 

 Type - 2 diabetes has been shown to cause a decreased fiber area in both fast (EDL) and 

slow twitch (soleus) muscles, as well as, a decrease in muscle weights [130]. This atrophy may be 

due to excess reactive oxygen species (ROS) that can cause increased muscle membrane fragility. 

Increased fiber damage, reduced amino acid uptake, and diminished protein synthesis rates have 

also been seen in the muscles obtained from diabetic models [132]. Insulin resistance promotes 

protein catabolism due to impaired insulin signaling and leads to decreased muscle mass. The obese 

Zucker (ZDF) rat shows lesser muscle mass compared to the lean rat, making it an ideal research 

model to investigate Type - 2 diabetic changes in skeletal muscle [133]. 

 

Molecular Regulators: MAPK Proteins: ERK 1/2, p38, JNK  

 Alterations in the MAPK pathway are thought to occur early in the diabetic progression 

with insulin resistance [134]. When microarray data of the diabetic myocytes was compared with 
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control gene sets, there was an upregulation in inflammatory gene expression. How diabetes may 

affect MAPK pathway signaling is not well understood. 

It is thought that ERK1/2 phosphorylation levels are similar in the muscle tissues of Type -

2 diabetes versus that seen in control patients both in the presence and absence of insulin. The 

ERK1/2- MAPK signaling controls the pathophysiological conditions responsible for muscle 

wasting such as muscle degeneration, aging and obesity [135]. ERK1/2 is a mitogen-activated 

protein kinase that is activated by interferon regulatory factor (IRF-1) in high glucose levels [136].  

Besides IRF-1, increased intracellular ROS and high glucose levels also stimulate activation of 

ERK1/2 [137].  

The p38-MAPK is thought to play a functional role in myogenic differentiation. The 

activation of p38 increases during muscle contractions and is also thought to act as the key factor 

regulating cytokine gene expression [138, 139].  Supporting this contention, the basal 

phosphorylation level of p38-MAPK is increased in muscles of Type-2 diabetes and obese patients 

when compared to controls. Conversely, the insulin-stimulated p38 activity is elevated in controls 

but decreased in T2DM patients [134].  

Insulin also phosphorylates and activates the stress-activated kinase JNK-MAPK. The 

phosphorylation level of JNK1 is increased in muscle with Type-2 diabetes when compared to 

control. [134].  

  

SGLT2 Inhibitors Used To Treat Diabetes 

The use of pharmacological interventions in the treatment of diabetes has been a focus of 

pharmaceutical companies for decades [140]. One emerging class of drugs is the inhibitors of the 

sodium-glucose co-transporter Type - 2 (iSGLT-2), consisting of Canagliflozin, Dapagliflozin and 

Empagliflozin. The mechanism of SGLT2 inhibitors is unique to this class of drugs. This inhibition 
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occurs at the proximal convoluted tubule and involves the reversible and selective inhibition of the 

sodium-glucose co-transporter Type – 2 [141]. At the renal level, a reduction in blood glucose and 

an increase in glucose elimination in the urine occurs due to a reduction in the reabsorption of 

glucose. Caloric loss and osmotic diuresis occur in response to the increased elimination of renal 

glucose. This reduction in blood glucose and corresponding caloric loss results in a decrease in 

weight [142].  

SGLT2 inhibitors act in a β-cell independent manner. One advantage of using SGLT2 

inhibitor drugs is the fact it can be used with other glucose-lowering drugs, as it does not convey a 

risk of hypoglycemia when used except when combined with insulin or its secretagogue. Currently, 

Empagliflozin is one of the three SGLT2 inhibitors proved to be effective in phase 3 trials in United 

States. In addition Empagliflozin has proven to lower cardiovascular risk, lower blood pressure and 

reduce body weight [143]. 

 

Summary 

Diabetes mellitus is a complex disease that is of concern to the whole world. Understanding 

the pathophysiology and progression of diabetes, as well as, potential risk factors such as metabolic 

syndrome will provide insight into early intervention and treatment for this debilitating and deadly 

disease.  The use of animal models such as the obese Zucker fatty (fa/fa) rat provides an appropriate 

tool to study metabolic syndrome and the progression of Type - 2 diabetes from pre-diabetes, early 

onset, to full blown Type - 2 diabetes. Utilizing this model, we will investigate the use of 

Empagliflozin, a newer class of SGLT2 inhibitor drugs, on the progression of metabolic syndrome 

in the obese Zucker fatty (fa/fa) rat.  
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CHAPTER 3 

MATERIALS AND METHODS 

Animals 

Four-week-old male lean Zucker (strain code 186) and obese Zucker rats (strain code 185) 

were purchased from the Charles River Laboratories (Wilmington, MA, USA) and housed two per 

cage in an AAALAC approved vivarium.  Housing conditions consisted of a 12H: 12H dark-light 

cycle and the temperature were maintained at 22 ±2˚C.  Animals were provided with food and water 

ad libitum and allowed to acclimatize for one week before any experiments were conducted. Animals 

were assigned at random to one of four different groups- lean control (LC), lean treated (LT), obese 

control (OC), and obese treated (OT) accordingly. The treated animals received Empagliflozin (10 

mg/kg body weight/day) that was kindly supplied by Boehringer Ingelheim (KG, Germany) in 

drinking water for 25 weeks. Food consumption and body weights were measured once per week 

throughout the study duration. All procedures were performed in accordance with Association for 

Assessment and Accreditation of Laboratory Animal Care (AAALAC) and Institutional Animal Care 

and Use Committee (IACUC) of Marshall University. 

 

Materials 

 p38, phosphorylated Thr 182/ Tyr 180 p38, ERK1/2, phosphorylated Thr202/Tyr204 

ERK1/2, pJNK, phosphorylated Thr183/ Tyr 185 pJNK and Rabbit IgG antibodies were purchased 

from Cell Signaling Technology (Beverly, MA).  Enhanced chemiluminescence (ECL) western 

blotting detection reagent was from Amersham Biosciences (Piscataway, NJ).  Restore western blot 

stripping buffer was obtained from Pierce (Rockford, IL) and 3T3 cell lysates were from Santa Cruz 

Biotechnology (Santa Cruz, CA). All other chemicals were purchased from Sigma (St. Louis, MO) 

or Fisher Scientific (Hanover, IL). 
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Intra-Peritoneal Glucose Tolerance Test (IPGTT)  

Animals were fasted overnight before performing the IPGTT test. In addition, Empagliflozin 

was removed from drinking water ~28-32 hours before performing the test to accurately determine 

the long-term effects of the drug on glucose handling. The time period for fasting was chosen based 

on the previous studies that have reported the half-life of Empagliflozin in rodents to be 

approximately 12 hours [144]. 

IPGTT was performed by single intraperitoneal injection of glucose at the rate of 1.5g / kg 

body weight. Blood glucose levels were measured using Bayer Contour Next Ez blood glucose 

monitoring system (Ascensia, NJ, USA) at baseline and after 15, 30, 60, 90 and 120 minutes of 

glucose administration.  

 

Serum Biochemical Analysis And Multiplex Assay 

Animals were humanely sacrificed using inhalant isoflurane anesthesia at the chosen time 

point and blood was collected through the cardiac puncture into a BD Vacutainer® tube. Serum was 

collected by centrifugation of the tubes at 1000 x g for 10 minutes. Biochemical parameters were 

determined by using Abaxis VetScan® analyzer (Abaxis, Union City, CA, USA) as described 

previously [145]. Milliplex® multiplex assays were performed to evaluate the changes in 

inflammatory markers in serum and urine samples according to manufacturer’s instructions (EMD 

Millipore, MA, USA). 

 

Blood And Skeletal Muscle Collection 

EDL and soleus muscles were harvested from both the hind limbs. Once excised, muscles 

were blotted dry, trimmed of visible fat and tendon projections, weighed, immediately frozen in 

liquid nitrogen, and stored at -80° C. 
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Skeletal Muscle Sectioning And Staining 

The frozen EDL and soleus muscles were sectioned (10 µm) using a cryo-microtome. The 

sections were preserved at -80 0 C until used and stained using Hematoxylin & Eosin kit according 

to manufacturer’s instructions. The sections were viewed using an Evos® microscope (Thermo 

Fisher Scientific, Massachusetts, USA) at 20 X magnification and digital images were recorded. The 

muscle fiber size was compared between normal and Empagliflozin treated muscle (N = 6 animals 

per group, 3 images per animal).  

 

Preparation Of Protein Isolates  

Muscles were pulverized in liquid nitrogen using a mortar and pestle until a fine powder was 

obtained. After washing with ice cold PBS, pellets were lysed on ice for 15 minutes in T-PER (2 

mL/1g tissue weight) (Pierce, Rockford, IL) and centrifuged for 10 minutes at 2000x g to pellet 

particulate matter. This process was repeated twice, and the supernatants combined for protein 

concentration determination using the Bradford method (Pierce, Rockford, IL). Samples were diluted 

to a concentration of 3 μg/ μl in SDS loading buffer and boiled for 5 minutes.  

 

SDS-PAGE And Immunoblotting 

Samples (60mg of protein) were equally diluted with 4x Laemilli buffer and loaded onto 10% 

PAGEr Gold Precast gels (Lonza, Rockland, ME), subjected to SDS-PAGE, and then transferred to 

nitrocellulose membranes. Membranes were blocked with 5% milk in TBST for 1 h and later probed 

with respective primary antibodies (Cell Signaling Technology, Danvers, MA). Membranes were 

washed with TBST (3 x 5 min) and incubated with secondary anti-rabbit (Cell Signaling Technology, 

Danvers, MA) for 1 h. Immunoreactivity was obtained using Supersignal West Pico 

Chemiluminescent substrate (Pierce, Rockford, IL, USA). Exposure time was adjusted to keep the 
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integrated optical densities (IODs) within a linear and non-saturated range, and band signal intensity 

was quantified by densitometry using a flatbed scanner (Epson Perfection 3200 PHOTO) and 

Imaging software (AlphaEaseFC). Molecular weight markers (Cell Signaling) were used as 

molecular mass standards and NIH 3T3 cell lysates were included as positive controls. To allow 

direct comparisons to be made between the concentration levels of different signaling molecules, 

immunoblots were stripped and re-probed with Restore western blot stripping buffer as detailed by 

the manufacturer (Pierce, Rockford, IL). 

