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ABSTRACT 

Overarm throwing athletes utilize the kinetic chain, which allows forces generated by the lower 

body to be transmitted to the throwing arm in a proximal-to-distal sequence. Efficient force 

transmission from the lower body to the throwing arm can improve performance and reduce risk 

for injury. The purpose of this thesis was to explore the relationship between the lower trunk 

(pelvis) maximum angular momentum and the joint resultant forces at the shoulder during 

the overarm throwing motion of baseball athletes. I hypothesized that there would be a negative 

correlation between the maximum angular momentum about the superior-inferior axis of the 

lower trunk during the arm cocking phase and the throwing shoulder joint anterior shear force at 

ball release, and that there would be a negative correlation between the maximum angular 

momentum about the superior-inferior axis of the lower trunk during the arm cocking phase and 

the throwing shoulder joint compressive force at ball release. Two high-speed video cameras 

were used to record twenty-four competitive male baseball players executing an overarm throw. 

The videos were digitized, and 3D landmark coordinates were obtained using the Direct Linear 

Transformation procedure. Lower trunk angular momentum, shoulder joint compressive force, 

and shoulder joint anterior shear force were calculated from the 3D landmark coordinates and 

anthropometric data. Bivariate correlations were computed to determine if an association existed 

between maximum lower trunk angular momentum and shoulder joint anterior shear force at 

release or shoulder joint compressive force at release. There was no association between lower 

trunk maximum angular momentum and shoulder joint anterior shear force (r = 0.149, p = 

0.244). There was also no association between lower trunk maximum angular momentum and 

shoulder joint compressive force (r = 0.222, p = 0.149). The lack of association between the 

lower trunk maximum angular momentum and shoulder joint forces may indicate that this 
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relationship is not determinative of overarm throwing technique. An alternative explanation is 

that the subjects exhibited inefficient mechanics and an improper timing sequence of the kinetic 

chain. Future work should investigate the sequencing of force transmission between the lower 

body and upper body.
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CHAPTER 1 

INTRODUCTION 

Overarm Throwing Motion 

Overarm throwing athletes try to optimize ball velocity while minimizing injury risk by 

moving efficiently. The overarm throwing motion is complex and involves movements of the 

entire body working in harmony. The overarm throwing motion is broken down into sequential 

phases to aid description and analysis. The phases are: the wind-up phase, the stride phase, the 

arm cocking phase, the arm acceleration phase, the arm deceleration phase, and the follow-

through phase (Fleisig, Barrentine, Escamilla, & Andrews, 1996; Zheng, Fleisig, Barrentine, & 

Andrews, 2004; Rojas et al., 2009). Throughout these phases, forces generated by the body are 

transmitted to the ball by joint rotations made in a proximal-to-distal order known as the kinetic 

chain. The distal body segments transmit and add to the forces that were generated by the 

proximal body segments (Feltner & Dapena, 1989; Putnam, 1993). A great resultant force is 

applied to the ball at the most distal end of the kinetic chain, which causes the ball to accelerate. 

Maximizing the ball’s release speed depends on efficient transmission and accumulation of force 

along the kinetic chain in the appropriate sequence.  

Efficient force transmission throughout the phases of the overarm throwing motion is 

achieved by the transfer of momentum across segments. The force transmission process begins 

with the generation of a ground reaction force between the push-off foot and the ground 

(MacWilliams, Choi, Perezous, Chao, & McFarland, 1998). The push off foot directs this ground 

reaction force in the anterior direction where the landing foot then contacts the ground and 

supplements with additional ground reaction force. These transmitted ground reaction forces act 
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on the lower extremities to increase their momentum (Alexander, 1991; MacWilliams et al., 

1998; Young, Herring, Press, & Casazza, 1996). The lower trunk (pelvis) takes the anteriorly 

directed linear momentum and rotates about a superior-inferior axis which generates angular 

momentum (Young et al., 1996). A direct relationship exists between the change in angular 

momentum of the proximal body segment and the rotational force (torque) of the corresponding 

distal joint. Rapid elbow extension and ball velocity at release are due to the preceding 

movements of the upper arm and trunk segments (Feltner, 1989). Accelerations of the elbow and 

wrist are dependent on torques originally produced by the more proximal shoulder joint 

