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ABSTRACT 

Radiocontrast media (RCM) are necessary for many diagnostic procedures such as arteriography, 

percutaneous coronary intervention (PCI), and computed tomography. Contrast-induced acute 

kidney injury (CI-AKI) is the third most common cause of hospital-associated kidney damage 

accounting for 10-25% of cases worldwide. The mechanisms of contrast-induced renal 

impairment are not entirely known, but diminished renal hemodynamics, inflammatory 

responses, and direct cytotoxicity have been hypothesized. The purpose of this study was to 

investigate the mechanisms of direct cytotoxicity observed in HK-2 cells following treatment 

with diatrizoic acid (DA) and to determine the source of this damage. Mitochondrial function, 

endoplasmic reticulum (ER) stress, oxidative stress, and the role of calcium were examined in 

response to exposure to DA. HK-2 cells were grown to confluency for 48 hr and exposed to 0-30 

mg I/mL of DA for 2, 8, or 24 hr. The vehicle used for all studies was phosphate buffered saline 

(PBS). Mitochondrial and cell viability were decreased within 2 and 24 hr, respectively, as 

shown by MTT assays and trypan blue exclusion cell counts. Mitochondrial function was 

monitored using an Agilent Seahorse analyzer and cell mito stress tests, cell glycolysis stress 

tests, mito fuel flex tests, and real-time ATP rate assays. Oxidative stress, ER stress, and 

mitophagy were assessed in whole cell lysate and cell fractions using OxyBlot and Western blot 

analysis for 4-hydroxynonenol (4-HNE), tumor necrosis factor alpha (TNFα), NADPH oxidase 4 

(NOX4), manganese superoxide dismutase (MnSOD), glucose-regulated protein 78 (GRP78), 

C/EBP homologous protein (CHOP), microtubule-associated proteins 1A/1B light chain 3B 

(LC3B), cytochrome c, and caspases 3, 4, and 12. The role of calcium in mitophagy and 

apoptosis was determined by pretreating HK-2 cells with various calcium modulators such as 

BAPTA-AM, EGTA, 2-APB,  or calpeptin prior to the addition of DA. Studies conducted using 
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Seahorse XF technology and analysis of LC3BI and II expression determined that DA alters 

mitochondrial function within 8 hr. MTT and calpain activity assays indicated that disruption of 

calcium homeostasis plays a role in DA induced cytotoxicity within 8 hr. An increase in 

oxidative stress and loss of mitochondrial membrane integrity was evident within 24 hr exposure 

to 18 mg I/mL DA. DA induces apoptosis at 24 hr exposure as shown by Western blot analysis 

of cytochrome c leakage and activation of caspase 3 and 12. These studies indicate that 

mitochondrial damage and oxidative stress occur in HK-2 cells treated with DA, and maintaining 

calcium homeostasis may help prevent DA-induced cytotoxicity. 
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ABSTRACT 

The administration of intravenous iodinated radiocontrast media (RCM) to visualize 

internal structures during diagnostic procedures has increased exponentially since their first use 

in 1928. A serious side effect of RCM exposure is contrast-induced acute kidney injury (CI-

AKI), which is defined as an abrupt and prolonged decline in renal function occurring 48–72 

hours after injection. Multiple attempts have been made to decrease the toxicity of RCM by 

altering ionic strength and osmolarity, yet there is little evidence to substantiate that a specific 

RCM is superior in avoiding CI-AKI. RCM-associated kidney dysfunction is largely attributed to 

alterations in renal hemodynamics, specifically renal vasoconstriction; however, numerous 

studies indicate direct cytotoxicity as a source of epithelial damage. Exposure of in vitro renal 

proximal tubule cells to RCM has been shown to affect proximal tubule epithelium in the 

following manner: 1) changes to cellular morphology in the form of vacuolization; 2) increased 

production of reactive oxygen species, resulting in oxidative stress; 3) mitochondrial 

dysfunction, resulting in decreased efficiency of the electron transport chain and ATP 

production; 4) perturbation of the protein folding capacity of the endoplasmic reticulum (ER) 

(activating the unfolded protein response and inducing ER stress); and 5) decreased activity of 

cell survival kinases. The present review focuses on the direct cytotoxicity of RCM on proximal 

tubule cells in the absence of in vivo complications, such as alterations in renal hemodynamics or 

cytokine influence. 

INTRODUCTION 

Administration of radiocontrast media (RCM) necessary for X-ray based imaging 

procedures such as percutaneous coronary intervention and cardiac angiography may lead to 

contrast-induced acute kidney injury (CI-AKI). The severity of this dysfunction can range from 
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non-symptomatic increases in serum creatinine (SCr) to severe and permanent renal damage 

resulting in the need for dialysis (Brown et al., 2016). CI-AKI is defined as an absolute increase 

in SCr greater than 0.5 mg/dl or a relative increase of greater than 25% of baseline SCr peaking 

3-5 days after administration and returning to baseline within 10-14 days in the absence of other 

contributing factors (Mehran & Nikolsky, 2006; Thomsen & Morcos, 2003). Currently, the exact 

mechanisms of RCM nephrotoxicity have not been fully elucidated; however, hypothesized 

sources include alterations in renal hemodynamics and direct toxicity to renal epithelium 

mutually resulting in an increase in reactive oxygen species (ROS) and oxidative damage. Renal 

ischemia is a complex result of severe renal vasoconstriction, decreased oxygen supply, and 

increased oxygen demand within the renal outer medulla (J. S. Yang et al., 2018). Although a 

vast number of clinical reports and observational studies have explored the incidence of CI-AKI 

following administration of RCM, most finding significant risk, little is known about the direct 

cellular toxicity induced by RCM. To determine the source of RCM induced cytotoxicity, in 

vitro models must be implemented to eliminate renal hemodynamic and inflammatory responses 

to RCM administration. This minireview briefly discusses the characterization of RCM, renal 

pathogenesis, and risk factors involved in CI-AKI, as well as the direct toxic effects of RCM on 

cellular antioxidant systems, mitochondria, the endoplasmic reticulum (ER) and the unfolded 

protein response (UPR), and activity of stress kinases in in vitro systems. This short review also 

briefly addresses current and experimental preventative measures for CI-AKI.  

RADIOCONTRAST MEDIA 

The first RCM developed for intravenous administration, uroselectan, diodrast and 

hippuran, were synthesized in the late 1920s for use in urography procedures (Swick, 1930). 

During this time, advances to understand the relationships between chemical structure, toxicity, 
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and pharmacokinetics were being made, resulting in the discovery of the parent compound to all 

modern RCM, acetrizoic acid (Wallingford, 1953). Continuation of these developments led to 

the detection of RCM that are much more tolerable and increasingly radiopaque compared to 

early radiopaque compounds.  

The first generation of modern RCM are derivatives of acetrizoic acid, ionic monomers, 

and have osmolalities 5-8 fold greater than plasma, thus were denoted high-osmolar contrast 

media (HOCM). The ionization of early RCM have been associated with many toxic reactions 

including: severe nephrotoxicity (Schreiner, 1966; Stokes & Bernard, 1961), induction of 

convulsions and seizures (Melartin, Tuohimaa, & Dabb, 1970), pancreatitis in patients 

undergoing endoscopic retrograde cholangio-pancreatography (Banerjee, Grainger, & 

Thompson, 1990), severe and potentially fatal thrombi in patients with sickle-cell anemia 

(McNair, 1972), inhibition of platelet aggregation in vivo and in vitro (Gafter et al., 1979), and 

blood volume expansion leading to right heart volume overload in patients with poor cardiac 

function (Widmark, 2007). The theory that first generation RCM ionicity and osmolality were 

critical contributors to toxicity led to the dimerization or replacement of carboxyl groups with 

non-dissociating hydrophilic groups (Stratta, Quaglia, Airoldi, & Aime, 2012). The resulting 

generation of RCM consisted of ionic dimers and non-ionic monomers that had osmolalities 2-3 

fold greater than plasma and were labeled low-osmolar contrast media (LOCM). The practice of 

decreasing RCM osmolality continued resulting in the third generation of RCM of non-ionic-

dimers that exhibit osmolality that is equivalent to plasma and are designated iso-osmolar 

contrast media (IOCM). 

Following intravenous administration, RCM are rapidly diluted and distributed by 

circulating plasma reaching concentrations adequate for visualization in approximately 5-10 
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minutes. First generation RCM have a low serum-albumin binding of 0-10% while second and 

third generation RCM show no notable serum protein binding. RCM of all generations show no 

significant metabolism and are excreted unchanged predominately through the kidneys by 

glomerular filtration with a very small percentage, less than 2%, recovered in the feces 

(Amersham-Health, 2007; GE-Healthcare, 2006). The pharmacokinetics of RCM can be 

described by a two-compartment model consisting of a rapid distribution alpha phase and a slow 

excretion beta phase. In patients with normal kidney function, the alpha phase and beta phase 

half-lives for diatrizoic acid are 30 minutes and 120 minutes, respectively. However, in patients 

with significant renal impairment, the beta phase half-life can be prolonged for several days 

(Amersham-Health, 2007). 

The indications for RCM change in accordance to procedure and risk of the patient 

involved. All generations of RCM are used for angiocardiography, although the use of HOCM is 

not recommended in patients with renal or cardiac insufficiencies. HOCM are used specifically 

for nonvascular procedures such as pyelography, cystography, and routine computed tomography 

procedures. LOCM and IOCM are used for vascular procedures and multi-detector computed 

tomography (Radiology, 2018). It is commonly accepted that a major portion of the toxicity of 

RCM is due to elevated osmolalities, however, reducing the osmolality of RCM results in a 

substantial increase in RCM viscosity (Figure 1). High injection rates of RCM with higher 

viscosities could be a contributing factor in stasis of renal tubular function (Ueda, Nygren, 

Hansell, & Ulfendahl, 1993). Although there is considerable dissension as to which generation of 

RCM is the safest, IOCM are thought to be optimal as they deliver the most iodine per molecule 

with the least impact on osmolality. Figure 2 describes the physical structures of various RCM. 

Table 1 summarizes several parameters of the various generations of RCM.  
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Figure 1. Relationship between osmolality and viscosity for RCM agents. Maximum 
concentrations of iodine provided by the manufactures and corresponding viscosities at 37°C. 
Refer to Table 1 for values.  
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Figure 2. Molecular structures of different RCM. Parent compound to modern RCM, 
acetrizoic acid (A), first generation ionic monomer, diatrizoic acid (B), second generation non-
ionic monomer, Iohexol (C) and ionic dimer, ioxaglate (D), and third generation non-ionic 
dimer, iodixanol (E). 
 

RENAL PATHOGENESIS  

The administration of intravenous iodinated RCM for diagnostic procedures and medical 

interventions have increased exponentially since their introduction in the late 1920s. 

Unfortunately, CI-AKI is the third most common cause of hospital-acquired kidney damage, 

accounting for 12% of cases (Gleeson & Bulugahapitiya, 2004; Nash, Hafeez, & Hou, 2002). 

The level of this dysfunction can vary from a mild increase in SCr to permanent renal failure 

resulting in dialysis (Brown et al., 2016). Although the definition of CI-AKI varies in the 
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literature, it is generally defined as an absolute increase in SCr greater than 0.5 mg/dl or a 

relative increase of greater than 25% of baseline SCr peaking 3-5 days after administration and 

returning to baseline within 10-14 days (Mehran & Nikolsky, 2006; Thomsen & Morcos, 2003). 

The incidence of CI-AKI is low, less than 2%, in patients with normal to slightly diminished 

renal function (GFR > 60 ml/min per 1.73 m2) (Berns, 1989; Weisbord & Palevsky, 2008); 

however, in high-risk patients with moderate to severe renal impairment the incidence is as high 

as 55% (Mehran & Nikolsky, 2006).  

 
Table 1. Summary of various parameters of RCM. (Radiology, 2018) 

 

Although the exact mechanisms of toxicity of RCM have not been fully elucidated, it is 

hypothesized that the acute deterioration of kidney function is caused by a combination of renal 

medullary hypoxia and direct toxicity to renal epithelial cells. Intravenous administration of 

RCM induces transient vasodilation of renal vasculature followed by severe, sustained 

vasoconstriction, specifically of the afferent arterioles, resulting in decreased oxygen supply and 

oxidative damage to the outer medulla (Z. Z. Liu et al., 2012; Persson, Hansell, & Liss, 2005). 

This response is likely due to modifications of endogenous renal vasomodulators, specifically 

nitric oxide (NO), endothelin, and adenosine (Hall et al., 1992). The production of the 
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vasodilator NO decreases in response to RCM resulting in exacerbation of renal vasoconstriction 

(Touati et al., 1993). Levels of endothelin, a vasoconstrictive peptide released by endothelial 

cells to maintain blood pressure, have been shown to increase after RCM exposure (Clark, Kim, 

& Epstein, 1997). It is also apparent that adenosine plays a role in inducing CI-AKI. Intrarenally 

administered adenosine produces biphasic hemodynamic alterations that are similar to those 

induced by RCM (Arend et al., 1987).  

The oxidative damage induced by vasoconstriction is compounded in the relatively 

hypoxic renal medullae. Under normal physiological function, the medulla functions at very low 

O2 tension as the result of limited blood flow and the ‘oxygen shunt’ caused by the anatomy of 

the outer medullary vasculature (Heyman, Rosen, & Brezis, 1997; Leong, Anderson, O'Connor, 

& Evans, 2007). Along with poor O2 delivery, O2 consumption within the outer medullae is high 

due to ion reabsorption by the thick ascending limb (TAL) of the nephron (Heyman et al., 1997). 

The combined effects of low O2 delivery and high O2 consumption renders the renal medullae 

particularly susceptible to hypoxic injury. RCM exposure has been shown to further decrease O2 

tension within the renal medulla and simultaneously induce osmotic diuresis and increase ion 

transport and O2 consumption at the TAL (Cronin, 2010; Heyman et al., 1991). Additionally, an 

increase in tubular pressure secondary to RCM induced diuresis, increased urinary viscosity, and 

tubular obstruction result in increased oxygen consumption, worsening ischemic damage 

(Gleeson & Bulugahapitiya, 2004). The combination of alterations in vasomodulators and 

increased oxidative damage may exert direct tubular and vascular endothelial damage leading to 

a vicious cycle of hypoxic damage in the renal parenchyma (Heyman et al., 2010). Although 

renal papillary necrosis is not a hallmark of CI-AKI, administration of RCM is contraindicated in 

patients that are undergoing selective or nonselective nonsteroidal anti-inflammatory drug 
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(NSAID) therapy. Concomitant use may aggravate NSAID induced renal vasoconstriction, 

therefore, NSAID therapy should be suspended 48 hours prior to RCM administration (Horl, 

2010). 

RISK FACTORS  

Prevention and treatment of CI-AKI depends solely on the ability of the provider to 

assess the relative risk of patients undergoing radiopaque imaging procedures. Those at the 

highest risk for CI-AKI are patients with chronic kidney disease with associated diabetes 

mellitus. Other factors that increase the risk for CI-AKI include congestive heart failure (CHF), 

salt depletion/dehydration, prolonged hypotension, low hematocrit, age > 70 years, multiple 

myeloma, sepsis, and concomitant use of a variety of specific drugs. Table 2 contains a list of 

common risk factors.  

 

Table 2. Common predisposing risk factors for CI-AKI 
 

Preexisting renal dysfunction is the most decisive risk factor in the development of CI-

AKI. Due to the inverse relationship of estimated glomerular filtration rate (eGFR) and the risk 

for CI-AKI, the defined eGFR cut-off point for classifying patients as high risk is ≤ 60 
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mL/min/1.73 m² (Tsai et al., 2014). The incidence of CI-AKI in patients with underlying chronic 

renal failure ranges from 14.8 to 55%, and risk can double in patients with concomitant diabetes 

mellitus when compared to nondiabetic patients (Mehran & Nikolsky, 2006).  

Any extrarenal condition that effectively lowers intravascular volume profoundly 

increases the risk of CI-AKI. Conditions that reduce effective intravascular volume include: 

CHF, prolonged dehydration, and salt depletion. CHF activates numerous humoral and 

neurohumoral mechanisms resulting in sodium and water reabsorption by the kidneys. These 

mechanisms result in expansion of extracellular fluid by increasing venous capillary pressure, 

decreasing plasma oncotic pressure, and promoting fluid extravasation and edema formation 

(Navas & Martinez-Maldonado, 1993). Compromised left ventricle systolic performance often 

apparent in CHF patients has also been linked to increased risk of CI-AKI (Gruberg et al., 2000; 

Martin-Paredero et al., 1983). Severe dehydration and salt depletion secondary to abnormal fluid 

losses associated with insufficient salt intake have been shown to play a role in CI-AKI 

(Detrenis, Meschi, Musini, & Savazzi, 2005). Prolonged hypotension as a result of decreased 

effective intravascular volume or induced by antihypertensive treatment using angiotensin-

converting enzyme inhibitors (ACEI), angiotensin-II receptor blockers (ARB), or diuretics 

heighten risk for CI-AKI (Barrett & Parfrey, 1994). Decreased effective intravascular volume 

contributes to CI-AKI risk by reducing renal perfusion and GFR resulting in decreased O2 

delivery and increasing the concentration of RCM within the renal tubules furthering ischemic 

insult and direct cytotoxicity.  

Anemia, or low hematocrit, is an independent risk factor for CI-AKI (J. Y. Cho et al., 

2010; Murakami et al., 2013; Nikolsky et al., 2005). A study of 510 patients indicated that 

individuals with lower hematocrit were more likely to develop CI-AKI (J. Y. Cho et al., 2010).  
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In an earlier study with patients who displayed both reduced eGFR and hematocrit, rates of CI-

AKI were as high as 28.8%, whereas patients with only a diminished eGFR and normal 

hematocrit had significantly lower rates of CI-AKI (Nikolsky et al., 2005). The mechanism for 

increased CI-AKI risk in patients with low hematocrit may be partially attributed to diminished 

oxygen delivery to renal tissue which could increase susceptibility to renal damage. A study of 

200 patients revealed less CI-AKI in patients provided oxygen 10 minutes prior to angiography 

compared to room air (Sekiguchi et al., 2018). These findings suggest sufficient oxygenation 

may be beneficial to reduce renal damage by RCM, but further studies are warranted to explore 

the beneficial effect of oxygen.  

Advanced age is considered an independent predictor of CI-AKI, although the increased 

risk to develop CI-AKI is almost certainly multifactorial (Gussenhoven et al., 1991). Age-related 

alterations in renal function including decreases in GFR, tubular secretion, and urine 

concentrating ability (Denic, Glassock, & Rule, 2016; Sands, 2012) play a role, as well as the 

requirement for larger doses of RCM in elderly patients with calcified vasculature (Mehran & 

Nikolsky, 2006).  

Many radiologists and physicians consider RCM use a contraindication in patients with 

multiple myeloma (Bartels, Brun, Gammeltoft, & Gjorup, 1954; Killmann, Gjorup, & Thaysen, 

1957; Scheitlin, Martz, & Brunner, 1960). CI-AKI in myeloma patients has been attributed to 

precipitation of RCM with Tamm-Horsfall glycoprotein, resulting in increased ischemic injury 

and desquamation of renal proximal tubule (PT) cells (Dawnay et al., 1985). A more recent 

retrospective study reviewed 46 patients with myeloma who underwent RCM-enhanced CT 

scans of the chest, abdomen, and pelvis (Pahade et al., 2011). Of the 46 patients, 12 (26.1%) 

developed CI-AKI; however, there was no significant difference in peak SCr levels in patients 
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that obtained CI-AKI when compared to the patients that did not. Of the parameters obtained, 

only serum levels of β2-microglobulin increase in both patients with high tumor burden and 

decreased renal function indicating a statistically significant correlation with the development of 

CI-AKI. According to the authors, a threshold value of <2.8mg/L of β2-microglobulin could 

essentially eliminate the risk of CI-AKI in patients with multiple myeloma. The European 

Society of Urogenital Radiology concluded multiple myeloma was not a risk factor following 

evaluation of a retrospective study of 13 studies (Stacul et al., 2018). However, ESUR concluded 

that myeloma patients with diminished renal function, dehydration, or hypercalcemia were at a 

much higher risk for CI-AKI (Stacul et al., 2018). 

Sepsis is a life-threatening medical condition most often caused by an overwhelming 

immune response to a body-wide bacterial infection. Sepsis affects both adult and pediatric 

patients and is associated with numerous changes to renal function that may be mediated by 

release of these inflammatory agents as well as direct tubular insult (Alobaidi, Basu, Goldstein, 

& Bagshaw, 2015). Pro-inflammatory cytokines are released into the bloodstream to combat the 

infection triggering widespread inflammation, thrombus formation, and endothelial damage 

(Cavaillon et al., 2003). In cases of septic shock, side-effects include: reduced blood pressure, 

abnormalities in microcirculatory blood flow, coagulopathy, and endothelial dysfunction 

resulting in severely reduced oxygen delivery and organ dysfunction or failure (Angus & van der 

Poll, 2013). However, further studies are needed to evaluate the contribution of renal perfusion 

as animal studies and human studies have reported both increased and decreased renal blood 

flow (Langenberg et al., 2005; Langenberg et al., 2006). Autopsy series fail to detect extensive 

cellular necrosis in victims of septic shock (Takasu et al., 2013); this may be due to sepsis 

promoting mitochondrial damage in renal tubular epithelial cells resulting in decrease oxygen 
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consumption (Tran et al., 2011). In addition to decreased oxygenation, renal epithelium 

experience activation of an innate immune response, giving rise to pathogenic oxidative stress 

and further tissue injury (Wiersinga, Leopold, Cranendonk, & van der Poll, 2014). The use of 

nephrotoxic antibiotics to combat the infection can complicate the diagnosis and treatment of 

sepsis-associated acute kidney injury. Perhaps one, or all, of these factors play a role in why 

patients undergoing radiopaque imaging procedures are at increased risk of sepsis (Matejovic et 

al., 2011). Due to the bidirectional nature of sepsis, additional studies are needed to evaluate the 

connections between CI-AKI and sepsis.    

Concomitant use of drugs that are nephrotoxic or impair kidney function increase the risk 

of CI-AKI. Directly nephrotoxic drugs such as aminoglycosides, cyclosporine A, amphotericin 

B, and cisplatin have been reported to increase kidney susceptibility to RCM-induced toxicity 

(Kolonko, Kokot, & Wiecek, 1998; Morcos, 1998). Aminoglycosides and amphotericin B exert a 

direct nephrotoxic effect via disruption of normal phospholipid trafficking and the induction of 

severe renal vasoconstriction (Fanos & Cataldi, 2000; Swan, 1997). Cyclosporin A impairs 

lysosomal function and damages both proximal and distal convoluted tubules resulting in 

changes to tubulointerstitial transport (Kolonko et al., 1998). Cisplatin, and other platinum 

derivatives, impair proper enzyme function by binding to sulfhydryl groups resulting in direct 

toxicity to PT cells (Hanigan & Devarajan, 2003). Long-term ingestion of high doses of 

NSAIDs, certain penicillins, and sulfonamides can lead to acute tubulointerstitial nephritis which 

increases the risk of CI-AKI (Kolonko et al., 1998; Morcos, 1998). Although the role of ACEIs 

and ARBs in CI-AKI is controversial, many providers still believe that concomitant use should 

be avoided (Toprak, 2007). According to the Council on the Kidney in Cardiovascular Disease 

and the Council for High Blood Pressure Research of the American Heart Association, the use of 
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ACEIs or ARBs in radiopaque imaging procedures depends on multiple factors. If the patient’s 

renal perfusion pressure is adequate and volume depletion is not severe, the use of ACEIs or 

ARBs is acceptable and can even improve renal hemodynamics and salt excretion. However, 

angiotensin II is essential in the autoregulation of GFR and renal perfusion, and the use of these 

agents in hypovolemic patients can induce a dramatic decrease in GFR and subsequent oliguric 

or anuric renal failure (Schoolwerth et al., 2001). Conversely, the Kidney Disease Improving 

Global Outcomes Clinical Practice Guideline for Acute Kidney Injury states that there is not 

enough evidence to recommend the discontinuation of ACEIs or ARBs prior to RCM 

administration(Kellum, 2012). Loop diuretics, specifically furosemide, have been shown to 

increase the risk of CI-AKI (Majumdar et al., 2009). Other studies have stated that although loop 

diuretic exposure is associated with acute kidney injury in hospitalized patients, the change in 

renal function is small and loop diuretic use does not explain the variability in overall renal 

function (El-Refai et al., 2011). 

CYTOTOXICITY 

The cytotoxic effects of RCM on PT cells have been extensively studied. The most 

commonly reported responses to the interaction between RCM and PT cells are vacuolization of 

the PT cells, increased production of ROS and induction of oxidative stress, mitochondrial 

dysfunction and an ensuing decline in ATP production, activation of the UPR and ER stress, and 

alterations in activity of stress kinases (Andersen, Christensen, & Vik, 1994; Andersen, Vik, 

Eikesdal, & Christensen, 1995; Tervahartiala et al., 1997; Tervahartiala et al., 1991).  

Epithelial PT cell vacuolization is generally interpreted as an indicator of drug toxicity 

and is a histopathological feature of CI-AKI. One route in which RCM are influxed into PT cells 

is via pinocytosis. During the process of urine production, RCM is concentrated in the renal 
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tubules. As a result, PT cells are exposed to increasing concentrations of RCM, inducing a rise in 

pinocytic vessels containing RCM, formation of large vacuoles, alterations in renal histology, 

and epithelial damage (Andreucci, Solomon, & Tasanarong, 2014; Dickenmann, Oettl, & 

Mihatsch, 2008). An early study on vacuolization of PT in response to RCM demonstrated that 

male Sabra rats experienced vacuolar changes in the early segments of the PT within 120 

minutes of administration to 2.9 g I/kg of iothalamate. The changes were described as being 

similar in nature and closely resembled what has been described in human contrast nephropathy 

(Heyman et al., 1988). A study performed by Tervahartiala et al. demonstrated that 3 g I/kg of 

diatrizoic acid or iopromide induced statistically significant PT cell vacuolization within 2 hours 

of administration in diabetic Wistar rats of both sexes (Tervahartiala et al., 1991). Iohexol and 

iotrolan caused longer lasting and more pronounced vacuolization (Tervahartiala et al., 1991). A 

separate study on male Sprague-Dawley rats showed a low-level increase in cytoplasmic 

vacuoles in PT cells occurred in as little as 5 minutes and continued to increase in size and 

number for 24 hours after single-dose administration of 3 g I/kg iotrolan (Rees, Old, & 

Rowlands, 1997). A more modern study performed on male Wistar rats demonstrated that a 

concentration as low as 10ml/kg of iodixanol can induce vacuolization in PT cells in 24 hours 

(Nasri et al., 2015). Although RCM from each generation induce vacuolization, the lack of in 

vitro studies makes it impossible to determine if this is a direct toxic side effect of RCM.  

CI-AKI is the result of a combination of alterations in renal hemodynamics and toxic 

renal parenchymal damage. Aside from hypoxia induced by low oxygen supply, it is believed 

that the latter of the two is due to oxidative stress induced by an increase in ROS. Additionally, 

exposure to RCM results in diminished availability and activity of cellular antioxidant systems. 

Under physiological conditions, the production of ROS within renal parenchyma is connected to 
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tubular transport, specifically in areas of the nephron that have dense mitochondrial populations 

such as the PT, the convoluted tubules, or the TAL of the nephron. A major source of production 

of superoxide anions (O2
•─) and hydroxyl radicals (OH─) takes place within the mitochondria via 

NAD(P)H-oxidases (Heyman et al., 2010). Additionally, as the consumption of oxygen begins to 

overwhelm available oxygen during periods of hypoxia, there is an increase in the complete 

conversion of ATP to hypoxanthine by 5’-nucleotidase. From this, hypoxanthine is converted to 

uric acid and hydrogen peroxide (H2O2) via xanthine oxidase. Consequently, H2O2 and O2
•─ can 

react with NO to form peroxynitrite leading to renal vasoconstriction and epithelial damage by 

decreasing the vasodilatory effects of NO and interacting with protein and DNA, respectively. 

Although there is evidence that peroxynitrite can induce a degree of vasodilation initially, long-

term exposure to peroxynitrite in an environment devoid of NO can lead to irreversible 

endothelial and epithelial damage (Pacher, Beckman, & Liaudet, 2007). 

Several experimental studies have shown that exposure of renal cells to RCM enhances 

ROS production resulting in oxidative stress. Huang and colleagues noted that exposure of a 

non-cancerous, immortalized human renal proximal tubule epithelial cell line (HK-2) to the 

HOCM ioxitalamate induced an increase in cytoplasmic ROS production and formation of 8-

hydroxy-2’-deoxyguanosine (8-OHdG), indicating oxidative damage following a 48 hour 

treatment (Huang et al., 2016). A significant increase of cytosolic superoxide formation took 

place only 2 hours after exposure of HK-2 cells to 150 mg I/mL of the LOCM iohexol (Jeong et 

al., 2018). A similar study using a canine distal convoluted tubule cell line (MDCK) showed that 

exposure to 50, 100, or 200 mg I/mL of iobitridol, iopamidol, or iodixanol induced a dose-

dependent increase in ROS production within 3 hours (Quintavalle et al., 2011). A study 

performed by Netti et al. demonstrated that a statistically significant increase NADPH oxidase-
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dependent ROS can be seen in HK-2 cells within 30 minutes of exposure to 200 mg I/mL of 

LOCM iohexol or iopamidol (Netti et al., 2014). An increase in intracellular ROS can be seen 

regardless of generation of RCM.  

Although there are several in vitro studies pertaining to the effect of RCM on the 

production of ROS, very little has been done to examine the source of ROS production. A rise in 

ROS concentrations could be, in part, due to a reduction in the efficacy of intracellular 

antioxidant systems. Figure 3 shows the intracellular antioxidant systems. At the time of this 

review, a study performed by Jeong et al. is a lone study examining RCM effects on intracellular 

antioxidant systems in vitro. The Jeong group determined that HK-2 cells exposed to 150 mg 

I/mL of iohexol induced a significant decrease in manganese superoxide dismutase (MnSOD) 

and glutathione peroxidase (GPx) after 2 hours (Jeong et al., 2018). It is apparent that there is a 

significant gap in knowledge pertaining to the effects of RCM on antioxidant systems in vitro; 

however, the effects of RCM on reduced glutathione (GSH), GPx, MnSOD, and Catalase (CAT), 

have been studied extensively in vivo. A study performed by Gong et al. determined that male 

Sprague-Dawley rats exposed to 1.5-2 g I/kg of iohexol resulted in a decrease MnSOD and GSH 

after 24 hours (Gong et al., 2016). Tasanarong et al. showed in a similar study that exposing 

male Sprague-Dawley rats to 1.6 g I/kg of iopromide induced a significant decrease in MnSOD 

and CAT after 24 hours(Tasanarong, Kongkham, & Itharat, 2014). GSH, GPx, MnSOD, and 

CAT were all significantly reduced in male Sprague-Dawley rats exposed to 3 g I/kg of 

iodixanol (N. Liu et al., 2018). It should be stated that these changes in cellular oxidant defenses 

may not be a direct result of RCM toxicity and could be induced, in part, by alterations in renal 

hemodynamics. Taken together, increased ROS production and a decrease in the efficacy of 
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renal antioxidant systems plays an important role in CI-AKI; however, the effects of RCM on 

antioxidant systems on in vitro systems needs to be studied more in depth. 