 

Statistical Analysis 

Data were analyzed using the SigmaPlot v. 12 program (Systat Software Inc., San Jose, CA) 

and the results are presented as mean ± SEM. The required sample size was calculated using the 

resource equation method. A one-way analysis of variance (ANOVA) or two-way repeated measures 

ANOVA was performed for overall comparisons followed by the appropriate post hoc test to 

determine significant differences between groups. For non-normally distributed samples, a Kruskal 

Wallis h test was performed. A p-value of ≤ 0.05 was considered to be statistically significant. 
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CHAPTER 4 

RESULTS 

Effect Of Long-Term Empagliflozin Treatment On Body Weight And Food Intake In 
The Obese Zucker Rat 

 

Compared to the lean control animals, there was no significant change in the body 

weight of the lean animals that had been treated for 5, 10 and 15 weeks. However, lean treated 

animals had a significantly lower body weight when compared to their counterparts at 20, 25, 

and 30 weeks of treatment (Figure 1). Similarly, there was no significant change in the body 

weight of obese control animals that have been treated at 5, 10, and 30 weeks compared to 

their treated counterparts. There was a decrease (p<0.05) in body weight in obese treated 

animals at 15, 20, and 25 weeks of treatment (Figure 1).  Compared to their control 

counterparts, the lean treated groups did not show a significant change in food consumption 

(Figure 2). Similarly, the obese treated group did not show a significant change in food 

consumption when compared to control animals except at the 30-week time point (Figure 2).  

 

Long-Term Empagliflozin Treatment Attenuates Circulating Levels Of Glucose And 
Other Biochemical Parameters In The Obese Zucker Rat 

 

Compared to their control counterparts, the lean and obese treated groups did not 

show a significant change in levels of albumin, globulin, ALP, BUN, calcium, phosphorus, 

sodium potassium, creatinine, and TBIL. However, the lean treated animals showed a 

significant decrease in levels of total protein while obese treated animals showed a significant 

decrease in amylase and glucose levels when compared to their control counterparts (Table 

1). 
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Effects Of Empagliflozin On Glucose Tolerance In Obese Zucker Rats 

IPGTT was conducted to investigate the effect of Empagliflozin on long-term glucose 

handling in Zucker rats. Compared to the lean control animals, lean treated animals did not 

show any significant difference in glucose levels at either 0, 15, 30, 60, 90, and 120 minutes 

after glucose administration. Between the obese groups, glucose levels were similar at 0, 15, 

and 30 minutes while at 60 and 90 minutes after glucose injection, the treated groups showed 

a significant decrease in circulating glucose levels when compared to the controls (Figure 3). 

 

Long-Term Empagliflozin Treatment Does Not Alter Weight Of Muscles In The Hind 
Limbs. 

 

The effects of Empagliflozin on weight of soleus and EDL muscles in the hind limbs 

are shown in Figures 4 – 5. Compared to the lean control animals, there was no significant 

change in soleus muscle mass of the lean animals that had been treated for 5, 10, 20, and 30 

weeks (Figure 4). Similarly, there was no significant change in the weight of soleus muscle 

in obese animals that had been treated for 5, 10, 20, and 30 weeks compared to their 

counterparts (Figure 4). 

Compared to their controls, the lean treated groups did not show a significant change 

in EDL mass (Figure 5). Similarly, the obese treated groups did not show a significant 

decrease in EDL muscle weight when compared to controls except at the 30-week time point 

(Figure 5). 

 

Effects Of Long Term Empagliflozin Treatment On Muscle Fiber Size In Obese 
Zucker Rats. 
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Compared to the lean control animals, there was no significant change in EDL muscle 

fiber size in 30-week-old lean treated muscle (Figure 6 A, B).  Similarly, there was no 

significant change in the muscle fiber size in obese animals that had been treated compared 

to their counterparts (Figure 6 C, D).  

Compared to their control counterparts, the lean treated group did not show a 

significant change in muscle fiber size in soleus muscle (Figure 7 A, B). Similarly, the obese 

treated group did not show a significant change in muscle fiber size when compared to its 

lean counterpart at 30 weeks of age (Figure 7 C, D). 

 

Long-Term Empagliflozin Treatment Does Not Alter P38- MAPK Phosphorylation In 
The Soleus Muscle Of Obese Zucker Rat. 

 

In the soleus muscle, there was no statistical difference in p38 phosphorylation 

(Thr182/ Tyr180) between the lean control group and lean treated groups or the obese control 

when compared to obese treated group. There was also no difference between the lean and 

obese groups (Figure 8A).   

Compared between the groups, the lean and obese control group exhibited a statistical 

difference (p<0.05) in total p38 from that observed in the treated group. In addition, there 

was statistical difference between obese control and treated group when compared to the lean 

control group (Figure 8 B). When the phosphorylation of p38 over total p38 was compared, 

there was no statistical difference (p<0.05) between the lean or obese groups in soleus muscle 

(Figure 8 C).  
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Effect Of Long-Term Empagliflozin Treatment Decreases P44/42- MAPK 
Phosphorylation In The Soleus Muscle Of Obese Zucker Rat. 

 

In the soleus muscle, there was a statistical difference (p<0.05) in ERK1/2 

phosphorylation (Thr202/Tyr204) between the lean control group and the lean treated group 

and the obese control when compared to obese treated group. There was also a difference 

seen between the lean control when compared to obese control and obese treated group. The 

lean treated group showed a significant difference when compared to obese control and obese 

treated groups (Figure 9A).   

Compared between the groups, only the lean control group exhibited a statistical 

difference (p<0.05) in total ERK1/2 with the treated group. The obese control was not 

different from the obese treated group.  In addition, there was statistical difference between 

the obese control and the obese treated groups when compared to the lean controls and the 

lean treated group (Figure 9 B). 

When the phosphorylation of pERK1/2 over total pERK1/2 was compared there was 

no statistical difference (p<0.05) between lean groups in the soleus muscle. There was 

significant decrease between the obese control and the obese treated group. In addition, there 

was a statistically significant difference between the obese control and the obese treated 

group when compared to the lean control and the lean treated group (Figure 9 C).  

 

Long-Term Empagliflozin Treatment Does Not Alter P-JNK MAPK Phosphorylation 
In The Soleus Muscle Of Obese Zucker Rat. 

 

In the soleus muscle, there was significant statistical difference (p<0.05) in pJNK 

phosphorylation (Thr183/ Tyr185) between the lean control group when compared to the lean 

treated group and the obese controls when compared to the obese treated group. Differences 
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were also seen between the lean control when compared with the obese control and the obese 

treated groups. In addition, there was difference in the obese treated when compared to the 

lean treated group (Figure 10 A).   

Compared between the groups, the obese control group had a statistical difference 

(p<0.05) in total pJNK when compared with the treated group. There was no difference in 

the lean control group when compared to the lean treated group. In addition, there was 

statistical difference between the obese control and the obese treated group when compared 

to the lean control and lean treated animals (Figure 10 B). 

When the phosphorylation of pJNK over total pJNK was compared in the soleus 

muscle of obese Zucker rat there was statistical difference (p<0.05) between the lean control 

group when compared to lean treated group. There was no difference between the obese 

control group and obese treated soleus muscle. In addition, there was significant difference 

between the lean control group when compared to the obese control and the obese treated 

groups. (Figure 10 C).  

 

Long-Term Empagliflozin Treatment Alters P38- MAPK Phosphorylation In The 
EDL Muscle Of Obese Zucker Rat. 

 

In the EDL muscle, there was no statistical difference (p<0.05) in p38 

phosphorylation (Thr182/ Tyr180) between the lean and obese control group and the lean and 

obese treated groups (Figure 11A). The obese control group had statistical difference 

(p<0.05) in total p38 when compared with the obese treated group. However, there was no 

difference in lean control and lean treated groups. In addition, there was statistical difference 

between the obese control and when compared to the lean control group. Differences were 
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also seen between the obese treated and the obese control groups when compared to the lean 

treated animals (Figure 11 B). 

When phosphorylation of p38 over total p38 was compared there is increased 

statistical difference (p<0.05) between the obese control and obese treated groups in the EDL 

muscle. There was no difference seen between lean groups. In addition, there was significant 

difference in obese control group when compared to the lean treated and the lean control 

groups (Figure 11 C).  

 

Effect Of Long-Term Empagliflozin Treatment On P44/42- MAPK Phosphorylation 
In The EDL Muscle Of Obese Zucker Rat. 

 

In the EDL muscle, there was a statistical difference (p<0.05) in ERK1/2 

phosphorylation (Thr202/Tyr204) between the lean control group when compared to lean 

treated group and the obese controls when compared to the obese treated group. There were 

also differences seen between the lean control when compared to obese group control and 

obese treated group. The lean treated group showed a significant difference when compared 

to obese control and obese treated groups (Figure 12 A).   

Compared between the groups, both the lean and obese control groups exhibited 

significant differences (p<0.05) in total ERK1/2 with the treated groups. In addition, there 

was statistical difference between obese control when compared to lean controls (Figure 12 

B). 

When the phosphorylation of pERK1/2 over total pERK1/2 was compared, there was 

a statistical difference (p<0.05) between the lean and obese groups in the EDL muscle. In 

addition, there was statistical difference between the obese control and the obese treated 
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group when compared to lean control group. Differences were also seen between lean treated 

and obese control groups (Figure 12 C).  

 

Long-Term Empagliflozin Treatment Doesn’t Alter P-JNK MAPK Phosphorylation In 
The EDL Muscle Of Obese Zucker Rat. 

 

In the EDL muscle, there was a significant statistical difference (p<0.05) in pJNK 

phosphorylation (Thr183/ Tyr185) between the lean control group and lean treated group. 

There were no differences between the obese groups. Differences were also seen between the 

lean controls when compared with obese control and obese treated groups (Figure 13 A).   

The lean control group had statistical difference (p<0.05) in total pJNK with the 

treated group. There was no difference in obese control group when compared to obese 

treated group. In addition, there was statistical difference between obese treated group when 

compared to lean treated animals (Figure 13 B). 

When phosphorylation of pJNK over total pJNK was compared in the EDL muscle 

of obese Zucker rat there was no statistical difference (p<0.05) between the lean control group 

when compared to lean treated. Similarly, there was no difference within the obese control 

group when compared to obese treated group. Conversely, there was difference between 

obese treated group when compared to lean control and lean treated groups. (Figure 13 C).  
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CHAPTER 5 

 

DISCUSSION 

 

The obese Zucker rat is an accepted animal model of metabolic syndrome [146]. 

Metabolic syndrome is also known as insulin resistance syndrome as increased insulin 

resistance is a defining characteristic of this disorder [147]. The effects of Empagliflozin 

treatment for the prevention of metabolic syndrome have not been fully studied. In this study, 

lean and obese Zucker rats were treated for 25 weeks to investigate the long-term therapeutic 

effects of the drug. We found that the long treatment of these rats was not associated with a 

significant decrease in the body weight when compared to the control group (Figure 1).  A 

previous study also reported that body weight and heart/body ratios were not significantly 

changed with Empagliflozin treatment in the Zucker diabetic rat [148]. Surprisingly, there 

was no significant difference in the food consumption between control and treated animals 

except in the 30-week obese treated animals (Figure 2).     