(Hirashima, Yamane, Nakamura, & Ohtsuki, 2008; Oliver, 2014). Greater shoulder torques are 

associated with trunk rotation and flexion movements (Hirashima et al., 2008; Marshall & 

Elliott, 2000; Oliver, 2014). To better understand the transmission of forces in the overarm 

throwing motion, we investigated the transfer of angular momentum from the lower trunk to the 

shoulder and the resulting joint torque and force. This transfer of angular momentum from the 

lower trunk to the shoulder is particularly relevant, because it is a fundamental link in the kinetic 

chain. Since angular momentum is a kinematic-based variable, the relationship between angular 

momentum of the lower trunk and the resultant joint torque at the shoulder can be explained to 

athletes in terms of how they move. Our findings, therefore, can provide practical information 

about the overarm throwing motion. 

Overarm Throwing Injuries 

Baseball athletes are at a high risk for injuries that have great social and economic costs, 

cause lost participation time, and hinder skill development. On average in Major League 

Baseball (MLB) from 1998 to 2015, 464 players which is 62% of the MLB, were placed on the 

disabled list due to injuries every year (Conte, Camp, & Dines, 2016). These injuries cost MLB 
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approximately $423 million per year and a total of $7.6 billion over the span of 18 years (Conte 

et al., 2016). The majority of these injuries occur during practice or without contact with another 

player or the ground (Krajnik, Fogarty, Yard, & Comstock, 2010). 

During the overarm throwing motion, the forces generated by the lower body must be 

transmitted, controlled, and absorbed at the athlete’s shoulder. When momentum from the 

proximal body segments is not transferred to the distal segments effectively, more torque must 

be developed by the shoulder musculature (Seroyer et al., 2010; Stodden, Fleisig, McLean, & 

Andrews, 2005; Young et al., 1996). Shoulder joint torque is comprised of shoulder joint forces 

and moment arms, and great shoulder joint forces are the likely cause of non-contact, throwing 

injuries. An anterior and superior shoulder joint shear force of about 400 N is generated during 

the arm acceleration phase of the overarm throwing motion, as the throwing arm moves towards 

the throwing direction (Feltner & Dapena, 1986; Fleisig, Andrews, Dillman, & Escamilla, 1995; 

Ouellette et al., 2008). A compressive shoulder joint force of about 1000 N is generated during 

the arm deceleration phase of the overarm throwing motion (Feltner & Dapena, 1986; Fleisig et 

al., 1995; Ouellette et al., 2008). The joint forces generated each time an athlete throws a ball, 

occurring thousands of times per year, have been proposed as risk factors for the relatively 

common rotator cuff and glenoid labrum injuries sustained by overarm throwing athletes (Fleisig 

et al., 1995). Investigating how angular momentum is transferred from the lower trunk to the 

shoulder can provide practical information about the joint forces that have been proposed as non-

contact overarm throwing injury risk factors. 

To better understand how overarm throwing athletes can optimize ball velocity while 

minimizing injury risk, the purpose of this thesis was to explore the relationship between the 
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maximum angular momentum of the lower trunk and the throwing shoulder joint resultant 

compressive and shear forces during the overarm throwing motion of baseball athletes. 

Research Hypotheses 

H1: I hypothesized that there would be a negative correlation between the 

maximum angular momentum about the superior-inferior axis of the lower trunk during the arm 

cocking phase and the throwing shoulder joint anterior shear force at ball release of the baseball 

overarm throwing motion. 

H2: I hypothesized that there would be a negative correlation between the maximum 

angular momentum about the superior-inferior axis of the lower trunk during the arm cocking 

phase and the throwing shoulder joint compressive force at ball release of the baseball 

overarm throwing motion. 

Delimitations 

The delimitations of this study are: 

1. Subjects were healthy (no injuries in past 12 months), played baseball at the high 

school, college, or professional level, and had ages ranging from 18-30 years. 

2. Use of the study questionnaire to determine demographic information, injury history, 

and other sport specific information. 

3. Subjects threw for distance and accuracy in simulated game situations from 36.6 

meters (120 feet) on an outdoor or indoor baseball practice facility. 

4. Vicon Motus software was used to calculate three-dimensional body landmark 

coordinates. 

5. MotionSoft and MatLab software was used to calculate body kinetics and kinematics. 
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6. Vicon Motus was used to calculate ball velocity after being verified with a Bushnell 

radar gun. 

Limitations 

The limitations of this study include: 

1. Some of the subjects played on the same team and had the same coaches, while others 

did not. 