 

 

Figure 3. ROS scavenging pathways in renal epithelial cells.  
 

Under normal physiological conditions, the mitochondria are one of the main sources of 

intracellular ROS and the main organelle target for ROS (Cho, Nakamura, & Lipton, 2010). 

Previous studies indicate that mitochondrial injury plays an important role in various types of 

acute kidney injury (Tang et al., 2018; Xiao et al., 2014). Humes et al. noted that PT segments 

isolated from New Zealand white rabbits incubated with diatrizaote demonstrated significant 

reductions in basal and uncoupled respiration and intracellular ATP levels indicating an 

interaction between diatrizoic acid and PT cell mitochondria (Humes, Hunt, & White, 1987). A 

follow up study using the same model compared the mitochondrial toxicity of diatrizoic acid and 

iopamidol (Messana, Cieslinski, Nguyen, & Humes, 1988). The authors determined that 
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diatrizoic acid induced greater reductions in intracellular ATP, basal respiration, and uncoupled 

respiration when compared to iopamidol and both RCM were toxic when compared to control. 

Messana et al. continued their studies of the effects of RCM on isolated proximal tubules by 

comparing the mitochondrial toxicity of the non-ionic monomer iopamidol and ionic dimer 

ioxaglate. The authors determined that both RCM induced mitochondrial damage but the 

differences in direct nephrotoxic potential become insignificant when normalized for iodine 

content (Messana, Cieslinski, & Humes, 1990). Exposure of a porcine kidney cell line that 

express characteristics similar to PT cells (LLC-PK1) to ioversol caused depolarization of 

mitochondrial membranes and stimulated the release of cytochrome c activating caspase-9 

through the action of the adaptor molecule apoptotic protease-activating factor-1 (Itoh et al., 

2006). Lei et al. determined that exposure to iohexol or iodixanol induced a significant increase 

in mitochondrial ROS and mitochondrial membrane potential in HK-2 cells (Lei et al., 2018). An 

in vivo investigation on the effects of RCM on the electron transport chain determined that 

exposure of male Wistar albino rats to 1.95 g I/mL of diatrizaote induced decreased activity in 

complex I and complex III within the kidneys, although not to a significant degree (Roza et al., 

2011). As one would expect, significant mitochondrial dysfunction results insufficient ATP for a 

cell to maintain its cellular functions resulting in activation of the intrinsic apoptotic pathways; 

however, the source of mitochondrial dysfunction in response to RCM exposure has yet to be 

identified (Haller & Hizoh, 2004). 

The primary role of the ER is the synthesis and folding of secreted, membrane-bound, 

and some organelle-targeted proteins. The environment within the ER is optimal for protein 

folding and management, as well as ATP storage and calcium transport (Gaut & Hendershot, 

1993). Perturbations of cellular ATP levels, calcium concentration, and/or the redox status within 
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a cell can lead to a decline in the protein folding ability of the ER (Bravo et al., 2013). An 

accumulation of unfolded or misfolded proteins activates a pro-survival response responsible for 

restoring protein folding function within the ER called the unfolded protein response (UPR) 

(Schroder & Kaufman, 2005). Prolonged activation of the UPR will promote a shift from pro-

survival to pro-apoptotic signaling, designated ER stress (Szegezdi, Logue, Gorman, & Samali, 

2006). ER stress can lead to the activation of multiple signaling pathways that induce cellular 

apoptosis (Figure 4) and its role in CI-AKI has recently become a topic of interest. An initial 

study performed by Wu et al. determined the effects of diatrizoic acid on rat renal proximal 

tubule cells (NRK52E). Exposure of NRK52E cells to 40 mg I/mL of diatrizoic acid induced an 

increase in multiple ER stress markers including glucose-regulated protein 78 (GRP78), RNA-

dependent protein kinase-like ER kinase (PERK), and inositol-requiring ER-to-nucleus signal 

kinase 1 (IRE1) within 24 hours (Wu et al., 2010). An additional study by Wu et al. on NRK52E 

cells determined that 40 mg I/mL of diatrizoic acid induced significant increases in the ER stress 

markers activating transcription factor 6 (ATF6), C/EBP homologous protein (CHOP), and the 

ER stress dependent caspase, caspase-12 within 24 hours (Wu et al., 2013). Peng et al. showed 

that HK-2 cells exposed to 40 mg I/mL of diatrizoic acid induced statistically different increases 

in GRP78, activating transcription factor 4 (ATF4), CHOP, and caspase-12 within 4 hours (P. A. 

Peng et al., 2015).  
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Figure 4. Pathways involved in the UPR.  
 

Mitogen-activated protein kinases (MAPKs) such as the extracellular signal-regulated 

kinases (ERK1/2 or p42/44MAPK), the c-Jun N-terminal kinases (JNK1/2), and p38MAPK have 

been shown to be activated in response to ROS (Matsuzawa & Ichijo, 2008; Robinson & Cobb, 

1997). The ERK1/2 cascade is activated in response to mitogenic and survival stimuli, whereas 

JNK1/2 and p38MAPK pathways are stimulated in response to cellular stresses including 

oxidative agents, hypoxia, UV radiation, and pro-inflammatory cytokines (Ichijo, 1999; Ip & 

Davis, 1998). Previous studies have shown that renal epithelial cell exposure to RCM results in 

activation of the intrinsic apoptotic pathway (Romano et al., 2008). An extensive study 
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performed by Quintavalle et al. demonstrated the role of stress kinases in the activation of this 

pathway. MDCK cells were exposed to 50, 100, or 200 mg I/mL iobitridol, iopamidol, or 

iodixanol for 3 hours to determine the effect of RCM on stress kinases. Each of the tested RCM 

induced a dose-dependent increase in phosphorylated JNK and p38MAPK within 1 hour, 

indicating that exposure to RCM does induce activation of the pro-apoptotic stress kinases. The 

role of JNK and p38MAPK were verified in two methods: pretreating the MDCK cells with the 

p38 inhibitor SB203580 or transfecting MDCK cells with kinase-dead mutants for p38 or JNK. 

MDCK cells pretreated with SB203580 or transfected with kinase-dead mutants were completely 

protected from apoptotic effects of all three RCM verifying the role of stress kinases in CI-AKI 

(Quintavalle et al., 2011). Another study confirming Quintavalle’s findings demonstrated that 

pretreating HK-2 cells with JNK inhibitor SP600125 or p38 inhibitor SP283580 significantly 

decreased cleaved caspase-3 activation and increased pro-survival protein bcl-2 after exposure to 

200 mg I/mL iopamidol (X. He et al., 2016). A more recent study on LLC-PK1 cells determined 

that 25 mg I/mL of iodixanol will induce increases in activated p38MAPK, JNK, and ERK after 

24 hours of exposure (Lee et al., 2018).  

Additional kinases important to cellular survival that are affected by RCM exposure 

include protein kinase B (Akt), PTEN-induced putative kinase (PINK1), Rho-associated protein 

kinase (ROCK), Janus kinases (JAK) and signal transducer and activator of transcription proteins 

(STATs). A study performed by Xie et al. on the effects of ioversol on HK-2 cells indicated that 

a 30 minute exposure to 100 mg/ml of ioversol significantly decreases the presence of 

phosphorylated Akt while simultaneously inducing caspase-3 cleavage and apoptosis (Xie et al., 

2017). This discovery demonstrates that the phosphoinositide-3 kinase (PI3)/Akt pathway may 

play a role in cellular fate after exposure to RCM. Renal tissues extracted from male Sprague-



24 

Dawley rats that were exposed to 12.25 g I/kg iohexol demonstrated a significant increase of 

PINK1 (X. Yang et al., 2018). Activation of PINK1 indicates an increase in mitophagy resulting 

in decreased ATP production and energy failure. ROCK plays an important role in various 

cellular processes including: cell adhesion, migration, proliferation, cytokine activation, 

inflammatory cell migration, smooth muscle cell contraction and cell cycle regulation. Inhibition 

of Rho-ROCK pathways has been shown to diminish CI-AKI in vivo (Su et al., 2014; Wang et 

al., 2018); however, the relationship of CI-AKI and ROCK has not been explored in vitro. The 

role of JAK-STAT pathway was determined in a study performed by Yokomaku et al. 

Pretreating male Sprague-Dawley rats or LLC-PK1 cells with asialoerythropoietin or 

erythropoietin activated JAK2 and STAT5 and attenuated ioversol-induced nephropathy or 

cellular injury indicating that the JAK-STAT pathway may play a role in CI-AKI (Yokomaku et 

al., 2008). 

Calcium overload within renal parenchyma is also thought to play a role in CI-AKI via 

ROS overproduction, p38 MAPK activation, and endothelin activation and release (Duan et al., 

2000; Humes et al., 1987; Jin et al., 2015; Schick, Bangert, Kubler, & Haller, 2002; D. Yang & 

Yang, 2013). However, the initial source of intracellular calcium overload has not been fully 

elucidated and could result from ER or mitochondrial dysfunction, inhibition of the Na/K-

ATPase, or changes in function of the Na/Ca exchanger system  (Krebs, Agellon, & Michalak, 

2015; D. Yang & Yang, 2013; D. Yang, Yang, Jia, & Ding, 2013). 

INTERVENTIONS FOR CYTOTOXICITY BY HYDRATION, DRUGS, AND NATURAL 
PRODUCTS 

Adequate hydration is the gold standard for prevention of CI-AKI. The rationale is that 

forced or adequate hydration induces an expansion of intravascular volume, suppression of 

renin-angiotensin cascade, reduction of renal vasoconstriction and hypoperfusion, and increases 
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urine output (Andreucci, Faga, et al., 2014). Higher urine output is associated with a lower 

incidence of CI-AKI due to the decreased time of tubular RCM exposure (Solomon & 

Dauerman, 2010). Unfortunately, high infusion rates or increased total extracellular volumes can 

result in a volume overload and initiate pulmonary edema in patients with preexisting cardiac 

impairment (S. Q. Chen et al., 2018). Due to the considerable dissent in the medical community 

pertaining to acceptable preventative measures for CI-AKI, substantial research has gone into 

finding a potential nephroprotective agent.  

The most explored strategy in the prevention of CI-AKI is the use of antioxidants to 

decrease contrast-induced oxidative stress. Common antioxidants have been studied including N-

acetylcysteine (NAC), ascorbic acid, and α-/γ-tocopherol. In vitro studies have provided 

consistent results for protection by NAC. A study performed by Romano et al. demonstrated the 

protective effects of NAC on LLC-PK1, MDCK, and human embryonic kidney cells (HEK-293) 

against IOCM and LOCM. At a concentration of 200 mg I/mL of iobitridol and iodixanol and an 

incubation time of 3 hours, pre-treatment with NAC protected the three cell lines from RCM-

induced apoptosis in a dose dependent manner (Romano et al., 2008). Yang et al. demonstrated 

that NRK-52E cells pretreated with low concentration NAC (10 mmol/L) before being exposed 

to 50, 100, and 150 mg I/mL of iopromide for 4 hours significantly decreased early stage 

apoptosis as seen by Annexin V and propidium iodide (PI) staining (Y. Yang et al., 2014). The 

Romano et al. study mentioned above also examined the protective effects of ascorbic acid 

(vitamin C) in vitro. The authors demonstrated that a 2 hour pretreatment with ascorbic acid 

prevented high concentration IOCM- and LOCM-induced apoptosis in a dose-dependent fashion; 

however, NAC was more effective than ascorbic acid at preventing RCM-induced cytotoxicity 
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(Romano et al., 2008). Unfortunately, the protective effects of α-/γ-tocopherol on CI-AKI have 

not been studied in vitro.  

Although certain antioxidants have shown to be protective against CI-AKI in vitro, the 

results from a clinical standpoint are inconclusive. Numerous clinical studies have shown NAC 

to be a potentially effective strategy for the prevention of CI-AKI (Briguori et al., 2007; Briguori 

et al., 2004; Tepel et al., 2000); other studies have concluded that NAC alone or in combination 

with ascorbic acid was not beneficial to patients (Palli et al., 2017; Yeganehkhah et al., 2014).  

Further studies are needed to evaluate the long-term clinical benefits in patients as a study in 

over 5000 patients concluded that acetylcysteine was not beneficial when evaluating outcomes 

90 days after angiography in high renal risk patients (Weisbord et al., 2018). Antioxidant 

vitamins α-/γ-tocopherol (Vitamin E) have also been shown to be useful in the prevention of CI-

AKI in a clinical setting (Briguori et al., 2007; Spargias et al., 2004; Tasanarong, Vohakiat, 

Hutayanon, & Piyayotai, 2013). A study performed by Kongkham et al. on male Sprague-

Dawley rats demonstrated that pretreatment with 250 or 500 mg Vitamin E prior to induction of 

CI-AKI with 1.6 g I/kg iopromide significantly decreased tubular necrosis, PT cell congestion, 

and interstitial edema while simultaneously increasing total antioxidant capacity and MnSOD 

activity when compared to non-pretreated rats (Kongkham, Sriwong, & Tasanarong, 2013).  

HMG-CoA reductase inhibitors, or statins, are a class of lipid lowering medications 

specifically used in the treatment of cardiovascular disease. Statins are thought to protect against 

RCM cytotoxicity by increasing heme oxygenase-1 production and diminishing the activity of 

NADPH oxidase, resulting in the reduction of ROS formation and oxidative stress induced by 

RCM (Grosser et al., 2004; Stoll, McCormick, Denning, & Weintraub, 2004). A sole in vitro 

study performed by Quintavalle et al. on the nephroprotective effects of atorvastatin determined 
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that MDCK and HK-2 cells pretreated with 0.2 μM atorvastatin for a minimum of 6 hours 

induced a significant increase in cell viability and subsequent decrease in RCM-induced 

apoptosis after a 3 hour exposure to 200 mg I/mL iodixanol (Quintavalle et al., 2012). This class 

of pleiotropic drugs may also be an effective pretreatment in reducing the incidence of CI-AKI 

as seen by various clinical studies (Jo et al., 2008; Toso et al., 2010; Tropeano et al., 2016). 

Pharmacologic agents used primarily for the treatment of hypertension such as nebivolol, 

ACEIs, and ARBs have garnered some interest in the prevention of CI-AKI. Nebivolol is a third 

generation β1-receptor antagonist that may protect the kidney via its antioxidant and NO-

mediated vasodilating properties (Toprak et al., 2008). Toprak et al. determined the efficacy of 

nebivolol in preventing CI-AKI initially in female Wistar albino rats pretreated with 2 mg/kg of 

nebivolol once daily for 5 consecutive days prior to administration of 6 ml/kg of diatrizoic acid 

on the fourth day. Pretreatment with nebivolol resulted in a reduction of tubular necrosis, 

medullary congestion, and tubular casts, as well as an increase renal NO levels in rats when 

compared to rats that did not receive nebivolol (Toprak et al., 2008). A more recent study 

followed the Toprak et al. study design and determined that pretreatment with nebivolol prior to 

administration of RCM significantly reduced advanced oxidation protein products and 

malondialdehyde in serum and kidney tissue and increased total serum NO concentration (Koc et 

al., 2011). The role of the renin-angiotensin-aldosterone system (RAAS) and RAAS-blocking 

drugs in CI-AKI is controversial. This is due to experimental data suggesting that ACEIs or 

ARBs protect the kidneys from RCM-induced nephrotoxicity while other claims that RAAS-

blocking drugs are nephrotoxic and worsen CI-AKI (Ikeda et al., 2006; Patel, King, & Jovin, 

2011; Rosenstock et al., 2008). A large prospective study performed by Holscher et al. evaluated 

CI-AKI predictors and long-term outcomes of high-risk patients. The authors noted that 
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decreased eGFR, the use of ACEIs, and post-procedural hemodialysis were independently 

associated with increased incidence of CI-AKI (Holscher et al., 2008). The overall lack of in 

vitro experimentation pertaining to high blood pressure medications is troubling when compared 

to the amount of clinical data that has been collected. This is an area where more research is 

necessary to make an accurate prediction of the possible mechanisms involved.  

The administration of naturally derived compounds in the prevention of CI-AKI has 

shown considerable promise in recent years. Polyphenolic compounds such as resveratrol, 

salvianolic acid B, epigallocatechin gallate (EGCG), flavonoids compound found in Artemisia 

argyi, the xanthone compound α-mangostin all demonstrated protective effects against CI-AKI in 

vitro. Resveratrol, a compound found in grape skins, significantly reduced HK-2 cytotoxicity 

induced by ioxithalamate after 48 hour exposure (Huang et al., 2016). Salvianolic acid B, derived 

from the traditional Chinese medicine Danshen, decreased renal epithelial damage in male 

Sprague-Dawley rats exposed to iohexol (Tongqiang et al., 2016). In a similar fashion to 

salvianolic acid B, EGCG, the major antioxidant component of green tea, reduced the damage 

induced by iopromide in male Sprague-Dawley rats (Z. Gao et al., 2016). A study performed by 

Lee et al. demonstrated that the flavonoid components of Artemisia argyi, also called mugwort, 

completely prevented the cytotoxic effects induced by iodixanol on LLC-PK1 cells (Lee et al., 

2018). A separate study performed by Lee et al. showed that non-toxic concentrations of α-

mangostin, found in mangosteen, improved the viability of iodixanol treated LLC-PK1 cells by 

90.42% against contrast-induced apoptotic damage (Lee et al., 2016). It is apparent that the 

nephroprotective effects of certain naturally derived compounds can prevent contrast-induced 

cytotoxicity both in vitro and in vivo. 
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CONCLUSIONS 

RCM are non-biologically active compounds necessary for a multitude of diagnostic 

imaging procedures. Modern RCM induce severe and prolonged vasoconstriction within the 

renal medulla and are directly toxic to the extremely metabolically-active renal epithelium such 

as PT cells and the TAL. Exposure to RCM and the consequential epithelial damage results in an 

increase in ROS and oxidative stress, vacuolization of tubular cells, damage to the mitochondria 

in the form of decreased respiration and ATP production, perturbations in the protein folding 

capacity of the ER resulting in activation of the UPR and ER stress, and decreased activity of 

survival kinases and activation of pro-apoptotic stress kinases. Current measures to ensure the 

prevention of CI-AKI are lacking and considerable research needs to be invested into in vitro 

studies to determine the source of direct RCM induced cytotoxicity. 
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CHAPTER 2: GENERAL METHODS, MATERIALS, AND STATEMENT OF 
HYPOTHESIS 

 

THE HK-2 CELL MODEL 

To determine the direct cytotoxicity of DA, a system that is devoid of the renal 

hemodynamic and inflammatory responses to RCM is necessary. Thanks to doctoral work 

previously done in our laboratory (Murphy et al., 2017), we had the advantage of having a well-

documented in vitro model focused on nephrotoxicity to use for my dissertation research. Human 

kidney 2 (HK-2) cells are an immortalized, noncancerous, human epithelial proximal tubule cell 

line that maintains biochemical properties and activity similar to human proximal tubules in situ 

(Gunness et al., 2010; Paolicchi et al., 2003; Ryan et al., 1994). HK-2 cells retain functioning 

organic ion transporters (OAT) 1 and 3, which have been reported to transport DA into proximal 

tubule cells (Mudge, Berndt, Saunders, & Beattie, 1971) and have been used as a widely 

accepted model for CI-AKI studies (Haeussler, Riedel, & Keller, 2004; Zager, Johnson, & 

Hanson, 2003).  

HK-2 cells were purchased from the American Type Culture Collection (ATCC, 

Manassas, VA, CRL-2190) and were cultured according to ATCC guidelines. Cells were grown 

according to ATCC recommended conditions of keratinocyte-free media with added bovine 

pituitary extract (50 μg/mL) and recombinant epithelial growth factor (5 ng/mL) purchased from 

Fisher Scientific (Gibco, Carlsbad, CA, Item No. 17005-042). Cells were grown in a warm, 

humidified incubator at 37°C with 5% CO2.  

EXPERIMENTAL PROTOCOL 

For all experiments, HK-2 cells were plated into T75 flasks, 6 well plates, 96 well plates, 

or XFe and XFp Culture Miniplates at a cellular density of 1.0x106, 5x105, 37,000, and 1.75x105 
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cells/mL, respectively, and allowed to equilibrate for 48 hr in a warm, humidified incubator set 

to 37°C with 5% CO2. Media was subsequently replaced, and cells were treated with a final 

concentration of 0, 2, 5, 10, 15, 18, 23, 28, or 30 mg I/mL DA for 2, 8, or 24 hr. Due to the fact 

that preparations of RCM vary based on iodine concentration, manufacturer, and viscosity, units 

of RCM are conventionally expressed as mg I/mL to maintain iodine dose and bolus compaction 

in a clinical setting (Faggioni & Gabelloni, 2016). Vehicle control was an equal volume of PBS. 

The concentrations used are levels of DA that are found within the plasma of a healthy 75 kg 

man after intravenous administration, depending on procedure. A literature review indicates that 

the concentrations used in this study are far less than what is currently being used in other 

mechanistic studies. Some studies use concentrations as high as 150 mg I/mL to induce direct 

cytotoxicity (Jeong et al., 2018; Y. Yang et al., 2014). Exposing HK-2 cells to a concentration 

closer to what proximal tubule cells experience in situ following an imaging procedure better 

represents the renal damage observed in a clinical setting.  

HK-2 cells were exposed to clinically relevant concentrations of DA for 2, 8, or 24 hr. 

These time points were decided upon based on the half-life of DA. Theoretically, following 

administration of RCM, the tubular epithelium of a patient with a GFR > 60 mL/min is exposed 

to RCM for approximately 8 hr; however, as the viscosity of RCM rises the amount of time the 

kidney could experience a DA-induced insult can increase for up to 24 hr. Following the 

exposure period, cells were either collected for trypan blue exclusion, isolation of cellular 

fractions, protein expression analysis, SOD activity assays, and calpain activity assays or used 

for MTT assays or Agilent Seahorse cellular energy assays.  
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GENERAL PROTOCOL FOR WESTERN BLOTTING AND OXYBLOT® 

Following the DA exposure period, cells were collected, lysed, and protein levels were 

determined using the Bradford protein assay (discussed below) (Bradford, 1976). Western blots 

were performed as follows: 40 µg aliquots of cell lysate were diluted to 25 µl with double 

distilled H2O (denoted from this point on as H2O) followed by the addition of 25 µl reducing 

sample buffer (RSB). In scenarios where the volume of cell lysate was greater than 25 µL prior 

to dilution with H2O, the sample aliquots were placed into microcentrifuge tubes and lyophilized 

in a vacuum at -107°C. The lyophilized samples were reconstituted in 25 µL H20 and 25 µL 

RSB. The samples were then denatured in boiling water for 5 min. After the denaturation step, 

samples were separated via gel electrophoresis on a 12.5% polyacrylamide gel and transferred to 

a 0.45 µM nitrocellulose membrane (Bio-Rad; Hercules, CA, Item No. 1620115). MemCode® 

staining was used to verify transfer of equal protein loading and standardize the densitometry to 

total protein in each of the lanes. Protein staining was used as an alternative to standard 

housekeeping proteins such as GAPDH or actin due to more reliable results in toxicological 

studies (Zhang et al., 2019).  

Membranes were then blocked using 1% bovine serum albumin (BSA) or 5% milk 

dissolved in TBST (10 mM Tris-HCl, 150 mM NaCl, 0.1% Tween-20; pH 8.0) or PBST (8mM 

Na2HPO4, 0.15M NaCl, 2mM KH2PO4, 3mM KCl, 0.1% Tween-20; pH 8.0) for 1 hr. All of the 

antibodies used in the current work can be found in Table 3. The membrane was then washed 

with TBST or PBST three times for ten min each followed by the addition of secondary 

antibody. After another round of three washes, the membrane was developed using Amersham 

ECL Western Blotting Detection Agent (GE Healthcare Life Sciences, Marlborough, MA, Item 
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No. RPN2232). A BioRad chemic-doc system was used to capture the gel image and used for 

densitometry analysis (version 4.0.1, Bio-Rad, Hercules, CA, Catalog No. 170-9690). 

The OxyBlot® (EMD Millipore; Burlington, MA, Item No. S7150) procedure requires a 

derivatization step. Protein carbonyls within each sample are derivatized to 2,4-

dinitrophenylhydrazine (DNPH) and can then be measured using an antibody that recognizes 

DNPH.  

Table 3. Primary and secondary antibodies used in current work.  
 

SEAHORSE XFe ASSAYS 

The Agilent Seahorse XFe analyzer allows for real-time measurements of cellular 

metabolic function in cultured cells. Oxygen Consumption Rate (OCR) and Extracellular 

Acidification Rate (ECAR) are measured to interrogate key cellular functions such as 

mitochondrial respiration and glycolysis. Mitochondrial function and glycolysis were measured 
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using Agilent cell mito stress tests, cell glycolysis stress tests, mito fuel flex tests, and real-time 

ATP rate assays following optimization of cell number per well. 

HK-2 cells were cultured in XFe Culture Miniplates (175,000 cells/mL) (Agilent 

Technologies, Item No. 101085-004) and allowed to grow for 48 hr followed by treatment with 

vehicle or DA. Prior to the assay, cells were washed with assay media (Agilent Technologies, 

Santa Clara, CA, Item No. 103575-100) supplemented with 1 mM glucose (Agilent 

Technologies, Item No. 103577-100), 1 mM pyruvate (Agilent Technologies, Item No. 103578-

100), and 2 mM glutamine (Agilent Technologies, Santa Clara, CA, Item No. 103579-100) and 

equilibrated in 175 or 180 μL pre-warmed assay media at 37°C devoid of CO2 for 45 min.  

In each assay, three basal OCR/ECAR measurements were taken at three minute intervals 

using the Seahorse XFe instrument system. Following basal measurements, various probes were 

injected and additional OCR and ECAR measurements were taken. Oligomycin, an ATP-

synthase inhibitor, was used to stimulate glycolysis and the final step of the electron transport 

chain. Maximal respiration was stimulated by the addition of carbonyl cyanide-4-

(trifluoromethoxy)phenylhydrazone (FCCP), an uncoupler of mitochondrial oxidative 

phosphorylation that moves protons across the mitochondrial inner membrane. The complex I 

and complex III inhibitors rotenone and antimycin-A, respectively, were used to completely 

inhibit mitochondrial respiration. The hexokinase inhibitor, 2-deoxyglucose, was used as an 

inhibitor of glycolysis. The cell mitochondrial stress test (Agilent Technologies, Item No. 

103015-100), initially inhibits ATP synthase with an injection of oligomycin (0.5 μM), FCCP 

(0.5 μM), followed by complete inhibition of the electron transport chain by injection of a 

mixture of rotenone/antimycin-A (0.5 μM) and mitochondrial function was assessed by 

continuous measurement of OCR (Figure 5). Preliminary studies for FCCP indicated a final 



35 

concentration of 0.5 μM was optimal. The cell glycolysis stress test (Agilent Technologies, Item 

No.103020-100), utilizes glucose (10 mM), oligomycin (1 μM), and 2-DG (50 mM) followed by 

continuous OCR and ECAR measurements to assess parameters of glycolysis. The real-time 

ATP rate assay (Agilent Technologies, Item No. 103592-100), uses serial injections of 

oligomycin (1.5 µM) and a mixture of rotenone/antimycin-A (0.5 μM) followed by continuous 

OCR and ECAR measurements to asses total ATP, mitochondrial-linked ATP, and glycolysis-

linked ATP production. The mito fuel flex test (Agilent Technologies, Item No. 103260-100), 

utilizes UK5099, BPTES, and Etomoxir injections followed by continuous OCR measurements 

to determine mitochondrial fuel source oxidation. Following each assay, cells were washed with 

200 μL PBS and lysed. Total number of cells were measured using the CyQUANT Cell 

Proliferation Kit (Invitrogen, Carlsbad, CA, Item No. C7026). Results were normalized to 

number of cells and analyzed using Wave Software (Agilent Technologies, Wave for Desktop, 

Version 2.5.0.6). 

 

Figure 5. Agilent Seahorse XF cell mito stress test profile and electron transport chain. Key 
parameters of mitochondrial function shown by the Agilent Seahorse cell mito stress test profile 
(A). Effects of the cell mito stress test modulators on the electron transport chain (B). 
https://www.agilent.com/cs/library/usermanuals/public/XF_Cell_Mito_Stress_Test_Kit_User_G
uide.pdf 
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CELL AND PROTEIN NORMALIZATION 

 Protein concentration in cell lysates, mitochondrial fractions, and SOD activity assays 

were determined using the Bradford assay (Bradford, 1976). A 5 or 11 µL aliquot of cell lysate 

or mitochondrial lysate was diluted with 45 or 11 µL ddH20, respectively. An aliquot of 16 µL of 

lysate mixture was then mixed with 784 µL Coomassie Blue, and a 200 µL aliquot was pipetted 

into a 96-well plate in triplicate. Protein concentration was then determined by comparing the 

absorbance of the samples to the absorbances of a standard curve using 100, 200, 400, and 600 

mg/mL BSA in H20. Western blots, OxyBlots, and SOD activity assays were normalized using 

constant loading concentrations and volumes.  

 Agilent Seahorse and calpain activity assays were normalized using CyQUANT® Direct 

Cell Proliferation Assay (ThermoFisher Scientific). Immediately following the completion of a 

specific Seahorse assay, the media was removed via aspiration and the Culture Miniplate was 

stored in a -80°C freezer overnight. The CyQUANT assay utilizes CyQUANT GR dye which 

produces a large fluorescence enhancement upon binding to cellular nucleic acids that can be 

measured using standard fluorescein excitation (485 nm) and emission (530 nm) wavelengths. 

The fluorescence emission of the dye-nucleic acid complexes correlated linearly with cell 

number over a large range using a wide variety of cell types (Jones et al., 2001). 

STATISTICAL ANALYSIS 

All values are reported as mean ± SEM with at least 3 independent experiments 

conducted from at least 2 biological replicates. Differences between groups were determined 

with a one-way or two-way ANOVA followed by a Holm–Sidak post-hoc test (GraphPad Prism, 

GraphPad Software Inc., San Diego, CA). Significant differences were assessed using α = 0.05. 
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STATEMENT OF HYPOTHESIS 

Previously published studies have demonstrated that DA induces direct toxicity to 

proximal tubule epithelial cells (Huang et al., 2016; P. A. Peng et al., 2015). The purpose of my 

dissertation was to investigate the initial mechanisms of toxicity at clinically relevant DA 

concentrations which could provide a foundation for future studies to explore potential methods 

to mitigate or prevent CI-AKI. In order to determine these mechanisms, the following 

hypotheses were tested: exposure to DA decreases mitochondrial and cell viability of HK-2 cells 

at clinically relevant concentrations; the mechanism of this toxicity is caused by calcium 

dysregulation, mitochondrial degeneration, and oxidative stress; decreasing intracellular calcium 

mitigates DA induced cytotoxicity (Figure 6).  
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Figure 6. Hypothesized sequence of events following exposure of HK-2 cells to DA.   
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ABSTRACT 

 Contrast-Induced Acute Kidney Injury (CI-AKI) is the third most common cause of 

hospital associated kidney damage. Potential mechanisms of CI-AKI may involve diminished 

renal hemodynamics, inflammatory responses, and direct cytotoxicity. The hypothesis for this 

study is that diatrizoic acid (DA) induces direct cytotoxicity to human proximal tubule (HK-2) 

cells via calcium dysregulation, mitochondrial dysfunction, and oxidative stress. HK-2 cells were 

exposed to 0-30 mg I/mL DA or vehicle for 2-24 h. MTT conversion and trypan blue exclusion 

indicated a decrease in mitochondrial and cell viability within 2 and 24 h, respectively. 