Next, we examined the effect of Empagliflozin treatment on circulating blood glucose 

levels and other biochemical parameters. Although there were not many differences in the 

tested biochemical parameters between treated and control groups, we did find a significant 

decrease in total protein in the lean treated animals when compared to lean control animals 

and a significant decrease in circulating glucose levels in obese treated compared to that seen 

in the obese control animals (Table 1). To extend upon these findings, we next conducted the 

IPGTT test to examine the effect of Empagliflozin on glucose tolerance. Similar to previous 

work, we observed that there was significant difference at 60 and 90 minutes which suggests 
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treatment with Empagliflozin was helpful in reducing the blood glucose levels (Figure 3) 

[149]. 

We next compared muscle mass and fiber size in the lean and Obese Zucker rats with 

and without Empagliflozin treatment. Similar to previous work  describing a decrease in 

muscle weight between lean and obese female Zucker rats, we saw decreased muscle weight 

in obese rats when compared to lean rats [150]. However, we failed to detect any appreciable 

change in muscle weight in control versus the treated groups (Figure 4 and 5) As expected, 

based on these findings, we also failed to see any alterations in muscle fiber size in either the 

EDL or soleus muscles with treatment (Figure 6 and 7).     

Skeletal muscle plays a major role in the regulation of blood glucose levels [52]. As 

such, decrease in muscle insulin sensitivity can lead to an increased dependence on fatty acids 

for energy production. This elevated reliance on fatty acids is thought to lead to increased 

secretion of inflammatory cytokines and a further decrease in insulin sensitivity of skeletal 

muscle [48, 51]. Increased phosphorylation of the MAPK proteins leads to reduced 

downstream signaling and glucose disposal (Figure 4 and 5) [48, 53-55]. We found that 

treatment associated improvements in glucose disposal were characterized by decreased 

phosphorylation (activation) of the ERK1/2 and increased phosphorylation of p38 in the 

soleus and EDL muscles, respectively (Figures 9 and 12) [147, 150-154]. The physiological 

significance of these alterations remain unknown; however, it is interesting to note that 

previous reports have suggested that insulin-stimulated phosphorylation of the three major 

MAPK proteins (ERK1/2, p38, and JNK) may be altered in metabolic syndrome [155-

158]. In addition, other work has demonstrated that Empagliflozin treatment was associated 

with reduced phosphorylation in ob/ob mice [159]. Why differences may exist between the 

current study and previous work is not yet known but could be due, at least in part, to 
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differences in the animal model of investigation used. Additional research is needed to 

explore further.   

The p38 is thought to play an important role in cell differentiation and in modulating 

the production of key inflammatory mediators in the cell [160, 161]. In skeletal muscle, the 

phosphorylation of p38 is elevated with increased insulin resistance [162]. Why treatment 

was found to increase p38 phosphorylation in the obese Zucker EDL muscle is currently 

unclear and it is likely that future studies perhaps looking at other molecules or other models 

of metabolic syndrome will be needed to further understand the 

mechanism(s) of Empagliflozin on the regulation insulin sensitivity in metabolic syndrome. 

In a similar fashion, the physiological significance of these alterations remain unclear; 

however, it is interesting to note that previous reports have suggested that insulin-stimulated 

phosphorylation of p38 may be altered in metabolic syndrome [155, 161, 162]. In addition to 

p38, it is thought that JNK and ERK1/2 may also play roles in the progression of insulin 

resistance [156].  Other work has shown that the phosphorylation of JNK inhibits insulin 

signaling in the rat soleus muscle by enhancing phosphorylation of IRS-1 at Ser636 [157]. 

The phosphorylation of ERK1/2, JNK, and p38 was greatly reduced by treatment of 

Empagliflozin when compared to lean control levels in ob/ob mice [158]. In this study, we 

observed that there was no alteration in the amount of phosphorylated p44/42-, JNK- and p38 

– MAPK in the skeletal muscle of obese Zucker rat at 30 weeks of age (Figures 9-13).  

Our data suggest that MAPK regulation in skeletal muscle is not altered when the 

obese Zucker rat is treated with the Empagliflozin. Given these data, it is likely that future 

studies perhaps looking at other molecules or other models of metabolic syndrome might be 

needed to further understand the mechanistic effect of drug Empagliflozin on regulation of 

insulin sensitivity in metabolic syndrome. 
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CHAPTER 6 

 
 
 

CONCLUSIONS 

 
 
Metabolic syndrome is characterized by insulin resistance which if allowed to proceed 

unchecked can lead to Type-2 diabetes and cardiovascular dysfunction. According to the 

CDC, more than one third adult population of the United States is categorized as having 

metabolic syndrome [33].  The main intent of this study was to investigate if Empagliflozin 

treatment would be effective on alleviating the signs of metabolic syndrome in the fast and 

slow twitch muscles of the lean and obese Zucker rat model. The following conclusions were 

drawn from the present study. 

1. Empagliflozin treatment did not alter serum glucose levels, feed consumption, or 

muscle mass but did improve glucose sensitivity. 

2. Empagliflozin treatment-associated changes in glucose sensitivity were accompanied 

by decreased phosphorylation of ERK in obese soleus and increased phosphorylation 

of p38 in obese EDL muscles.    

3. Empagliflozin treatment associated changes in glucose sensitivity were not 

accompanied by alterations in the phosphorylation of JNK and p38 in the soleus and 

the phosphorylation of ERK and JNK in the EDL muscles.    

 

FUTURE DIRECTIONS 

 
Future research based on this study should focus on studying other pathways like 

GLUT-2, AKT or IRS that might have caused changes in insulin sensitivity in skeletal muscle 

of the obese Zucker rat. The results of present study have shown that MAPK related signaling 
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is for the most part, unaltered in the skeletal muscle of the obese Zucker rat (fa/fa) following 

Empagliflozin treatment. Whether similar findings would be observed in other metabolic 

syndrome models or with other drugs remains to be determined.  
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APPENDIX B 

Table 1:  

Empagliflozin attenuates diabetes-induced alterations in serum biochemical 
parameters. Results are expressed as mean ± S.E.M. *p < 0.05 compared with lean control 
group, $p < 0.05 compared with lean treated group, and #p < 0.05 compared with obese control 
group (n=6-8/group). 
 

Analyte 30 WK LC 30 WK LT 30 WK OC 30 WK OT 

Albumin (g/dL) 3.1 ± 0.15 3.03 ± 0.17 3.02 ± 0.04 2.96 ± 0.07 

Globulin (g/dL) 2.07 ± 0.19 1.84 ± 0.15 2.82 ± 0.09*$ 2.74 ± 0.13 

Tot. Protein (g/dL) 5.17 ± 0.08 4.89 ± 0.08* 5.78 ± 0.05*$ 5.67 ± 0.10*$ 

ALT (U/L) 40.50 ± 2.74 64.50 ± 6.28* 37.00 ± 2.62$ 43.00 ± 3.91$ 

ALP (U/L) 106.33±10.91 111.75±7.42 106.83±8.2 108.86±8.65 

Amylase (U/L) 698.17±22.75 645.75±20.89 872.5±16.02*$ 803.14±22.05*$# 

BUN (mg/dL) 18.33±0.71 17.75±0.86 35.83±9.12 35.71±9.93 

Calcium (mg/dL) 10.25±0.06 9.86±0.10 11.33±0.16$ 11.54±0.27$ 

Phosphorus 

(mg/dL) 5.65±0.26 5.71±0.27 7.08±0.78 6.97±0.91 

Sodium (mmol/L) 135.00±0.58 135.88±0.67 138.00±1.06* 138.43±0.75* 

Potassium 

(mmol/L) 4.62±0.14 4.68±0.19 5.82±0.22*$ 5.30±0.24* 

Creatinine (mg/dL) 0.43±0.06 0.51±0.04 0.73±0.15 0.71±0.20 

Glucose (mg/dL) 424.50±10.05 380.38±9.03 427.67±25.64 348.43±9.10*# 

TBIL (mg/dL) 0.33±0.02 0.31±0.02 0.37±0.02 0.47±0.03*$ 
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Figures 

 

Figure 1 
Long-term treatment with Empagliflozin attenuates body weight gain in Zucker rats. 
Results are expressed as mean ± S.E.M. *p < 0.05 compared with lean control group, $p < 
0.05 compared with lean treated group, and #p < 0.05 compared with obese control group 
(n=6-8/group). This figure was provided by Dr. Manne. 
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Figure 2  

Food consumption in Zucker rats treated with Empagliflozin. Results are expressed as 
mean ± S.E.M. *p < 0.05 compared with lean control group, $p < 0.05 compared with lean 
treated group, and #p < 0.05 compared with obese control group (n=6-8/group). This figure 
was provided by Dr. Manne. 
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Figure 3  

Long-term treatment with Empagliflozin improves glucose tolerance in obese Zucker 
animals.  Intra-Peritoneal Glucose Tolerance Test (IPGTT) Blood glucose concentration in 
30-week-old Zucker rats. Results are expressed as mean ± S.E.M. *p < 0.05 compared with 
lean control group, $p < 0.05 compared with lean treated group, and #p < 0.05 compared with 
obese control group (n=5-9/group). This figure was provided by Dr. Manne. 
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Figure 4 

Long-term treatment with Empagliflozin does not appear to alter soleus muscle weight. 
Results are expressed as mean ± S.E.M. *p < 0.05 compared with lean control group and $p 
< 0.05 compared with lean treated group (n=6-8/group). 
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Figure 5 

Long-term treatment with Empagliflozin does not appear to alter EDL muscle weight. 
Results are expressed as mean ± S.E.M. *p < 0.05 compared with lean control group, $p < 
0.05 compared with lean treated group, and #p < 0.05 compared with obese control group 
(n=6-8/group).
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Figure 6 

Long term treatment with Empagliflozin does not appear to alter EDL muscle fiber size. 
Lean control (A), Lean treated (B), Obese Control (C), and Obese treated (D). Scale bar = 
100 µm. 
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Figure 7 
Long term treatment with Empagliflozin does not appear to alter soleus muscle fiber 
size. Lean control (A), Lean treated (B), Obese Control (C), and Obese treated (D). Scale bar 
= 100 µm. 
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Figure 8  

Effect of Empagliflozin treatment on p38-MAPK phosphorylation in soleus muscle. 
Comparison between the groups is shown in the graph. *p<0.05 denotes comparison with 
lean control, †p <0.05 comparison within groups and §p<0.05 with lean treated(n=6-8/group).  
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Figure 9 