2. Subjects had varying levels of skill. 

3. Subjects were assumed to have answered the study questionnaire honestly. 

4. Subjects were assumed to have given full effort when throwing and tried to be 

accurate with their throw. 

5. Research throwing may not replicate the same amount of stress as a game.  

6. Subjects may have had varied amounts of days not throwing before testing.  

7. Training regimen was not controlled, and no training intervention was provided to the 

subjects. 

Key Terms & Operational Definitions 

Arm acceleration phase: This phase describes the period after shoulder maximum 

external rotation, when the throwing arm begins to rapidly accelerate and rotate forward, ending 

at ball release (overarm throwing motion) (Dillman, Fleisig, & Andrews, 1993).  

Arm cocking phase: In this phase the athlete rotates their throwing arm backwards and 

reaches maximum external rotation of the shoulder; the phase ends once the throwing arm begins 

to move forward (overarm throwing motion) (Dillman et al., 1993). 

Arm deceleration phase: The period after ball release when the body works to slow itself 

down during the overarm throwing motion (Dillman et al., 1993).  
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Ball release: The moment the ball leaves the players hand, and the player can no longer 

apply force to the ball (Zheng et al., 2004).  

Foot contact: The instant the lead foot contacts the ground when a player is throwing the 

ball (Fleisig, Diffendaffer, & Slowik, 2017). 

Infielder: A baseball or softball player that plays a position in the infield. These positions 

include a catcher, first-baseman, second-baseman, shortstop, and third-baseman.  

Inverse dynamics: Use of Newton’s second and third laws to calculate net force at each 

joint of a linked rigid segment system. 

Joint angle: The three-dimensional Euler angle between two body segments in a local 

reference frame with a z, y, x rotation order. 

Kinetic chain: A proximal-to-distal sequence in which momentum is transferred from 

body segment to body segment creating the greatest amount of force at the distal end of the chain 

(Feltner & Dapena, 1989; Putnam, 1993). 

Lead foot: the lead foot is the front foot of the player that is throwing. If the player is 

right-handed it is their left foot; if the player is left-handed, it is their right foot; also known as 

contact foot (Fleisig et al., 2017).  

Outfielder: Refers to a baseball or softball player that plays in the outfield. These 

positions include the right fielder, the left fielder, and the center fielder.   

Lower trunk (pelvis) angular momentum: The product of the angular velocity of the 

pelvis about a superior-inferior axis and the moment of inertia of the pelvis about a superior-

inferior axis. 

Proximal-to-distal sequence: Refers to the way (sequence) the body transfers force. In 

throwing it starts with the more proximal body segments like the legs, hip, and trunk. These 
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proximal segments generate force and then transfer the force to the distal segments like the wrist 

and hand, which causes an efficient movement and the greatest amount of force to occur at the 

hand (distal) (Feltner & Dapena, 1989; Putnam, 1993).  

Push-off foot: The back foot of the athlete that uses the ground to push off in the very 

beginning of the throwing motion to generate an anterior movement; if the player is right-handed 

it is the right foot; if the player is left-handed it is the left foot (MacWilliams et al., 1998). 

 Shoulder joint resultant compressive force: The net shoulder joint force that is directed 

perpendicular to the shoulder joint surface as defined by the upper trunk reference frame.  

Shoulder joint resultant shear force: The net shoulder joint force that is directed parallel 

to the shoulder joint surface as defined by the upper trunk reference frame.  

Stride phase: A phase in the overarm throwing motion in which the athlete steps forward 

with their lead foot and begins to rotate their throwing arm up and back (Dillman et al., 1993).  
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CHAPTER 2 

LITERATURE REVIEW 

Throwing Phases and Performance  

 Consistency exists for the throwing phases in both softball and baseball. The six phases 

of throwing include the wind-up phase, the stride phase, the arm cocking phase, the arm 

acceleration phase, the arm deceleration phase, and the follow-through phase (Fleisig et al., 

1996; Zheng et al., 2004; Rojas et al., 2009). The throwing phases were originally developed and 

applied to pitching. Based off the previous pitching models, a modified model can be used for 

non-pitching overarm throwing which includes (A) the stride phase, (B) the arm cocking phase, 

(C) the arm acceleration phase, and the (D) arm deceleration phase (Figure 1). 