Mitochondrial dysfunction was apparent within 8 h post exposure to 15 mg I/mL DA as shown 

by cell mito and glycolysis stress tests. Mitophagy was increased at 8 h by 15 mg I/mL DA as 

confirmed by elevated LC3BII/I expression ratio. HK-2 cells pretreated with calcium level 

modulators BAPTA-AM, EGTA, or 2-aminophenyl borinate abrogated DA-induced 

mitochondrial damage. DA increased oxidative stress biomarkers of protein carbonylation and 4-

hydroxynonenol (4-HNE) adduct formation. Caspase 3 and 12 activation was induced by DA 

compared to vehicle at 24 h. These studies indicate that clinically relevant concentrations of DA 

impair HK-2 cells by dysregulating calcium, inducing mitochondrial turnover and oxidative 

stress, and activating apoptosis.    

INTRODUCTION 

The use of iodinated radiocontrast media (RCM) to visualize internal structures during 

diagnostic procedures has increased exponentially since their first use in 1928. Exposure to RCM 

may lead to contrast-induced acute kidney injury (CI-AKI) which occurs in up to 30% of patients 

and is the third leading cause of iatrogenic acute renal failure accounting for 10-25% of all AKI 

cases (Fahling, Seeliger, Patzak, & Persson, 2017). Following X-ray based imaging procedures 
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such as percutaneous coronary intervention and cardiac angiography, renal dysfunction can range 

from non-symptomatic increases in serum creatinine (SCr) to severe and permanent renal 

damage resulting in the need for dialysis (Brown et al., 2016). The renal pathogenesis of CI-AKI 

is complex and not completely understood. Intravenous administration of RCM induces transient 

vasodilation of renal vasculature followed by severe, sustained vasoconstriction resulting in 

decreased oxygen supply and oxidative damage to the outer renal medulla (Z. Z. Liu et al., 2012; 

Persson et al., 2005). Aside from the renal ischemia, exposure to RCM has been shown to be 

directly toxic to renal parenchyma (Huang et al., 2016; Itoh et al., 2006; Jeong et al., 2018); 

however, the exact mechanisms of direct cytotoxicity have not been fully elucidated.  

Numerous studies using very high concentrations of RCM have been performed to 

evaluate direct toxicity of RCM within the proximal tubule (PT). Commonly reported responses 

to the interaction between very high concentrations RCM and the PT in vitro are vacuolization of 

the PT cells, increased production of ROS and induction of oxidative stress, mitochondrial 

dysfunction and the ensuing decline in ATP production and energy failure, activation of the 

unfolded protein response (UPR) and endoplasmic reticulum (ER) stress, and alterations in 

activity of stress kinases (Andersen et al., 1994; Andersen et al., 1995; Michael et al., 2014; 

Tervahartiala et al., 1997; Tervahartiala et al., 1991). Although there has been substantial 

knowledge obtained from these studies, the initial source of cellular damage remains elusive. 

This may be, in part, due to the clear majority of mechanistic studies using concentrations of 

RCM far higher than what PT cells experience in the healthy kidney. Studies commonly use 100-

200 mg I/mL RCM in vitro, equating to approximately 5-100 times concentrations found in 

circulating plasma (Ho, Nelson, & Delong, 2007; Thomsen & Morcos, 2000). It is possible that 
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exposing cells to concentrations of RCM of this magnitude are inducing changes in cellular 

homeostasis that would not occur at clinically relevant concentrations of RCM. 

The purpose of this study was to explore the various mechanisms of toxicity associated 

with the first generation RCM diatrizoic acid (DA) in a human kidney (HK-2) cell line. This 

model was chosen as these cells are adult, non-cancerous, immortalized human epithelial cells 

that maintain biochemical properties and activities similar to in vivo proximal tubule cells 

(Gunness et al., 2010; Paolicchi et al., 2003; Ryan et al., 1994). Additionally, HK-2 cells 

maintain organic ion transporters (OAT) 1 and 3, which have been reported to transport DA into 

proximal tubule cells (Mudge et al., 1971). The present study was undertaken to demonstrate that 

exposure of HK-2 cells to clinically relevant DA concentrations induce mitochondrial 

dysfunction, cytokine release and downstream activity, activate the UPR and ER stress, induce 

oxidative stress. This study also determines the role of calcium homeostasis in RCM-induced PT 

cytotoxicity. 

METHODS 

Chemicals and Reagents 

DA (S4506-50G), MTT (M2128-10G, and SOD activity kits (19160) were purchased 

from Sigma Aldrich (St. Louis, MO) and were used for all studies. The vehicle used for cell 

treatments was phosphate buffered saline (PBS) purchased from Fisher Scientific (Gibco, 

Pittsburg, PA, Item No. 14175-095). All other chemicals were of the highest quality and 

procured from Sigma Aldrich or Fisher Scientific Inc. Antibodies were purchased as indicated in 

the sections below. The OxyBlot™ Protein Oxidation Detection Kit was purchased from EMD 

Millipore (Burlington, MA, Item No. S7150). 
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Cell Line and Diatrizoic Acid (DA) Treatment 

Non-cancerous human immortalized kidney epithelial cells (HK-2) were purchased from 

the American Type Culture Collection (ATCC, Manassas, VA, Item No. CRL-2190) and were 

cultured according to ATCC guidelines. Cells were grown in keratinocyte-free media with added 

bovine pituitary extract (50 μg/mL) and recombinant epithelial growth factor (5 ng/mL) 

purchased from Fisher Scientific (Gibco, Carlsbad, CA, Item No. 17005-042). Cells were grown 

in a warm, humidified incubator set to 37°C with 5% CO2. HK-2 cells were plated into six-well 

cell culture plates (Corning, Sigma Aldrich Item No. CLS3516) at a cellular density of 750,000 

cells/mL and allowed to grow for 48 hr. Media was subsequently replaced and cells were treated 

with a final concentration of 0, 2, 5, 10, 15, 18, 23, 28, or 30 mg I/mL DA for 2, 8, or 24 hr prior 

to cell lysate collection. Vehicle control was an equal volume of PBS. Following the treatment 

period, media was removed via aspiration and cells were collected using Trypsin-EDTA (0.25%) 

(Gibco, Carlsbad, CA, Item No. 25200-072) for sample analysis.  

Mitochondrial and Cell Viability 

HK-2 cells were plated into 96-well cell culture plates (Cyto One Scientific, Ocala, FL, 

Item No. CC7682-7596) at a cellular density of 37,500 cells/mL and allowed to grow for 48 hr. 

Following the equilibration period, media was replaced, and cells were treated with a final 

concentration of 0, 2, 5, 10, 15, 18, 23, 28, or 30 mg I/mL DA for 2, 8, or 24 hr. Vehicle control 

was an equal volume of PBS. Mitochondrial viability was assessed using the MTT assay 

(Humphrey, Cole, Pendergrass, & Kiningham, 2005). The MTT assay relies on the conversion of 

tetrazolium dye 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) (Sigma 

Aldrich, Item No. M5655-5X1G) to formazan by mitochondrial oxidoreductases.  
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Trypan blue exclusion was used as a confirmation that the DA mediated decline in MTT 

reduction was due to a decrease in mitochondrial viability and not an interaction between DA 

and mitochondrial reductase enzymes. The trypan blue exclusion assay was run using the 

Countess II FL cell counter (Thermo Fisher Scientific Inc.) An aliquot of collected cells were 

diluted 1:1 with 40% w/v trypan blue solution (Sigma Aldrich, Item No. T6146). The solution 

was lightly mixed via pipetting and a 10 μL aliquot was transferred to the Cell Countess II FL 

reusable glass slide prior to inserting the slide into the instruments sample port. The Cell 

Countess II FL measures total cells, living cells, and dead cells as a measure of overall cell 

viability.  

Mitochondrial Isolation 

Mitochondria were isolated from HK-2 cells collected with trypsin-EDTA using a 

Mitochondrial Isolation Kit for Cultured Cells (Thermo Scientific, Item No. 89874) and 

differential centrifugation. Mitochondria were isolated according to the manufacturer’s 

directions, with the exception of added protease inhibitor (Thermo Scientific, Item No. 78430) to 

prevent proteolytic degradation during isolation. Briefly, cells were centrifuged at 2000xg for 10 

min at 4°C and resuspended in 800 μL of Reagent A with added protease inhibitor (10 μL/mL). 

Samples were vortexed for five sec at maximum speed and then incubated on ice for 5 min. 

Following addition of 10 μL of Reagent B, samples were incubated on ice and vortexed for 5 sec 

at maximum speed every min for 10 min. Next, 800 μL of Reagent C with added protease 

inhibitor (10 μL/mL) was added, inverted multiple times to mix, and the samples were 

centrifuged at 700xg for 20 min at 4°C. The supernatant was transferred to new microcentrifuge 

tubes and centrifuged at 12,000xg for 15 min at 4°C. The supernatant (cytosolic fraction) was 

transferred to a new microcentrifuge tube and the pellet (mitochondrial fraction) was 
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resuspended in 100 μL cell lysis buffer. The cellular and mitochondrial fractions were then 

placed in a -80°C freezer prior to protein quantification via Bradford assay.  

Oxyblot and Western Blot 

Western blot analysis was conducted to assess the expression of glucose-regulated 

protein (GRP78), C/EPB homologous protein (CHOP), 4-hydroxynonenal (4-HNE), manganese 

superoxide dismutase (MnSOD), NADPH oxidase 4 (NOX4), tumor necrosis factor-α (TNF-α), 

cytochrome c, caspase 3, caspase 4, and caspase 12. Protein concentration was determined using 

the Bradford assay (Bradford, 1976). An aliquot of sample containing 40 μg of protein were 

placed in microcentrifuge tubes and denatured by placing in boiling water for 5 min followed by 

separation on a 12.5% polyacrylamide gel via electrophoresis and transferred onto a 0.45 µM 

nitrocellulose membrane (Bio-Rad, Hercules, CA, Item No. 1620115). Successful transfer and 

protein loading were verified using MemCode Reversible Protein Stain Kit (Pierce 

Biotechnology, Rockford, IL, Item No. PI-24580). Membranes were blocked at room 

temperature using 5% w/v milk/TBST solution (10 mM Tris-HCl, 150 mM NaCl, 0.1% Tween-

20; pH 8.0), 1% Bovine Serum Albumin (BSA)/TBST, or 5% BSA/TBST solution for 1 hr. 

Membranes were next incubated with continual shaking overnight at 4°C with primary 

antibodies: GRP78 (1:1000 dilution, Abcam Inc; Cambridge, MA, Item No. ab21685), CHOP 

(1:1000, Cell Signaling Technology; Danvers, MA, Item No 5554), MnSOD (1:5000,  Abcam 

Inc; Cambridge, MA, Item No. ab13533), TNFα (1:1000, Abcam Inc; Cambridge, MA, Item No. 

ab66579), NOX4 (1:1000 Abcam Inc; Cambridge, MA, Item No. ab60940), LC3B (1:1000, 

Abcam Inc; Cambridge, MA, Item No. ab48394), 4-HNE (1:1000 dilution, Calbiochem; Merck, 

Darmstadt, Germany, Item No. 393207) cytochrome c (1:1000, Santa Cruz Biotechnology, Santa 

Cruz, CA, Item No. sc-7159), caspase 3 (1:1000, Cell Signaling Technology; Danvers, MA, Item 



46 

No. 9662), caspase 4 (1:1000, Cell Signaling Technology; Danvers, MA, Item No. 4450), and 

caspase 12 (1:1000, Cell Signaling Technology; Danvers, MA, Item No. 2202) in blocking 

solution. The membranes were washed three times with TBST or PBST for 10 min each 

followed by incubation with goat anti-rabbit HRP-linked secondary antibodies diluted to 1:2000 

in blocking solution for 1.0 to 1.5 hr. Membranes were washed again with TBST or PBST and 

then developed using Amersham ECL Western Blotting Detection Agent (GE Healthcare Life 

Sciences, Marlborough, MA, Item No. RPN2232). A BioRad chemic-doc system was used to 

capture the gel image and used for densitometry analysis (version 4.0.1, Catalog No. 170-9690, 

BioRad, Hercules, CA). 

Aside from 4-HNE protein adduct formation, protein carbonylation is also a marker of 

oxidative stress. The accumulation of carbonyl groups introduced into cellular proteins was 

measured using the Oxyblot Protein Oxidation Detection Kit (EMD Millipore, Burlington, MA, 

Item No. S7150). A 15 µg aliquot of sample was derivatized as previously described (Terneus et 

al., 2007). Protein carbonyl moieties on cellular proteins generated by oxidative stress are 

derivatized in the presence of 2,4-dinitrophenylhydrazine (DNPH) to stable 2,4-

dinitrophenylhydrazone groups. The 2,4-dinitrophenylhydrazone groups are recognized by the 

primary antibody (1:150 dilution in 1% BSA/PBST). A Bio-Rad chemi-doc system was used to 

capture the gel image and used for densitometry analysis (version 4.0.1, Bio-Rad, Hercules, CA, 

Catalog No. 170-9690). 

Seahorse XF Assays 

The Agilent Seahorse XFe analyzer allows for real-time measurements of cellular 

metabolic function in cultured cells. Oxygen Consumption Rate (OCR) and Extracellular 

Acidification Rate (ECAR) are measured to interrogate key cellular functions such as 
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mitochondrial respiration and glycolysis. Mitochondrial function and glycolysis were measured 

using Agilent cell mito stress tests, cell glycolysis stress tests, mito fuel flex tests, and real-time 

ATP rate assays following optimization of cell number per well. 

HK-2 cells were cultured in XFe Culture Miniplates (175,000 cells/mL) (Agilent 

Technologies, Item No. 101085-004) and allowed to grow for 48 hr followed by treatment with 

vehicle or 5, 15, 18, 23, 28, or 30 mg I/mL DA. Prior to the assay, cells were washed with assay 

media (Agilent Technologies, Item No. 103575-100) supplemented with 1 mM glucose (Agilent 

Technologies, Item No. 103577-100), 1 mM pyruvate (Agilent Technologies, Item No. 103578-

100), and 2 mM glutamine (Agilent Technologies, Santa Clara, CA, Item No. 103579-100) and 

equilibrated in 175 or 180 μL pre-warmed assay media at 37°C with no CO2 for 45 min.  

TNFα in Cell Media and Cell Lysate 

TNF-alpha is expressed on the surface of renal proximal tubular cells and is activated as 

part of the inflammatory response within the kidney. TNFα concentrations were measured in cell 

culture media using an ELISA assay kit (Abcam, Cambridge, MA, USA, Item No. ab181421) 

per the manufacturer’s instructions. Briefly, 50 μL of collected media and a capture/detector 

antibody cocktail were added to precoated wells and incubated for 1 hr, shaking at 400 rpm. 

Following the immunocapture incubation period, the wells were washed and 3,3t,5,5t-

tetramethylbenzidine (TMB) substrate was added, producing a color change based on the amount 

of bound TNFα, which was then read at 450 nm. The TNFα concentration was determined using 

a standard curve. TNFα expression in DA treated cell lysate was determined using Western blot 

as described above. Each lane was loaded with 40 μg of protein; membranes were probed using a 

rabbit-polyclonal HRP-linked antibody for TNFα diluted to 1:1000 in 5% BSA/TBST (Abcam, 

Item No. ab66579). TNFα was normalized to protein and compared relative to control. 
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SOD Activity Assay 

SOD activity was determined using a Fluka designed spectrophotometric kit purchased 

from Sigma (St. Louis, MO, Item No. 19160). Cu/Zn-SOD was inhibited by incubating the 

sample (40 µg/µL cell lysate) at room temperature with sodium diethyldithiocarbamate (DDTC) 

at a final concentration of 25 mM. The difference between total SOD and MnSOD activity was 

calculated as a measure of Cu/ZnSOD activity. The assay was completed according to 

manufacturer’s recommendations. 

Calcium Assays 

 MTT assays and cellular fractions were isolated for protein expression following 

pretreatment with various calcium modulators to analyze the influence of intracellular calcium 

concentration on mitochondrial viability, mitophagy, and apoptosis. HK-2 cells were pretreated 

with 10 µM of the intracellular calcium chelator, 1, 2-bis (o-aminophenoxy) ethane-N,N,N’,N’-

tetra-acetic acid (BAPTA-AM) (Sigma-Aldrich, Item No. A1076-25MG), 1 mM of extracellular 

calcium chelator, ethyleneglycol-bis(β-aminoethyl)-N,N,N’,N’-tetra-acetic acid (EGTA) (Sigma-

Aldrich, Item No. E3889-25G), 10 µM of the inositol trisphosphate receptor antagonist, 2-

aminoethoxydiphenyl borinate (2-APB) (Sigma-Aldrich, Item No. D9754), or 10 µM of the 

calpain inhibitor, calpeptin (Sigma-Aldrich, Item No. C8999), for 45 min prior to the addition of 

DA. HK-2 cells were then incubated for 24 hr with varying concentrations of DA as described 

above. The calpain activity assay kit was purchased from AnaSpec Inc. (Fremont, CA, Item No. 

AS-72149) was used to determine the role of calcium in mitophagy and apoptosis. The calpain 

activity assay was performed in a 96-well plate according to manufacturer’s instructions.  
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Statistical Analysis 

Values represent mean ± SEM with at least 3 independent experiments conducted. 

Differences between groups were determined with a one-way ANOVA followed by a Holm–

Sidak post-hoc test with α < 0.05 (GraphPad Prism, GraphPad Software Inc., San Diego, CA). 

RESULTS 

DA Effects on Mitochondrial and Cell Viability 

Conversion of MTT, (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), to 

its insoluble formazan dye counterpart was used as an indicator of mitochondrial viability. DA 

exposure induced concentration and time dependent changes in MTT (Figure 7). Exposure to DA 

substantially reduced mitochondrial viability within 2 hr (p < 0.001) beginning with the 15 mg 

I/mL DA when compared to vehicle control. MTT values were diminished at all DA 

concentrations at 8 hr and 24 hr (p < 0.001) when compared to vehicle control (Figure 7). A 

concentration-dependent decrease in mitochondrial viability was evident at 8 hr and 24 hr when 

compared to other treatment groups (p < 0.05) (Figure 7). A time-dependent decrease in 

mitochondrial viability was also evident between the 2 hr and 24 hr treatment groups at 23-30 

mg I/mL (p < 0.01) (Figure 7).  

Trypan blue exclusion was used as an indicator of cell viability, as well as confirmation 

that the DA mediated decline in MTT reduction was not due to a decrease in the overall number 

of viable cells. Unlike the MTT assay, there was no significant decrease in cell viability until 24 

hr exposure to concentrations of 23 mg I/mL DA or higher (p < 0.05) (Figure 8). DA final 

concentrations of 28 and 30 mg I/mL showed an additional decline in cell viability at 24 hr when 

compared to other treatment groups (p < 0.05) (Figure 8). A time-dependent decrease in cell 

viability was also evident when compared to other time points (p < 0.01) (Figure 8). 
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Concentrations of DA of 15 mg I/mL and 23 mg I/mL decreased the conversion of MTT to 

formazan within 2 hr and trypan blue exclusion within 24 hr of DA exposure when compared to 

vehicle control, respectively, suggesting that our model is appropriate to explore the cellular 

mechanisms of DA-induced cytotoxicity in HK-2 cells.  

 

Figure 7. Diatrizoic acid cytotoxic effects on mitochondrial viability in HK-2 cells using 
MTT. DA diminished mitochondrial viability at 2 hr (A), 8 hr (B), and 24 hr (C). Different 
superscripts (a-f) indicate a statistical difference between groups across all time points. Statistical 
difference between time and concentration of each group was determined using Holm-sidak post-
hoc test following two-way ANOVA. Values represent mean ± SEM for three independent 
experiments of at least 4 biological replicants.  

 

Figure 8. Diatrizoic acid cytotoxic effects on cell viability in HK-2 cells using Trypan Blue 
Exclusion. DA diminished cell viability at 24 hr (C) but not at 2 hr (A) or 8 hr (B). Different 
superscripts (a, b, c) indicate a statistical difference between groups across all time points. 
Statistical difference between time and concentration of each group was determined using Holm-
sidak post-hoc test following two-way ANOVA. Values represent mean ± SEM for three 
independent experiments of at least 4 biological replicants.  
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DA Effects on Mitochondrial Function and Energy Utilization 

Mitochondrial function following exposure to DA was assessed using an Agilent 

Seahorse XFe instrument. In an attempt to more accurately understand the effects of DA on 

mitochondrial function, various XFe assays were utilized including: cell mito stress test, cell 

glycolysis stress test, mito fuel flex test, and real-time ATP rate assay. In the cell mitochondrial 

stress test, oxygen consumption rate (OCR) following serial injection of various probes is used 

as an indicator of mitochondrial function. Oligomycin, an ATP synthase inhibitor, probes for 

ATP linked oxygen consumption; FCCP, an oxidative phosphorylation uncoupling agent, 

induces maximum oxygen consumption and the resultant OCR can be used to calculate spare 

respiratory capacity. The final injection, a mixture of rotenone and antimycin-A, inhibits 

complex I and complex III resulting in complete inhibition of mitochondrial respiration and 

determination of the non-mitochondrial oxygen consumption.   

Statistically significant decreases in basal OCR, maximal OCR, spare respiratory 

capacity, and ATP production were evident at 8 and 24 hr (Figure 9). OCR was decreased at 18 

mg I/mL for basal OCR (p < 0.05), 15 mg I/mL for maximal OCR and spare respiratory capacity 

(p < 0.01), and 23 mg I/mL for ATP production (p < 0.05) when compared to vehicle control at 8 

hr; however, OCR linked to proton leak and non-mitochondrial oxygen consumption did not 

change (Figure 9). Basal OCR, maximal OCR, spare respiratory capacity, and ATP production 

were all significantly decreased at 15 mg I/mL (p < 0.001) within 24 hr when compared to 

vehicle control (Figure 9). Similar to the 8 hr timepoint, there was no change in non-

mitochondrial oxygen consumption, although, there was an increase in OCR linked to proton 

leak at 30 mg I/mL (p < 0.05) when compared to vehicle control at 24 hr (Figure 9). 
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Figure 9. Diatrizoic acid effects on various parameters of mitochondrial respiration in HK-
2 cells. DA diminished key parameters of mitochondrial respiration following 8 hr (A) and 24 hr 
(B) exposure. Representative time course profile of OCR of a Seahorse cell mito stress test 
following exposure to DA for 8Hr (C) and 24 hr (D). Statistical difference from 0 mg I/mL DA 
depicted by an asterisk (* p < 0.05, ** p < 0.01, *** p < 0.001). Values represent mean ± SEM 
for three independent experiments of at least four biological replicants 
 

The cell glycolysis stress test utilizes extracellular acidification rate (ECAR) as an 

indicator of various parameters of glycolysis. HK-2 cells were starved of glucose and pyruvate 



53 

for 40 min prior to glucose saturation and measurement of basal glycolysis. The ATP synthase 

inhibitor oligomycin was then injected to drive glycolysis to maximum capacity from which 

glycolytic capacity and glycolytic reserve can be calculated. ECAR linked to non-glycolytic 

acidification is determined by the addition of the hexokinase inhibitor, 2-deoxyglucose. Whereas 

decreases in OCR are evident at 15 mg I/mL at both 8 and 24 hr, statistically significant 

decreases in glycolysis and glycolytic capacity as shown by ECAR were not apparent until 28 

mg I/mL at 8 hr (p < 0.05) and 23 mg I/mL at 24 hr (p < 0.05) (Figure 10). Glycolytic reserve 

and non-glycolytic acidification were unchanged for all concentrations at both time points 

(Figure 10). 

 

Figure 10. Diatrizoic acid effects on various parameters of glycolysis in HK-2 cells. DA 
diminished key parameters of glycolysis following 8 hr (A) and 24 hr (B) exposure. 
Representative time course profile of ECAR of a Seahorse cell glycolytic stress test following 
exposure to DA for 8 hr (C) and 24 hr (D). Statistical difference from 0 mg I/mL DA depicted by 
an asterisk (* p < 0.05, ** p < 0.01). Values represent mean ± SEM for three independent 
experiments of at least four biological replicants. 
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The initial studies examining mitochondrial function indicated DA impaired 

mitochondrial function prior to alterations in cell viability (Figure 8). Additional independent 

studies were conducted to probe alterations in mitochondrial function and energy production. 

The real-time ATP rate assay was used to evaluate DA changes in mitochondrial and glycolytic 

pathway production of ATP. The real-time ATP assays utilize serial injections of oligomycin and 

rotenone/antimycin-A to determine ATP production within the cell. OCR, ECAR, and proton 

efflux rate (PER) measurements are used to calculate total ATP production, glycolytic ATP 

production, and mitochondrial ATP production. Exposure to DA for 24 hr induced a significant 

decrease in total and mitochondrial ATP production at 18 mg I/mL (p < 0.05) but the slight 

decrease in glycolytic ATP production was not significant (Figure 11). The findings suggest that 

the decline in total ATP production, therefore, can be attributed to the decrease in mitochondrial 

ATP production. 
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Figure 11. Diatrizoic acid effects on mitochondrial, glycolytic, and total ATP production. 
DA diminished ATP production linked to mitochondrial respiration (A) and total ATP 
production (C) but not glycolytic ATP production (B) following 24 hr exposure. Representative 
graph of ATP production of the real-time ATP rate assay following exposure to DA for 24 hr 
(D). Statistical difference from 0 mg I/mL DA depicted by an asterisk (* p < 0.05, *** p < 
0.001). Values represent mean ± SEM for three independent experiments of at least four 
biological replicants. 
 

The mito fuel flex test measures OCR following inhibition of the three major 

mitochondrial fuel sources (glucose, glutamine, and fatty acid oxidation) to determine the 

mitochondrial dependency and flexibility on each fuel source. The mitochondrial dependency on 

a specific fuel source is determined by first injecting an inhibitor of the pathway in question 

followed by inhibition of the other two pathways. The flexibility of the mitochondria to adjust to 

changes in fuel sources is calculated by subtracting the dependency of a fuel source from the 

mitochondrial capacity of that fuel source. Capacity is determined by first inhibiting the other 
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fuel pathways followed by the pathway in question. In response to exposure to DA for 8 hr, there 

was no significant change in the dependency of glutamine, glucose, or fatty acid oxidation 

(Figure 12). The flexibility to glutamine and glucose oxidation was unchanged as well (Figure 

12). These results suggest that DA does not inflict damage to the fuel transport or oxidation 

machinery within the mitochondria.  

 
 
Figure 12. Diatrizoic acid effects on mitochondrial fuel oxidation in HK-2 cells. DA does not 
affect mitochondrially-linked oxidation of glucose (A), glutamine (B), and fatty acids (C) in 
response to 8 hr exposure. Values represent mean ± SEM for three independent experiments of at 
least four biological replicants. 
 
DA Effects on Mitophagy  

 A decrease in mitochondrial function in the absence of damage to mitochondrial fuel 

oxidation can be explained by other means. The global decrease in OCR seen in response to DA 

could be attributed to a decrease in the total number of active mitochondria. To evaluate the role 

of exposure to DA on mitochondrial turnover, the expression of microtubule-associated proteins 

1A/1B light chain 3B I and II (LC3BI and II) was evaluated. A statistically significant decrease 

in LC3BI was evident in response to exposure of HK-2 cells to DA within 8 hr at 18 mg I/mL (p 

< 0.05) and at 15 mg I/mL within 24 hr (p < 0.05) (Figure 13, Figure 14). An increase in LC3BII 

expression was not apparent within 8 hr of exposure to DA (Figure 13), however, an increase in 

LC3BII expression did increase to significance within 24 hr (p < 0.01) (Figure 14). The relative 
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ratio of LC3BII/I was significantly increased (p < 0.05, p < 0.01) at both time points (Figure 13, 

Figure 14). These findings suggest that the decrease in OCR observed in the cell mito stress 

could be due to mitophagy and not damage to the electron transport chain or transport 

machinery. This conclusion is supported by the results of the mito fuel flex test.  

 
Figure 13. Diatrizoic acid effects on LC3B expression in HK-2 cells following 8 hr exposure. 
DA induces mitophagy following 8 hr exposure. Representative blots and cumulative 
densitometry included for LC3BI (A), LC3BII (B) exposure, and LC3BII/LC3B I ratio (C) 
following 8 hr exposure to DA. Representative blot with Memcode Reversible stain for 40 µg 
loaded protein and cumulative protein densitometry depicted for 8 hr (D) exposure. Statistical 
difference from 0 mg I/mL diatrizoic acid depicted by an asterisk (* p < 0.05, ** p < 0.01, *** p 
< 0.001). Values represent mean ± SEM for three independent experiments of two biological 
replicants. 
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Figure 14. Diatrizoic acid effects on LC3B expression in HK-2 cells following 24 hr 
exposure. DA induces mitophagy following 24 hr exposure. Representative blots and cumulative 
densitometry included for LC3BI (A), LC3BII (B) exposure, and LC3BII/LC3BI ratio (C) 
following 24 hr exposure to DA. Representative blot with Memcode Reversible stain for 40 µg 
loaded protein and cumulative protein densitometry depicted for 24 hr (D) exposure. Statistical 
difference from 0 mg I/mL diatrizoic acid depicted by an asterisk (* p < 0.05, ** p < 0.01, *** p 
< 0.001). Values represent mean ± SEM for three independent experiments of two biological 
replicants. 
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DA Effects on Endoplasmic Reticulum Stress 

Potential mechanisms for DA cytotoxicity to the PT may be mediated by alterations in 

cell repair and protein folding. To evaluate the role of DA exposure and the induction of the 

unfolded protein response (UPR) and ER stress, the expression of GRP78, CHOP, and the ER 

stress specific caspase, caspase-12, were measured via Western blot. No change in GRP78 

expression was evident following exposure to DA for 2, 8, and 24 hr (Figure 15). Expression of 

CHOP, which is increased in response to prolonged activation of the UPR, was not apparent 

following 8 or 24 hr exposure to DA (Figure 16). Although activation of the UPR and 

subsequent induction of ER stress was not evident by GRP78 or CHOP expression, there was an 

increase in caspase 12 at 24 hr (Figure 23) relative to vehicle control (p < 0.05). These results 

suggest that UPR and ER stress do not play a role in DA-induced cytotoxicity and caspase 12 

activation is initiated by another pathway.  
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Figure 15. Diatrizoic acid effects on GRP78 expression in HK-2 cells. DA does not activate 
the UPR. Representative blots and cumulative densitometry included for GRP78 expression 
following 2 hr (A), 8 hr (B), and 24 hr (C) exposure to DA. Representative blot with Memcode 
Reversible stain for 40 µg loaded protein and cumulative protein densitometry depicted for 2 hr 
(D), 8 hr (E), and 24 hr (F) exposure. Values represent mean ± SEM for three independent 
experiments of two biological replicants. 
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Figure 16. Diatrizoic acid effects on CHOP expression in HK-2 cells.  DA does not induce ER 
stress. Representative blots and cumulative densitometry included for CHOP expression 
following 24 hr (A) exposure to DA. Representative blot with Memcode Reversible stain for 40 
µg loaded protein and cumulative protein densitometry depicted for 24 hr (B) exposure. Positive 
control for CHOP expression was thapsigargin, abbreviated THAP. Values represent mean ± 
SEM for three independent experiments of two biological replicants. 
 