Effect of Empagliflozin treatment on p42-44/ERK1/2-MAPK phosphorylation in soleus 
muscle. Symbols denote comparison between the columns in the graph. *p <0.05 with lean 
control, §p <0.05 with lean treated and †p <0.05 within groups (n=6-8/group)  
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Figure 10 

Effect of Empagliflozin treatment on JNK -MAPK phosphorylation in soleus muscle. 
Symbols denote comparison between the columns in the graph. *p <0.05 with lean control, 
§p < 0.05 with lean treated and †p <0.05 within groups (n=6-8/group).   
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Figure 11 

Effect of Empagliflozin treatment on p38-MAPK phosphorylation in EDL muscle. 
Symbols denote comparison between the columns in the graph. *p<0.05 with lean control, 
§p<0.05 with lean treated and †p <0.05 within groups (n=6-8/group). 
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Figure 12  

Effect of Empagliflozin treatment on p42-44/ ERK1/2-MAPK phosphorylation in EDL 
muscle. Symbols denote comparison between the columns in the graph. *p <0.05 with lean 
control, §p <0.05 with lean treated and †p<0.05 within groups (n=6-8/group).  
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Figure 13  

Effect of Empagliflozin treatment on JNK -MAPK phosphorylation phosphorylation 
in EDL muscle. Symbols denote comparison between the columns in the graph. *p<0.05 
with lean control and §p <0.05 with lean treated (n=6-8/group). 
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APPENDIX C 

Soleus 

Film Properties Report for p38 

Experimenter:  Sushma Penta 

Muscle / Tissue: Soleus   Species: Rat (Zucker) 

Protein conc.: 1.5µg/µl x 20µl = 30 µg Gel type: 10% Tris-HCL SDS_PAGE 

Electrophoresis Voltage: 124V Transfer Voltage: 24V Duration: 45 min 

Primary Antibody: p38 (Cell Signaling)  Primary Antibody Dilution: 1:1000 

Incubation Time: overnight @ 4°C  Medium: 5% BSA in TBS-T 

Secondary Antibody: Anti-Rabbit  Secondary Antibody Dilution: 1:1000 

Incubation Time: 1hr@room temp  Medium: 5% milk in TBS-T 

Exposure Time: 15 minutes Molecular weight:  43 kDa 

 
Lane 1: Biotinylated Ladder 

Lane 2: Mol Wt Marker               

Lane 3: Negative controlLane 4: Lean 

Zucker control 30 week  

Lane 5: Lean Zucker treated 30 week  

Lane 6: Obese Zucker control 30 week  

Lane 7: Obese Zucker treated 30 week  

 Lane 8: Lean Zucker control 30 week 

Lane 9: Lean Zucker treated 30 week  

Lane 10: Obese Zucker control 30 week 

Lane 11: Obese Zucker treated 30 week   

Lane 12:  Lean Zucker control 30 week  

Lane 13:  Lean Zucker treated 30 week  

Lane 14: Obese Zucker control 30 week  

Lane 15: Obese Zucker treated 30 week  

Lane16: Negative Control
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Soleus 

Film Properties Report for p-p38 

Experimenter:  Sushma Penta 

Muscle / Tissue: Soleus   Species: Rat (Zucker) 

Protein conc.: 1.5µg/µl x 20µl = 30 µg Gel type: 10% Tris-HCL SDS_PAGE 

Electrophoresis Voltage: 124V Transfer Voltage: 24V Duration: 45 min 

Primary Antibody: p-p38 (Cell Signaling)  Primary Antibody Dilution: 1:1000 

Incubation Time: overnight @ 4°C  Medium: 5% BSA in TBS-T 

Secondary Antibody: Anti-Rabbit  Secondary Antibody Dilution: 1:1000 

Incubation Time: 1hr@room temp  Medium: 5% milk in TBS-T 

Exposure Time: 15 minutes Molecular weight:  43 kDa 

 
Lane 1: Biotinylated Ladder  

Lane 2: Mol Wt Marker                        

Lane 3: Negative control 

Lane 4: Lean Zucker control 30 week  

Lane 5: Lean Zucker treated 30 week  

Lane 6: Obese Zucker control 30 week  

Lane 7: Obese Zucker treated 30 week  

Lane 8: Lean Zucker control 30 week  

Lane 9: Lean Zucker treated 30 week  

Lane 10: Obese Zucker control 30 week 

Lane 11: Obese Zucker treated 30 week 

Lane 12: Lean Zucker control 30 week  

Lane 13:  Lean Zucker treated 30 week 

Lane 14: Obese Zucker control 30 week 

Lane 15: Obese Zucker treated 30 week 

Lane16: Negative Control 
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Soleus 

Film Properties Report for ERK1/2 

Experimenter:  Sushma Penta 

Muscle / Tissue: Soleus   Species: Rat (Zucker) 

Protein conc.: 1.5µg/µl x 20µl = 30 µg Gel type: 10% Tris-HCL SDS_PAGE 

Electrophoresis Voltage: 124V Transfer Voltage: 24V Duration: 45 min 

Primary Antibody: ERK 1/2 (Cell Signaling)  Primary Antibody Dilution: 1:1000 

Incubation Time: overnight @ 4°C  Medium: 5% BSA in TBS-T 

Secondary Antibody: Anti-Rabbit  Secondary Antibody Dilution: 1:1000 

Incubation Time: 1hr@room temp  Medium: 5% milk in TBS-T 

Exposure Time: 15 minutes Molecular weight:  42,44 kDa 

 
Lane 1: Biotinylated Ladder      

Lane 2: Mol Wt Marker                         

Lane 3: Negative control 

Lane 4: Lean Zucker control 30 week  

Lane 5: Lean Zucker treated 30 week  

Lane 6: Obese Zucker control 30 week  

Lane 7: Obese Zucker treated 30 week  

Lane 8: Lean Zucker control 30 week  

Lane 9: Lean Zucker treated 30 week  

Lane 10: Obese Zucker control 30 week   

Lane 11: Obese Zucker treated 30 week  

Lane 12:  Lean Zucker control 30 week  

Lane 13:  Lean Zucker treated 30 week  

Lane 14: Obese Zucker control 30 week  

Lane 15: Obese Zucker treated 30 week  

Lane16: Negative Control 
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Soleus 

Film Properties Report for p-ERK1/2 

Experimenter:  Sushma Penta 

Muscle / Tissue: Soleus   Species: Rat (Zucker) 

Protein conc.: 1.5µg/µl x 20µl = 30 µg Gel type: 10% Tris-HCL SDS_PAGE 

Electrophoresis Voltage: 124V Transfer Voltage: 24V Duration: 45 min 

Primary Antibody: p-ERK 1/2 (Cell Signaling)  Primary Antibody Dilution: 1:1000 

Incubation Time: overnight @ 4°C  Medium: 5% BSA in TBS-T 

Secondary Antibody: Anti-Rabbit  Secondary Antibody Dilution: 1:1000 

Incubation Time: 1hr@room temp  Medium: 5% milk in TBS-T 

Exposure Time: 15 minutes Molecular weight:  42,44 kDa 

 
Lane 1: Biotinylated Ladder                             

Lane 2: Mol Wt Marker 

Lane 3: Negative control 

Lane 4: Lean Zucker control 30 week 

Lane 5: Lean Zucker treated 30 week  

Lane 6: Obese Zucker control 30 week  

Lane 7: Obese Zucker treated 30 week  

Lane 8: Lean Zucker control 30 week  

Lane 9: Lean Zucker treated 30 week 

Lane 10: Obese Zucker control 30 week 

Lane 11: Obese Zucker treated 30 week  

Lane 12:  Lean Zucker control 30 week 

Lane 13:  Lean Zucker treated 30 week  

Lane 14: Obese Zucker control 30 week  

Lane 15: Obese Zucker treated 30 week  

Lane16: Negative Control 
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Soleus 

Film Properties Report for JNK 

Experimenter:  Sushma Penta 

Muscle / Tissue: Soleus   Species: Rat (Zucker) 

Protein conc.: 1.5µg/µl x 20µl = 30 µg Gel type: 10% Tris-HCL SDS_PAGE 

Electrophoresis Voltage: 124V Transfer Voltage: 24V Duration: 45 min 

Primary Antibody: JNK (Cell Signaling)  Primary Antibody Dilution: 1:1000 

Incubation Time: overnight @ 4°C  Medium: 5% BSA in TBS-T 

Secondary Antibody: Anti-Rabbit  Secondary Antibody Dilution: 1:1000 

Incubation Time: 1hr@room temp  Medium: 5% milk in TBS-T 

Exposure Time: 2.4 minutes Molecular weight:  46,54 kDa 

 

 

Lane 1: Biotinylated Ladder 

Lane 2: Mol Wt Marker  

Lane 3: Negative control 

Lane 4: Lean Zucker control 30 week  

Lane 5: Lean Zucker treated 30 week  

Lane 6: Obese Zucker control 30 week 

 Lane 7: Obese Zucker treated 30 week  

 Lane 8: Lean Zucker control 30 week  

Lane 9: Lean Zucker treated 30 week  

Lane 10: Obese Zucker control 30 week 

Lane 11: Obese Zucker treated 30 week 

Lane 12:  Lean Zucker control 30 week  

Lane 13:  Lean Zucker treated 30 week  

Lane 14: Obese Zucker control 30 week  

Lane 15: Obese Zucker treated 30 week  

Lane16: Negative Control 
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Soleus 

Film Properties Report for p-JNK 

Experimenter:  Sushma Penta 

Muscle / Tissue: Soleus   Species: Rat (Zucker) 

Protein conc.: 1.5µg/µl x 20µl = 30 µg Gel type: 10% Tris-HCL SDS_PAGE 

Electrophoresis Voltage: 124V Transfer Voltage: 24V Duration: 45 min 

Primary Antibody: p-JNK (Cell Signaling)  Primary Antibody Dilution: 1:1000 

Incubation Time: overnight @ 4°C  Medium: 5% BSA in TBS-T 

Secondary Antibody: Anti-Rabbit  Secondary Antibody Dilution: 1:1000 

Incubation Time: 1hr@room temp  Medium: 5% milk in TBS-T 

Exposure Time: 15 minutes Molecular weight:  46,54 kDa 

 
 

Lane 1: Biotinylated Ladder 

Lane 2: Mol Wt Marker                       

Lane 3: Negative control  

Lane 4: Lean Zucker control 30 week 

Lane 5: Lean Zucker treated 30 week  

Lane 6: Obese Zucker control 30 week  

 Lane 7: Obese Zucker treated 30 week  

 Lane 8: Lean Zucker control 30 week 

Lane 9: Lean Zucker treated 30 week  

Lane 10: Obese Zucker control 30 week 

Lane 11: Obese Zucker treated 30 week  

Lane 12:  Lean Zucker control 30 week  

Lane 13:  Lean Zucker treated 30 week  

Lane 14: Obese Zucker control 30 week  

Lane 15: Obese Zucker treated 30 week  

Lane16: Negative Control 
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Extensor digitorum longus (EDL) 