 
Figure 1. Throwing Phases 
The modified phases of non-pitching overarm throwing: (A) the stride phase, (B) the arm 
cocking phase, (C) the arm acceleration phase, and the (D) arm deceleration phase. 

 

Throwing performance is vital to all baseball athletes as it is an important skill for the 

infielder, outfielder, and the pitcher to use in order to record outs in the game. Research for 

overarm throwing performance in baseball has focused on pitching. Understanding the different 
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movements in each phase of the overarm throwing motion provides insight on performance. 

During the stride phase of overarm throwing the following information was presented for 

improved performance, the lower trunk (pelvis) should begin to face the target while the upper 

trunk stays closed (positioned slightly to the right for a right-handed pitcher), the throwing 

shoulder is abducted about 90°, it is horizontally abducted about 20°, it is externally rotated 

about 50°, and the throwing elbow should be flexed about 90° (Fleisig et al., 2016; Fleisig et al., 

2017; Zheng et al., 2004). A higher ground reaction force at the push-off foot and the lead foot 

during the stride phase is associated with an increase in wrsit and ball velocity (Alexander, 1991; 

MacWilliams et al., 1998; Young et al., 1996). Maximum trunk axial rotation (approximately 

55°) and maximum trunk angular acceleration (approximately 11,600°/s²) also occurred around 

foot contact in the stride phase (Fleisig, Hsu, Fortenbaugh, Cordover, & Press, 2013). For the 

stride phase low breaking forces at the lead leg and a short stride compared to the pitcher’s 

height were associated with a decrease in ball velocity (Fortenbaugh, Fleisig, & Andrews, 2009).  

During the arm cocking phase, maximum angular velocity of the lower trunk and 

maximum angular velocity of the upper trunk are related to performance, and in high-level 

pitchers (college and professional) maximum angular velocity of the lower trunk is around 

575°/s and maximum angular velocity of the upper trunk is around 1100°/s (Fleisig et al., 2016; 

Fleisig et al., 2017). A higher average lower trunk (pelvis) velocity and an average higher upper 

torso velocity resulted in a higher ball velocity during the arm cocking phase, as well; an 

increase in lower trunk orientation and upper trunk orientation at the instant of maximum 

external rotation of the shoulder also resulted in increased ball velocity (Stodden et al., 2005). 

During the arm acceleration phase, several joint mechanics have been associated with 

improved performance. Increased lead knee flexion resulting in  knee extension at the end of the 
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acceleration phase (ball release), increased trunk forward tilt, and increased maximum shoulder 

angular velocity are all associated with increased ball velocity during the arm acceleration phase 

(ball release) (Matsuo, Escamilla, Fleisig, Barrentine, & Andrews, 2001; Werner, Suri, Guido, 

Meister, & Jones, 2008). Increased maximum external rotation and increased elbow extension 

velocities are also associated with an increased ball velocity (Werner et al., 2008). Research on 

18 elite baseball pitchers found that increased lower trunk orientation at maximum external 

rotation of the throwing shoulder, increased upper trunk orientation at maximum external 

rotation of the throwing shoulder, increased lower trunk orientation at ball release, and increased 

upper trunk velocity during arm acceleration were associated with an increased ball velocity 

(Stodden, Fleisig, McLean, Lyman, & Andrews, 2001).  

 One of the flaws in the literature related to baseball overarm throwing performance was 

that it focused on baseball pitching and not position player throwing.   

Kinetic Chain  

The kinetic chain and proximal-to-distal sequence that occurs during complex multi-

joints movements such as overarm throwing connects movements of the lower trunk and 

shoulder. The term kinetic chain refers to how the body transfers energy from one joint to the 

next (Feltner & Dapena, 1989; Hirashima, Kadota, Sakurai, Kudo, & Ohtsuki, 2002; Hirashima 

et al., 2008; Putnam, 1993; Seroyer et al., 2010). During the kinetic chain sequence in overarm 

throwing the body develops energy or force in the larger proximal segments (or lower body), and 

transfers that force to the distal segments of the body (Feltner & Dapena, 1989; Putnam, 1993). 