DA Effects on Oxidative Stress 

To evaluate the role of DA exposure and the activation of oxidative stress, protein 

carbonylation and 4-hydroxynonenal (4-HNE) protein adduct formation were measured via 

Oxyblot and Western blot, respectively. DA increased oxidative stress as shown by Oxyblot 

analysis at 24 hr relative to vehicle control in groups treated with 18 mg I/mL DA (p < 0.05) 

(Figure 17). Protein carbonylation was not increased relative to control at 8 hr or at lower 

concentrations at 24 hr (Figure 17). DA increased oxidative stress as shown by 4-HNE adduct 

formation at 24 hr relative to vehicle control in groups treated with 18 mg I/mL DA (p < 0.05) 

(Figure 18). 4-HNE protein adduct formation was not increased relative to control at 8 hr or at 

lower DA concentrations at 24 hr (Figure 18). 
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Figure 17. Diatrizoic acid effects on protein carbonylation in HK-2 cells. An increase in 
protein carbonylation was evident in cell lysate following 24 hr (C) in 18 mg I/mL to 30 mg 
I/mL DA. Representative blots and cumulative densitometry included for 8 hr (A) and 24 hr (C) 
exposure to diatrizoic acid. Representative blot with Memcode Reversible stain for 15 µg loaded 
protein and cumulative protein densitometry depicted for 8 hr (B) and 24 hr (D) exposure. 
Statistical difference from 0 mg I/mL diatrizoic acid depicted by an asterisk (* p < 0.05, ** p < 
0.01, *** p < 0.001). Values represent mean ± SEM for three independent experiments of two 
biological replicants. 
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Figure 18. Diatrizoic acid effects on 4-HNE adduct formation in HK-2 cells. An increase in 
protein adduct formation was evident in cell lysate following 24 hr exposure (C) in 18 mg I/mL 
to 30 mg I/mL DA. Representative blots and cumulative densitometry included for 8 hr (A) and 
24 hr (C) exposure. Representative blot with Memcode Reversible stain for 40 µg loaded protein 
and cumulative protein densitometry depicted for 8 hr (B) and 24 hr (D) exposure. Statistical 
difference from 0 mg I/mL diatrizoic acid depicted by an asterisk (* p < 0.05). Values represent 
mean ± SEM for three independent experiments of two biological replicants. 
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Initially, MnSOD expression was measured to determine the effect of DA exposure on 

antioxidant systems within the mitochondria. In response to DA exposure for 24 hr, there was no 

noticeable change in MnSOD expression (Figure 19). Due to the fact that levels of expression do 

not necessarily indicate activity of an enzyme, MnSOD, Cu/ZnSOD, and Total SOD activity 

were measured to evaluate the effects of DA on cellular antioxidant systems. Total SOD activity 

was decreased at 24 hr relative to vehicle control in groups treated with 28 and 30 mg I/mL (p < 

0.05) (Figure 19). MnSOD activity was unchanged in response to exposure to DA at 24 hr 

(Figure 19), while Cu/ZnSOD activity was significantly reduced in response to 23 mg I/mL DA 

(p < 0.05) relative to vehicle control at 24 hr exposure (Figure 19). Protein carbonylation and 4-

HNE adduction were measured in cytosolic and mitochondrial fractions to determine if MnSOD 

activity within the mitochondria is protecting HK-2 mitochondria from DA-induced ROS 

generation. Following exposure to 30 mg I/mL DA for 24, protein carbonylation and 4-HNE 

protein adduction is significantly increased in response to control within the cytosolic fraction 

but there was no change in either biomarker of oxidative stress in the mitochondrial fraction 

(Figure 20).  
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Figure 19. Diatrizoic acid effects on superoxide dismutase expression and activity in cellular 
fractions of HK-2 cells. A decrease in total SOD activity was evident in groups treated with 28 
and 30 mg I/mL at 24 hr (A). No significant change in MnSOD activity was apparent following 
24 hr (B) exposure to DA. A decrease in Cu/Zn activity (C) was evident following 24 hr 
exposure to 23-30 mg I/ml. Exposure to DA did not induce a change in MnSOD expression (D). 
Representative blots and cumulative densitometry included for 24 hr (D) exposure. 
Representative blot with Memcode Reversible stain for 40 µg loaded protein and cumulative 
protein densitometry depicted for 24 hr (E) exposure. Statistical difference from 0 mg I/mL 
diatrizoic acid depicted by an asterisk (* p < 0.05, ** p < 0.01). Values represent mean ± SEM 
for three independent experiments of two biological replicants. 
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Figure 20. Diatrizoic acid effects on oxidative stress within cellular fractions of HK-2 cells. 
DA-induced oxidative stress takes place in the cytosol. Representative blot and cumulative 
densitometry for expression of Oxyblot (A) and 4-HNE protein adducts (C) in cytosolic and 
mitochondrial fractions following 24 hr exposure to DA. Representative blots of MemCode 
reversible staining for 15 and 40 µg protein loading and cumulative densitometry for Oxyblot 
(B) and 4-HNE (D). Asterisks (* p < 0.05) indicate statistical difference from vehicle control in 
cytosolic fraction. Values represent mean ± SEM for three independent experiments of two 
biological replicants. 
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To evaluate potential sources for ROS production, TNFα expression was measured in cell 

lysate and cell media via Western blot and ELISA, respectively. TNFα expression in cell lysate 

decreased at 24 hr relative to vehicle control in groups treated with 15 and 18 mg I/mL DA (p < 

0.01) as shown by Western blot (Figure 21). TNFα secretion into the media was increased at 24 

hr relative to vehicle control (p < 0.05) in groups treated with 15 and 18 mg I/mL as shown by 

ELISA (Figure 21). NADPH oxidase 4 (NOX4), a ROS generating enzyme linked to TNF-α, 

expression was also measured. NOX4 expression was unchanged in response to exposure to DA 

at 24 hr (Figure 21). Although it is apparent that DA exposure elicits an inflammatory response 

in HK-2 cells, activation of TNFα does not play a role in DA-induced oxidative stress at 

clinically relevant concentrations. Therefore, the source of ROS overproduction in response to 

DA is unclear.  
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Figure 21. Diatrizoic acid effects on TNFα and NOX4 expression in HK-2 cells. DA induces 
TNFα activation but does not affect downstream effectors. TNFα expression in cell lysate was 
decreased in response to 15 and 18 mg I/mL DA at 24 hr (A). An increase in TNFα leakage into 
the cell media was evident following 24 hr (C) in 15 and 18 mg I/mL DA. No significant change 
in NOX4 expression was apparent in cell lysate following 24 hr (D) exposure to DA. 
Representative blot with Memcode Reversible stain for 40 µg loaded protein and cumulative 
protein densitometry depicted for TNFα (B) and NOX4 (E) following 24 hr exposure. Statistical 
difference from 0 mg I/mL diatrizoic acid depicted by an asterisk (* p < 0.05). Values represent 
mean ± SEM for three independent experiments of two biological replicants. 
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DA Effects on Mitochondrial Membrane Leakage and Apoptosis Initiation  

 Alterations in mitochondrial membrane integrity were evident following exposure to DA 

for 24 hr. DA caused significant cytochrome c leakage from the mitochondrial inner membrane 

space into the cytosol relative to vehicle control (p < 0.05) and the expression of cytochrome c 

within mitochondrial fractions decreased at 30 mg I/mL relative to control (p < 0.05) as shown 

by Western blot (Figure 22). 

 
Figure 22. Diatrizoic acid effects on mitochondrial membrane integrity in HK-2 cells. DA 
diminished mitochondrial membrane integrity. Representative blot and cumulative densitometry 
for cytochrome c (A) in cytosolic and mitochondrial fractions following 24 hr exposure to DA. 
Representative blots of MemCode reversible staining for 40 µg protein loading and cumulative 
densitometry for cytochrome c (B). Asterisks (* p < 0.05, ** p 0<0.01) indicate statistical 
difference from vehicle control in cytosolic fraction. Octothorpe (# p < 0.05) indicate statistical 
difference from vehicle control in mitochondrial fraction. Values represent mean ± SEM for 
three independent experiments of two biological replicants. 

 

DA increased caspase 3 cleavage and caspase 12 expression relative to vehicle control at 

28 and 30 mg I/mL following 24 hr exposure (p < 0.05, p < 0.01) (Figure 23). Caspase 4 
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expression and cleavage was unchanged in response to exposure to DA for 24 hr suggesting that 

the efflux of TNFα into the media was not sufficient to induce activation of caspase 4 (Figure 

23). 

 

Figure 23. Diatrizoic acid effects on the expression of caspase 4, caspase 12, and caspase 3 
in HK-2 cells. DA induces apoptosis via caspase 3 and caspase 12 activation. Representative 
blot and cumulative densitometry for total caspase 4 (A), caspase 12 (B), and cleaved caspase 3 
(C) protein expression following 24 hr exposure to DA. Asterisks (* p < 0.05, ** p 0<0.01) 
indicate statistical difference from vehicle control. Representative blots of MemCode reversible 
staining for 40 µg protein loading and cumulative densitometry for caspase 4 (D), caspase 12 
(E), and cleaved caspase 3 (F). Values represent mean ± SEM for three independent experiments 
of two biological replicants. 
 
DA Effects on Calcium Homeostasis 

 Mitochondrial viability and calpain activity assays were utilized to determine the role of 

calcium homeostasis in DA-induced cytotoxicity. MTT assays were performed on HK-2 cells 

pretreated for 45 min with EGTA, BAPTA-AM, or 2-APB prior to exposure to clinically 
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relevant concentrations of DA ranging from 15 to 30 mg I/mL. The concentrations of EGTA or 

BAPTA-AM selected for these studies were not cytotoxic based on the results of the MTT assay. 

Higher concentrations of BAPTA-AM induced some alterations in the MTT assay and were 

omitted from any studies with DA. Pretreatment with BAPTA-AM completely protected against 

DA-induced cytotoxicity within 2, 8, and 24 hr as seen by MTT assays (Figure 24). Within 2 hr, 

neither EGTA or 2-APB showed any statistically significant protection, however, both showed 

partial protection within 8 hr at 30 mg I/mL (p < 0.05) when compared to the DA group (Figure 

24). EGTA and 2-APB provided partial protection from DA-induced cytotoxicity within 24 hr 

exposure to DA (p < 0.05) when compared to the DA group (Figure 24). Calpain activity assays 

were performed to determine the role of calcium dependent proteases in DA-induced apoptosis. 

HK-2 cells exposed to 30 mg I/mL for 24 hr experienced a two-fold increase in calpain activity 

(p < 0.05) compared to vehicle control (Figure 25). Pretreatment with 10 µM BAPTA-AM or 10 

µM calpeptin prior to DA exposure completely inhibited calpain activity (Figure 25).  
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Figure 24. Effects of EGTA, BAPTA-AM, or 2-APB pretreatment on mitochondrial 
viability in HK-2 cells. DA induced cytotoxicity is attenuated in response to calcium 
concentration modulators. BAPTA-AM offered protection from DA-induced cytotoxicity within 
2 hr (A), 8 hr (B), and 24 hr (C). EGTA and 2-APB provided partial protection from DA-induced 
cytotoxicity within 8 hr (B) and 24 hr (C). Different superscripts (a-d) indicate a statistical 
difference between groups. Values represent mean ± SEM for three independent experiments 
with at least 4 biological replicants. 
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Figure 25. Diatrizoic acid effects on calpain activity in HK-2 cells.  DA induced activation of 
calpain. HK-2 cells exposed to 30 mg I/mL DA for 24 hr demonstrated a two-fold increase in 
calpain activity. Pretreatment with either 10 µM BAPTA-AM (calcium chelator) or 10 µM 
calpeptin (Cal; calpain pathway inhibitor) completely abrogated DA-induced calpain activity. 
Different superscripts (a, b) indicate a statistical difference between groups. Values represent 
mean ± SEM for three independent experiments of two biological replicants. 
 

To investigate the role of DA-induced calcium dysregulation in mitophagy, oxidative 

stress, and apoptosis, protein expression of LC3BI and II, protein carbonylation, 4-HNE, and 

caspase 12 were measured via Western blots and Oxyblot. HK-2 cells pretreated with BAPTA-

AM completely abrogated the conversion of LC3BI to LC3BII (p < 0.05) induced by exposure to 

DA (Figure 26). Pretreatment with the calpain inhibitor partially inhibited the initiation of 

mitophagy (p < 0.05) indicating that calpain activation may play a role in mitochondrial turnover 

(Figure 26). Chelation of intracellular calcium or inhibition of calpain activation decreased 

protein carbonylation, however, not to a significant degree (Figure 27). However, DA-induced 4-

HNE adduct formation was completely abrogated (P < 0.05) in response to BAPTA-AM and 

calpeptin (Figure 27). Caspase 12 activation was also attenuated in response to BAPTA-AM and 

calpeptin (p < 0.05) (Figure 28) indicating that caspase 12 activity is not dependent on ER stress 

but can be activated in response to calpain activity. 
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Figure 26. Effects of BAPTA-AM or calpeptin pretreatment on LC3B expression in HK-2 
cells. Pretreating HK-2 cells with BAPTA-AM or calpeptin attenuated DA-induced conversion 
of LC3BI to LC3BII. Representative blots and cumulative densitometry included for LC3BI (A), 
LC3BII (B), and LC3BII/LC3B I ratio (C) following 24 hr exposure to DA. Representative blot 
with Memcode Reversible stain for 40 µg loaded protein and cumulative protein densitometry 
depicted for 8 hr (D) exposure. Positive control for LC3B conversion was FCCP. Different 
superscripts (a, b, c) indicate a statistical difference between groups. Values represent mean ± 
SEM for three independent experiments of two biological replicants. 
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Figure 27. Effects of BAPTA-AM or calpeptin pretreatment on oxidative stress in HK-2 
cells. Pretreatment with BAPTA-AM or calpeptin slightly decreased protein carbonylation and 
completely abrogated 4-HNE adduct formation. Representative blots and cumulative 
densitometry included for protein carbonylation (A) and 4-HNE adduct formation (B) following 
24 hr exposure to DA. Representative blot with Memcode Reversible stain for 15 µg and 40 µg 
loaded protein and cumulative protein densitometry depicted for protein carbonylation (C) and 4-
HNE adduct formation (D). Different superscripts (a, b) indicate a statistical difference between 
groups. Values represent mean ± SEM for three independent experiments of two biological 
replicants. 
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Figure 28. Effects of BAPTA-AM or calpeptin pretreatment on caspase 12 activity in HK-2 
cells. Pretreatment with BAPTA-AM or calpeptin abrogated caspase 12 activation. 
Representative blots and cumulative densitometry included for caspase 12 (A) following 24 hr 
exposure to DA. Representative blot with Memcode Reversible stain for 40 µg loaded protein 
and cumulative protein densitometry (B). Positive control for caspase 12 activation was 
thapsigargin. Different superscripts (a, b) indicate a statistical difference between groups. Values 
represent mean ± SEM for three independent experiments of two biological replicants. 
 

DISCUSSION 

The use of RCM in radiographic imaging procedures does not show any sign of slowing 

down. Over 75 million contrast-requiring procedures are performed every year worldwide, and 

since 2006, the number of CT scans has increased by over 800% (Bottinor, Polkampally, & 

Jovin, 2013; Brown et al., 2016). As patient life expectancy increases, the need for diagnostic 

procedures such as percutaneous coronary intervention (PCI) and cardiac catheterizations 

linearly increase as well (Sawhney & Fraser, 2017). Unfortunately, the combination of 

comorbidities that decrease renal function and exposure to RCM leads to CI-AKI resulting in 

increased length of hospital stay, cardiovascular events, end-stage renal disease, and all-cause 
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mortality (Brown et al., 2010; Chertow et al., 2005; James et al., 2013). RCM toxicity is 

associated with severe renal vasoconstriction, activation of multiple inflammatory pathways, and 

direct tubule damage. The combination of these humoral responses can induce renal injury 

ranging from non-symptomatic increases in SCr to extensive damage resulting in permanent 

kidney failure and the need for dialysis. Although the effects of RCM exposure have been well 

documented, the exact mechanisms of toxicity have not been fully elucidated. A vast number of 

clinical reports, observational studies, and in vivo studies have explored the incidence of CI-AKI 

following exposure to RCM, most finding significant risk; however, little is known about the 

initial sources of renal injury and direct cellular toxicity pertaining to RCM exposure. 

Discovering and understanding the mechanisms of toxicity is imperative for the development of 

an appropriate preventative measure or treatment option to mitigate CI-AKI.  

To determine the source of RCM induced cytotoxicity, in vitro models must be 

implemented to eliminate renal hemodynamic and inflammatory responses to RCM exposure. 

Various cell models have been utilized throughout the years including MDCK, LLC-PK1, HEK-

293, and NRK-E52, however, mechanistic studies require a model that can be translated directly 

to human physiology. Therefore, the human kidney cell model, HK-2, was chosen. In order to 

determine the initial mechanisms of cellular toxicity, the model in question must be exposed to 

concentrations of RCM that the kidney would experience in a clinical setting. On average, the 

adult human male, aged 19-95 years, has blood plasma volumes of 45.2 to 53 ml/kg body weight 

(Yiengst & Shock, 1962). An effective dose of an RCM for CT imaging such as coronary 

arteriography can range from 45 to 150mL. Therefore, for a 75kg adult male, blood plasma 

levels of RCM will range from 4 to 15 mg I/mL (Lusic & Grinstaff, 2013). These concentrations 

can effectively be doubled for larger patients and dosages can continue to increase until the 
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effective termination limit of 300mL of a 76% DA preparation or equivalent has been injected 

(Skucas, 1989). It is not uncommon for mechanistic studies to expose in vitro models to 

concentrations of RCM over 150 mg I/mL, which is up to twenty-five-fold greater than blood 

plasma levels. In this study, a wide range of DA concentrations (0, 2, 5, 10, 15, 18, 23, 28, and 

30 mg I/mL) were chosen to encompass what the kidney would experience following a modern 

imaging procedure. Although an extensive number of peer-reviewed studies indicate the roles of 

various pathways and propose multiple mechanisms of toxicity, the initial source of damage has 

yet to be identified at clinically relevant concentrations.  

Our study is the first to show that clinically relevant concentrations of DA induces 

cytotoxicity. MTT conversion was used as a measure of mitochondrial viability because the 

reduction of the yellow tetrazolium dye to its purple formazan counterpart is performed primarily 

by mitochondrial dehydrogenases (Rai et al., 2018). Mitochondrial viability was decreased in 

HK-2 cells within 2 hr at 15 mg I/mL and continued to decrease at 8 and 24 hr at 2 mg I/mL as 

shown by MTT to formazan conversion. It is important to mention that a decrease in MTT 

conversion does not necessarily demonstrate a decrease in the total number of viable cells and 

vice versa (Chung, Kim, & Kim, 2015). Hence, trypan blue exclusion assays were performed to 

verify that a decrease in MTT conversion was due to a decrease in mitochondrial viability and 

not a decrease in total number of viable cells. Healthy cells with an intact cellular membrane will 

exclude the trypan blue dye, whereas dead cells will allow the dye to leak into the cytosol 

(Strober, 2015). Unlike the results obtained from the MTT assays, a decrease in cell viability was 

not apparent until HK-2 cells were exposed to at least 23 mg I/mL for 24 hr indicating that HK-2 

cells experience a statistically significant decrease in mitochondrial viability at a much lower 
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concentration and at an earlier time point when compared to the noticeable decrease in cell 

viability.  

The mitochondrial density of the kidney is relatively high compared to the rest of the 

body, second only in mitochondrial content and oxygen consumption to the heart (Bhargava & 

Schnellmann, 2017). The high mitochondrial content is due to the PT being responsible for the 

majority of transport within the kidney accounting for approximately 80% of all transport in the 

kidney (Zhuo & Li, 2013). Consequently, PT cells are fairly resistant to induction of pro-

apoptotic mechanisms via multiple mitochondrial protection pathways. PT cells experiencing 

intracellular stressors such as ischemia, reaction to xenobiotics, or inflammatory responses will 

undergo mitochondrial swelling, fission, and mitophagy in an attempt to withstand the insult 

(Tran & Parikh, 2014). HK-2 cells have similar activity to in situ PT cells, and this property 

could explain the discrepancy between the values obtained from the MTT and Trypan blue 

exclusion assays. 

The effects of RCM on mitochondrial function have been briefly studied in various 

models. Basal and uncoupled respiration measured using a Clark oxygen electrode were 

decreased in isolated PTs of New Zealand white rabbits after exposure to DA, ioxaglate, and 

iopamidol (Humes et al., 1987; Messana et al., 1990; Messana et al., 1988). It has also been 

shown that exposing HK-2 or LLC-PK1 cells to ioversol, iodixanol, or iohexol induces an 

increase in mitochondrial ROS production, as well as depolarization of mitochondrial 

membranes and stimulated the release of cytochrome c (Itoh et al., 2006; Lei et al., 2018). ATP 

production, and complex I and complex III activity were decreased in male Wistar albino rats in 

response to exposure to DA (Roza et al., 2011). The combination of these previous studies 
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indicates that there is an interaction between the mitochondria of PT cells and RCM; however, 

the source of this dysfunction is unclear.  

 This is the first study to conduct real-time screening to determine the effects of DA on the 

mitochondria of live, intact PT cells. Using the Seahorse XFe96 Analyzer, the effects of 

clinically relevant concentrations of DA on mitochondrial respiration, glycolysis, ATP 

production, and mitochondrial fuel utilization were determined in HK-2 cells. The cell mito 

stress test utilizes various compounds that have been validated to be useful in mitochondrial 

mechanistic studies (Eakins et al., 2016), such as the complex I and complex III inhibitors, 

rotenone and antimycin-A, which decrease oxygen consumption rate (OCR) and increase 

extracellular acidification rate (ECAR). The ATP synthase inhibitor oligomycin inhibit the 

electron transport chain downstream of the complexes I and III but do not affect spare respiratory 

capacity. Finally, the uncoupling agent, 2,4-dinitrophenol, increases both OCR and ECAR 

(Eakins et al., 2016). Exposure to DA induced statistically significant decreases in basal and 

maximal respiration, spare respiratory capacity, and ATP production within 8hr and continued to 

decrease these parameters through 24hr. Unfortunately, a global decrease in mitochondrial 

respiration does not necessarily predict the source of mitochondrial damage; for instance, the 

environmental agents 2,2’-methylenebis(4-chlorophenol) and pentachlorophenol were 

determined to be uncoupling agents because the compounds reversed oligomycin-induced 

inhibition of OCR (Datta et al., 2016). Previous work in our lab demonstrated that the HIV 

medication tenofovir may be an ATP synthase inhibitor due to its reduction of OCR and no 

effect on spare respiratory capacity in HK-2 cells. A study performed by Namba et al., 

determined that renal PTs experiencing metabolic acidosis in response to ammonium chloride 

showed similar results to HK-2 cells exposed to DA (Namba et al., 2014). The Namba group 
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concluded that the global decrease in respiration was due to an increase in mitophagy. The role 

of mitophagy in CI-AKI will be discussed in more depth later.  

 The glycolytic stress test determines the ability of a cell to utilize glycolysis as a source 

of ATP. The assay utilizes oligomycin to induce maximal glycolysis from which spare glycolytic 

capacity can be determined. Similar to mitochondrial respiration, comparing the compounds that 

are known to effect glycolysis can help predict the source of glycolytic damage. The pesticide 

maneb has been shown to decrease glycolysis and glycolytic reserve and increase OCR 

indicating that it differentially affects glycolysis and stimulates mitochondrial respiration 

(Anderson et al., 2018). Comparable to neuroblasts treated with maneb, HK-2 cells that are 

exposed to DA demonstrate decreases in both glycolysis and glycolytic reserve; however, this 

interpretation must be approached with caution. HK-2 cells depend on oxidative phosphorylation 

to a much greater extent than glycolysis as a source of energy production indicated by the very 

slight increase in ECAR following the addition of oligomycin, demonstrating that the spare 

glycolytic capacity of HK-2 is insignificant relative to oxidative phosphorylation. It is possible 

that the decrease in glycolysis is not due to damage to glycolytic machinery but, more likely, the 

disappearance of glycolytic substrates in response to the cells attempting to maintain ATP levels 

in the absence of functioning mitochondria.  

In order to verify that exposure to DA results in mitochondrial dysfunction and the 

reduction in glycolysis and glycolytic capacity is due to downstream effects, the real-time ATP 

rate assay was utilized. This assay uses oligomycin and rotenone/antimycin-A to determine total 

ATP, mitochondria-linked ATP, and glycolysis-linked ATP production. In response to exposure 

to DA, HK-2 cells experienced a statistically significant decrease in total ATP and mitochondrial 

ATP production. Conversely, a decrease in glycolytic ATP production was apparent, however, 
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not to a significant degree. These results indicate that exposure to DA preferentially affects the 

mitochondria compared to the glycolytic pathway and the decreases that are being observed are 

in response to energy demand or downstream effects of mitochondrial dysfunction.  

The ability of the mitochondria to utilize available fuel sources is vital for maintaining 

energy homeostasis. The mito fuel flex test determines the rate of oxidation of the three major 

mitochondrial fuels: pyruvate, glutamine, and long-chain fatty acids (LCFA). The assay 

determines the reliance on a particular pathway to maintain basal respiration, labeled fuel 

dependency, followed by the overall fuel capacity of each fuel source. The difference of these 

two values is the mitochondrial fuel flexibility, or the mitochondria’s ability to compensate for 

an inhibited pathway by using the other two pathways. UK5099 is an inhibitor of the 

mitochondrial pyruvate carrier (MPC) thereby blocking the glucose oxidation pathway and 

determining the dependency and flexibility of the mitochondria to utilize pyruvate produced via 

glycolysis. BPTES is an allosteric inhibitor of glutaminase (GLS1) resulting in inhibition of the 

glutamine oxidation pathway. GLS1 converts glutamine to glutamate which is then converted to 

α-ketoglutarate by glutamate dehydrogenase to be used in the citric acid cycle. Finally, etomoxir 

inhibits the LCFA transporter carnitine-palmitoyl transferase (CPT1A) which is critical for 

translocating LCFA from the cytosol into the mitochondrial matrix to be used for β-oxidation.  

In response to exposure to clinically relevant concentrations of DA, HK-2 cell’s ability to 

oxidize glucose, glutamine, and fatty acid is not affected to a significant degree. The flexibility 

of glucose and glutamine oxidation slightly increases in response to low and intermediate 

concentrations of DA; however, the increase also does not reach levels of significance. Aerobic 

respiration is the primary mechanism of ATP production in PT cells, with the central source of 

ATP coming from β-oxidation of LCFA, such as palmitate, which produce 3 fold the ATP per 
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molecule when compared to glucose oxidation (Bhargava & Schnellmann, 2017). According to 

the results of the mito fuel flex test (Figure 12), the oxygen consumption linked to each oxidative 

pathway within the mitochondria are approximately equivalent, indicating that HK-2 cells 

depend on each of the three pathways to a similar degree. It is also important to note that 

although we are seeing a decrease in every parameter of mitochondrial function as shown by the 

cell mito stress tests, the ability of the mitochondria to utilize the different fuel sources is not 

diminished. One would expect there to be a decrease in at least one oxidative pathway as a 

potential source of damage within the mitochondria; for example, if there was a decrease in 

glutamine oxidation in response to exposure to DA, it could be concluded that the diminishment 

of basal and maximal respiration seen in the cell mito stress tests could be attributed to 

dysfunction of electron transport chain machinery, glutamine conversion to α-ketoglutarate, or 

transport of glutamine into the mitochondria. The ability of the HK-2 cells to utilize LCFA is 

very slightly decreased in response to DA, and this could be explained by accumulation of LCFA 

as triglycerides within the cytosol. Triglycerides have been shown to accumulate within the 

cytosol of injured HK-2 cells, thereby decreasing the available LCFA to be utilized as a fuel 

source (Johnson, Stahl, & Zager, 2005). It is possible that the damage induced by DA at 8 hr is 

not severe enough to induce a decrease in the ability of the mitochondria to utilize each of the 

fuel sources, but we can conclude that the observed decrease in mitochondrial function is not due 

to diminishment of the ability of the mitochondria to utilize the three major fuel sources. 

A decrease in observable mitochondrial function in the absence of noticeable impairment 

of the oxidative machinery or transport of fuel may not indicate direct mitochondrial damage but 

could be caused by a decrease in the overall number of active mitochondria. Mitochondrial 

turnover, or mitophagy, is the main source of mitochondrial degeneration and has been 
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implicated in a number of diseases and conditions including CI-AKI (C. He & Klionsky, 2009; 

Lei et al., 2018; C. Zhao et al., 2017). The conversion of LC3BI, soluble form, to LC3BII, lipid 

form, is considered the major determining factor of mitophagy via the direct interaction of LC3 

adapters and mitochondrial substrates (Yoo & Jung, 2018). PTEN-induced putative kinase 1 

(PINK1) is continuously degraded by matrix processing peptidases within the mitochondria and 

subsequently cleaved by presenilin-associated rhomboid like (PARL) where it translocates to the 

cytosol and is entirely degraded (Matsuda et al., 2010). In the presence of mitochondrial 

membrane damage, the degradation of PINK1 is attenuated and it accumulates on the outer 

mitochondrial membrane (Park et al., 2015). The ubiquitin ligase Parkin is activated by 

phosphorylation on the mitochondrial membrane via interactions with PINK1, where it 

polyubiquinates substrates such as mitofusin I and II (MFS 1/II) (Nguyen, Padman, & Lazarou, 

2016; Tanaka et al., 2010). An LC3BI adapter molecule, such as sequestrome-1 (p62), is 

recruited to the polyubiquinated substrates where it is recognized by LC3BI and tagged for 

degradation via the autophagosome (Lazarou et al., 2015). Polyubiquinated substrates contain a 

LC3-interacting region (LIR) in which LC3BI recognizes, binds, and is converted into LC3BII. 

Therefore, a decrease in the ratio of LC3BI to LC3BII is an indicator of mitophagy.  