Film Properties Report for p38 

Experimenter:  Sushma Penta 

Muscle / Tissue: EDL   Species: Rat (Zucker) 

Protein conc.: 1.5µg/µl x 20µl = 30 µg Gel type: 10% Tris-HCL SDS_PAGE 

Electrophoresis Voltage: 124V Transfer Voltage: 24V Duration: 45 min 

Primary Antibody: p38 (Cell Signaling)  Primary Antibody Dilution: 1:1000 

Incubation Time: overnight @ 4°C  Medium: 5% BSA in TBS-T 

Secondary Antibody: Anti-Rabbit  Secondary Antibody Dilution: 1:1000 

Incubation Time: 1hr@room temp  Medium: 5% milk in TBS-T 

Exposure Time: 15 minutes Molecular weight:  43 kDa 

 
 

Lane 1: Biotinylated Ladder  

Lane 2: Mol Wt Marker                      

Lane 3: Negative control  

Lane 4: Lean Zucker control 30 week  

Lane 5: Lean Zucker treated 30 week  

Lane 6: Obese Zucker control 30 week 

 Lane 7: Obese Zucker treated 30 week 

 Lane 8: Lean Zucker control 30 week 

Lane 9: Lean Zucker treated 30 week  

Lane 10: Obese Zucker control 30 week  

Lane 11: Obese Zucker treated 30 week  

Lane 12:  Lean Zucker control 30 week  

Lane 13:  Lean Zucker treated 30 week  

Lane 14: Obese Zucker control 30 week  

Lane 15: Obese Zucker treated 30 week  

Lane16: Negative Control 
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Extensor digitorum longus (EDL) 

Film Properties Report for p-p38 

Experimenter:  Sushma Penta 

Muscle / Tissue: EDL Species: Rat (Zucker) 

Protein conc.: 1.5µg/µl x 20µl = 30 µg Gel type: 10% Tris-HCL SDS_PAGE 

Electrophoresis Voltage: 124V Transfer Voltage: 24V Duration: 45 min 

Primary Antibody: p-p38 (Cell Signaling)  Primary Antibody Dilution: 1:1000 

Incubation Time: overnight @ 4°C  Medium: 5% BSA in TBS-T 

Secondary Antibody: Anti-Rabbit  Secondary Antibody Dilution: 1:1000 

Incubation Time: 1hr@room temp  Medium: 5% milk in TBS-T 

Exposure Time: 15 minutes Molecular weight:  43 kDa 

 
 

Lane 1: Biotinylated Ladder                       

Lane 2: Mol Wt Marker                              

Lane 3: Negative control  

Lane 4: Lean Zucker control 30 week 

Lane 5: Lean Zucker treated 30 week  

Lane 6: Obese Zucker control 30 week  

 Lane 7: Obese Zucker treated 30 week 

 Lane 8: Lean Zucker control 30 week  

Lane 9: Lean Zucker treated 30 week  

Lane 10: Obese Zucker control 30 week  

Lane 11: Obese Zucker treated 30 week  

Lane 12:  Lean Zucker control 30 week  

Lane 13:  Lean Zucker treated 30 week   

Lane 14: Obese Zucker control 30 week   

Lane 15: Obese Zucker treated 30 week   

  Lane16: Negative Control 
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Extensor digitorum longus (EDL) 

Film Properties Report for ERK1/2 

Experimenter:  Sushma Penta 

Muscle / Tissue: EDL Species: Rat (Zucker) 

Protein conc.: 1.5µg/µl x 20µl = 30 µg Gel type: 10% Tris-HCL SDS_PAGE 

Electrophoresis Voltage: 124V Transfer Voltage: 24V Duration: 45 min 

Primary Antibody: ERK 1/2 (Cell Signaling)  Primary Antibody Dilution: 1:1000 

Incubation Time: overnight @ 4°C  Medium: 5% BSA in TBS-T 

Secondary Antibody: Anti-Rabbit  Secondary Antibody Dilution: 1:1000 

Incubation Time: 1hr@room temp  Medium: 5% milk in TBS-T 

Exposure Time: 1-minute Molecular weight:  42,44 kDa 

 
 

Lane 1: Biotinylated Ladder                     

Lane 2: Mol Wt Marker                       

Lane 3: Negative control  

Lane 4: Lean Zucker control 30 week  

Lane 5: Lean Zucker treated 30 week  

Lane 6: Obese Zucker control 30 week  

 Lane 7: Obese Zucker treated 30 week  

 Lane 8: Lean Zucker control 30 week  

Lane 9: Lean Zucker treated 30 week  

Lane 10: Obese Zucker control 30 week  

Lane 11: Obese Zucker treated 30 week  

Lane 12:  Lean Zucker control 30 week  

Lane 13:  Lean Zucker treated 30 week   

Lane 14: Obese Zucker control 30 week   

Lane 15: Obese Zucker treated 30 week   

Lane16: Negative Control 
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Extensor digitorum longus (EDL) 

Film Properties Report for p-ERK1/2 

Experimenter:  Sushma Penta 

Muscle / Tissue: EDL Species: Rat (Zucker) 

Protein conc.: 1.5µg/µl x 20µl = 30 µg Gel type: 10% Tris-HCL SDS_PAGE 

Electrophoresis Voltage: 124V Transfer Voltage: 24V Duration: 45 min 

Primary Antibody: p-ERK 1/2 (Cell Signaling)  Primary Antibody Dilution: 1:1000 

Incubation Time: overnight @ 4°C  Medium: 5% BSA in TBS-T 

Secondary Antibody: Anti-Rabbit  Secondary Antibody Dilution: 1:1000 

Incubation Time: 1hr@room temp  Medium: 5% milk in TBS-T 

Exposure Time: 15 minutes Molecular weight:  42,44 kDa 

 
 

Lane 1: Biotinylated Ladder                                     

Lane 2: Mol Wt Marker                              

Lane 3: Negative control  

Lane 4: Lean Zucker control 30 week 

Lane 5: Lean Zucker treated 30 week   

Lane 6: Obese Zucker control 30 week  

Lane 7: Obese Zucker treated 30 week  

Lane 8: Lean Zucker control 30 week  

Lane 9: Lean Zucker treated 30 week  

Lane 10: Obese Zucker control 30 week 16 

µl Lane 11: Obese Zucker treated 30 week   

Lane 12:  Lean Zucker control 30 week   

Lane 13:  Lean Zucker treated 30 week   

Lane 14: Obese Zucker control 30 week   

Lane 15: Obese Zucker treated 30 week   

Lane16: Negative Control 
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Extensor digitorum longus (EDL) 

Film Properties Report for JNK 

Experimenter:  Sushma Penta 

Muscle / Tissue: EDL Species: Rat (Zucker) 

Protein conc.: 1.5µg/µl x 20µl = 30 µg Gel type: 10% Tris-HCL SDS_PAGE 

Electrophoresis Voltage: 124V Transfer Voltage: 24V Duration: 45 min 

Primary Antibody: JNK (Cell Signaling)  Primary Antibody Dilution: 1:1000 

Incubation Time: overnight @ 4°C  Medium: 5% BSA in TBS-T 

Secondary Antibody: Anti-Rabbit  Secondary Antibody Dilution: 1:1000 

Incubation Time: 1hr@room temp  Medium: 5% milk in TBS-T 

Exposure Time: 15 minutes Molecular weight:  46,54 kDa 

 
 

Lane 1: Biotinylated Ladder   

Lane 2: Mol Wt Marker                            

Lane 3: Negative control 

Lane 4: Lean Zucker control 30 week  

Lane 5: Lean Zucker treated 30 week  

Lane 6: Obese Zucker control 30 week  

Lane 7: Obese Zucker treated 30 week  

Lane 8: Lean Zucker control 30 week  

Lane 9: Lean Zucker treated 30 week  

Lane 10: Obese Zucker control 30 week 

Lane 11: Obese Zucker treated 30 week 

Lane 12:  Lean Zucker control 30 week 

Lane 13:  Lean Zucker treated 30 week 

Lane 14: Obese Zucker control 30 week 

Lane 15: Obese Zucker treated 30 week 

Lane16: Negative Control 
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Extensor digitorum longus (EDL) 

Film Properties Report for p-JNK 

Experimenter:  Sushma Penta 

Muscle / Tissue: EDL Species: Rat (Zucker) 

Protein conc.: 1.5µg/µl x 20µl = 30 µg Gel type: 10% Tris-HCL SDS_PAGE 

Electrophoresis Voltage: 124V Transfer Voltage: 24V Duration: 45 min 

Primary Antibody: p-JNK (Cell Signaling)  Primary Antibody Dilution: 1:1000 

Incubation Time: overnight @ 4°C  Medium: 5% BSA in TBS-T 

Secondary Antibody: Anti-Rabbit  Secondary Antibody Dilution: 1:1000 

Incubation Time: 1hr@room temp  Medium: 5% milk in TBS-T 

Exposure Time: 15 minutes Molecular weight:  46,54 kDa 

 
 

Lane 1: Biotinylated Ladder    

Lane 2: Mol Wt Marker      

Lane 3: Negative control 

Lane 4: Lean Zucker control 30 week 

Lane 5: Lean Zucker treated 30 week  

Lane 6: Obese Zucker control 30 week  

Lane 7: Obese Zucker treated 30 week  

Lane 8: Lean Zucker control 30 week  

Lane 9: Lean Zucker treated 30 week  

Lane 10: Obese Zucker control 30 week  

Lane 11: Obese Zucker treated 30 week  

Lane 12:  Lean Zucker control 30 week  

Lane 13:  Lean Zucker treated 30 week  

Lane 14: Obese Zucker control 30 week  

Lane 15: Obese Zucker treated 30 week  

Lane16: Negative Control 
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APPENDIX D  

Statistics 

 
Total p38(Soleus) 

One Way Analysis of Variance     
      
Data source: Raw data in Soleus total p38 paper      
      
Normality Test (Shapiro-Wilk) Passed (P = 0.443)    
      
Equal Variance Test: Passed (P = 0.601)    
      
Group Name  N  Missing Mean  Std Dev SEM 
Lean Control 3 0  9.164  1.718  0.992 
Lean Treated 3 0  30.846  4.7  2.714 
Obese Control 3 0  22.254  1.995  1.152 
Obese Treated 3 0  37.736  6.767  3.907 
      
Source of Variation  DF   SS    MS     F     P  
Between Groups 3 1364.136 454.712 24.311  <0.001 
Residual  8 149.632 18.704   
Total   11 1513.768    
      
The differences in the mean values among the treatment groups are greater than would be 
expected by chance; there is a statistically significant difference (P = <0.001).   
      