When applying the kinetic chain and proximal-to-distal sequence to throwing, the literature did 

have research on this topic; however, the research again focused on baseball pitching. During the 

baseball pitching motion, the extreme external rotation of the upper arm mainly occurred due to 
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sequential actions of muscles at the shoulder, but rapid elbow extension at ball release was 

mainly due to the movement of the upper arm and trunk (Feltner, 1989). Researchers 

investigating baseball pitching indicated the acceleration of the elbow and wrist were dependent 

on torque (energy) originally produced by the proximal trunk and shoulder (Hirashima et al., 

2008). The main purposes of the previously mentioned studies were focused on developing a 

method to calculate the energy transferred and the results were more a secondary part of the 

literature. When non-pitching athletes used a brace to limit certain motions, most of the energy 

generated during throwing was produced by the lower trunk, and the resulting energy was used 

to load the elastic properties in the shoulder and transfer the energy to the ball or create the rapid 

acceleration of the ball (Roach & Lieberman, 2014). Roach and Lieberman (2014) also claimed 

that the rapid accelerations of the distal segments (wrist and elbow) were generated by the power 

produced by the proximal segments such as the shoulder and trunk. In college softball position 

players, the gluteal muscle group played a key role in stabilizing the lower trunk during throwing 

and helped to transfer energy up the kinetic chain, and trunk flexion and rotation had a positive 

relationship with shoulder moments which indicated that the actions of the lower trunk and upper 

trunk are strongly related to throwing performance, especially at the shoulder (Oliver, 2014). 

The shoulder and upper arm alone are not able to produce the force that is needed to 

throw a baseball at a high velocity (Fleisig et al., 1995; Pappas, Zawacki, & Sullivan, 1985; 

Roach & Lieberman, 2014). Since the shoulder and upper arm cannot produce enough force on 

their own, the kinetic chain sequence (proximal-to-distal) is essential for efficient force 

transmission during the throwing motion as the force must be produced and transferred from 

other body segments. The process begins with the push-off foot. The push-off foot generates 

force by reacting with the ground, and this force is then transferred anteriorly to the lead foot 
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(MacWilliams et al., 1998; Young et al., 1996). The lead foot and lead leg accept the force, and 

generate more force which is sent up to the lower trunk (Fortenbaugh et al., 2009; MacWilliams 

et al., 1998). In both baseball and handball the more experienced and efficient athletes are able to 

better utilize and transfer ground reaction force which results in more force being applied to the 

ball (increased velocity) (MacWilliams et al., 1998; Rousanoglou, Noutsos, Bayios, & Boudolos, 

2014). Once the force is transmitted to the lower trunk it becomes angular as the lower trunk 

rotates (Young et al., 1996). The lower trunk and upper trunk are responsible for generating a 

large sum of the forces, taking the load off of the shoulder musculature (Burkhart, Morgan, & 

Kibler, 2003). While the generation of the force by the trunk is essential, the timing of the 

sequence is as important. Professional pitchers do not exhibit a large difference in lower trunk 

torque, but they exhibit a difference in the timing of the lower trunk rotation (efficient transfer of 

force) (Stodden et al., 2001). In less experienced and less efficient baseball players the shoulder 

musculature is more active, while in professional pitchers the activation of the shoulder 

musculature is more selective and less active as they utilize the proper timing of the larger 

muscles of the lower trunk and upper trunk to generate and transfer force (Gowan, Jobe, Tibone, 

Perry, & Moynes, 1987; Young et al., 1996). If there is a small reduction in force form the pelvis 

and trunk, it would require a large increase in force produced by the shoulder to generate the 

same amount of force on the ball (Seroyer et al., 2010). The upper trunk generates and receives 

rotational force from the lower trunk, generates force by leaning forward, works to absorb some 

of the force towards the end of the throwing motion, and has an important role in maintaining 

stiffness in the muscles which transfers force by releasing elastic stored energy to the shoulder 

(McGill & Hoodless, 1990; Oliver, 2014; Santana, McGill, & Brown, 2015; Stodden et al., 2005; 

Young et al., 1996). The muscles of the trunk are connected to the scapula, and the scapula is 
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essential in transferring the forces from the lower trunk and upper trunk, to the distal shoulder, 

elbow, and hand (Kibler, 1998). The shoulder receives the forces transferred from the rest of the 

body segments and internally rotates, which generates and transfers the forces to the rest of the 

distal segments (Hirashima et al., 2008; Roach & Lieberman, 2014). Finally the force is applied 

from the hand to the ball, causing the ball to move. During this process, the transfer of force 

during throwing motion, the body segment begins to move as the adjacent proximal segment 

reaches maximum velocity, as this allows for the greatest accumulation of force at the most distal 

body segment, resulting in the greatest amount of force being applied to the ball (Putnam, 1993).  