A study on the role of mitophagy in CI-AKI has already been reported using very high 

concentrations of RCM in an in vitro model. HK-2 cells exposed to 200 mg I/mL of iohexol and 

iodixanol expressed a statistically different increase in the ratio of LC3BII/LC3BI and an 

increase in p62 expression demonstrating an increase in mitophagy (Lei et al., 2018). In our 

study, clinically relevant concentrations of DA induced a significant increase in the ratio of 

LC3BII/LC3BI within 8 hr of exposure indicating that the diminishment of cellular respiration 

may not be due to mitochondrial damage but mitophagy. Our studies also suggest that mitophagy 
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may occur at levels that exist in the PT of a patient during development of CI-AKI. It has been 

shown that mitophagy may play a role in protecting PT cells from CI-AKI (Lei et al., 2018). 

Pretreatment of HK-2 cells with the inhibitor of autophagy, 3-methyladenine, resulted in more 

severe cellular toxicity induced by RCM (Lei et al., 2018). The increase of mitophagy seen in 

this study potentially explains why conversion of MTT is diminished within 2 hr of DA exposure 

but cell viability is not decreased until 24 hr.  

Disturbances in cellular homeostasis such as alterations in available ATP, redox status, 

and calcium regulation will result in misfolding or unfolding of proteins within the ER. 

Accumulation of misfolded or unfolded proteins within the ER activates the UPR and, if the 

instability is prolonged, will result in ER stress and apoptosis (Faitova, Krekac, Hrstka, & 

Vojtesek, 2006). The major purpose of the UPR is to reestablish the delicate balance between 

protein load and folding capacity of the ER. The ER is sensitive to homeostatic changes due to 

its dependency on a variety of fuel sources including saccharides for protein modifications, 

reducing equivalents for disulfide bond formation, and adequate ATP for calcium transport into 

and out of the ER (Bravo et al., 2013). Glucose-regulated protein 78 (GRP78) is an ER resident 

molecular chaperone that is considered the master regulator of UPR. Under normal physiological 

conditions, three ER transmembrane proteins, RNA-dependent protein kinase-like ER kinase 

(PERK), inositol-requiring ER-to-nucleus signal kinase 1 (IRE1), and activating transcription 

factor 6 (ATF6), are all kept inactive by interactions with GRP78 (Kim, Emi, Tanabe, & 

Murakami, 2006). Upon homeostatic disturbance, GRP78 dissociates from PERK, IRE1, and 

ATF6 where it binds to unfolded or misfolded protein leading to activation of the three proteins. 

PERK phosphorylates eukaryotic translation initiation factor 2α (eIF2α) resulting in attenuation 

of protein synthesis in an attempt to decrease ER protein load (Kim et al., 2006). Both IRE1 and 
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ATF6 activation leads to increased expression of ER chaperone genes and ER-associated 

degradation (ERAD) factors in order to fold or degrade unfolded and misfolded proteins (Kim et 

al., 2006; Yamamoto et al., 2007). However, if activation of the UPR regulators cannot restore 

homeostasis and activation of these regulators is extensively prolonged, PERK, IRE1, and ATF6 

signals converge to induce transcription of the central proapoptotic transcription factor in ER 

stress, C/EBP homologous protein (CHOP) (Oyadomari & Mori, 2004). The final step in ER 

stress is activation of the pro-apoptotic protease located on the outer surface of the ER, caspase 

12 (Rawlings & Salvesen, 2013). 

ER stress has been shown to play a role in a large number of pathophysiological disorders 

including the pathogenesis of ischemia/reperfusion injury and CI-AKI (X. Gao et al., 2012). The 

role of ER stress has been established in HK-2 and NRK-E52 cells exposed to HOCM and 

LOCM has previously been established. NRK-E52 cells exposed to 60 mg I/mL DA or 100 mg 

I/mL iopromide resulted in significant increases in GRP78, phosphorylated PERK, 

phosphorylated eIF2α, and CHOP expression (Wu et al., 2010; Y. Yang et al., 2014). HK-2 cells 

treated with 40 mg I/mL of DA induced statistically significant increases in GRP78, ATF4, 

CHOP, and caspase 12 mRNA levels (P. A. Peng et al., 2015). However, studies in our 

laboratory concluded that exposing HK-2 cells with clinically relevant concentrations of DA 

could not induce significant increases in GRP78 expression or the downstream pro-apoptotic 

protein CHOP. These findings indicate that activation of UPR or ER stress does not play a role in 

the decrease in cell viability in response to DA exposure. Interestingly, we found that exposure 

to 28 and 30 mg I/mL induced a significant increase in caspase 12 expression indicating 

activation of the ER transmembrane bound protease via another mechanism. Although the 

mechanism of activation of caspase 12 is not entirely understood, the role of cytokines and the 
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calcium dependent class of proteases called calpains may play a role (Berchtold, Prause, 

Storling, & Mandrup-Poulsen, 2016).  

The levels of calcium within physiological systems is tightly regulated. This regulation is 

due to the fact that calcium acts as an essential intracellular and extracellular messenger in 

numerous cellular events such as hormone secretion, muscle contraction, immune responses, 

activation of neuronal networks, and cell survival and death. Maintenance of extracellular 

calcium is held in a narrow range of 8.5-10.5 mg/dL and maintaining this range is important for 

intracellular calcium homeostasis. Approximately 70% of filtered calcium is reabsorbed in the 

PT via paracellular passive diffusion, intracellular leakage via claudin-2 located within the tight 

junctions of basolateral membranes (Jeon, 2008), and a small, but significant, amount of calcium 

is actively transported into the PT (Blaine, Chonchol, & Levi, 2015). Unfortunately, little is 

known about the mechanism of active transport within the PT, however, preliminary studies 

indicate that the membrane calcium channel transient receptor potential channel vanilloid 6 

(TRPV6) is distributed on the proximal tubule (J. B. Peng, 2019) potentially explaining the 

source of PT calcium transport.  

The central mechanism in maintaining intracellular calcium balance in basically all 

metazoan cells is store-operated calcium entry (SOCE). SOCE is based on the theory that: 1) 

cells possess multiple stores of intracellular calcium; 2) endogenous and exogenous agonists can 

induce release of calcium from these stores; 3) intracellular calcium mobilization will cause 

calcium efflux from the cell; 4) as time goes on, these stores need to be replenished (Hogan & 

Rao, 2015). Store-operated calcium channels (SOCCs) are activated in response to calcium 

release from the ER. G-protein coupled receptor or tyrosine kinase activation in response to 

binding of an endogenous or exogenous ligand result in activation of phospholipase C (PLC) and 
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formation of inositol-1,4,5-triphosphate (IP3). Binding of IP3 to IP3 receptors (IP3R) on the ER 

membrane induces calcium release into the cytosol (Prakriya & Lewis, 2015). Excess 

intracellular calcium is then effluxed from the cell via plasma membrane calcium ATPases 

(PMCAs) and Na+/Ca2+ exchangers (NCXs) (Guerini, 1998). As the ER luminal space becomes 

devoid of calcium, the primary ER luminal calcium sensor, stromal interaction molecule 1 

(STIM1), is activated and accumulates at ER-plasma membrane junctions (Roos et al., 2005). 

Accumulation of STIM1 subsequently activates the pore-forming subunit of SOCs, Orai1, and 

allows influx of calcium (Feske et al., 2006; Vig et al., 2006). As intracellular levels begin to 

rise, the sarcoplasmic/endoplasmic reticulum calcium ATPases (SERCAs) actively pump 

calcium back into the ER restoring intracellular calcium to appropriate and defined 

concentrations (Mekahli et al., 2011). 

Aberrant function in intracellular calcium management has been indicated in a range of 

pathological conditions such as cardiovascular disease, diabetes mellitus, tumorigenesis, steatosis 

hepatitis, as well as ischemia reperfusion injury and CI-AKI. The relationship between calcium 

regulation, the ER, and the mitochondria is very complex and may play an important role in 

RCM-induced cytotoxicity. Soon after the characterization of carbohydrate metabolism and 

oxidative phosphorylation, it became clear that calcium had a special role in the mitochondrial 

physiology. Calcium can act as an uncoupler of oxidative phosphorylation because of the 

mitochondria’s ability to efficiently influx and accumulate calcium within the matrix at the 

expense of energy consumption (Deluca & Engstrom, 1961; Vasington & Murphy, 1962). 

Quickly thereafter, it was verified that: 1) calcium uptake into the mitochondria is dependent on 

an energy source such as ATP or other oxidizable substrates; 2) uptake is saturable indicating the 

existence of a carrier; 3) mitochondrial calcium influx is accompanied by stoichiometric 
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extrusion of H+ (Drago, Pizzo, & Pozzan, 2011). It was later discovered that two carriers were 

involved in mitochondrial calcium influx, the mitochondrial calcium uniporter (MCU) and the 

H+/Ca2+ antiporter (Brand, Chen, & Lehninger, 1976; Moyle & Mitchell, 1977). In healthy cells, 

the levels of calcium within the mitochondrial matrix are fairly low and range from 100 nM to 

1µM (Brinley, Tiffert, Scarpa, & Mullins, 1977; Ivannikov & Macleod, 2013; Somlyo, Bond, & 

Somlyo, 1985) and influx of calcium only becomes substantial when extramitochondrial calcium 

concentrations reach approximately 10 µM (Rizzuto & Pozzan, 2006). Conversely, it was 

discovered that even though the affinity of the MCU for calcium is very low (Kd = 20-30 µM), 

the mitochondria are capable of quick and substantial increases in matrix calcium levels, even at 

physiological increases in intracellular calcium (Rizzuto, Brini, Murgia, & Pozzan, 1993). 

Rizzuto et al. hypothesized that the discrepancy between low MCU calcium affinity and high 

efficiency of mitochondrial calcium influx was due to microheterogeneity of cytoplasmic 

calcium following stimulation. Rizzuto et al. suggested, and later confirmed by Giorgi et al., that 

the area between the calcium efflux proteins of the ER and MCU of the mitochondria can form a 

microdomain, later named the mitochondrial-associated membranes (MAMs) (Giorgi et al., 

2010). These microdomains of physiologically high concentrations of calcium were established 

to be approximately 10-20 µM (Csordas et al., 2010; Giacomello et al., 2010; Rizzuto et al., 

1998). These studies indicate that the mitochondria play an important role in intracellular 

calcium buffering at physiological and pathological concentrations.  

Calcium overload within the mitochondria is considered to be one of the main driving 

factors of cell death. Mitochondrial membrane permeability transition (mPT) is considered the 

initiator of the intrinsic apoptotic pathway and induction involves numerous factors. The only 

dogma pertaining to mPT is the accumulation of calcium within the mitochondrial matrix. 
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Inhibiting calcium influx into the matrix with ruthenium red completely abrogates mPT verifying 

the role of calcium in mPT (Haworth & Hunter, 1979). Accumulation of large amounts of 

calcium within the matrix leads to the opening of a large channel within the mitochondrial inner 

membrane referred to as the mitochondrial membrane permeability transition pore (mPTP). As 

the mPTP opens, proteins (< 1.5 kD) and solutes flood into the matrix resulting in uncoupling of 

oxidative phosphorylation, depletion of ATP, and permeabilization of the outer mitochondrial 

membrane (Hunter, Haworth, & Southard, 1976; Ott et al., 2002). Mitochondrial outer 

membrane permeability results in leakage of cytochrome c which binds to apoptotic protease 

activating factor (Apaf1) to form the apoptosome. The apoptosome continues to activate caspase 

9 and induce apoptosis (Morgan & Liu, 2010). 

The role of calcium homeostasis in the pathogenesis of CI-AKI has been established 

previously by various laboratories. The Yang group demonstrated that intracellular calcium 

overload may play a role in ROS overproduction, p38 MAPK activation, and apoptosis in CI-

AKI (D. Yang, Yang, Jia, & Ding, 2013; D. Yang, Yang, Jia, & Tan, 2013). Another study 

determined that exposure to 150 mg I/mL ioversol for 24 hr induced cytochrome c release and 

activation of caspase 3 in glomerular endothelial cells isolated from adult male Sprague-Dawley 

rats; however, pretreatment with the intracellular calcium chelator BAPTA-AM (5 µmol/L) 

completely attenuated the cytotoxicity (J. Zhao et al., 2009). Our studies confirm the Zhao group 

findings as pretreatment with BAPTA-AM completely alleviated DA-induced cytotoxicity in 

HK-2 cells as seen by MTT conversion. Whereas the Zhao study found that the extracellular 

calcium chelator EGTA had no effect on protecting glomerular endothelial cells from RCM-

induced cytotoxicity, pretreating HK-2 cells with EGTA did afford partial protection from DA-

induced cytotoxicity (Figure 24). Additionally, pretreatment of HK-2 cells with the IP3R 
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antagonist 2-APB also provided partial protection from diminished mitochondrial viability in 

response to DA exposure (Figure 24). Pretreatment with BAPTA-AM completely abrogated the 

conversion of LC3BI to LC3BII in response to DA (Figure 26), further suggesting that DA does 

cause intracellular calcium overload and mitophagy. It is clear from these results that calcium 

plays a major role in mitochondrial viability; however, the source of this calcium is still in 

question. It is likely that the DA-induced increase in intracellular calcium is caused by a 

combination of the release of calcium from the ER and calcium influx through SOCs due to the 

fact that both EGTA and 2-APB provided partial protection. 

Aside from inducing mPT, intracellular calcium overload can also induce cellular damage 

by other mechanisms. Prolonged surges in intracellular calcium has long been thought to activate 

a class of calcium-activated non-lysosomal cysteine proteases called calpains (Goll et al., 2003). 

It is hypothesized that during events of high intracellular calcium, inactive calpain translocates 

from the cytosol to the ER membrane and autocatalyzes resulting in the dissociation of the 30kD 

active subunit (K. Suzuki & Sorimachi, 1998). Calpain substrates do not have a specific 

recognizable amino acid sequence, therefore, a large variety of proteins are targets (Momeni, 

2011) including other pro-apoptotic enzymes like caspase 12. In fact, it has been previously 

shown that activation of caspase 12 requires calpain activation in vivo (Nakagawa & Yuan, 

2000). Pretreatment with calpain or calpain inhibitor-1 prior to exposure to RCM results in 

decreased antioxidant activity or reduced renal impairment, respectively, in rats (Baykara et al., 

2015; Briguori, Quintavalle, De Micco, & Condorelli, 2011; Chatterjee et al., 2001). Our studies 

have shown that HK-2 cells exposed to DA for 24 hr induced a two-fold increase in calpain 

activity and inhibiting calpain activity with calpeptin or chelating intracellular calcium with 

BAPTA-AM completely abrogated DA-induced calpain activation (Figure 24). To verify the role 
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of caspase 12 activation by calpain activity, HK-2 cells were pretreated with BAPTA-AM or the 

calpain inhibitor calpeptin prior to DA exposure. As a result, both BAPTA-AM and calpeptin 

inhibited the DA-induced increase in caspase 12 expression (Figure 28) indicating that caspase 

12 activation takes place in response to intracellular calcium overload and not to ER stress.  

Perhaps the most studied topic pertaining to the cytotoxicity of RCM is likely to be 

oxidative stress. As the production of reactive oxygen species (ROS) overwhelms the ability of a 

cell’s innate antioxidant systems to repress ROS reactivity, the ROS continuously and 

cumulatively damage the cell via interactions with cellular proteins, DNA, and other cellular 

structures (Gracy, Talent, Kong, & Conrad, 1999). Sources of ROS production vary but the most 

common endogenous sources are: 1) as byproducts of cellular metabolism through the electron 

transport chain (ETC), specifically complexes I and III; 2) one-electron reduction of O2 through 

enzymatic catalysis by NADPH oxidase (NOX) or xanthine oxidase (XO); 3) uncoupling of 

endothelial nitric oxide synthase (eNOS) (Mittal et al., 2014). The mitochondria ETC and NOX 

are the major sources of ROS generation within a cell (Di Meo, Reed, Venditti, & Victor, 2016; 

Phaniendra, Jestadi, & Periyasamy, 2015). In response to ROS production, cells have innate 

antioxidant systems to reduce oxidants to water and O2. The most common players in the 

endogenous antioxidant systems include: the enzymatic ROS scavengers superoxide dismutase 

(SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione transferase, and the non-

enzymatic scavengers glutathione (GSH) (Birben et al., 2012). In the context of CI-AKI, a 

plethora of studies have been performed to confirm the formation of free radicals and oxidative 

stress as a result of exposure to RCM (Huang et al., 2016; Liss, Nygren, Erikson, & Ulfendahl, 

1998; Quintavalle et al., 2011; Rosenberger, Rosen, & Heyman, 2006); however, very few 

studies have addressed the source of ROS production. The purpose of this study was to verify 
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that clinically relevant concentrations do induce an increase in ROS and oxidative stress and 

identify the source of the excessive generation of ROS.  

Protein carbonylation is a generic term used to describe the irreversible interaction 

between reactive ketones and aldehydes formed in the presence of ROS and the side chains of 

proteins, specifically lysine, arginine, proline, and threonine (Y. J. Suzuki, Carini, & Butterfield, 

2010). This reactive carbonyl moiety will further impede biomolecule function, cause 

inflammation, cell toxicity, and induce apoptosis. Accumulation of proteins with carbonylated 

side chains indicates an increase in oxidative stress. Protein carbonyls can be recognized via 

derivatization with 2,4-dinitrophenylhydrazine (DNPH) to form hydrazones that can be detected 

using antibodies against DNPH-derivatized proteins (Levine, Williams, Stadtman, & Shacter, 

1994). A more specific biomarker for oxidative stress is the formation of protein-bound 

carbonyls induced by excessive lipid peroxidation. Most lipid peroxidation products are strong 

electrophiles and readily form Michael adducts with lysine, cysteine, and histidine side chains 

(Fedorova, Bollineni, & Hoffmann, 2014). The primary α,β-unsaturated hydroxalkenal formed 

during lipid peroxidation, 4-HNE, is one of the most commonly used biomarkers for oxidative 

stress and can easily be detected via immunoblotting.  

Our studies indicate that exposure to clinically relevant concentrations of DA induced 

oxidative stress in HK-2 cells as shown by an increase in protein carbonylation and 4-hydroxyl-

nonenal (4-HNE) protein adduct formation within 24 hr at 18 mg I/mL; however, no increase in 

oxidative stress was apparent within 8 hr. It is hypothesized that a major portion of direct 

cytotoxicity induced by RCM is caused by oxidative stress; our results indicate mitochondrial 

turnover at an earlier time point. Therefore, at clinically relevant concentrations, the increase in 
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oxidative stress is not the initial or sole cause of HK-2 cytotoxicity but is due to damage that is 

already taking place within the cell.  

The major source of endogenous ROS production is complex I and complex III of the 

electron transport chain within the mitochondria. Under normal physiological conditions, ROS 

generated in the mitochondria are involved in cellular crosstalk, signal integration of cell 

proliferation, differentiation, inflammation, repair, and apoptotic pathways (Li et al., 2017). 

However, in circumstances of perturbances in cellular homeostasis, such as alterations in 

NADH/NAD+ ratio, metabolic disturbances, or mitochondrial membrane damage, mitochondrial 

ROS generation surges (Li et al., 2013). Within the mitochondria of an affected cell, electrons 

leak from the intermembrane space at complex I and complex III where it interacts with O2 to 

yield superoxide (O2
·-) radical. The mitochondria have an internal system to dispose of excess 

ROS that includes manganese superoxide dismutase (MnSOD) which dismutates O2
·- into H2O2 

and glutathione peroxidase (GPx) which fully reduces H2O2 into water (Li et al., 2013). The 

mitochondria are at a disadvantage, however, due to the fact that it lacks catalase, a H2O2 

reducing enzyme, and depends on the reduction of glutathione disulfide to glutathione via 

glutathione reductase (GR) to reduce H2O2. As concentrations of the reducing equivalent 

NADPH decrease and glutathione disulfide increase, the antioxidant system within the 

mitochondria become overwhelmed (Sung et al., 2013). Once the antioxidant systems become 

overwhelmed, ROS interactions disrupt the mitochondrial membrane potential and permeability 

transition is eminent. As previously mentioned, mitochondrial outer membrane permeability 

results in leakage of cytochrome c which binds to apoptotic protease activating factor (Apaf1) to 

form the apoptosome. A study performed by Lei et al. indicated that exposure of HK-2 cells to 

200 mg I/mL iodixanol or iohexol induced statistically significant increases in mitochondrial 
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ROS production as shown by mitoSOX and TMRE staining (Lei et al., 2018). Our studies 

indicate that exposure of HK-2 cells to clinically relevant concentrations of DA induced the 

opposite effect. In fact, we noticed no change in 4-HNE protein adduct formation or protein 

carbonylation  within the mitochondria and the statistically significant increases in 4-HNE 

adduction and protein carbonylation takes place solely within the cytosol. To verify these 

findings, SOD activity assays were performed. We discovered that there was no change in 

MnSOD expression or activity, and the overall decrease in SOD activity was due, entirely, to a 

decrease in activity of the cytosolic SOD, Cu/ZnSOD.  

 The role of the cytokine tumor necrosis factor alpha (TNFα) was measured in response 

to DA exposure as a possible initiator of ROS generation. TNFα is an important cytokine in 

inflammation and is involved in many cellular responses including pro-survival and pro-

apoptotic pathways that have been shown to be affected in response to RCM exposure (Saritemur 

et al., 2015). TNFα has been shown to induce ROS production in a number of different pathways 

but most noticeably is through activation of NOX, specifically NOX4, in renal parenchymal cells 

(Sedeek, Nasrallah, Touyz, & Hebert, 2013). TNFα induces an increase in various NADPH 

oxidase components such as the NOX regulatory proteins p22phox and p47phox, NADPH 

oxidase organizer 1 (NOXO1) and NOX4 (De Keulenaer et al., 1998; Moe et al., 2006; Yoshida 

& Tsunawaki, 2008). A study performed by Jeong et al. demonstrated that exposing HK-2 cells 

to 150 mg I/mL iohexol induced statistically significant increases in NOX4 within 5 min; 

however, the group did not verify if the increase in NOX4 induced an increase in ROS at this 

time point (Jeong et al., 2018). In response to clinically relevant concentrations of DA, a 

statistically significant increase in TNFα in cell media and decrease in TNFα in cell lysate of 

HK-2 cells was apparent, indicating that DA does induce a mild inflammatory response in vitro. 
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However, NOX4 expression was unaffected in response to the increase in active TNFα. From 

these results, we can conclude that although TNFα is activated in response to DA exposure, the 

intracellular signaling is not strong enough to induce NOX4 transcription or activation. We can 

also conclude that TNFα and NOX4 are not playing a role in ROS generation or apoptosis in 

HK-2 cells.  

Excessive ROS generation induced by intracellular calcium dysregulation may play a role 

in CI-AKI. Intracellular calcium levels have been linked to ROS production in response to RCM 

(D. Yang, Yang, Jia, & Ding, 2013; D. Yang, Yang, Jia, & Tan, 2013). Calcium induced ROS 

production is linked to the interactions between mitochondrial calcium and increased ATP 

production and ROS generation, and calcium induced activation of NOX (Gorlach, Bertram, 

Hudecova, & Krizanova, 2015). However, our studies indicate that there is no change in NOX4 

activation and mitochondrial oxidative stress in response to DA exposure (Figure 20, Figure 21). 

Calcium may be inducing ROS production via calpain activation. In diabetic mouse and human 

umbilical vein endothelial cells, activation of calpain correlated with an increase in ROS 

production; whereas, transgenic mice over-expressing the endogenous calpain inhibitor 

calpastatin experienced significant reduction in ROS production (B. Chen et al., 2014). Our 

study indicates that pretreatment with BAPTA-AM or calpeptin completely abrogates 4-HNE 

adduct formation; however, protein carbonylation is not decreased to a significant degree. From 

these results, it can be concluded that the increase in lipid peroxidation that takes place in 

response to DA exposure is linked to calcium dysregulation and calpain activity.  

Apoptosis can be induced via two main pathways: the mitochondrial, or intrinsic, 

pathway; the ligand-mediated, or extrinsic, pathway. Both pathways involve two types of 

caspases: the initiator caspases (caspase 2, 4, 8, 9, 10, 11, and 12) and the effector caspases 
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(caspase 3, 6, 7). Activation of specific apoptotic pathways can be determined by measuring the 

appropriate caspase. Cleavage of caspase 9, for example, occurs in response to activation of the 

apoptosome and can be used as a determinant of initiation of the intrinsic apoptotic pathway. The 

apoptosome will then interact with and cleave executioner caspases such as caspase 3 resulting in 

programmed cell death. As previously mentioned, exposure to DA induces an increase in 

expression of the initiator caspase, caspase 12; however, caspase 12 activation occurs in the 

absence of initiation of the UPR or ER stress. Caspase 4 was measured as an indicator of the 

extrinsic apoptotic pathway. Caspase 4 is in response to binding of TNFα to the TNFα receptor 1 

(TNFR1), activation of the TNFα receptor-associated death domain (TRADD), and induction of 

extrinsic apoptosis. Caspase 4 has also been linked to ER stress linked apoptosis. HK-2 cells 

exposed to clinically relevant concentration of DA for 24 hr experience a statistically significant 

increase in TNFα activation but there was no noticeable change in caspase 4, indicating that ER 

stress and the extrinsic apoptotic pathway do not play roles in DA-induced apoptosis. Cleavage 

of caspase 3 was statistically increased in response to clinically relevant concentrations of DA, 

indicating that apoptosis is occurring within 24 hr and mitochondrial dysfunction may be the 

major contributing factor to the decrease in cell viability as seen by leakage of cytochrome c and 

the increase in mitophagy.   

CONCLUSION 

This study provides additional insight into the mechanisms of DA-induced renal 

epithelial cytotoxicity. DA induces a decrease in mitochondrial and cell viability within 2 hr and 

24 hr, respectively, as shown by MTT assays and trypan blue exclusion studies. Exposure to DA 

resulted in a decrease in basal and maximal respiration, spare respiratory capacity and ATP 

production within 8 hr as seen by changes in OCR and ECAR in Seahorse XFe assays; however, 
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the ability of the mitochondria to utilize the three major fuel sources (glucose, glutamine, and 

fatty acid oxidation) was unchanged, indicating that the decrease in mitochondrial respiration 

could be due to an increase in mitophagy. The ratio of LC3BII/I was increased after 8 hr 

exposure demonstrating that DA does, in fact, increase mitochondrial turnover. An increase in 

oxidative stress was apparent within the cytosol but not in the mitochondria as shown by protein 

carbonylation and 4-HNE protein adduct formation. Exposure to DA induced no change in 

MnSOD expression or activity confirming that the source of ROS overproduction is not within 

the mitochondria. Alternatively, the activity of Cu/ZnSOD was decreased in response to DA 

exposure. The role of TNFα in DA-induced cytotoxicity was evaluated by measuring NOX4 and 

caspase 4 expression but no change was detected. Therefore, the source of ROS overproduction 

remains elusive at this time. Caspase 3 and 12 activation was evident following a 24 hr exposure 

of HK-2 cells to clinically relevant concentrations of DA indicating that DA is inducing 

apoptosis. Caspase 12 expression is increased despite the fact that these concentrations of DA do 

not induce the UPR or ER stress as shown by GRP78 and CHOP expression. Pretreatment of 

HK-2 cells with calcium concentration modulators such as BAPTA-AM, EGTA, and 2-APB 

resulted in partial or complete protection from DA-induced mitochondrial toxicity demonstrating 

that calcium dysregulation plays a crucial role in CI-AKI. To determine if calpains play a role in 

caspase 12 activation, calpain activity assays were performed and determined that HK-2 cells 

exposed to 30 mg I/mL induces an increase in calpain activity. Pretreatment with BAPTA-AM 

completely abrogated the activation of calpain, caspase 12 activation, and the increase in 4-HNE 

adduct formation in response to DA exposure. Additional studies need to be conducted to 

determine the sources of ROS overproduction and calcium dysregulation, as well as the role of 

calcium in cellular homeostasis in response to RCM.   
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CHAPTER 4: SUMMARY, CONCLUSIONS, AND FUTURE DIRECTIONS 

As the research for my dissertation comes to an end, my interest in CI-AKI and renal 

pathology has only been reinforced in the last five years. RCM are one of the most commonly 

administered drugs in a clinical setting and administration is only going to increase further in the 

future. As advances in human longevity are continuously made, the need for radiopaque 

diagnostic procedures will rise alongside, and cases of CI-AKI will increase as a result. 

Discovering the exact mechanisms of RCM-induced renal cytotoxicity are particularly relevant, 

as the overall number of patients with conditions causing advanced renal impairment such as 

diabetes mellitus, congestive heart failure, and advanced age are rising. The general goal of this 

project was to determine the mechanism of DA-induced proximal tubule cytotoxicity and to 

explore potential methods to alleviate this toxicity. My work provides insight into these 

mechanisms as well as evidence that pretreatment with calcium modulators mitigate this toxicity; 

this evidence warrants further study and may have potential clinical implications. 

CLINICALLY RELEVANT CONCENTRATIONS OF DA IS CYTOTOXIC TO HK-2 
CELLS 

The vast majority of studies pertaining to the discovery of the mechanisms of direct 

toxicity of RCM use concentrations that greatly exceed the concentrations within the kidney 

following RCM administration. It is not uncommon for studies to use concentrations that exceed 

twenty-fold the normal plasma levels of RCM following clinical administration in in vitro 

experiments. During a routine radiopaque imaging procedure, 45-150 mg I/mL RCM are 

administered intravenous for a 75 kg man and these concentrations can double as patients’ 

weight increase. It is at the clinician’s discretion to select the appropriate amount of RCM to use 

during these procedures, and the effective termination limit of a 76% DA preparation is 300mL 

(Skucas, 1989).  For a 75kg adult male, blood plasma levels will range from ~4 to 15 mg I/mL 
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but can reach as high as 30 mg I/mL as administered volumes increase (Lusic & Grinstaff, 2013). 

Mechanistic studies attempting to determine the mechanisms of cytotoxicity frequently expose in 

vitro models to concentrations of RCM well over 100 mg I/mL. In a study to determine the role 

of NOX4 and oxidative stress in response to RCM, HK-2 cells were exposed to 150 mg I/mL of 

iohexol (Jeong et al., 2018). The Yang group exposed NRK-52E cells to 150 mg I/mL of 

iopromide to determine the effects of RCM on the induction of ER stress (Y. Yang et al., 2014). 

Multiple studies attempting to verify the origin of cytotoxicity expose various models to 200 mg 

I/mL RCM (X. He et al., 2016; Netti et al., 2014; Quintavalle et al., 2011). It is possible that 

exposing cells to concentrations of RCM of this magnitude is inducing changes in cellular 

homeostasis that would not occur at clinically relevant concentrations of RCM. Therefore, the 

conclusions obtained from the results of these previous studies may be misleading.  

In this study, a wide range of clinically relevant DA concentrations (0, 2, 5, 10, 15, 18, 

23, 28, and 30 mg I/mL) were chosen to encompass what the kidney would experience following 

one of the plethora of imaging procedures used today. In response to clinically relevant 

concentrations of DA, mitochondrial and cell viability was diminished in HK-2 cells in a time-

dependent and concentration-dependent manner. Therefore, concentrations of DA that the 

normal, healthy kidney would experience in a clinical setting induce cytotoxicity, and this model 

can be used to examine the mechanisms of toxicity without the compounding in situ factors that 

are involved in CI-AKI.   