Power of performed test with alpha = 0.050: 1.000       
      
All Pairwise Multiple Comparison Procedures (Student-Newman-Keuls Method):    
Comparisons for factor:       
 
Comparison Diff of Means  p  q P P<0.050 
Obese Treated vs. Lean Control 28.572 4 11.443 <0.001 Yes 
Obese Treated vs. Obese Control 15.482 3 6.2 0.006 Yes 
Obese Treated vs. Lean Treated 6.89 2 2.759 0.087 No 
Lean Treated vs. Lean Control 21.682 3 8.684 <0.001 Yes 
Lean Treated vs. Obese Control 8.592 2 3.441 0.041 Yes 
Obese Control vs. Lean Control 13.09 2 5.243 0.006 Yes 
 
Normality Test: Passed (P > 0.050) 
 
Equal Variance Test: Passed (P = 0.438) 
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Group Name N Missing Mean Std Dev SEM 
p70 lz 6 0 15.133 0.378 

  
0.154 

p70 oz 6 0 10.867 0.671 0.274 
 
Difference 4.267 
 
t = 13.568 with 10 degrees of freedom. (P = <0.001) 
 
95 percent confidence interval for difference of means: 3.566 to 4.967 
 
The difference in the mean values of the two groups is greater than would be expected by chance; 
there is a statistically significant difference between the input groups (P = 
<0.001). 
 
Power of performed test with alpha = 0.050: 1.000 
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Phos p38(Soleus) 
 
One Way Analysis of Variance     
      
Data source: Raw data in Soleus phos p38 paper      
      
Normality Test (Shapiro-Wilk) Passed (P = 0.696)    
      
Equal Variance Test: Passed (P = 0.778)    
      
Group Name  N  Missing Mean Std Dev SEM 
Lean Control 3 0  17.853 9.097  5.252 
Lean Treated 3 0  22.95 5.795  3.346 
Obese Control 3 0  29.052 3.537  2.042 
Obese Treated 3 0  30.144 10.781  6.225 
      
Source of Variation  DF   SS    MS    F    P  
Between Groups 3 294.46  98.153 1.602 0.264 
Residual  8 490.191 61.274   
Total   11 784.65    
      
The differences in the mean values among the treatment groups are not great enough to exclude 
the possibility that the difference is due to random sampling variability; there is not a statistically 
significant difference (P = 0.264).      
      
Power of performed test with alpha = 0.050: 0.125      
      
The power of the performed test (0.125) is below the desired power of 0.800.   
   
Less than desired power indicates you are less likely to detect a difference when one actually 
exists. Negative results should be interpreted cautiously.      
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Phos/Total p38(Soleus) 

One Way Analysis of Variance        
 
Data source: Raw data in Soleus phos/Total p38 paper  
      
Normality Test (Shapiro-Wilk) Failed (P < 0.050)    
       
Test execution ended by user request, ANOVA on Ranks begun     
    
Kruskal-Wallis One Way Analysis of Variance on Ranks       
Data source: Data 1 in Notebook1      
      
Group N  Missing  Median  25% 75% 
Lean Control 3 0 1.969 0.787  3.622 
Lean Treated 3 0 0.68 0.628  0.921 
Obese Control 3 0 1.204  1.173 1.563 
Obese Treated 3 0 0.712  0.702 0.936 
      
H = 6.897 with 3 degrees of freedom.  (P = 0.075)      
      
The differences in the median values among the treatment groups are not great enough to 
exclude the possibility that the difference is due to random sampling variability; there is not a 
statistically significant difference (P = 0.075)      
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Total ERK1/2(Soleus)  
 
One Way Analysis of Variance     
      
Data source: Raw data in Soleus total p44/42 pathway      
      
Normality Test (Shapiro-Wilk) Passed (P = 0.828)    
      
Equal Variance Test: Passed (P = 0.639)    
      
Group Name  N  Missing Mean Std Dev SEM 
Lean Control 3 0  34.575 4.193  2.421 
Lean Treated 3 0  15.425 1.794  1.036 
Obese Control 3 0  24.655 3.162  1.826 
Obese Treated 3 0  25.346 0.829  0.478 
      
Source of Variation  DF   SS    MS    F    P  
Between Groups 3 550.829 183.61 23.328 <0.001 
Residual  8 62.967  7.871   
Total   11 613.796    
      
The differences in the mean values among the treatment groups are greater than would be 
expected by chance; there is a statistically significant difference (P = <0.001).  
      
Power of performed test with alpha = 0.050: 1.000      
      
All Pairwise Multiple Comparison Procedures (Student-Newman-Keuls Method):   
   
 Comparisons for factor:       
 
Comparison    Diff of Means p q P P<0.050 
Lean Control vs. Lean Treated 19.15  4 11.823 <0.001 Yes 
Lean Control vs. Obese Control 9.921  3 6.125 0.006 Yes 
Lean Control vs. Obese Treated 9.229  2 5.698 0.004 Yes 
Obese Treated vs. Lean Treated 9.921  3 6.125 0.006 Yes 
Obese Treated vs. Obese Control 0.691  2 0.427 0.771 No 
Obese Control vs. Lean Treated 9.23  2 5.698 0.004 Yes 
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Phos ERK ½(Soleus) 
 
One Way Analysis of Variance     
      
Data source: Raw data in Soleus phos ERK ½ paper     
      
Normality Test (Shapiro-Wilk) Passed (P = 0.935)    
      
Equal Variance Test: Passed (P = 0.122)    
      
Group Name  N  Missing Mean Std Dev SEM 
Lean Control 3 0  6.979 0.684  0.395 
Lean Treated 3 0  12.339 1.209  0.698 
Obese Control 3 0  47.28 2.296  1.326 
Obese Treated 3 0  33.402 0.455  0.263 
       
Source of Variation  DF   SS    MS     F     P  
Between Groups 3 3156.262 1052.087 567.964 <0.001 
Residual  8 14.819  1.852   
Total   11 3171.081    
      
The differences in the mean values among the treatment groups are greater than would be 
expected by chance; there is a statistically significant difference (P = <0.001).   
       
Power of performed test with alpha = 0.050: 1.000       
      
All Pairwise Multiple Comparison Procedures (Student-Newman-Keuls Method):   
   
      
Comparisons for factor:       
 
Comparison   Diff of Means  p q p P<0.050 
Obese Control vs. Lean Control 40.302   4 51.288 <0.001 Yes 
Obese Control vs. Lean Treated 34.942  3 44.467 <0.001 Yes 
Obese Contro vs. Obese Treate 13.878  2 17.662 <0.001 Yes 
Obese Treated vs. Lean Control 26.423  3 33.627 <0.001 Yes 
Obese Treated vs. Lean Treated 21.064  2 26.806 <0.001 Yes 
Lean Treated vs. Lean Control 5.36  2 6.821 0.001 Yes 
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Phos/Total ERK1/2 (Soleus) 

One Way Analysis of Variance  
      
Data source: Raw data in Soleus Phos/ total ERK1/2 paper      
    
Normality Test (Shapiro-Wilk) Failed (P < 0.050)    
          
Test execution ended by user request, ANOVA on Ranks begun     
      
Kruskal-Wallis One Way Analysis of Variance on Ranks  
      
Data source:  Data 1 in Notebook3      
      
Group  N  Missing  Median  25% 75% 
Lean Control 3 0  0.479  0.331 0.492 
Lean Treated 3 0  0.5  0.395 0.52 
Obese Control 3 0  1.912  1.793 1.981 
Obese Treated 3 0  1.081  0.935 1.099 
      
H = 9.667 with 3 degrees of freedom.  (P = 0.022)      
      
The differences in the median values among the treatment groups are greater than would be 
expected by chance; there is a statistically significant difference (P = 0.022)   
      
To isolate the group or groups that differ from the others use a multiple comparison procedure. 
     
           
All Pairwise Multiple Comparison Procedures (Student-Newman-Keuls Method):   
       
 
Comparison   Diff of Ranks q P<0.05   
Obese Control vs Lean Control 25 4.003 Yes   
Obese Control vs Lean Treated 20 4.216 Yes   
Obese Control vs Obese Treated 9 2.777 Yes   
Obese Treated vs Lean Control 16 3.373 Yes   
Obese Treated vs Lean Treated 11 3.395 Yes   
Lean Treated vs Lean Control 5 1.543 No   
      
Note: The multiple comparisons on ranks do not include an adjustment for ties.   
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Total JNK (Soleus) 

One Way Analysis of Variance      
      
Data source: Raw data in Soleus total JNK paper      
      
Normality Test (Shapiro-Wilk) Passed (P = 0.897)    
      
Equal Variance Test: Passed (P = 0.284)    
      
Group Name  N  Missing Mean Std Dev SEM 
Lean Control 3 0  9.36 2.867  1.655 
Lean Treated 3 0  14.817 3.212  1.854 
Obese Control 3 0  21.982 0.0971  0.056 
Obese Treated 3 0  53.841 5.922  3.419 
      
Source of Variation  DF   SS    MS     F    P  
Between Groups 3 3567.709 1189.236 88.732 <0.001 
Residual 8 107.221 13.403   
Total 11 3674.93    
      
The differences in the mean values among the treatment groups are greater than would be 
expected by chance; there is a statistically significant difference (P = <0.001).   
      
Power of performed test with alpha = 0.050: 1.000      
          
All Pairwise Multiple Comparison Procedures (Student-Newman-Keuls Method):   
        
Comparisons for factor:       
 
Comparison Diff of Means p q P P<0.050 
Obese Treated vs. Lean Control 44.481  4 21.045 <0.001 Yes 
Obese Treated vs. Lean Treated 39.024  3 18.463 <0.001 Yes 
Obese Treate vs. Obese Contro 31.86  2 15.073 <0.001 Yes 
Obese Control vs. Lean Control 12.622  3 5.972 0.007 Yes 
Obese Control vs. Lean Treated 7.165  2 3.39 0.044 Yes 
Lean Treated vs. Lean Control 5.457  2 2.582 0.105 No 
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Phos JNK (Soleus) 

One Way Analysis of Variance         
  
Data source: Raw data in Soleus phos JNK paper      
      
Normality Test (Shapiro-Wilk) Passed (P = 0.675)    
      
Equal Variance Test: Passed (P = 0.585)    
      
Group Name  N  Missing Mean Std Dev SEM 
Lean Control 3 0  8.047 5.679  3.279 
Lean Treated 3 0  20.01 3.983  2.299 
Obese Control 3 0  24.706 2.65  1.53 
Obese Treated 3 0  47.236 7.869  4.543 
      
Source of Variation  DF   SS    MS     F    P  
Between Groups 3 2420.538 806.846 27.571 <0.001 
Residual  8 234.114 29.264   
Total   11 2654.653    
      
The differences in the mean values among the treatment groups are greater than would be 
expected by chance; there is a statistically significant difference (P = <0.001).   
        