The serape effect is a phenomenon that occurs during the throwing motion which results 

in an increased efficiency of force transmission through the kinetic chain (Santana, 2003; 

Santana et al., 2015). The serape effect refers to an eccentric contraction or stretching of the 

diagonal muscle groups which causes an elastic storage, and when the elastic storage is released 

it allows for an increased force production in rotational movements (Collins, Adamczyk, & Kuo, 

2009; Kaur et al., 2014; Konin, Beil, & Werner, 2003; Logan & McKinney, 1970; Santana, 

2003; Santana et al., 2015). In the stride phase of the right handed athlete, the left portion of the 

upper body moves to the right, back, and down, while the pelvis moves forward and to the left 

creating an elastic storage of the posterior serape (diagonal muscles of posterior stretch) (Santana 

et al., 2015). The posterior serape is then released generating force production and it elicits the 

anterior serape to become stretched as the left portion of the upper body then moves forward and 

to the left, while the right portion of the upper body moves back and towards the right (Santana 

et al., 2015). The anterior serape elastic storage is then released, which generates high amounts 

of rotational force at the hips and trunk, which allows for more force to be applied to the ball 

while reducing the work of the shoulder muscles as the release of the elastic storage is a passive 



14 

movement, not an active concentric contraction (Collins et al., 2009; Kaur et al., 2014; Konin et 

al., 2003; Logan & McKinney, 1970; Santana, 2003; Santana et al., 2015).  

Inverse Dynamics 

 To properly study the throwing motion, understanding the existing methods in the 

literature and which method best applies to the desired research topic is vital. Several methods 

are available for studying the overarm throwing motion. The first method is the inverse dynamics 

model. Inverse dynamics takes kinematic and inertial data and calculates the forces or moments 

at limb segments, and using link-segment models Newton’s Laws of Motion representing the 

mechanical behavior of limb motion allows researchers to determine net forces and moments at 

each joint (Bisseling & Hof, 2006; Otten, 2003). For example, the mass of the ball is known, and 

the acceleration of the ball will be calculated. When the mass of the ball is multiplied by the 

acceleration of the ball, the force being applied to the ball is determined (Force = mass * 

acceleration) (Otten, 2003). Once the force is determined, the force opposite and equal from the 

ball to the knuckle can be calculated (Newton’s third law). Using these principles you can get the 

net forces at each joint (Bisseling & Hof, 2006; Otten, 2003). It is possible to determine the mass 

of a limb segment needed for the inverse dynamics technique from the subject’s total mass, as 

researchers have determined percentages for each limb segment (de Leva, 1996). Another 

method used in research to calculate the net joint forces is the forward dynamics model. In this 

model, the researcher knows the internal forces and torques, thus the resulting forces of the 

movement in question, and then the known forces are used to determine how the person should 

move; this model has been used in the study of gait (Zajac, Neptune, & Kautz, 2002). The 

inverse dynamics model has been used in previous throwing research and is acceptable (Stodden 
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et al., 2005). Due to the fact that the inverse dynamics model actually calculates the net force or 

moment at the joint, it appears to be better for baseball throwing.  

 Feltner and Dapena (1989) first developed a general model using the net forces from the 

inverse dynamics model to determine how the energy was transferred from each joint (Feltner & 

Dapena, 1989). More recently in 2008, a 3D model called induced acceleration analysis was 

created and successfully applied to baseball pitching (Hirashima et al., 2008). In the induced 

acceleration analysis, the net forces developed from the inverse dynamics model are used to 

determine the amount of force developed by the joint, along with the amount of force transferred 

from previous body segments (Hirashima et al., 2008). 

 When examining the available research techniques, it appears that the inverse dynamics 

model will be the best for the purpose of this research. The inverse dynamics model is more 

appropriate than the forward dynamics model for this study because of the need to calculate the 

force and the movements of the subjects during the throwing motion. The inverse dynamics 

model will allow me to determine the relationship between the lower trunk and the shoulder 

during throwing, which will allow me to properly test the two hypotheses for this study. 

Calculating forces via inverse dynamics are better than estimating them, as is done in the forward 

dynamics model (more appropriate for simulating movements).  