DA ALTERS MITOCHONDRIAL FUNCTION AND INDUCES MITOPHAGY IN HK-2 
CELLS 

Renal PT cells have high energy demands in order to maintain normal cellular function. 

To sustain appropriate levels of ATP, PT cells have the second highest mitochondrial density 

within the body (Bhargava & Schnellmann, 2017). A decline in basal respiration and maximal 
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respiration, and subsequent decrease in ATP production, in response to DA exposure would 

impair cellular homeostasis. Our studies determined that DA induces a global decrease in 

mitochondria-linked oxygen consumption resulting in diminished ATP production within 8 hr 

and 24 hr exposure at 23 and 15 mg I/mL, respectively (Figure 10, Chapter 3) as shown by 

Seahorse XFe cell mito stress tests. The Seahorse ATP-rate assay was utilized to determine if the 

decrease in ATP production was due partially to an interaction between DA and glycolysis. 

Exposure of HK-2 cells to DA does not induce a statistically significant change in ATP linked to 

glycolysis (Figure 11, Chapter 3) and the decrease in total ATP production was due to the 

decrease in mitochondria-linked ATP production (Figure 11, Chapter 3). In an effort to 

determine the source of mitochondrial dysfunction, the Seahorse mito fuel flex text was used. 

This assay measures mitochondrial fuel utilization and represents changes in cellular machinery. 

Exposure to DA did not affect the ability of HK-2 cells to utilize any of the three major fuel 

sources (Figure 12, Chapter 3) indicating that DA does not alter the function of glycolytic or 

mitochondrial energy utilization machinery.  

A global decrease in mitochondria-linked oxygen consumption in response to DA could 

indicate that DA is not directly damaging the mitochondria but inducing mitophagy via 

alternative mechanisms. One study utilizing Seahorse technology determined that an increase in 

mitophagy induced by metabolic acidosis in ammonium chloride treated transgenic mice 

containing green fluorescence protein tagged LC3 resulted in a global decrease in OCR in renal 

PTs (Namba et al., 2014). To determine if an increase in mitochondrial turnover is taking place, 

the expression of the biomarker for mitophagy, LC3B, was measured. HK-2 cells exposed to DA 

experienced a statistically significant increase in the ratio of LC3BII/I at 8 and 24 hr (Figure 13 

and 12, Chapter 3) indicating that DA induces an increase in mitophagy. The increase in 
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mitophagy, i.e. a decrease in the total number of viable mitochondria, could explain the decrease 

in the mitochondria-linked OCR and ATP production.  

DA CAUSES OXIDATIVE STRESS IN HK-2 CELLS  

In this study, we probed HK-2 cell whole cell lysate for the biomarkers of oxidative 

stress, protein carbonylation, and 4-HNE protein adduct formation. An imbalance between the 

production and removal of ROS in the favor of the former results in oxidative damage and stress 

(Birben et al., 2012). Various studies have indicated that exposure to RCM induces oxidative 

stress in vitro; however, this is the first study to show that clinically relevant blood plasma levels 

of DA cause oxidative stress in HK-2 cells. The concentrations in the higher range of what is 

considered clinically relevant induced a 50% increase in protein carbonylation and a subtle but 

significant increase in 4-HNE protein adduction formation within 24 hr (Figure 17 and 16, 

Chapter 3).  

We further investigated the oxidative damage following DA exposure in mitochondrial 

fractions. Previous studies have indicated that the mitochondria might be a potential target for 

DA-induced toxicity. Studies performed on PT isolated from New Zealand white rabbits exposed 

to approximately 160 mg I/mL DA or iopamidol demonstrated mitochondrial damage in the form 

of decreased basal respiration, uncoupled respiration, and ATP production (Humes et al., 1987; 

Messana et al., 1988). It is important to mention that although these studies expose PT cells to 

25mM DA or iopamidol, which is within the clinically relevant range, the cells were incubated 

with or without hypoxic conditions. Only the PT cells that encountered concomitant hypoxia 

experienced significantly greater metabolic alterations compared to control conditions, indicating 

that the HK-2 cell model is more susceptible to DA induced cytotoxicity than PT collected from 

New Zealand white rabbits. Our studies show that exposure to clinically relevant concentrations 



104 

of DA does not induce oxidative stress within the mitochondria. No change in protein 

carbonylation or 4-HNE protein adduct formation was evident within 24 hr (Figure 20, Chapter 

3).  

To verify these findings, total SOD, MnSOD, and Cu/ZnSOD activity assays were 

performed to determine the effect of DA exposure on HK-2 cell antioxidant systems. MnSOD is 

a nuclearly encoded antioxidant enzyme found specifically in the mitochondria responsible for 

the detoxification of O2
•─. Multiple studies indicate that exposure to RCM decrease MnSOD 

activity in vivo and in vitro (Gong et al., 2016; Jeong et al., 2018; Tasanarong et al., 2014); 

however, the concentrations of RCM used in these studies were at least 150 mg I/mL, well above 

clinical relevance. Our studies indicate that exposure to DA results in a significant decrease in 

total SOD activity caused solely by diminished activity of the cytosolic SOD, Cu/ZnSOD. No 

change in activity was noticed in MnSOD (Figure 19, Chapter 3). To further verify that DA 

exposure had no effect on mitochondrial antioxidant capability, MnSOD expression was measure 

as well. As before, there was no noticeable change in MnSOD expression (Figure 19, Chapter 3). 

These results are contradictory to previously published data indicating that the initial source of 

oxidative stress is not within the mitochondria but via an alternative mechanism within the 

cytosol.  

TNFα is a pro-inflammatory cytokine that is expressed in PT epithelial cells and secreted 

in the inflammatory response to exogenous compounds (Gu et al., 2016). Binding of TNFα to 

TNFR1 can induce oxidative stress by downstream activation of NOXs and mitochondrial 

involvement (Morgan & Liu, 2010). TNFα levels have been seen to rise in response to various 

toxicants and ischemia alongside oxidative stress, activation of the inflammatory response, and 

apoptosis (Gong, Ivanov, Davidson, & Hei, 2015; Zager, Johnson, & Geballe, 2007). We 
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examined TNFα as a potential initiator of oxidative stress. Our studies showed that TNFα was 

released into the media and cell lysates showed diminished expression at 24 hr (Figure 21, 

Chapter 3). To verify the role of TNFα in the induction of oxidative stress and apoptosis, NOX4 

and caspase 4 expression were measured. Although there was a statistically significant increase 

in TNFα release into the media, no change in NOX4 or caspase 4 expression was apparent 

(Figure 21, Chapter 3) indicating that it is unlikely that TNFα plays a role in the observed 

oxidative stress or loss of cell viability noticed in response to DA exposure.  

DA INDUCES APOPTOSIS IN HK-2 CELLS 

Our study shows that a loss of cell viability occurs in HK-2 cells following a 24 hr 

exposure period to 23-30 mg I/mL DA. Cytochrome c leakage from the mitochondrial inner 

membrane space into the cytosol induces apoptosis by binding to the apoptotic protease 

activating factor 1 (Apaf-1) to form a complex that binds to and activates caspase 9 leading to 

caspase 3 activation (Jiang & Wang, 2000; X. Liu et al., 1996). Following a 24 hr exposure to 

clinically relevant concentrations of DA, there is an observable release of cytochrome c into the 

cytosol and a statistically significant increase in caspase 3 cleavage (Figure 22 and 21, Chapter 

3). Alternatively, DA exposure also induces an increase in expression of caspase 12 (Figure 23, 

Chapter 3). Although the mechanism of caspase 12 activation is not fully understood, interaction 

with calpains on the ER membrane surface (Tan et al., 2006) or via the IRE-xBP1 pathway 

(Faitova et al., 2006) have been hypothesized. Our results indicate that caspase 12 activation 

induced by exposure to DA occurs via calpain activity and in the absence of components of ER 

stress (Figure 15, 14, and 26, Chapter 3). These results indicate that clinically relevant 

concentrations of DA causes calcium dysregulation and mitochondrial dysfunction that initiates 

apoptosis.  
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DA CAUSES DYSREGULATION OF CALCIUM HOMEOSTASIS IN HK-2 CELLS  

Intracellular calcium concentrations are tightly regulated as calcium acts as an essential 

intracellular and extracellular messenger in numerous cellular events such as hormone secretion, 

muscle contraction, immune responses, activation of neuronal networks, and cell survival and 

death. A rise in intracellular calcium levels can induce a variety of cellular responses including 

induction of mitophagy, activation of a class of calcium-dependent cysteine proteases called 

calpains, or activation of mitochondrial membrane permeability transition, induction of the 

mitochondrial membrane transition pore, and induce cytochrome c release from the inner 

membrane space (Hunter et al., 1976; Ott et al., 2002).  

Our study demonstrates that exposure of HK-2 cells to DA causes dysregulation of 

intracellular calcium concentrations as shown by the results of the MTT assays with calcium 

chelators (Figure 24, Chapter 3). Pretreatment of cells with BAPTA-AM, EGTA, or 2-APB 

provides partial or total protection from DA-induced decreases in mitochondrial viability. The 

intracellular calcium chelator, BAPTA-AM, completely abrogated DA-induced mitochondrial 

damage indicating that DA causes dysregulation of intracellular calcium concentrations. To 

determine the source of excess intracellular calcium, the extracellular calcium chelator, EGTA, 

and the IP3R antagonist, 2-APB, were used. Both compounds provide partial protection 

indicating that calcium influx from outside the cell and calcium released from the ER both play a 

role in DA-induced calcium dysregulation. Prolonged increases in intracellular calcium activates 

calpains which are pro-apoptotic proteases. Calpain activity is increased two-fold in response to 

exposure to DA for 24 hr (Figure 25, Chapter 3) in HK-2 cells. To determine if calpain activity is 

linked to oxidative stress and caspase 12 activation, HK-2 cells were pretreated with BAPTA-
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AM or the calpain inhibitor, calpeptin. BAPTA-AM completely inhibited calpain activity, as 

well as abrogated the activation of caspase 12 in response to DA exposure.  

CONCLUSIONS 

Bridging the gap in knowledge pertaining to the mechanistic understanding of DA-

induced PT cytotoxicity is critical in determining clinical applications of preventing CI-AKI. We 

have determined that DA diminishes mitochondrial and cell viability with 2 and 24 hr, 

respectively. DA exposure induces aberrant regulation of intracellular calcium by intracellular 

and extracellular means. Calcium dysregulation within the PT induces an increase in mitophagy, 

cellular energy depletion, a loss in mitochondrial membrane integrity, and activation of calpains. 

The combination of calcium dysregulation and mitochondrial dysfunction results in a secondary 

response of lipid peroxidation and protein carbonylation. Loss of mitochondrial membrane 

integrity leads to cytochrome c leakage into the cytosol and activation of the executioner 

caspase, caspase 3. Calpain activation near the ER activates caspase 12 furthering the apoptotic 

cell signals in response to DA exposure (Chapter 3, Figure 29). Pretreatment of HK-2 cells with 

an intracellular or extracellular calcium chelator, or IP3R antagonist protects against DA-induced 

cytotoxicity within 24 hr. There are currently several intracellular calcium modulators available 

on the market and further studies are warranted to determine the role of these drugs in preventing 

CI-AKI.   

FUTURE DIRECTIONS 

 My study was the first to intensively investigate the mechanisms of cytotoxicity induced 

by clinically relevant concentrations of DA. Certain conclusions can be made from the results 

obtained from this study; however, many questions are still left unanswered. Several things still 

remain unknown such as the initial mechanisms of calcium dysregulation and ROS production. 
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The role of the IP3R-induced calcium efflux from the ER has been partially established in this 

study; however, there are various other calcium transport mechanisms. The sodium calcium 

exchanger (NCX), voltage-dependent anion channels (VDAC), and SERCA all transport calcium 

into and out of numerous compartments of the cell and could play a role in DA-induced 

cytotoxicity. More work needs to be done to determine if these transporters play a role in CI-

AKI. Although this study eliminates the mitochondria and NOX4 as potential sources of ROS 

overproduction, the initial source still eludes us. Additional research needs to be conducted to 

determine the role of calcium dysregulation and oxidative stress in regard to RCM exposure. 

Finally, calcium dysregulation, mitophagy, and ER stress are mechanisms that are co-dependent 

under normal circumstances. However, during DA-induced cytotoxicity, calcium dysregulation 

and mitochondrial turnover take place in the absence of ER stress. Further studies need to be 

performed to determine intracellular calcium concentrations within the different cellular 

compartments to verify the findings of this study. As previously mentioned, there are currently 

several intracellular calcium modulators such as calcium channel blockers. Several studies have 

shown various results pertaining to the use of calcium modulators and CI-AKI and more research 

is needed to determine the efficacy of calcium channel blockers (Beyazal, Caliskan, & Utac, 

2014; Oguzhan et al., 2013; Quintavalle et al., 2013). 
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Figure 29. Summary of DA-induced cytotoxicity. DA enters the proximal tubule cell via the 
OAT 1/3 transporters. Through an unknown mechanism, DA induces the release of calcium from 
the ER and influx via the store-operated calcium entry. As a result, calcium accumulates within 
the mitochondrial matrix where it induces the conversion of LC3BI to LC3BII triggering 
mitophagy. Prolonged periods of calcium accumulation within the mitochondria induces 
mitochondrial membrane transition and permeability, leakage of cytochrome c, activation of the 
intrinisic apoptotic pathway. Intracellular calcium overload in response to DA also induces 
calpain activity and activation of caspase 12, furthering the apoptotic cascade. Extracellular and 
intracellular modulation can attenuate DA-induced cytotoxicity.  
  



110 

REFERENCES 

Alobaidi, R., Basu, R. K., Goldstein, S. L., & Bagshaw, S. M. (2015). Sepsis-associated acute 
kidney injury. Semin Nephrol, 35(1), 2-11. doi:10.1016/j.semnephrol.2015.01.002 

Amersham-Health. (2007). Hypaque (diatrizoate meglumine) [Package Insert]. Princeton, NJ.  

Andersen, K. J., Christensen, E. I., & Vik, H. (1994). Effects of iodinated x-ray contrast media 
on renal epithelial cells in culture. Invest Radiol, 29(11), 955-962.  

Andersen, K. J., Vik, H., Eikesdal, H. P., & Christensen, E. I. (1995). Effects of contrast media 
on renal epithelial cells in culture. Acta Radiol Suppl, 399, 213-218.  

Anderson, C. C., Aivazidis, S., Kuzyk, C. L., Jain, A., & Roede, J. R. (2018). Acute Maneb 
Exposure Significantly Alters Both Glycolysis and Mitochondrial Function in 
Neuroblastoma Cells. Toxicol Sci, 165(1), 61-73. doi:10.1093/toxsci/kfy116 

Andreucci, M., Faga, T., Pisani, A., Sabbatini, M., & Michael, A. (2014). Acute kidney injury by 
radiographic contrast media: pathogenesis and prevention. Biomed Res Int, 2014, 362725. 
doi:10.1155/2014/362725 

Andreucci, M., Solomon, R., & Tasanarong, A. (2014). Side effects of radiographic contrast 
media: pathogenesis, risk factors, and prevention. Biomed Res Int, 2014, 741018. 
doi:10.1155/2014/741018 

Angus, D. C., & van der Poll, T. (2013). Severe sepsis and septic shock. N Engl J Med, 369(9), 
840-851. doi:10.1056/NEJMra1208623 

Arend, L. J., Bakris, G. L., Burnett, J. C., Jr., Megerian, C., & Spielman, W. S. (1987). Role for 
intrarenal adenosine in the renal hemodynamic response to contrast media. J Lab Clin 
Med, 110(4), 406-411.  

Banerjee, A. K., Grainger, S. L., & Thompson, R. P. (1990). Trial of low versus high osmolar 
contrast media in endoscopic retrograde cholangiopancreatography. Br J Clin Pract, 
44(11), 445-447.  

Barrett, B. J., & Parfrey, P. S. (1994). Prevention of nephrotoxicity induced by radiocontrast 
agents. N Engl J Med, 331(21), 1449-1450. doi:10.1056/NEJM199411243312111 

Bartels, E. D., Brun, G. C., Gammeltoft, A., & Gjorup, P. A. (1954). Acute anuria following 
intravenous pyelography in a patient with myelomatosis. Acta Med Scand, 150(4), 297-
302.  

Baykara, M., Silici, S., Ozcelik, M., Guler, O., Erdogan, N., & Bilgen, M. (2015). In vivo 
nephroprotective efficacy of propolis against contrast-induced nephropathy. Diagn Interv 
Radiol, 21(4), 317-321. doi:10.5152/dir.2015.14075 



111 

Berchtold, L. A., Prause, M., Storling, J., & Mandrup-Poulsen, T. (2016). Cytokines and 
Pancreatic Β-Cell Apoptosis In G. S. Makowski (Ed.), Advances in Clinical Chemistry 
(pp. 99-158). New York, NY. 

Berns, A. S. (1989). Nephrotoxicity of contrast media. Kidney Int, 36(4), 730-740.  

Beyazal, H., Caliskan, Z., & Utac, C. (2014). Comparison of effects of isotonic sodium chloride 
with diltiazem in prevention of contrast-induced nephropathy. Ren Fail, 36(3), 351-355. 
doi:10.3109/0886022X.2013.866016 

Bhargava, P., & Schnellmann, R. G. (2017). Mitochondrial energetics in the kidney. Nat Rev 
Nephrol, 13(10), 629-646. doi:10.1038/nrneph.2017.107 

Birben, E., Sahiner, U. M., Sackesen, C., Erzurum, S., & Kalayci, O. (2012). Oxidative stress 
and antioxidant defense. World Allergy Organ J, 5(1), 9-19. 
doi:10.1097/WOX.0b013e3182439613 

Blaine, J., Chonchol, M., & Levi, M. (2015). Renal control of calcium, phosphate, and 
magnesium homeostasis. Clin J Am Soc Nephrol, 10(7), 1257-1272. 
doi:10.2215/CJN.09750913 

Bottinor, W., Polkampally, P., & Jovin, I. (2013). Adverse reactions to iodinated contrast media. 
Int J Angiol, 22(3), 149-154. doi:10.1055/s-0033-1348885 

Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram 
quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 72, 
248-254.  

Brand, M. D., Chen, C. H., & Lehninger, A. L. (1976). Stoichiometry of H+ ejection during 
respiration-dependent accumulation of Ca2+ by rat liver mitochondria. J Biol Chem, 
251(4), 968-974.  

Bravo, R., Parra, V., Gatica, D., Rodriguez, A. E., Torrealba, N., Paredes, F., . . . Lavandero, S. 
(2013). Endoplasmic reticulum and the unfolded protein response: dynamics and 
metabolic integration. Int Rev Cell Mol Biol, 301, 215-290. doi:10.1016/B978-0-12-
407704-1.00005-1 

Briguori, C., Airoldi, F., D'Andrea, D., Bonizzoni, E., Morici, N., Focaccio, A., . . . Colombo, A. 
(2007). Renal Insufficiency Following Contrast Media Administration Trial 
(REMEDIAL): a randomized comparison of 3 preventive strategies. Circulation, 
115(10), 1211-1217. doi:10.1161/CIRCULATIONAHA.106.687152 

Briguori, C., Colombo, A., Violante, A., Balestrieri, P., Manganelli, F., Paolo Elia, P., . . . 
Ricciardelli, B. (2004). Standard vs double dose of N-acetylcysteine to prevent contrast 
agent associated nephrotoxicity. Eur Heart J, 25(3), 206-211. 
doi:10.1016/j.ehj.2003.11.016 



112 

Briguori, C., Quintavalle, C., De Micco, F., & Condorelli, G. (2011). Nephrotoxicity of contrast 
media and protective effects of acetylcysteine. Arch Toxicol, 85(3), 165-173. 
doi:10.1007/s00204-010-0626-5 

Brinley, F. J., Jr., Tiffert, T., Scarpa, A., & Mullins, L. J. (1977). Intracellular calcium buffering 
capacity in isolated squid axons. J Gen Physiol, 70(3), 355-384.  

Brown, J. R., Rezaee, M. E., Nichols, E. L., Marshall, E. J., Siew, E. D., & Matheny, M. E. 
(2016). Incidence and In-Hospital Mortality of Acute Kidney Injury (AKI) and Dialysis-
Requiring AKI (AKI-D) After Cardiac Catheterization in the National Inpatient Sample. 
J Am Heart Assoc, 5(3), e002739. doi:10.1161/JAHA.115.002739 

Brown, J. R., Robb, J. F., Block, C. A., Schoolwerth, A. C., Kaplan, A. V., O'Connor, G. T., . . . 
Malenka, D. J. (2010). Does safe dosing of iodinated contrast prevent contrast-induced 
acute kidney injury? Circ Cardiovasc Interv, 3(4), 346-350. 
doi:10.1161/CIRCINTERVENTIONS.109.910638 

Cavaillon, J. M., Adib-Conquy, M., Fitting, C., Adrie, C., & Payen, D. (2003). Cytokine cascade 
in sepsis. Scand J Infect Dis, 35(9), 535-544. doi:10.1080/00365540310015935 

Chatterjee, P. K., Brown, P. A., Cuzzocrea, S., Zacharowski, K., Stewart, K. N., Mota-Filipe, H., 
. . . Thiemermann, C. (2001). Calpain inhibitor-1 reduces renal ischemia/reperfusion 
injury in the rat. Kidney Int, 59(6), 2073-2083. doi:10.1046/j.1523-1755.2001.00722.x 

Chen, B., Zhao, Q., Ni, R., Tang, F., Shan, L., Cepinskas, I., . . . Peng, T. (2014). Inhibition of 
calpain reduces oxidative stress and attenuates endothelial dysfunction in diabetes. 
Cardiovasc Diabetol, 13, 88. doi:10.1186/1475-2840-13-88 

Chen, S. Q., Liu, Y., Bei, W. J., Wang, Y., Duan, C. Y., Wu, D. X., . . . Li, L. W. (2018). 
Optimal hydration volume among high-risk patients with advanced congestive heart 
failure undergoing coronary angiography. Oncotarget, 9(34), 23738-23748. 
doi:10.18632/oncotarget.25315 

Chertow, G. M., Burdick, E., Honour, M., Bonventre, J. V., & Bates, D. W. (2005). Acute 
kidney injury, mortality, length of stay, and costs in hospitalized patients. J Am Soc 
Nephrol, 16(11), 3365-3370. doi:10.1681/ASN.2004090740 

Cho, D. H., Nakamura, T., & Lipton, S. A. (2010). Mitochondrial dynamics in cell death and 
neurodegeneration. Cell Mol Life Sci, 67(20), 3435-3447. doi:10.1007/s00018-010-0435-
2 

Cho, J. Y., Jeong, M. H., Hwan Park, S., Kim, I. S., Park, K. H., Sim, D. S., . . . Kang, J. C. 
(2010). Effect of contrast-induced nephropathy on cardiac outcomes after use of nonionic 
isosmolar contrast media during coronary procedure. J Cardiol, 56(3), 300-306. 
doi:10.1016/j.jjcc.2010.07.002 



113 

Chung, D. M., Kim, J. H., & Kim, J. K. (2015). Evaluation of MTT and Trypan Blue assays for 
radiation-induced cell viability test in HepG2 cells. International Journal of Radiation 
Research, 13(4), 331-335. doi:10.7508/ijrr.2015.04.006 

Clark, B. A., Kim, D., & Epstein, F. H. (1997). Endothelin and atrial natriuretic peptide levels 
following radiocontrast exposure in humans. Am J Kidney Dis, 30(1), 82-86.  

Cronin, R. E. (2010). Contrast-induced nephropathy: pathogenesis and prevention. Pediatr 
Nephrol, 25(2), 191-204. doi:10.1007/s00467-009-1204-z 

Csordas, G., Varnai, P., Golenar, T., Roy, S., Purkins, G., Schneider, T. G., . . . Hajnoczky, G. 
(2010). Imaging interorganelle contacts and local calcium dynamics at the ER-
mitochondrial interface. Mol Cell, 39(1), 121-132. doi:10.1016/j.molcel.2010.06.029 

Datta, S., Sahdeo, S., Gray, J. A., Morriseau, C., Hammock, B. D., & Cortopassi, G. (2016). A 
high-throughput screen for mitochondrial function reveals known and novel 
mitochondrial toxicants in a library of environmental agents. Mitochondrion, 31, 79-83. 
doi:10.1016/j.mito.2016.10.001 

Dawnay, A. B., Thornley, C., Nockler, I., Webb, J. A., & Cattell, W. R. (1985). Tamm-Horsfall 
glycoprotein excretion and aggregation during intravenous urography. Relevance to acute 
renal failure. Invest Radiol, 20(1), 53-57.  

De Keulenaer, G. W., Alexander, R. W., Ushio-Fukai, M., Ishizaka, N., & Griendling, K. K. 
(1998). Tumour necrosis factor alpha activates a p22phox-based NADH oxidase in 
vascular smooth muscle. Biochem J, 329 ( Pt 3), 653-657.  

Deluca, H. F., & Engstrom, G. W. (1961). Calcium uptake by rat kidney mitochondria. Proc Natl 
Acad Sci U S A, 47, 1744-1750.  

Denic, A., Glassock, R. J., & Rule, A. D. (2016). Structural and Functional Changes With the 
Aging Kidney. Adv Chronic Kidney Dis, 23(1), 19-28. doi:10.1053/j.ackd.2015.08.004 

Detrenis, S., Meschi, M., Musini, S., & Savazzi, G. (2005). Lights and shadows on the 
pathogenesis of contrast-induced nephropathy: state of the art. Nephrol Dial Transplant, 
20(8), 1542-1550. doi:10.1093/ndt/gfh868 

Di Meo, S., Reed, T. T., Venditti, P., & Victor, V. M. (2016). Role of ROS and RNS Sources in 
Physiological and Pathological Conditions. Oxid Med Cell Longev, 2016, 1245049. 
doi:10.1155/2016/1245049 

Dickenmann, M., Oettl, T., & Mihatsch, M. J. (2008). Osmotic nephrosis: acute kidney injury 
with accumulation of proximal tubular lysosomes due to administration of exogenous 
solutes. Am J Kidney Dis, 51(3), 491-503. doi:10.1053/j.ajkd.2007.10.044 

Drago, I., Pizzo, P., & Pozzan, T. (2011). After half a century mitochondrial calcium in- and 
efflux machineries reveal themselves. EMBO J, 30(20), 4119-4125. 
doi:10.1038/emboj.2011.337 



114 

Duan, S. B., Liu, F. Y., Luo, J. A., Wu, H. W., Liu, R. H., Peng, Y. M., & Yang, X. L. (2000). 
Nephrotoxicity of high- and low-osmolar contrast media. The protective role of 
amlodipine in a rat model. Acta Radiol, 41(5), 503-507.  

Eakins, J., Bauch, C., Woodhouse, H., Park, B., Bevan, S., Dilworth, C., & Walker, P. (2016). A 
combined in vitro approach to improve the prediction of mitochondrial toxicants. Toxicol 
In Vitro, 34, 161-170. doi:10.1016/j.tiv.2016.03.016 

El-Refai, M., Krivospitskaya, O., Peterson, E. L., Wells, K., Williams, L. K., & Lanfear, D. E. 
(2011). Relationship of Loop Diuretic Dosing and Acute Changes in Renal Function 
during Hospitalization for Heart Failure. J Clin Exp Cardiolog, 2(10). doi:10.4172/2155-
9880.1000164 

Faggioni, L., & Gabelloni, M. (2016). Iodine Concentration and Optimization in Computed 
Tomography Angiography: Current Issues. Invest Radiol, 51(12), 816-822. 
doi:10.1097/RLI.0000000000000283 

Fahling, M., Seeliger, E., Patzak, A., & Persson, P. B. (2017). Understanding and preventing 
contrast-induced acute kidney injury. Nat Rev Nephrol, 13(3), 169-180. 
doi:10.1038/nrneph.2016.196 

Faitova, J., Krekac, D., Hrstka, R., & Vojtesek, B. (2006). Endoplasmic reticulum stress and 
apoptosis. Cell Mol Biol Lett, 11(4), 488-505. doi:10.2478/s11658-006-0040-4 

Fanos, V., & Cataldi, L. (2000). Amphotericin B-induced nephrotoxicity: a review. J Chemother, 
12(6), 463-470. doi:10.1179/joc.2000.12.6.463 

Fedorova, M., Bollineni, R. C., & Hoffmann, R. (2014). Protein carbonylation as a major 
hallmark of oxidative damage: update of analytical strategies. Mass Spectrom Rev, 33(2), 
79-97. doi:10.1002/mas.21381 

Feske, S., Gwack, Y., Prakriya, M., Srikanth, S., Puppel, S. H., Tanasa, B., . . . Rao, A. (2006). A 
mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. 
Nature, 441(7090), 179-185. doi:10.1038/nature04702 

Gafter, U., Creter, D., Zevin, D., Catz, R., & Djaldetti, M. (1979). Inhibition of platelet 
aggregation by contrast media. Radiology, 132(2), 341-342. doi:10.1148/132.2.341 

Gao, X., Fu, L., Xiao, M., Xu, C., Sun, L., Zhang, T., . . . Mei, C. (2012). The nephroprotective 
effect of tauroursodeoxycholic acid on ischaemia/reperfusion-induced acute kidney injury 
by inhibiting endoplasmic reticulum stress. Basic Clin Pharmacol Toxicol, 111(1), 14-23. 
doi:10.1111/j.1742-7843.2011.00854.x 

Gao, Z., Han, Y., Hu, Y., Wu, X., Wang, Y., Zhang, X., . . . Zeng, C. (2016). Targeting HO-1 by 
Epigallocatechin-3-Gallate Reduces Contrast-Induced Renal Injury via Anti-Oxidative 
Stress and Anti-Inflammation Pathways. PLoS One, 11(2), e0149032. 
doi:10.1371/journal.pone.0149032 



115 

Gaut, J. R., & Hendershot, L. M. (1993). The modification and assembly of proteins in the 
endoplasmic reticulum. Curr Opin Cell Biol, 5(4), 589-595.  

GE-Healthcare. (2006). Visipaque (iodixanol) [Package Insert], Mississauga, ON, Canada.  