Power of performed test with alpha = 0.050: 1.000      
          
All Pairwise Multiple Comparison Procedures (Student-Newman-Keuls Method):   
      
Comparisons for factor:       
 
Comparison   Diff of Means  p q P P<0.050 
Obese Treated vs. Lean Control 39.189  4 12.548 <0.001 Yes 
Obese Treated vs. Lean Treated 27.226  3 8.717 <0.001 Yes 
Obese Treated vs. Obese Control 22.53  2 7.214 0.001 Yes 
Obese Control vs. Lean Control 16.659  3 5.334 0.014 Yes 
Obese Control vs. Lean Treated 4.696  2 1.504 0.319 No 
Lean Treated vs. Lean Control 11.964  2 3.83 0.027 Yes 
      
      
      
     
 
  
 

  



81 

Phos/Total JNK (Soleus)  

      
One Way Analysis of Variance  
       
Data source: Raw data in Soleus phos/total JNK paper      
      
Normality Test (Shapiro-Wilk) Passed (P = 0.438)    
      
Equal Variance Test: Passed (P = 0.462)    
      
Group Name  N  Missing Mean Std Dev SEM 
Lean Control 3 0  0.548 0.277  0.16 
Lean Treated 3 0  1.112 0.0721  0.0416 
Obese Control 3 0  1.039 0.108  0.0622 
Obese Treated 3 0  1.055 0.0563  0.0325 
      
Source of Variation   DF   SS   MS    F    P  
Between Groups  3 0.618 0.206 8.528 0.007 
Residual   8 0.193 0.0242   
Total    11 0.812    
      
The differences in the mean values among the treatment groups are greater than would be 
expected by chance; there is a statistically significant difference (P = 0.007).   
      
Power of performed test with alpha = 0.050: 0.890      
       
All Pairwise Multiple Comparison Procedures (Student-Newman-Keuls Method):   
       
Comparisons for factor:       
Comparison   Diff of Means  p q P P<0.050 
Lean Treated vs. Lean Control 0.564  4 6.282 0.009 Yes 
Lean Treated vs. Obese Control 0.0726  3 0.809 0.838 No 
Lean Treated vs. Obese Treated 0.0574  2 0.639 0.663 Do Not Test 
Obese Treated vs. Lean Control 0.506  3 5.642 0.01 Yes 
Obese Treated vs. Obese Control 0.0152  2 0.17 0.908 Do Not Test 
Obese Control vs. Lean Control 0.491  2 5.473 0.005 Yes 
      
A result of "Do Not Test" occurs for a comparison when no significant difference is found 
between two means that enclose that comparison.  For example, if you had four means sorted in 
order, and found no difference between means 4 vs. 2, then you would not test 4 vs. 3 and 3 vs. 
2, but still test 4 vs. 1 and 3 vs. 1 (4 vs. 3 and 3 vs. 2 are enclosed by 4 vs. 2: 4 3 2 1).  Note that 
not testing the enclosed means is a procedural rule, and a result of Do Not Test should be treated 
as if there is no significant difference between the means, even though one may appear to exist.  
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Total p38(EDL) 

One Way Analysis of Variance  
        
Data source: Raw data in EDL total p38 paper      
      
Normality Test (Shapiro-Wilk) Passed (P = 0.720)    
      
Equal Variance Test: Passed (P = 0.645)    
      
Group Name  N  Missing Mean Std Dev SEM 
Lean Control 3 0  19.69 8.088 4.669 
Lean Treated 3 0  10.003 1.281 0.739 
Obese Control 3 0  40.919 4.394  2.537 
Obese Treated 3 0  29.388 6.945  4.01 
      
Source of Variation  DF   SS    MS     F    P  
Between Groups 3 1577.299 525.766 15.626 0.001 
Residual  8 269.182 33.648   
Total   11 1846.482    
      
The differences in the mean values among the treatment groups are greater than would be 
expected by chance; there is a statistically significant difference (P = 0.001).   
       
Power of performed test with alpha = 0.050: 0.995      
           
All Pairwise Multiple Comparison Procedures (Student-Newman-Keuls Method):   
       
Comparisons for factor:       
 
Comparison   Diff of Means  p q P P<0.050 
Obese Control vs. Lean Treated 30.916  4 9.231 <0.001 Yes 
Obese Control vs. Lean Control 21.228  3 6.339 0.005 Yes 
Obese Control vs. Obese Treated 11.53  2 3.443 0.041 Yes 
Obese Treated vs. Lean Treated 19.385  3 5.788 0.009 Yes 
Obese Treated vs. Lean Control 9.698  2 2.896 0.075 No 
Lean Control vs. Lean Treated 9.687  2 2.893 0.075 No 
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Phos p38(EDL) 

One Way Analysis of Variance   
      
Data source: Raw data in EDL phos p38 paper      
      
Normality Test (Shapiro-Wilk) Passed (P = 0.843)    
      
Equal Variance Test: Passed (P = 0.624)    
      
Group Name  N  Missing Mean Std Dev SEM 
Lean Control 3 0  35.931 12.528  7.233 
Lean Treated 3 0  25.73 2.595  1.498 
Obese Control 3 0  16.776 1.935  1.117 
Obese Treated 3 0  21.563 9.007  5.2 
       
Source of Variation  DF   SS    MS     F    P  
Between Groups 3 598.424 199.475 3.21 0.083 
Residual 8 497.122 62.14   
Total 11 1095.546    
      
The differences in the mean values among the treatment groups are not great enough to exclude 
the possibility that the difference is due to random sampling variability; there is not a statistically 
significant difference (P = 0.083).      
      
Power of performed test with alpha = 0.050: 0.367      
      
The power of the performed test (0.367) is below the desired power of 0.800.   
   
Less than desired power indicates you are less likely to detect a difference when one actually 
exists. Negative results should be interpreted cautiously.      
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Phos/ Total p38 (EDL) 

One Way Analysis of Variance  
       
Data source:  Raw data in EDL phos/ total p38 paper      
      
Normality Test (Shapiro-Wilk) Failed (P < 0.050)    
         
Test execution ended by user request, ANOVA on Ranks begun     
    
Kruskal-Wallis One Way Analysis of Variance on Ranks  
          
Group  N  Missing  Median  25% 75% 
Lean Control 3 0  2.005  1.209 2.576 
Lean Treated 3 0  2.417  2.33 2.572 
Obese Control 3 0  0.449  0.424 0.457 
Obese Treated 3 0  0.749  0.517 0.859 
      
H = 9.462 with 3 degrees of freedom.  (P = 0.024)      
      
The differences in the median values among the treatment groups are greater than would be 
expected by chance; there is a statistically significant difference (P = 0.024)   
      
To isolate the group or groups that differ from the others use a multiple comparison procedure. 
     
       
All Pairwise Multiple Comparison Procedures (Student-Newman-Keuls Method):   
     
Comparison   Diff of Ranks  q P<0.05   
Lean Treated vs Obese Control 24  3.843 Yes   
Lean Treated vs Obese Treated 15  3.162 No   
Lean Treated vs Lean Control 3  0.926 Do Not Test   
Lean Control vs Obese Control 21  4.427 Yes   
Lean Control vs Obese Treated 12  3.703 Do Not Test   
Obese Treated vs Obese Control 9  2.777 Yes   
         
Note: The multiple comparisons on ranks do not include an adjustment for ties.   
       
A result of "Do Not Test" occurs for a comparison when no significant difference is found 
between the two rank sums that enclose that comparison.  For example, if you had four rank 
sums sorted in order, and found no significant difference between rank sums 4 vs. 2, then you 
would not test 4 vs. 3 and 3 vs. 2, but still test 4 vs. 1 and 3 vs. 1 (4 vs. 3 and 3 vs. 2 are enclosed 
by 4 vs. 2: 4 3 2 1).  Note that not testing the enclosed rank sums is a procedural rule, and a result 
of Do Not Test should be treated as if there is no significant difference between the rank sums, 
even though one may appear to exist.      
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Total ERK1/2  (EDL) 

One Way Analysis of Variance  
    
Data source: Raw data in EDL total ERK1/2 paper      
      
Normality Test (Shapiro-Wilk) Passed (P = 0.931)    
      
Equal Variance Test: Passed (P = 0.105)    
      
Group Name  N  Missing Mean Std Dev SEM 
Lean Control 3 0  24.845 3.047  1.759 
Lean Treated 3 0  18.694 1.296  0.748 
Obese Control 3 0  29.729 1.113  0.643 
Obese Treated 3 0  26.731 4.204  2.427 
      
Source of Variation  DF   SS    MS    F    P  
Between Groups 3 195.447 65.149 8.723 0.007 
Residual  8 59.747  7.468   
Total   11 255.194    
      
The differences in the mean values among the treatment groups are greater than would be 
expected by chance; there is a statistically significant difference (P = 0.007).   
       
Power of performed test with alpha = 0.050: 0.898      
       
All Pairwise Multiple Comparison Procedures (Student-Newman-Keuls Method):   
     
Comparisons for factor:       
Comparison   Diff of Means  p q P P<0.050 
Obese Control vs. Lean Treated 11.035  4 6.994 0.005 Yes 
Obese Control vs. Lean Control 4.884  3 3.096 0.133 No 
Obese Control vs. Obese Treated 2.998  2 1.9 0.216 Do Not Test 
Obese Treated vs. Lean Treated 8.037  3 5.094 0.017 Yes 
Obese Treated vs. Lean Control 1.886  2 1.195 0.423 Do Not Test 
Lean Control vs. Lean Treated 6.151  2 3.898 0.025 Yes 
          
A result of "Do Not Test" occurs for a comparison when no significant difference is found 
between two means that enclose that comparison.  For example, if you had four means sorted in 
order, and found no difference between means 4 vs. 2, then you would not test 4 vs. 3 and 3 vs. 
2, but still test 4 vs. 1 and 3 vs. 1 (4 vs. 3 and 3 vs. 2 are enclosed by 4 vs. 2: 4 3 2 1).  Note that 
not testing the enclosed means is a procedural rule, and a result of Do Not Test should be treated 
as if there is no significant difference between the means, even though one may appear to exist.  
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Phos ERK1/2 (EDL) 

One Way Analysis of Variance     
      
Data source: Raw data in Soleus phos ERK1/2 paper      
      
Normality Test (Shapiro-Wilk) Passed (P = 0.119)    
      
Equal Variance Test: Passed (P = 0.859)    
      
Group Name  N  Missing Mean Std Dev SEM 
Lean Control 3 0  34.811 1.542  0.89 
Lean Treated 3 0  17.542 2.573  1.486 
Obese Control 3 0  21.567 1.781  1.028 
Obese Treated 3 0  26.081 1.054  0.608 
      
Source of Variation  DF   SS    MS    F    P  
Between Groups 3  494.493 164.83 149.645<0.001 
Residual 8  26.561  3.32   
Total 11  521.054    
      
The differences in the mean values among the treatment groups are greater than would be 
expected by chance; there is a statistically significant difference (P = <0.001).  
      