The overarm throwing motion utilizes the kinetic chain sequence to transfer momentum 

and develop force. The athlete’s performance depends heavily on the efficient transfer of 

momentum from the proximal body segments to the distal body segments to apply force on the 

ball. There is a direct relationship between the change in angular momentum of the proximal 

body segment and the rotational force (torque) of the corresponding distal joint. Rapid elbow 

extension and ball velocity at release is due to the preceding movements of the upper arm and 
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trunk segments (Feltner, 1989). Therefore the purpose of this study is to explore the relationship 

between the angular momentum of the lower trunk and the throwing shoulder joint resultant and 

shear forces during the overarm throwing motion in baseball using kinetics, kinematics, and 

inverse dynamics.  

Injuries 

General Population Prevalence 

In the general population mixed information exists when reviewing shoulder injury 

prevalence and incidence literature. In the UK the prevalence of upper arm pain for at least one 

day, which included shoulder and elbow pain, was 52% (Walker-Bone, Palmer, Reading, 

Coggon, & Cooper, 2004). Shoulder pain prevalence in the general population for adults younger 

than 70 years old ranged from 5-47% of the population (Kuijpers, van der Windt, van der 

Heijden, & Bouter, 2004; Luime et al., 2004). When broken down a one month prevalence of 

shoulder pain in 9-31% of the population was found, and a one year prevalence in 5-47% of the 

population was found (Luime et al., 2004). A 52% prevalence of upper arm pain, with 34.4% 

being shoulder pain was reported in the UK (Walker-Bone et al., 2004). In the Netherlands there 

is approximately a point prevalence of 21% for shoulder pain (Picavet & Schouten, 2003). In 

Sweden a prevalence of 23% for shoulder pain was reported and in the UK a prevalence of 34% 

was reported (Brattberg, Thorslund, & Wikman, 1989; Pope, Croft, Pritchard, & Silman, 1997). 

A prevalence of 20.7% was reported for rotator cuff tears in Japan (Yamamoto et al., 2010). It 

was also interesting to note that individuals with repetitive jobs seemed to have a higher shoulder 

pain prevalence. About 29% of people who participated in repetitive work had shoulder pain, 

compared to 16% of people who did not participate in repetitive work (Leclerc et al., 2004).  
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 The large ranges in shoulder pain reported in the review, and the differences in the 

prevalence rates from the articles, are mainly due to three reasons. First, the studies had varying 

definitions of shoulder pain (Luime et al., 2004; Pope et al., 1997; Walker-Bone et al., 2004). 

Second, the age of the population observed in the studies also affected the prevalence rates as the 

older population had higher prevalence rates (Kuijpers et al., 2004; Luime et al., 2004). The 

country or area where the subjects lived may have influenced prevalence rates due to different 

lifestyles within those countries (Brattberg et al., 1989; Luime et al., 2004; Pope et al., 1997; 

Yamamoto et al., 2010). While there was a large variation in reported prevalence for the 

shoulder, it was clear through the literature that people were affected by shoulder pain.  

Overarm Throwing Prevalence 

 Overarm throwing sports require high force and fast movements of the shoulder, which 

put these athletes at risk for an injury. Seventy-five percent of high-level track and field throwers 

presented one or more injuries of the throwing arm during their career (Edouard, Depiesse, & 

Serra, 2010). Of the 75% of track and field athletes that sustained a throwing injury, the shoulder 

was injured most frequently (70%) (Edouard et al., 2010). In the MLB, the shoulder and elbow 

are the two most common body parts injured, accounting for 40.2% of all injuries (shoulder 

20.6%; elbow 19.6%) (Conte et al., 2016). The prevalence of a Bennett lesion of the shoulder in 

MLB pitchers was 22% (Wright & Paletta, 2004). During high school softball practice, 68.2% of 

the shoulder injuries occurred from overarm throwing (not including pitching) and during 

baseball practice 41.9% of the shoulder injuries occurred from pitching (Krajnik et al., 2010). 

Noncontact or overuse injuries accounted for 67% of injuries in baseball, and 78% of injuries in 

softball which is important because injuries caused by the overarm throwing motion are 

considered noncontact (Krajnik et al., 2010). The shoulder injury rate in baseball was 1.72 
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injuries per 10,000 athlete exposures, and for softball, it was 1.00 injuries per 10,000 athlete 

exposures (Krajnik et al., 2010). One of the issues with the available baseball and softball 

literature is the fact that most of the literature looking at shoulder pain prevalence related to 

throwing, focuses on pitching in both softball and baseball (Conte et al., 2015; Shanley, 

Michener, Ellenbecker, & Rauh, 2012). The focus of this study is on non-pitching overarm 

throwing.  