Giacomello, M., Drago, I., Bortolozzi, M., Scorzeto, M., Gianelle, A., Pizzo, P., & Pozzan, T. 
(2010). Ca2+ hot spots on the mitochondrial surface are generated by Ca2+ mobilization 
from stores, but not by activation of store-operated Ca2+ channels. Mol Cell, 38(2), 280-
290. doi:10.1016/j.molcel.2010.04.003 

Giorgi, C., Ito, K., Lin, H. K., Santangelo, C., Wieckowski, M. R., Lebiedzinska, M., . . . 
Pandolfi, P. P. (2010). PML regulates apoptosis at endoplasmic reticulum by modulating 
calcium release. Science, 330(6008), 1247-1251. doi:10.1126/science.1189157 

Gleeson, T. G., & Bulugahapitiya, S. (2004). Contrast-induced nephropathy. AJR Am J 
Roentgenol, 183(6), 1673-1689. doi:10.2214/ajr.183.6.01831673 

Goll, D. E., Thompson, V. F., Li, H., Wei, W., & Cong, J. (2003). The calpain system. Physiol 
Rev, 83(3), 731-801. doi:10.1152/physrev.00029.2002 

Gong, X., Duan, Y., Zheng, J., Wang, Y., Wang, G., Norgren, S., & Hei, T. K. (2016). 
Nephroprotective Effects of N-Acetylcysteine Amide against Contrast-Induced 
Nephropathy through Upregulating Thioredoxin-1, Inhibiting ASK1/p38MAPK Pathway, 
and Suppressing Oxidative Stress and Apoptosis in Rats. Oxid Med Cell Longev, 2016, 
8715185. doi:10.1155/2016/8715185 

Gong, X., Ivanov, V. N., Davidson, M. M., & Hei, T. K. (2015). Tetramethylpyrazine (TMP) 
protects against sodium arsenite-induced nephrotoxicity by suppressing ROS production, 
mitochondrial dysfunction, pro-inflammatory signaling pathways and programed cell 
death. Arch Toxicol, 89(7), 1057-1070. doi:10.1007/s00204-014-1302-y 

Gorlach, A., Bertram, K., Hudecova, S., & Krizanova, O. (2015). Calcium and ROS: A mutual 
interplay. Redox Biol, 6, 260-271. doi:10.1016/j.redox.2015.08.010 

Gracy, R. W., Talent, J. M., Kong, Y., & Conrad, C. C. (1999). Reactive oxygen species: the 
unavoidable environmental insult? Mutat Res, 428(1-2), 17-22.  

Grosser, N., Erdmann, K., Hemmerle, A., Berndt, G., Hinkelmann, U., Smith, G., & Schroder, H. 
(2004). Rosuvastatin upregulates the antioxidant defense protein heme oxygenase-1. 
Biochem Biophys Res Commun, 325(3), 871-876. doi:10.1016/j.bbrc.2004.10.123 

Gruberg, L., Pinnow, E., Flood, R., Bonnet, Y., Tebeica, M., Waksman, R., . . . Lindsay, J., Jr. 
(2000). Incidence, management, and outcome of coronary artery perforation during 
percutaneous coronary intervention. Am J Cardiol, 86(6), 680-682, A688.  

Gu, L. L., Zhang, X. Y., Xing, W. M., Xu, J. D., & Lu, H. (2016). Andrographolide-induced 
apoptosis in human renal tubular epithelial cells: Roles of endoplasmic reticulum stress 



116 

and inflammatory response. Environ Toxicol Pharmacol, 45, 257-264. 
doi:10.1016/j.etap.2016.02.004 

Guerini, D. (1998). The Ca2+ pumps and the Na+/Ca2+ exchangers. Biometals, 11(4), 319-330.  

Gunness, P., Aleksa, K., Kosuge, K., Ito, S., & Koren, G. (2010). Comparison of the novel HK-2 
human renal proximal tubular cell line with the standard LLC-PK1 cell line in studying 
drug-induced nephrotoxicity. Can J Physiol Pharmacol, 88(4), 448-455. 
doi:10.1139/y10-023 

Gussenhoven, M. J., Ravensbergen, J., van Bockel, J. H., Feuth, J. D., & Aarts, J. C. (1991). 
Renal dysfunction after angiography; a risk factor analysis in patients with peripheral 
vascular disease. J Cardiovasc Surg (Torino), 32(1), 81-86.  

Haeussler, U., Riedel, M., & Keller, F. (2004). Free reactive oxygen species and nephrotoxicity 
of contrast agents. Kidney Blood Press Res, 27(3), 167-171. doi:10.1159/000079805 

Hall, K. A., Wong, R. W., Hunter, G. C., Camazine, B. M., Rappaport, W. A., Smyth, S. H., . . . 
Misiorowski, R. L. (1992). Contrast-induced nephrotoxicity: the effects of vasodilator 
therapy. J Surg Res, 53(4), 317-320.  

Haller, C., & Hizoh, I. (2004). The cytotoxicity of iodinated radiocontrast agents on renal cells in 
vitro. Invest Radiol, 39(3), 149-154.  

Hanigan, M. H., & Devarajan, P. (2003). Cisplatin nephrotoxicity: molecular mechanisms. 
Cancer Ther, 1, 47-61.  

Haworth, R. A., & Hunter, D. R. (1979). The Ca2+-induced membrane transition in 
mitochondria. II. Nature of the Ca2+ trigger site. Arch Biochem Biophys, 195(2), 460-
467.  

He, C., & Klionsky, D. J. (2009). Regulation mechanisms and signaling pathways of autophagy. 
Annu Rev Genet, 43, 67-93. doi:10.1146/annurev-genet-102808-114910 

He, X., Li, L., Tan, H., Chen, J., & Zhou, Y. (2016). Atorvastatin attenuates contrast-induced 
nephropathy by modulating inflammatory responses through the regulation of 
JNK/p38/Hsp27 expression. J Pharmacol Sci, 131(1), 18-27. 
doi:10.1016/j.jphs.2016.03.006 

Heyman, S. N., Brezis, M., Epstein, F. H., Spokes, K., Silva, P., & Rosen, S. (1991). Early renal 
medullary hypoxic injury from radiocontrast and indomethacin. Kidney Int, 40(4), 632-
642.  

Heyman, S. N., Brezis, M., Reubinoff, C. A., Greenfeld, Z., Lechene, C., Epstein, F. H., & 
Rosen, S. (1988). Acute renal failure with selective medullary injury in the rat. J Clin 
Invest, 82(2), 401-412. doi:10.1172/JCI113612 



117 

Heyman, S. N., Rosen, S., & Brezis, M. (1997). The renal medulla: life at the edge of anoxia. 
Blood Purif, 15(4-6), 232-242. doi:10.1159/000170341 

Heyman, S. N., Rosen, S., Khamaisi, M., Idee, J. M., & Rosenberger, C. (2010). Reactive 
oxygen species and the pathogenesis of radiocontrast-induced nephropathy. Invest 
Radiol, 45(4), 188-195. doi:10.1097/RLI.0b013e3181d2eed8 

Ho, L. M., Nelson, R. C., & Delong, D. M. (2007). Determining contrast medium dose and rate 
on basis of lean body weight: does this strategy improve patient-to-patient uniformity of 
hepatic enhancement during multi-detector row CT? Radiology, 243(2), 431-437. 
doi:10.1148/radiol.2432060390 

Hogan, P. G., & Rao, A. (2015). Store-operated calcium entry: Mechanisms and modulation. 
Biochem Biophys Res Commun, 460(1), 40-49. doi:10.1016/j.bbrc.2015.02.110 

Holscher, B., Heitmeyer, C., Fobker, M., Breithardt, G., Schaefer, R. M., & Reinecke, H. (2008). 
Predictors for contrast media-induced nephropathy and long-term survival: prospectively 
assessed data from the randomized controlled Dialysis-Versus-Diuresis (DVD) trial. Can 
J Cardiol, 24(11), 845-850.  

Horl, W. H. (2010). Nonsteroidal Anti-Inflammatory Drugs and the Kidney. Pharmaceuticals 
(Basel), 3(7), 2291-2321. doi:10.3390/ph3072291 

Huang, Y. T., Chen, Y. Y., Lai, Y. H., Cheng, C. C., Lin, T. C., Su, Y. S., . . . Lai, P. C. (2016). 
Resveratrol alleviates the cytotoxicity induced by the radiocontrast agent, ioxitalamate, 
by reducing the production of reactive oxygen species in HK-2 human renal proximal 
tubule epithelial cells in vitro. Int J Mol Med, 37(1), 83-91. doi:10.3892/ijmm.2015.2404 

Humes, H. D., Hunt, D. A., & White, M. D. (1987). Direct toxic effect of the radiocontrast agent 
diatrizoate on renal proximal tubule cells. Am J Physiol, 252(2 Pt 2), F246-255. 
doi:10.1152/ajprenal.1987.252.2.F246 

Humphrey, M. L., Cole, M. P., Pendergrass, J. C., & Kiningham, K. K. (2005). Mitochondrial 
mediated thimerosal-induced apoptosis in a human neuroblastoma cell line (SK-N-SH). 
Neurotoxicology, 26(3), 407-416. doi:10.1016/j.neuro.2005.03.008 

Hunter, D. R., Haworth, R. A., & Southard, J. H. (1976). Relationship between configuration, 
function, and permeability in calcium-treated mitochondria. J Biol Chem, 251(16), 5069-
5077.  

Ichijo, H. (1999). From receptors to stress-activated MAP kinases. Oncogene, 18(45), 6087-
6093. doi:10.1038/sj.onc.1203129 

Ikeda, N., Nishimura, S., Kyo, S., Komiyama, N., Matsumoto, K., Inoue, T., & Suzuki, H. 
(2006). Valsartan cardio-renal protection in patients undergoing coronary angiography 
complicated with chronic renal insufficiency (VAL-CARP) trial: rationale and design. 
Circ J, 70(5), 548-552.  



118 

Ip, Y. T., & Davis, R. J. (1998). Signal transduction by the c-Jun N-terminal kinase (JNK)--from 
inflammation to development. Curr Opin Cell Biol, 10(2), 205-219.  

Itoh, Y., Yano, T., Sendo, T., Sueyasu, M., Hirano, K., Kanaide, H., & Oishi, R. (2006). 
Involvement of de novo ceramide synthesis in radiocontrast-induced renal tubular cell 
injury. Kidney Int, 69(2), 288-297. doi:10.1038/sj.ki.5000057 

Ivannikov, M. V., & Macleod, G. T. (2013). Mitochondrial free Ca(2)(+) levels and their effects 
on energy metabolism in Drosophila motor nerve terminals. Biophys J, 104(11), 2353-
2361. doi:10.1016/j.bpj.2013.03.064 

James, M. T., Samuel, S. M., Manning, M. A., Tonelli, M., Ghali, W. A., Faris, P., . . . 
Hemmelgarn, B. R. (2013). Contrast-induced acute kidney injury and risk of adverse 
clinical outcomes after coronary angiography: a systematic review and meta-analysis. 
Circ Cardiovasc Interv, 6(1), 37-43. doi:10.1161/CIRCINTERVENTIONS.112.974493 

Jeon, U. S. (2008). Kidney and calcium homeostasis. Electrolyte Blood Press, 6(2), 68-76. 
doi:10.5049/EBP.2008.6.2.68 

Jeong, B. Y., Lee, H. Y., Park, C. G., Kang, J., Yu, S. L., Choi, D. R., . . . Yoon, S. H. (2018). 
Oxidative stress caused by activation of NADPH oxidase 4 promotes contrast-induced 
acute kidney injury. PLoS One, 13(1), e0191034. doi:10.1371/journal.pone.0191034 

Jiang, X., & Wang, X. (2000). Cytochrome c promotes caspase-9 activation by inducing 
nucleotide binding to Apaf-1. J Biol Chem, 275(40), 31199-31203. 
doi:10.1074/jbc.C000405200 

Jin, S., Orabi, A. I., Le, T., Javed, T. A., Sah, S., Eisses, J. F., . . . Husain, S. Z. (2015). Exposure 
to Radiocontrast Agents Induces Pancreatic Inflammation by Activation of Nuclear 
Factor-kappaB, Calcium Signaling, and Calcineurin. Gastroenterology, 149(3), 753-764 
e711. doi:10.1053/j.gastro.2015.05.004 

Jo, S. H., Koo, B. K., Park, J. S., Kang, H. J., Cho, Y. S., Kim, Y. J., . . . Kim, H. S. (2008). 
Prevention of radiocontrast medium-induced nephropathy using short-term high-dose 
simvastatin in patients with renal insufficiency undergoing coronary angiography 
(PROMISS) trial--a randomized controlled study. Am Heart J, 155(3), 499 e491-498. 
doi:10.1016/j.ahj.2007.11.042 

Johnson, A. C., Stahl, A., & Zager, R. A. (2005). Triglyceride accumulation in injured renal 
tubular cells: alterations in both synthetic and catabolic pathways. Kidney Int, 67(6), 
2196-2209. doi:10.1111/j.1523-1755.2005.00325.x 

Jones, L. J., Gray, M., Yue, S. T., Haugland, R. P., & Singer, V. L. (2001). Sensitive 
determination of cell number using the CyQUANT cell proliferation assay. J Immunol 
Methods, 254(1-2), 85-98.  

Kellum, J. A. (2012). Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney 
Injury Work Group. Retrieved from  



119 

Killmann, S. A., Gjorup, S., & Thaysen, J. H. (1957). Fatal acute renal failure following 
intravenous pyelography in a patient with multiple myeloma. Acta Med Scand, 158(1), 
43-46.  

Kim, R., Emi, M., Tanabe, K., & Murakami, S. (2006). Role of the unfolded protein response in 
cell death. Apoptosis, 11(1), 5-13. doi:10.1007/s10495-005-3088-0 

Koc, E., Reis, K. A., Ebinc, F. A., Pasaoglu, H., Demirtas, C., Omeroglu, S., . . . Sindel, S. 
(2011). Protective effect of beta-glucan on contrast induced-nephropathy and a 
comparison of beta-glucan with nebivolol and N-acetylcysteine in rats. Clin Exp Nephrol, 
15(5), 658-665. doi:10.1007/s10157-011-0451-z 

Kolonko, A., Kokot, F., & Wiecek, A. (1998). Contrast-associated nephropathy--old clinical 
problem and new therapeutic perspectives. Nephrol Dial Transplant, 13(3), 803-806.  

Kongkham, S., Sriwong, S., & Tasanarong, A. (2013). Protective effect of alpha tocopherol on 
contrast-induced nephropathy in rats. Nefrologia, 33(1), 116-123. 
doi:10.3265/Nefrologia.pre2012.Nov.11736 

Krebs, J., Agellon, L. B., & Michalak, M. (2015). Ca(2+) homeostasis and endoplasmic 
reticulum (ER) stress: An integrated view of calcium signaling. Biochem Biophys Res 
Commun, 460(1), 114-121. doi:10.1016/j.bbrc.2015.02.004 

Langenberg, C., Bellomo, R., May, C., Wan, L., Egi, M., & Morgera, S. (2005). Renal blood 
flow in sepsis. Crit Care, 9(4), R363-374. doi:10.1186/cc3540 

Langenberg, C., Wan, L., Egi, M., May, C. N., & Bellomo, R. (2006). Renal blood flow in 
experimental septic acute renal failure. Kidney Int, 69(11), 1996-2002. 
doi:10.1038/sj.ki.5000440 

Lazarou, M., Sliter, D. A., Kane, L. A., Sarraf, S. A., Wang, C., Burman, J. L., . . . Youle, R. J. 
(2015). The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. 
Nature, 524(7565), 309-314. doi:10.1038/nature14893 

Lee, D., Choi, Y. O., Kim, K. H., Chin, Y. W., Namgung, H., Yamabe, N., & Jung, K. (2016). 
Protective effect of alpha-mangostin against iodixanol-induced apoptotic damage in 
LLC-PK1 cells. Bioorg Med Chem Lett, 26(15), 3806-3809. 
doi:10.1016/j.bmcl.2016.05.031 

Lee, D., Kim, C. E., Park, S. Y., Kim, K. O., Hiep, N. T., Lee, D., . . . Kang, K. S. (2018). 
Protective Effect of Artemisia argyi and Its Flavonoid Constituents against Contrast-
Induced Cytotoxicity by Iodixanol in LLC-PK1 Cells. Int J Mol Sci, 19(5). 
doi:10.3390/ijms19051387 

Lei, R., Zhao, F., Tang, C. Y., Luo, M., Yang, S. K., Cheng, W., . . . Duan, S. B. (2018). 
Mitophagy Plays a Protective Role in Iodinated Contrast-Induced Acute Renal Tubular 
Epithelial Cells Injury. Cell Physiol Biochem, 46(3), 975-985. doi:10.1159/000488827 



120 

Leong, C. L., Anderson, W. P., O'Connor, P. M., & Evans, R. G. (2007). Evidence that renal 
arterial-venous oxygen shunting contributes to dynamic regulation of renal oxygenation. 
Am J Physiol Renal Physiol, 292(6), F1726-1733. doi:10.1152/ajprenal.00436.2006 

Levine, R. L., Williams, J. A., Stadtman, E. R., & Shacter, E. (1994). Carbonyl assays for 
determination of oxidatively modified proteins. Methods Enzymol, 233, 346-357.  

Li, X., Fang, P., Mai, J., Choi, E. T., Wang, H., & Yang, X. F. (2013). Targeting mitochondrial 
reactive oxygen species as novel therapy for inflammatory diseases and cancers. J 
Hematol Oncol, 6, 19. doi:10.1186/1756-8722-6-19 

Li, X., Fang, P., Yang, W. Y., Chan, K., Lavallee, M., Xu, K., . . . Yang, X. (2017). 
Mitochondrial ROS, uncoupled from ATP synthesis, determine endothelial activation for 
both physiological recruitment of patrolling cells and pathological recruitment of 
inflammatory cells. Can J Physiol Pharmacol, 95(3), 247-252. doi:10.1139/cjpp-2016-
0515 

Liss, P., Nygren, A., Erikson, U., & Ulfendahl, H. R. (1998). Injection of low and iso-osmolar 
contrast medium decreases oxygen tension in the renal medulla. Kidney Int, 53(3), 698-
702. doi:10.1046/j.1523-1755.1998.00811.x 

Liu, N., Chen, J., Gao, D., Li, W., & Zheng, D. (2018). Astaxanthin attenuates contrast agent-
induced acute kidney injury in vitro and in vivo via the regulation of SIRT1/FOXO3a 
expression. Int Urol Nephrol, 50(6), 1171-1180. doi:10.1007/s11255-018-1788-y 

Liu, X., Kim, C. N., Yang, J., Jemmerson, R., & Wang, X. (1996). Induction of apoptotic 
program in cell-free extracts: requirement for dATP and cytochrome c. Cell, 86(1), 147-
157.  

Liu, Z. Z., Viegas, V. U., Perlewitz, A., Lai, E. Y., Persson, P. B., Patzak, A., & Sendeski, M. M. 
(2012). Iodinated contrast media differentially affect afferent and efferent arteriolar tone 
and reactivity in mice: a possible explanation for reduced glomerular filtration rate. 
Radiology, 265(3), 762-771. doi:10.1148/radiol.12120044 

Lusic, H., & Grinstaff, M. W. (2013). X-ray-computed tomography contrast agents. Chem Rev, 
113(3), 1641-1666. doi:10.1021/cr200358s 

Majumdar, S. R., Kjellstrand, C. M., Tymchak, W. J., Hervas-Malo, M., Taylor, D. A., & Teo, 
K. K. (2009). Forced euvolemic diuresis with mannitol and furosemide for prevention of 
contrast-induced nephropathy in patients with CKD undergoing coronary angiography: a 
randomized controlled trial. Am J Kidney Dis, 54(4), 602-609. 
doi:10.1053/j.ajkd.2009.03.024 

Martin-Paredero, V., Dixon, S. M., Baker, J. D., Takiff, H., Gomes, A. S., Busuttil, R. W., & 
Moore, W. S. (1983). Risk of renal failure after major angiography. Arch Surg, 118(12), 
1417-1420.  



121 

Matejovic, M., Chvojka, J., Radej, J., Ledvinova, L., Karvunidis, T., Krouzecky, A., & Novak, I. 
(2011). Sepsis and acute kidney injury are bidirectional. Contrib Nephrol, 174, 78-88. 
doi:10.1159/000329239 

Matsuda, N., Sato, S., Shiba, K., Okatsu, K., Saisho, K., Gautier, C. A., . . . Tanaka, K. (2010). 
PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged 
mitochondria and activates latent Parkin for mitophagy. J Cell Biol, 189(2), 211-221. 
doi:10.1083/jcb.200910140 

Matsuzawa, A., & Ichijo, H. (2008). Redox control of cell fate by MAP kinase: physiological 
roles of ASK1-MAP kinase pathway in stress signaling. Biochim Biophys Acta, 1780(11), 
1325-1336. doi:10.1016/j.bbagen.2007.12.011 

McNair, J. D. (1972). Selective coronary angiography. Report of a fatality in a patient with sickle 
cell hemoglobin. Calif Med, 117(5), 71-75.  

Mehran, R., & Nikolsky, E. (2006). Contrast-induced nephropathy: definition, epidemiology, and 
patients at risk. Kidney Int Suppl(100), S11-15. doi:10.1038/sj.ki.5000368 

Mekahli, D., Bultynck, G., Parys, J. B., De Smedt, H., & Missiaen, L. (2011). Endoplasmic-
reticulum calcium depletion and disease. Cold Spring Harb Perspect Biol, 3(6). 
doi:10.1101/cshperspect.a004317 

Melartin, E., Tuohimaa, P. J., & Dabb, R. (1970). Neurotoxicity of iothalamates and diatrizoates. 
I. Significance of concentration and cation. Invest Radiol, 5(1), 13-21.  

Messana, J. M., Cieslinski, D. A., & Humes, H. D. (1990). Comparison of toxicity of 
radiocontrast agents to renal tubule cells in vitro. Ren Fail, 12(2), 75-82.  

Messana, J. M., Cieslinski, D. A., Nguyen, V. D., & Humes, H. D. (1988). Comparison of the 
toxicity of the radiocontrast agents, iopamidol and diatrizoate, to rabbit renal proximal 
tubule cells in vitro. J Pharmacol Exp Ther, 244(3), 1139-1144.  

Michael, A., Faga, T., Pisani, A., Riccio, E., Bramanti, P., Sabbatini, M., . . . Andreucci, M. 
(2014). Molecular mechanisms of renal cellular nephrotoxicity due to radiocontrast 
media. Biomed Res Int, 2014, 249810. doi:10.1155/2014/249810 

Mittal, M., Siddiqui, M. R., Tran, K., Reddy, S. P., & Malik, A. B. (2014). Reactive oxygen 
species in inflammation and tissue injury. Antioxid Redox Signal, 20(7), 1126-1167. 
doi:10.1089/ars.2012.5149 

Moe, K. T., Aulia, S., Jiang, F., Chua, Y. L., Koh, T. H., Wong, M. C., & Dusting, G. J. (2006). 
Differential upregulation of Nox homologues of NADPH oxidase by tumor necrosis 
factor-alpha in human aortic smooth muscle and embryonic kidney cells. J Cell Mol Med, 
10(1), 231-239.  

Momeni, H. R. (2011). Role of calpain in apoptosis. Cell J, 13(2), 65-72.  



122 

Morcos, S. K. (1998). Contrast media-induced nephrotoxicity--questions and answers. Br J 
Radiol, 71(844), 357-365. doi:10.1259/bjr.71.844.9659127 

Morgan, M. J., & Liu, Z. G. (2010). Reactive oxygen species in TNFalpha-induced signaling and 
cell death. Mol Cells, 30(1), 1-12. doi:10.1007/s10059-010-0105-0 

Moyle, J., & Mitchell, P. (1977). Electric charge stoicheiometry of calcium translocation in rat 
liver mitochondria. FEBS Lett, 73(2), 131-136.  

Mudge, G. H., Berndt, W. O., Saunders, A., & Beattie, B. (1971). Renal transport of diatrizoate 
in the rabbit, dog, and rat. Nephron, 8(2), 156-172. doi:10.1159/000179916 

Murakami, R., Kumita, S., Hayashi, H., Sugizaki, K., Okazaki, E., Kiriyama, T., . . . Takeda, M. 
(2013). Anemia and the risk of contrast-induced nephropathy in patients with renal 
insufficiency undergoing contrast-enhanced MDCT. Eur J Radiol, 82(10), e521-524. 
doi:10.1016/j.ejrad.2013.06.004 

Murphy, R. A., Stafford, R. M., Petrasovits, B. A., Boone, M. A., & Valentovic, M. A. (2017). 
Establishment of HK-2 Cells as a Relevant Model to Study Tenofovir-Induced 
Cytotoxicity. Int J Mol Sci, 18(3). doi:10.3390/ijms18030531 

Nakagawa, T., & Yuan, J. (2000). Cross-talk between two cysteine protease families. Activation 
of caspase-12 by calpain in apoptosis. J Cell Biol, 150(4), 887-894.  

Namba, T., Takabatake, Y., Kimura, T., Takahashi, A., Yamamoto, T., Matsuda, J., . . . Rakugi, 
H. (2014). Autophagic clearance of mitochondria in the kidney copes with metabolic 
acidosis. J Am Soc Nephrol, 25(10), 2254-2266. doi:10.1681/ASN.2013090986 

Nash, K., Hafeez, A., & Hou, S. (2002). Hospital-acquired renal insufficiency. Am J Kidney Dis, 
39(5), 930-936. doi:10.1053/ajkd.2002.32766 

Nasri, H., Hajian, S., Ahmadi, A., Baradaran, A., Kohi, G., Nasri, P., & Rafieian-Kopaei, M. 
(2015). Ameliorative effect of green tea against contrast-induced renal tubular cell injury. 
Iran J Kidney Dis, 9(6), 421-426.  

Navas, J. P., & Martinez-Maldonado, M. (1993). Pathophysiology of edema in congestive heart 
failure. Heart Dis Stroke, 2(4), 325-329.  

Netti, G. S., Prattichizzo, C., Montemurno, E., Simone, S., Cafiero, C., Rascio, F., . . . Gesualdo, 
L. (2014). Exposure to low- vs iso-osmolar contrast agents reduces NADPH-dependent 
reactive oxygen species generation in a cellular model of renal injury. Free Radic Biol 
Med, 68, 35-42. doi:10.1016/j.freeradbiomed.2013.11.016 

Nguyen, T. N., Padman, B. S., & Lazarou, M. (2016). Deciphering the Molecular Signals of 
PINK1/Parkin Mitophagy. Trends Cell Biol, 26(10), 733-744. 
doi:10.1016/j.tcb.2016.05.008 



123 

Nikolsky, E., Mehran, R., Lasic, Z., Mintz, G. S., Lansky, A. J., Na, Y., . . . Dangas, G. (2005). 
Low hematocrit predicts contrast-induced nephropathy after percutaneous coronary 
interventions. Kidney Int, 67(2), 706-713. doi:10.1111/j.1523-1755.2005.67131.x 

Oguzhan, N., Cilan, H., Sipahioglu, M., Unal, A., Kocyigit, I., Kavuncuoglu, F., . . . Oymak, O. 
(2013). The lack of benefit of a combination of an angiotensin receptor blocker and 
calcium channel blocker on contrast-induced nephropathy in patients with chronic kidney 
disease. Ren Fail, 35(4), 434-439. doi:10.3109/0886022X.2013.766566 

Ott, M., Robertson, J. D., Gogvadze, V., Zhivotovsky, B., & Orrenius, S. (2002). Cytochrome c 
release from mitochondria proceeds by a two-step process. Proc Natl Acad Sci U S A, 
99(3), 1259-1263. doi:10.1073/pnas.241655498 

Oyadomari, S., & Mori, M. (2004). Roles of CHOP/GADD153 in endoplasmic reticulum stress. 
Cell Death Differ, 11(4), 381-389. doi:10.1038/sj.cdd.4401373 

Pacher, P., Beckman, J. S., & Liaudet, L. (2007). Nitric oxide and peroxynitrite in health and 
disease. Physiol Rev, 87(1), 315-424. doi:10.1152/physrev.00029.2006 

Pahade, J. K., LeBedis, C. A., Raptopoulos, V. D., Avigan, D. E., Yam, C. S., Kruskal, J. B., & 
Pedrosa, I. (2011). Incidence of contrast-induced nephropathy in patients with multiple 
myeloma undergoing contrast-enhanced CT. AJR Am J Roentgenol, 196(5), 1094-1101. 
doi:10.2214/AJR.10.5152 

Palli, E., Makris, D., Papanikolaou, J., Garoufalis, G., Tsilioni, I., Zygoulis, P., & Zakynthinos, 
E. (2017). The impact of N-acetylcysteine and ascorbic acid in contrast-induced 
nephropathy in critical care patients: an open-label randomized controlled study. Crit 
Care, 21(1), 269. doi:10.1186/s13054-017-1862-3 

Paolicchi, A., Sotiropuolou, M., Perego, P., Daubeuf, S., Visvikis, A., Lorenzini, E., . . . 
Pompella, A. (2003). gamma-Glutamyl transpeptidase catalyses the extracellular 
detoxification of cisplatin in a human cell line derived from the proximal convoluted 
tubule of the kidney. Eur J Cancer, 39(7), 996-1003.  

Park, S., Choi, S. G., Yoo, S. M., Nah, J., Jeong, E., Kim, H., & Jung, Y. K. (2015). Pyruvate 
stimulates mitophagy via PINK1 stabilization. Cell Signal, 27(9), 1824-1830. 
doi:10.1016/j.cellsig.2015.05.020 

Patel, K., King, C. A., & Jovin, I. S. (2011). Angiotensin-converting enzyme inhibitors and their 
effects on contrast-induced nephropathy after cardiac catheterization or percutaneous 
coronary intervention. Cardiovasc Revasc Med, 12(2), 90-93. 
doi:10.1016/j.carrev.2010.01.002 

Peng, J. B. (2019). Hypercalciuria and TRPV6-mediated Active Calcium Reabsorption in the 
Proximal Tubule Unpublished Manuscript, University of Alabama Birmingham, 
Birmingham, AL.  



124 

Peng, P. A., Wang, L., Ma, Q., Xin, Y., Zhang, O., Han, H. Y., . . . Zhao, Y. X. (2015). Valsartan 
protects HK-2 cells from contrast media-induced apoptosis by inhibiting endoplasmic 
reticulum stress. Cell Biol Int, 39(12), 1408-1417. doi:10.1002/cbin.10521 

Persson, P. B., Hansell, P., & Liss, P. (2005). Pathophysiology of contrast medium-induced 
nephropathy. Kidney Int, 68(1), 14-22. doi:10.1111/j.1523-1755.2005.00377.x 

Phaniendra, A., Jestadi, D. B., & Periyasamy, L. (2015). Free radicals: properties, sources, 
targets, and their implication in various diseases. Indian J Clin Biochem, 30(1), 11-26. 
doi:10.1007/s12291-014-0446-0 

Prakriya, M., & Lewis, R. S. (2015). Store-Operated Calcium Channels. Physiol Rev, 95(4), 
1383-1436. doi:10.1152/physrev.00020.2014 

Quintavalle, C., Brenca, M., De Micco, F., Fiore, D., Romano, S., Romano, M. F., . . . 
Condorelli, G. (2011). In vivo and in vitro assessment of pathways involved in contrast 
media-induced renal cells apoptosis. Cell Death Dis, 2, e155. doi:10.1038/cddis.2011.38 

Quintavalle, C., Donnarumma, E., Fiore, D., Briguori, C., & Condorelli, G. (2013). Therapeutic 
strategies to prevent contrast-induced acute kidney injury. Curr Opin Cardiol, 28(6), 676-
682. doi:10.1097/HCO.0b013e3283653f41 

Quintavalle, C., Fiore, D., De Micco, F., Visconti, G., Focaccio, A., Golia, B., . . . Condorelli, G. 
(2012). Impact of a high loading dose of atorvastatin on contrast-induced acute kidney 
injury. Circulation, 126(25), 3008-3016. doi:10.1161/CIRCULATIONAHA.112.103317 

Radiology, A. C. o. (2018). American College of Radiology Committee on Drugs and Contrast 
Media. 11. Retrieved from https://www.acr.org/-/media/ACR/Files/Clinical-
Resources/Contrast_Media.pdf 

Rai, Y., Pathak, R., Kumari, N., Sah, D. K., Pandey, S., Kalra, N., . . . Bhatt, A. N. (2018). 
Mitochondrial biogenesis and metabolic hyperactivation limits the application of MTT 
assay in the estimation of radiation induced growth inhibition. Sci Rep, 8(1), 1531. 
doi:10.1038/s41598-018-19930-w 

Rawlings, N. D., & Salvesen, G. (2013). Handbook of proteolytic enzymes (Third edition. / ed.). 
Amsterdam: Elsevier/AP. 