Power of performed test with alpha = 0.050: 1.000       
      
All Pairwise Multiple Comparison Procedures (Student-Newman-Keuls Method):   
Comparisons for factor:       
 
Comparison Diff of Means p q P P<0.050 
Lean Control vs. Lean Treated 17.269  4 16.415 <0.001 Yes 
Lean Control vs. Obese Control 13.244  3 12.589 <0.001 Yes 
Lean Control vs. Obese Treated 8.73  2 8.298 <0.001 Yes 
Obese Treated vs. Lean Treated 8.539  3 8.117 0.001 Yes 
Obese Treated vs. Obese Control 4.514  2 4.29 0.016 Yes 
Obese Control vs. Lean Treated 4.026  2 3.826 0.027 Yes 
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Phos/Total ERK1/2 (EDL) 

One Way Analysis of Variance    
      
Data source: Raw data in EDL phos/total ERK1/2 paper    
      
Normality Test (Shapiro-Wilk) Passed (P = 0.882)    
      
Equal Variance Test: Passed (P = 0.246)    
      
Group Name  N  Missing Mean Std Dev SEM 
Lean Control 3 0  1.41 0.107  0.062 
Lean Treated 3 0  0.935 0.0745  0.043 
Obese Control 3 0  0.725 0.0324  0.0187 
Obese Treated 3 0  0.989 0.128  0.0737 
      
Source of Variation  DF   SS   MS    F    P  
Between Groups 3 0.742 0.247 28.71 <0.001 
Residual 8 0.0689 0.00861   
Total 11 0.811    
      
The differences in the mean values among the treatment groups are greater than would be 
expected by chance; there is a statistically significant difference (P = <0.001).   
      
Power of performed test with alpha = 0.050: 1.000      
          
All Pairwise Multiple Comparison Procedures (Student-Newman-Keuls Method):   
        
Comparisons for factor:       
 
Comparison Diff of Means p q P P<0.050 
Lean Control vs. Obese Control 0.685 4 12.789 <0.001 Yes 
Lean Control vs. Lean Treated 0.475 3 8.857 <0.001 Yes 
Lean Control vs. Obese Treated 0.421 2 7.855 <0.001 Yes 
Obese Treated vs. Obese Control 0.264 3 4.934 0.02 Yes 
Obese Treated vs. Lean Treated 0.0536 2 1.001 0.499 No 
Lean Treated vs. Obese Control 0.211 2 3.932 0.024 Yes 
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Total JNK (EDL) 

One Way Analysis of Variance    
      
Data source: Raw data in EDL total JNK paper    
      
Normality Test (Shapiro-Wilk) Passed (P = 0.939)    
      
Equal Variance Test: Passed (P = 0.834)    
      
Group Name  N  Missing Mean Std Dev SEM 
Lean Control 3 0  27.94 3.757  2.169 
Lean Treated 3 0  19.765 1.639  0.946 
Obese Control 3 0  24.594 1.428  0.824 
Obese Treated 3 0  27.701 3.3  1.905 
      
Source of Variation  DF   SS    MS     F    P  
Between Groups 3 130.523 43.508  5.854 0.02 
Residual 8 59.453 7.432   
Total 11 189.976    
      
The differences in the mean values among the treatment groups are greater than would be 
expected by chance; there is a statistically significant difference (P = 0.020).   
        
Power of performed test with alpha = 0.050: 0.708      
      
All Pairwise Multiple Comparison Procedures (Student-Newman-Keuls Method):   
     
Comparisons for factor:       
 
Comparison Diff of Means p q P P<0.050 
Lean Control vs. Lean Treated  8.175  4 5.194 0.026 Yes 
Lean Control vs. Obese Control 3.347  3 2.126 0.339 No 
Lean Control vs. Obese Treated 0.24  2 0.152 0.917 Do Not Test 
Obese Treated vs. Lean Treated 7.935  3 5.042 0.018 Yes 
Obese Treated vs. Obese Control 3.107  2 1.974 0.2 Do Not Test 
Obese Control vs. Lean Treated 4.828  2 3.068 0.062 No 
          
A result of "Do Not Test" occurs for a comparison when no significant difference is found 
between two means that enclose that comparison.  For example, if you had four means sorted in 
order, and found no difference between means 4 vs. 2, then you would not test 4 vs. 3 and 3 vs. 
2, but still test 4 vs. 1 and 3 vs. 1 (4 vs. 3 and 3 vs. 2 are enclosed by 4 vs. 2: 4 3 2 1).  Note that 
not testing the enclosed means is a procedural rule, and a result of Do Not Test should be treated 
as if there is no significant difference between the means, even though one may appear to exist. 
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Phos JNK (EDL) 

      
One Way Analysis of Variance          
Data source: Raw data in EDL phos JNK paper      
      
Normality Test (Shapiro-Wilk)  Passed (P = 1.000)    
      
Equal Variance Test: Passed  (P = 0.523)    
      
Group Name  N  Missing Mean Std Dev SEM 
Lean Control 3 0  32.739 1.046  0.604 
Lean Treated 3 0  24.188 5.215  3.011 
Obese Control 3 0  21.631 2.913  1.682 
Obese Treated 3 0  21.442 4.776  2.757 
      
Source of Variation  DF   SS    MS    F    P  
Between Groups 3 253.651 84.55 5.676 0.022 
Residual 8 119.166 14.896   
Total 11 372.817    
      
The differences in the mean values among the treatment groups are greater than would be 
expected by chance; there is a statistically significant difference (P = 0.022).   
      
Power of performed test with alpha = 0.050: 0.690      
          
All Pairwise Multiple Comparison Procedures (Student-Newman-Keuls Method):  
      
Comparisons for factor:       
 
Comparison Diff of Means p q P P<0.050 
Lean Control vs. Obese Treated  11.296  4 5.069 0.029 Yes 
Lean Control vs. Obese Control 11.107  3 4.985 0.019 Yes 
Lean Control vs. Lean Treated  8.551  2 3.837 0.027 Yes 
Lean Treated vs. Obese Treated  2.746  3 1.232 0.672 No 
Lean Treated vs. Obese Control 2.557  2 1.147 0.441 Do Not Test 
Obese Control vs. Obese Treated 0.189  2 0.0848 0.954 Do Not Test 
          
A result of "Do Not Test" occurs for a comparison when no significant difference is found 
between two means that enclose that comparison.  For example, if you had four means sorted in 
order, and found no difference between means 4 vs. 2, then you would not test 4 vs. 3 and 3 vs. 
2, but still test 4 vs. 1 and 3 vs. 1 (4 vs. 3 and 3 vs. 2 are enclosed by 4 vs. 2: 4 3 2 1).  Note that 
not testing the enclosed means is a procedural rule, and a result of Do Not Test should be treated 
as if there is no significant difference between the means, even though one may appear to exist. 
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Phos/ Total JNK (EDL) 

One Way Analysis of Variance          
Data source: Raw data in EDL phos/total JNK paper      
      
Normality Test (Shapiro-Wilk)  Passed  (P = 0.853)    
      
Equal Variance Test: Passed (P = 0.769)    
      
Group Name  N  Missing Mean Std Dev SEM 
Lean Control 3 0  1.187 0.169  0.0977 
Lean Treated 3 0  1.221 0.213  0.123 
Obese Control 3 0  0.877 0.0697  0.0403 
Obese Treated 3 0  0.768 0.0915  0.0528 
      
Source of Variation  DF   SS   MS     F    P  
Between Groups 3 0.456 0.152  6.962 0.013 
Residual  8 0.175 0.0218   
Total   11 0.63    
      
The differences in the mean values among the treatment groups are greater than would be 
expected by chance; there is a statistically significant difference (P = 0.013).   
       
Power of performed test with alpha = 0.050: 0.801      
      
All Pairwise Multiple Comparison Procedures (Student-Newman-Keuls Method):   
       
Comparisons for factor:       
 
Comparison   Diff of Means p q P P<0.050 
Lean Treated vs. Obese Treated 0.453 4 5.31 0.023 Yes 
Lean Treated vs. Obese Control 0.344 3 4.028 0.051 No 
Lean Treated vs. Lean Control 0.0339 2 0.397 0.786 Do Not Test 
Lean Control vs. Obese Treated 0.419 3 4.913 0.021 Yes 
Lean Control vs. Obese Control 0.31 2 3.631 0.033 Do Not Test 
Obese Control vs. Obese Treated 0.109 2 1.282 0.391 No 
      
      
A result of "Do Not Test" occurs for a comparison when no significant difference is found 

between two means that enclose that comparison.  For example, if you had four means sorted in 

order, and found no difference between means 4 vs. 2, then you would not test 4 vs. 3 and 3 vs. 

2, but still test 4 vs. 1 and 3 vs. 1 (4 vs. 3 and 3 vs. 2 are enclosed by 4 vs. 2: 4 3 2 1).  Note that 

not testing the enclosed means is a procedural rule, and a result of Do Not Test should be treated 

as if there is no significant difference between the means, even though one may appear to exist.  
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APPENDIX E  

Abbreviations 

 
AAALAC  Association for assessment and accreditation of laboratory animal care 

ADA American Diabetes Association  

ANOVA One-way analysis of variance on ranks  

BSA  Bovine serum albumin 

DM Diabetes Mellitus 

ECL Enhanced chemiluminescence 

ERK1/2 Extracellular related kinase ½ 

IOD Integrated Optical Densities 

i.p. Intra peritoneal 

i.v. Intravenous 

LZ Lean Zucker 

JNK  Jun-N-terminal kinase 

KRB  Krebs-Ringers Buffer Solution 

MAPK Mitogen activated protein kinase 

NHANES National Health and Nutrition Examination Survey 

NHIS National Health Interview Survey 

OZ Obese Zucker 

PBS Phosphate buffered saline 

PBST Phosphate buffered saline with 0.5% tween 

PKB Protein kinase B 
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PRT  Progressive Resistance Training p70S6k 70 kDa ribosomal S6 kinase ROS

 Reactive oxygen species 

s.c. Subcutaneous 

SEM Standard Error Mean 

SDS-PAGE Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis 

TBS Tris buffered saline 

TBST Tris buffered saline with 0.5% tween 

T 2 DM Type - 2 diabetes mellitus 
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