Rees, J. A., Old, S. L., & Rowlands, P. C. (1997). An ultrastructural histochemistry and light 
microscopy study of the early development of renal proximal tubular vacuolation after a 
single administration of the contrast enhancement medium "Iotrolan". Toxicol Pathol, 
25(2), 158-164. doi:10.1177/019262339702500205 

Rizzuto, R., Brini, M., Murgia, M., & Pozzan, T. (1993). Microdomains with high Ca2+ close to 
IP3-sensitive channels that are sensed by neighboring mitochondria. Science, 262(5134), 
744-747.  

https://www.acr.org/-/media/ACR/Files/Clinical-Resources/Contrast_Media.pdf
https://www.acr.org/-/media/ACR/Files/Clinical-Resources/Contrast_Media.pdf


125 

Rizzuto, R., Pinton, P., Carrington, W., Fay, F. S., Fogarty, K. E., Lifshitz, L. M., . . . Pozzan, T. 
(1998). Close contacts with the endoplasmic reticulum as determinants of mitochondrial 
Ca2+ responses. Science, 280(5370), 1763-1766.  

Rizzuto, R., & Pozzan, T. (2006). Microdomains of intracellular Ca2+: molecular determinants 
and functional consequences. Physiol Rev, 86(1), 369-408. 
doi:10.1152/physrev.00004.2005 

Robinson, M. J., & Cobb, M. H. (1997). Mitogen-activated protein kinase pathways. Curr Opin 
Cell Biol, 9(2), 180-186.  

Romano, G., Briguori, C., Quintavalle, C., Zanca, C., Rivera, N. V., Colombo, A., & Condorelli, 
G. (2008). Contrast agents and renal cell apoptosis. Eur Heart J, 29(20), 2569-2576. 
doi:10.1093/eurheartj/ehn197 

Roos, J., DiGregorio, P. J., Yeromin, A. V., Ohlsen, K., Lioudyno, M., Zhang, S., . . . 
Stauderman, K. A. (2005). STIM1, an essential and conserved component of store-
operated Ca2+ channel function. J Cell Biol, 169(3), 435-445. 
doi:10.1083/jcb.200502019 

Rosenberger, C., Rosen, S., & Heyman, S. N. (2006). Renal parenchymal oxygenation and 
hypoxia adaptation in acute kidney injury. Clin Exp Pharmacol Physiol, 33(10), 980-988. 
doi:10.1111/j.1440-1681.2006.04472.x 

Rosenstock, J. L., Bruno, R., Kim, J. K., Lubarsky, L., Schaller, R., Panagopoulos, G., . . . 
Michelis, M. F. (2008). The effect of withdrawal of ACE inhibitors or angiotensin 
receptor blockers prior to coronary angiography on the incidence of contrast-induced 
nephropathy. Int Urol Nephrol, 40(3), 749-755. doi:10.1007/s11255-008-9368-1 

Roza, C. A., Scaini, G., Jeremias, I. C., Ferreira, G. K., Rochi, N., Benedet, J., . . . Streck, E. L. 
(2011). Evaluation of brain and kidney energy metabolism in an animal model of 
contrast-induced nephropathy. Metab Brain Dis, 26(2), 115-122. doi:10.1007/s11011-
011-9240-3 

Ryan, M. J., Johnson, G., Kirk, J., Fuerstenberg, S. M., Zager, R. A., & Torok-Storb, B. (1994). 
HK-2: an immortalized proximal tubule epithelial cell line from normal adult human 
kidney. Kidney Int, 45(1), 48-57.  

Sands, J. M. (2012). Urine concentrating and diluting ability during aging. J Gerontol A Biol Sci 
Med Sci, 67(12), 1352-1357. doi:10.1093/gerona/gls128 

Saritemur, M., Un, H., Cadirci, E., Karakus, E., Akpinar, E., Halici, Z., . . . Atmaca, H. T. 
(2015). Tnf-alpha inhibition by infliximab as a new target for the prevention of glycerol-
contrast-induced nephropathy. Environ Toxicol Pharmacol, 39(2), 577-588. 
doi:10.1016/j.etap.2015.01.002 



126 

Sawhney, S., & Fraser, S. D. (2017). Epidemiology of AKI: Utilizing Large Databases to 
Determine the Burden of AKI. Adv Chronic Kidney Dis, 24(4), 194-204. 
doi:10.1053/j.ackd.2017.05.001 

Scheitlin, W., Martz, G., & Brunner, U. (1960). [Acute renal failure following intravenous 
pyelography in multiple myeloma]. Schweiz Med Wochenschr, 90, 84-87.  

Schick, C. S., Bangert, R., Kubler, W., & Haller, C. (2002). Ionic radiocontrast media disrupt 
intercellular contacts via an extracellular calcium-independent mechanism. Exp Nephrol, 
10(3), 209-215. doi:10.1159/000058347 

Schoolwerth, A. C., Sica, D. A., Ballermann, B. J., Wilcox, C. S., Council on the Kidney in 
Cardiovascular, D., & the Council for High Blood Pressure Research of the American 
Heart, A. (2001). Renal considerations in angiotensin converting enzyme inhibitor 
therapy: a statement for healthcare professionals from the Council on the Kidney in 
Cardiovascular Disease and the Council for High Blood Pressure Research of the 
American Heart Association. Circulation, 104(16), 1985-1991.  

Schreiner, G. E. (1966). Nephrotoxicity and diagnostic agents. JAMA, 196(5), 413-415.  

Schroder, M., & Kaufman, R. J. (2005). The mammalian unfolded protein response. Annu Rev 
Biochem, 74, 739-789. doi:10.1146/annurev.biochem.73.011303.074134 

Sedeek, M., Nasrallah, R., Touyz, R. M., & Hebert, R. L. (2013). NADPH oxidases, reactive 
oxygen species, and the kidney: friend and foe. J Am Soc Nephrol, 24(10), 1512-1518. 
doi:10.1681/ASN.2012111112 

Sekiguchi, H., Ajiro, Y., Uchida, Y., Jujo, K., Iwade, K., Tanaka, N., . . . Hagiwara, N. (2018). 
Contrast-Induced Nephropathy and Oxygen Pretreatment in Patients With Impaired 
Renal Function. Kidney Int Rep, 3(1), 65-72. doi:10.1016/j.ekir.2017.08.002 

Skucas, J. (1989). Radiographic contrast agents (2nd ed.). Rockville, Md.: Aspen Publishers. 

Solomon, R., & Dauerman, H. L. (2010). Contrast-induced acute kidney injury. Circulation, 
122(23), 2451-2455. doi:10.1161/CIRCULATIONAHA.110.953851 

Somlyo, A. P., Bond, M., & Somlyo, A. V. (1985). Calcium content of mitochondria and 
endoplasmic reticulum in liver frozen rapidly in vivo. Nature, 314(6012), 622-625.  

Spargias, K., Alexopoulos, E., Kyrzopoulos, S., Iokovis, P., Greenwood, D. C., Manginas, A., . . 
. Cokkinos, D. V. (2004). Ascorbic acid prevents contrast-mediated nephropathy in 
patients with renal dysfunction undergoing coronary angiography or intervention. 
Circulation, 110(18), 2837-2842. doi:10.1161/01.CIR.0000146396.19081.73 

Stacul, F., Bertolotto, M., Thomsen, H. S., Pozzato, G., Ugolini, D., Bellin, M. F., . . . 
Committee, E. C. M. S. (2018). Iodine-based contrast media, multiple myeloma and 
monoclonal gammopathies: literature review and ESUR Contrast Media Safety 
Committee guidelines. Eur Radiol, 28(2), 683-691. doi:10.1007/s00330-017-5023-5 



127 

Stokes, J. M., & Bernard, H. R. (1961). Nephrotoxicity of Iodinated Contrast Media: 
Quantitative Effects of High Concentration Upon Glomerular and Tubular Functions. 
Ann Surg, 153(2), 299-309.  

Stoll, L. L., McCormick, M. L., Denning, G. M., & Weintraub, N. L. (2004). Antioxidant effects 
of statins. Drugs Today (Barc), 40(12), 975-990.  

Stratta, P., Quaglia, M., Airoldi, A., & Aime, S. (2012). Structure-function relationships of 
iodinated contrast media and risk of nephrotoxicity. Curr Med Chem, 19(5), 736-743.  

Strober, W. (2015). Trypan Blue Exclusion Test of Cell Viability. Curr Protoc Immunol, 111, 
A3 B 1-3. doi:10.1002/0471142735.ima03bs111 

Su, J., Zou, W., Cai, W., Chen, X., Wang, F., Li, S., . . . Cao, Y. (2014). Atorvastatin ameliorates 
contrast medium-induced renal tubular cell apoptosis in diabetic rats via suppression of 
Rho-kinase pathway. Eur J Pharmacol, 723, 15-22. doi:10.1016/j.ejphar.2013.10.025 

Sung, C. C., Hsu, Y. C., Chen, C. C., Lin, Y. F., & Wu, C. C. (2013). Oxidative stress and 
nucleic acid oxidation in patients with chronic kidney disease. Oxid Med Cell Longev, 
2013, 301982. doi:10.1155/2013/301982 

Suzuki, K., & Sorimachi, H. (1998). A novel aspect of calpain activation. FEBS Lett, 433(1-2), 
1-4.  

Suzuki, Y. J., Carini, M., & Butterfield, D. A. (2010). Protein carbonylation. Antioxid Redox 
Signal, 12(3), 323-325. doi:10.1089/ars.2009.2887 

Swan, S. K. (1997). Aminoglycoside nephrotoxicity. Semin Nephrol, 17(1), 27-33.  

Swick, M. (1930). Intravenous Urography By Means Of The Sodium Salt Of 5-Iodo2-Pyridon-
N-Acetic Acid. J Am Med Assoc, 95(19), 1403-1409.  

Szegezdi, E., Logue, S. E., Gorman, A. M., & Samali, A. (2006). Mediators of endoplasmic 
reticulum stress-induced apoptosis. EMBO Rep, 7(9), 880-885. 
doi:10.1038/sj.embor.7400779 

Takasu, O., Gaut, J. P., Watanabe, E., To, K., Fagley, R. E., Sato, B., . . . Hotchkiss, R. S. 
(2013). Mechanisms of cardiac and renal dysfunction in patients dying of sepsis. Am J 
Respir Crit Care Med, 187(5), 509-517. doi:10.1164/rccm.201211-1983OC 

Tan, Y., Dourdin, N., Wu, C., De Veyra, T., Elce, J. S., & Greer, P. A. (2006). Ubiquitous 
calpains promote caspase-12 and JNK activation during endoplasmic reticulum stress-
induced apoptosis. J Biol Chem, 281(23), 16016-16024. doi:10.1074/jbc.M601299200 

Tanaka, A., Cleland, M. M., Xu, S., Narendra, D. P., Suen, D. F., Karbowski, M., & Youle, R. J. 
(2010). Proteasome and p97 mediate mitophagy and degradation of mitofusins induced 
by Parkin. J Cell Biol, 191(7), 1367-1380. doi:10.1083/jcb.201007013 



128 

Tang, C., Han, H., Yan, M., Zhu, S., Liu, J., Liu, Z., . . . Dong, Z. (2018). PINK1-PRKN/PARK2 
pathway of mitophagy is activated to protect against renal ischemia-reperfusion injury. 
Autophagy, 14(5), 880-897. doi:10.1080/15548627.2017.1405880 

Tasanarong, A., Kongkham, S., & Itharat, A. (2014). Antioxidant effect of Phyllanthus emblica 
extract prevents contrast-induced acute kidney injury. BMC Complement Altern Med, 14, 
138. doi:10.1186/1472-6882-14-138 

Tasanarong, A., Vohakiat, A., Hutayanon, P., & Piyayotai, D. (2013). New strategy of alpha- and 
gamma-tocopherol to prevent contrast-induced acute kidney injury in chronic kidney 
disease patients undergoing elective coronary procedures. Nephrol Dial Transplant, 
28(2), 337-344. doi:10.1093/ndt/gfs525 

Tepel, M., van der Giet, M., Schwarzfeld, C., Laufer, U., Liermann, D., & Zidek, W. (2000). 
Prevention of radiographic-contrast-agent-induced reductions in renal function by 
acetylcysteine. N Engl J Med, 343(3), 180-184. doi:10.1056/NEJM200007203430304 

Terneus, M. V., Kiningham, K. K., Carpenter, A. B., Sullivan, S. B., & Valentovic, M. A. 
(2007). Comparison of S-Adenosyl-L-methionine and N-acetylcysteine protective effects 
on acetaminophen hepatic toxicity. J Pharmacol Exp Ther, 320(1), 99-107. 
doi:10.1124/jpet.106.111872 

Tervahartiala, P., Kivisaari, L., Kivisaari, R., Vehmas, T., & Virtanen, I. (1997). Structural 
changes in the renal proximal tubular cells induced by iodinated contrast media. Nephron, 
76(1), 96-102. doi:10.1159/000190147 

Tervahartiala, P., Kivisaari, L., Kivisaari, R., Virtanen, I., & Standertskjold-Nordenstam, C. G. 
(1991). Contrast media-induced renal tubular vacuolization. A light and electron 
microscopic study on rat kidneys. Invest Radiol, 26(10), 882-887.  

Thomsen, H. S., & Morcos, S. K. (2000). Radiographic contrast media. BJU Int, 86 Suppl 1, 1-
10.  

Thomsen, H. S., & Morcos, S. K. (2003). Contrast media and the kidney: European Society of 
Urogenital Radiology (ESUR) guidelines. Br J Radiol, 76(908), 513-518. 
doi:10.1259/bjr/26964464 

Tongqiang, L., Shaopeng, L., Xiaofang, Y., Nana, S., Xialian, X., Jiachang, H., . . . Xiaoqiang, 
D. (2016). Salvianolic Acid B Prevents Iodinated Contrast Media-Induced Acute Renal 
Injury in Rats via the PI3K/Akt/Nrf2 Pathway. Oxid Med Cell Longev, 2016, 7079487. 
doi:10.1155/2016/7079487 

Toprak, O. (2007). Conflicting and new risk factors for contrast induced nephropathy. J Urol, 
178(6), 2277-2283. doi:10.1016/j.juro.2007.08.054 

Toprak, O., Cirit, M., Tanrisev, M., Yazici, C., Canoz, O., Sipahioglu, M., . . . Sozmen, E. Y. 
(2008). Preventive effect of nebivolol on contrast-induced nephropathy in rats. Nephrol 
Dial Transplant, 23(3), 853-859. doi:10.1093/ndt/gfm691 



129 

Toso, A., Maioli, M., Leoncini, M., Gallopin, M., Tedeschi, D., Micheletti, C., . . . Bellandi, F. 
(2010). Usefulness of atorvastatin (80 mg) in prevention of contrast-induced nephropathy 
in patients with chronic renal disease. Am J Cardiol, 105(3), 288-292. 
doi:10.1016/j.amjcard.2009.09.026 

Touati, C., Idee, J. M., Deray, G., Santus, R., Balut, C., Beaufils, H., . . . Bonnemain, B. (1993). 
Modulation of the renal effects of contrast media by endothelium-derived nitric oxide in 
the rat. Invest Radiol, 28(9), 814-820.  

Tran, M., & Parikh, S. M. (2014). Mitochondrial biogenesis in the acutely injured kidney. 
Nephron Clin Pract, 127(1-4), 42-45. doi:10.1159/000363715 

Tran, M., Tam, D., Bardia, A., Bhasin, M., Rowe, G. C., Kher, A., . . . Parikh, S. M. (2011). 
PGC-1alpha promotes recovery after acute kidney injury during systemic inflammation in 
mice. J Clin Invest, 121(10), 4003-4014. doi:10.1172/JCI58662 

Tropeano, F., Leoncini, M., Toso, A., Maioli, M., Dabizzi, L., Biagini, D., . . . Bellandi, F. 
(2016). Impact of Rosuvastatin in Contrast-Induced Acute Kidney Injury in the Elderly: 
Post Hoc Analysis of the PRATO-ACS Trial. J Cardiovasc Pharmacol Ther, 21(2), 159-
166. doi:10.1177/1074248415599062 

Tsai, T. T., Patel, U. D., Chang, T. I., Kennedy, K. F., Masoudi, F. A., Matheny, M. E., . . . 
Spertus, J. A. (2014). Contemporary incidence, predictors, and outcomes of acute kidney 
injury in patients undergoing percutaneous coronary interventions: insights from the 
NCDR Cath-PCI registry. JACC Cardiovasc Interv, 7(1), 1-9. 
doi:10.1016/j.jcin.2013.06.016 

Ueda, J., Nygren, A., Hansell, P., & Ulfendahl, H. R. (1993). Effect of intravenous contrast 
media on proximal and distal tubular hydrostatic pressure in the rat kidney. Acta Radiol, 
34(1), 83-87.  

Vasington, F. D., & Murphy, J. V. (1962). Ca ion uptake by rat kidney mitochondria and its 
dependence on respiration and phosphorylation. J Biol Chem, 237, 2670-2677.  

Vig, M., Beck, A., Billingsley, J. M., Lis, A., Parvez, S., Peinelt, C., . . . Penner, R. (2006). 
CRACM1 multimers form the ion-selective pore of the CRAC channel. Curr Biol, 
16(20), 2073-2079. doi:10.1016/j.cub.2006.08.085 

Wallingford, V. H. (1953). The development of organic iodine compounds as x-ray contrast 
media. J Am Pharm Assoc Am Pharm Assoc, 42(12), 721-728.  

Wang, Y., Zhang, H., Yang, Z., Miao, D., & Zhang, D. (2018). Rho Kinase Inhibitor, Fasudil, 
Attenuates Contrast-induced Acute Kidney Injury. Basic Clin Pharmacol Toxicol, 122(2), 
278-287. doi:10.1111/bcpt.12895 

Weisbord, S. D., Gallagher, M., Jneid, H., Garcia, S., Cass, A., Thwin, S. S., . . . Group, P. T. 
(2018). Outcomes after Angiography with Sodium Bicarbonate and Acetylcysteine. N 
Engl J Med, 378(7), 603-614. doi:10.1056/NEJMoa1710933 



130 

Weisbord, S. D., & Palevsky, P. M. (2008). Prevention of contrast-induced nephropathy with 
volume expansion. Clin J Am Soc Nephrol, 3(1), 273-280. doi:10.2215/CJN.02580607 

Widmark, J. M. (2007). Imaging-related medications: a class overview. Proc (Bayl Univ Med 
Cent), 20(4), 408-417.  

Wiersinga, W. J., Leopold, S. J., Cranendonk, D. R., & van der Poll, T. (2014). Host innate 
immune responses to sepsis. Virulence, 5(1), 36-44. doi:10.4161/viru.25436 

Wu, C. T., Sheu, M. L., Tsai, K. S., Weng, T. I., Chiang, C. K., & Liu, S. H. (2010). The role of 
endoplasmic reticulum stress-related unfolded protein response in the radiocontrast 
medium-induced renal tubular cell injury. Toxicol Sci, 114(2), 295-301. 
doi:10.1093/toxsci/kfq006 

Wu, C. T., Weng, T. I., Chen, L. P., Chiang, C. K., & Liu, S. H. (2013). Involvement of caspase-
12-dependent apoptotic pathway in ionic radiocontrast urografin-induced renal tubular 
cell injury. Toxicol Appl Pharmacol, 266(1), 167-175. doi:10.1016/j.taap.2012.10.012 

Xiao, X., Hu, Y., Quiros, P. M., Wei, Q., Lopez-Otin, C., & Dong, Z. (2014). OMA1 mediates 
OPA1 proteolysis and mitochondrial fragmentation in experimental models of ischemic 
kidney injury. Am J Physiol Renal Physiol, 306(11), F1318-1326. 
doi:10.1152/ajprenal.00036.2014 

Xie, X. C., Cao, Y., Yang, X., Xu, Q. H., Wei, W., & Wang, M. (2017). Relaxin Attenuates 
Contrast-Induced Human Proximal Tubular Epithelial Cell Apoptosis by Activation of 
the PI3K/Akt Signaling Pathway In Vitro. Biomed Res Int, 2017, 2869405. 
doi:10.1155/2017/2869405 

Yamamoto, K., Sato, T., Matsui, T., Sato, M., Okada, T., Yoshida, H., . . . Mori, K. (2007). 
Transcriptional induction of mammalian ER quality control proteins is mediated by 
single or combined action of ATF6alpha and XBP1. Dev Cell, 13(3), 365-376. 
doi:10.1016/j.devcel.2007.07.018 

Yang, D., & Yang, D. (2013). Role of intracellular Ca2+ and Na+/Ca2+ exchanger in the 
pathogenesis of contrast-induced acute kidney injury. Biomed Res Int, 2013, 678456. 
doi:10.1155/2013/678456 

Yang, D., Yang, D., Jia, R., & Ding, G. (2013). Selective inhibition of the reverse mode of 
Na(+)/Ca(2+) exchanger attenuates contrast-induced cell injury. Am J Nephrol, 37(3), 
264-273. doi:10.1159/000348526 

Yang, D., Yang, D., Jia, R., & Tan, J. (2013). Na+/Ca2+ exchange inhibitor, KB-R7943, 
attenuates contrast-induced acute kidney injury. J Nephrol, 26(5), 877-885. 
doi:10.5301/jn.5000259 

Yang, J. S., Peng, Y. R., Tsai, S. C., Tyan, Y. S., Lu, C. C., Chiu, H. Y., . . . Tsai, F. J. (2018). 
The molecular mechanism of contrast-induced nephropathy (CIN) and its link to in vitro 



131 

studies on iodinated contrast media (CM). Biomedicine (Taipei), 8(1), 1. 
doi:10.1051/bmdcn/2018080101 

Yang, X., Yan, X., Yang, D., Zhou, J., Song, J., & Yang, D. (2018). Rapamycin attenuates 
mitochondrial injury and renal tubular cell apoptosis in experimental contrast-induced 
acute kidney injury in rats. Biosci Rep, 38(6). doi:10.1042/BSR20180876 

Yang, Y., Yang, D., Yang, D., Jia, R., & Ding, G. (2014). Role of reactive oxygen species-
mediated endoplasmic reticulum stress in contrast-induced renal tubular cell apoptosis. 
Nephron Exp Nephrol, 128(1-2), 30-36. doi:10.1159/000366063 

Yeganehkhah, M. R., Iranirad, L., Dorri, F., Pazoki, S., Akbari, H., Miryounesi, M., . . . 
Vafaeimanesh, J. (2014). Comparison between three supportive treatments for prevention 
of contrast-induced nephropathy in high-risk patients undergoing coronary angiography. 
Saudi J Kidney Dis Transpl, 25(6), 1217-1223.  

Yiengst, M. J., & Shock, N. W. (1962). Blood and plasma volume in adult males. J Appl Physiol, 
17, 195-198. doi:10.1152/jappl.1962.17.2.195 

Yokomaku, Y., Sugimoto, T., Kume, S., Araki, S., Isshiki, K., Chin-Kanasaki, M., . . . 
Kashiwagi, A. (2008). Asialoerythropoietin prevents contrast-induced nephropathy. J Am 
Soc Nephrol, 19(2), 321-328. doi:10.1681/ASN.2007040481 

Yoo, S. M., & Jung, Y. K. (2018). A Molecular Approach to Mitophagy and Mitochondrial 
Dynamics. Mol Cells, 41(1), 18-26. doi:10.14348/molcells.2018.2277 

Yoshida, L. S., & Tsunawaki, S. (2008). Expression of NADPH oxidases and enhanced 
H(2)O(2)-generating activity in human coronary artery endothelial cells upon induction 
with tumor necrosis factor-alpha. Int Immunopharmacol, 8(10), 1377-1385. 
doi:10.1016/j.intimp.2008.05.004 

Zager, R. A., Johnson, A. C., & Geballe, A. (2007). Gentamicin suppresses endotoxin-driven 
TNF-alpha production in human and mouse proximal tubule cells. Am J Physiol Renal 
Physiol, 293(4), F1373-1380. doi:10.1152/ajprenal.00333.2007 

Zager, R. A., Johnson, A. C., & Hanson, S. Y. (2003). Radiographic contrast media-induced 
tubular injury: evaluation of oxidant stress and plasma membrane integrity. Kidney Int, 
64(1), 128-139. doi:10.1046/j.1523-1755.2003.00059.x 

Zhang, B., Wu, X., Liu, J., Song, L., Song, Q., Wang, L., . . . Wu, Z. (2019). beta-Actin: Not a 
Suitable Internal Control of Hepatic Fibrosis Caused by Schistosoma japonicum. Front 
Microbiol, 10, 66. doi:10.3389/fmicb.2019.00066 

Zhao, C., Chen, Z., Xu, X., An, X., Duan, S., Huang, Z., . . . Yuan, Y. (2017). Pink1/Parkin-
mediated mitophagy play a protective role in cisplatin induced renal tubular epithelial 
cells injury. Exp Cell Res, 350(2), 390-397. doi:10.1016/j.yexcr.2016.12.015 



132 

Zhao, J., Huang, Y., Song, Y., Zhao, X., Jin, J., Wang, J., & Huang, L. (2009). Low osmolar 
contrast medium induces cellular injury and disruption of calcium homeostasis in rat 
glomerular endothelial cells in vitro. Toxicol Lett, 185(2), 124-131. 
doi:10.1016/j.toxlet.2008.12.009 

Zhuo, J. L., & Li, X. C. (2013). Proximal nephron. Compr Physiol, 3(3), 1079-1123. 
doi:10.1002/cphy.c110061 
 

  



133 

APPENDIX A: OFFICE OF RESEARCH INTEGRITY APPROVAL LETTER 

  



134 

APPENDIX B: LIST OF ABBREVIATIONS 

2-APB…2-aminoethoxydiphenyl borate 

4-HNE…4-hydroxynonenal 

8-OHdG…8-hydroxy-2`-deoxyguanosine 

ACEI…angiotensin-converting enzyme inhibitors 

Akt… protein kinase B 

Apaf1…apoptotic protease activating factor 1 

ARB…angiotensin-II receptor blockers 

ATCC…American Type Culture Collection 

ATF4…activating transcription factor 6 

ATF6…activating transcription factor 6 

BAPTA-AM…1, 2-bis (o-aminophenoxy) ethane-N,N,N’,N’-tetra-acetic acid  

BSA…bovine serum albumin 

CAT…catalase 

CHF…congestive heart failure 

CHOP…C/EBP homologous protein 

CI-AKI…contrast-induced acute kidney injury 

CPT1A…carnitine-palmitoyl transferase 

DA…diatrizoic acid 

DDTC… diethyldithiocarbamate  

DNPH…dinitrophenylhydrazine 

ECAR…extracellular acidification rate 

EGCG…epigallocatechin gallate 
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eGFR…estimated glomerular filtration rate 

EGTA…ethyleneglycol-bis(β-aminoethyl)-N,N,N’,N’-tetra-acetic acid 

eIF2α…eukaryotic translation initiation factor 2α 

eNOS…endothelial nitric oxide synthase 

ER…endoplasmic reticulum 

ERAD…endoplasmic reticulum-associated degradation 

ERK…extracellular signal-regulated kinase 

ETC…electron transport chain 

FCCP… carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone 

GFR…glomerular filtration rate 

GLS1… glutaminase 

GPx…glutathione peroxidase 

GR…glutathione reductase 

GRP78…glucose-regulated protein 78 

GSH…glutathione 

H2O2…hydrogen peroxide 

HEK-293…human embryonic kidney cells 

HK-2…human kidney 2 cells 

HOCM…high-osmolar contrast media 

IOCM…iso-osmolar contrast media 

IP3…inositol-1,4,5-triphosphate  

IP3R… inositol triphosphate receptor  

IRE1…inositol-requiring ER-to-nucleus signal kinase 1 
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JAK…Janus kinase 

JNK…c-Jun N-terminal kinase 

LC3B…Microtubule-associated proteins 1A/1B light chain 3B 

LCFA…long-chain fatty acids 

LIR…LC3-interacting region 

LLC-PK1…porcine kidney proximal tubule cells 

LOCM…low-osmolar contrast media 

MAM…mitochondrial-associated membranes 

MAPK…mitogen-activated protein kinase 

MCU…mitochondrial calcium uniporter 

MFS I/II…Mitofusin I and II 

MnSOD…manganese superoxide dismutase 

MPC…mitochondrial pyruvate carrier 

mPT…mitochondrial membrane permeability transition 

mPTP…mitochondrial membrane permeability transition pore 

MTT… 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

NAC…N-acetylcysteine 

NCX…Sodium calcium exchanger 

NO…nitric oxide 

NOX…NADPH oxidase 

NOX4…NADPH oxidase 4 

NOXO1…NADPH oxidase organizer 1 

NRK52E…rat renal proximal tubule cells 
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NSAID…nonsteroidal anti-inflammatory drug 

O2
·-…superoxide anion 

OAT…organic ion transporter 

OH-…hydroxyl radical 

OCR…oxygen consumption rate 

P62…sequestrome-1 

PARK2…Parkin 

PARL…presenilin-associated Rhomboid like 

PBS…phosphate buffered saline 

PBST…phosphate buffered saline plus Tween 20 

PCI…percutaneous coronary intervention 

PER…proton efflux rate 

PERK…RNA-dependent protein kinase-like ER kinase 

PI…propidium iodide 

PI3…phosphoinositide 3 

PLC…phospholipase C 

PMCA…plasma membrane calcium ATPase 

PINK1…PTEN-induced putative kinase 

PT…proximal tubule 

RAAS…renin-angiotensin-aldosterone system 

RCM…radiocontrast media 

ROCK…Rho-associated protein kinase 

ROS…reactive oxygen species 
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RSB…reducing sample buffer 

SERCA…sarco/endoplasmic reticulum calcium ATPase 

SOCE…store-operated calcium entry 

SOCC…store-operated calcium channel 

SOD…superoxide dismutase 

STAT…signal transducer and activator of transcription proteins 

STIM1…stromal interaction molecule 1 

SCr…serum creatinine 

TAL…thick ascending limb 

TBST…tris buffered saline plus Tween 20 

TMB…3,3t,5,5t-tetramethylbenzidine 

TNFα…tumor necrosis factor alpha 

TNFR1…TNFα receptor 1 

TRADD…TNFα receptor-associated death domain 

TRPV6…transient receptor potential cation channel subfamily V member 6 

UPR…unfolded protein response 

VDAC…voltage-dependent anion channel 

XO…xanthine oxidase 
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