General Population Cost 

 In 1994, a group of researchers in the United States investigated four common shoulder 

procedures (primary open rotator cuff repair, anterior instability repair, arthroscopic subacromial 

decompression, and total shoulder arthroplasty) to evaluate the cost to consumers finding that on 

average, only 36% of the participants had workers compensation, and it cost $10,422 per person 

(range from $7,246-$16,323) (Milne & Gartsman, 1994). In Sweden during 2012, the average 

healthcare cost for shoulder pain was $389 per person during a six month period, and the average 

annual cost was $4,791 per person (Virta, Joranger, Brox, & Eriksson, 2012). Research has also 

indicated that neck and shoulder pain is credited with accounting for 18% of insurance disability 

payments (Nygren, Berglund, & von Koch, 1995).  

Overarm Throwing Cost 

 Injuries cost the MLB $423,267,634 per year, and a total of $7,618,817,407 over the span 

of 18 years (Conte et al., 2016). There is very limited literature on the cost in money. It makes 

sense that the cost was applied to MLB as the league generates a lot of revenue and the players 

earn money, which makes evaluating the cost easier.  

Another type of cost, days lost and return to play, was covered in more detail. Starting 

with throwing sports in general, 75% of high-level track and field throwers suffered an injury, 
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and 40% of the injured throwers lost over 28 days due to the injury (Edouard et al., 2010). In 

high-level college softball pitchers 11 out of 26 injuries resulted in lost playing time, and 82% of 

those injuries occurred in the upper body (Loosli, Requa, Garrick, & Hanley, 1992). In high 

school baseball 42% of the shoulder injuries resulted in 7 to 21 lost playing days (Krajnik et al., 

2010). Twenty-seven professional baseball players underwent shoulder surgery, and 15 of those 

players either retired after shoulder surgery, or never made it back to the same-level of play 

(Cohen, Sheridan, & Ciccotti, 2010). After slap tears (superior labral tear of the shoulder) 61% 

of the baseball players who did not undergo surgery never returned to play, and 15% of the 

baseball players who did undergo surgery never returned to play (Fedoriw, Ramkumar, 

McCulloch, & Lintner, 2014). Fourteen professional baseball players (12 pitchers, one shortstop, 

and one outfielder) underwent surgery to repair a full-thickness rotator cuff tear, and six of the 

14 players (five pitchers and one shortstop) (43%) never returned to play (Mazoue & Andrews, 

2006).  

Injury Mechanisms 

Shear and compressive forces during the overarm throwing motion are linked to shoulder 

injuries. The overarm throwing motion in baseball generates a high anterior shear force of about 

400 Newtons (N) and a high compressive force of about 650 N during the late arm cocking and 

early arm acceleration phases of throwing (Feltner & Dapena, 1986; Fleisig et al., 1995; Meister, 

2000; Ouellette et al., 2008). The anterior and superior shear forces and the compressive forces 

during the late arm cocking and early arm acceleration phases were proven to be linked to 

glenoid labral tears and biceps tendon injuries (Braun et al., 2010; Fleisig et al., 1995; Ouellette 

et al., 2008; Snyder, Karzel, Del Pizzo, Ferkel, & Friedman, 1990). During the deceleration 

phase of the overarm throwing motion in baseball a high posterior shear force of about 400 N, 
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high inferior shear force, and high compressive force of about 1000 N is generated (Feltner & 

Dapena, 1986; Fleisig et al., 1995; Meister, 2000; Ouellette et al., 2008). The shear forces and 

compressive forces during the deceleration phase are connected to rotator cuff injuries, labral 

tears of the shoulder, and bicep tendon injuries (Braun et al., 2010; Fleisig et al., 1995; Ouellette 

et al., 2008; Snyder et al., 1990). While the literature focused on baseball pitching, it was clear 

that the high shear and compressive forces during the overarm throwing motion were associated 

with shoulder injuries.  

The high shear and compressive forces that are correlated with injuries to the shoulder 

during the overarm throwing motion are multifaceted, and due to the complex interaction 

between different body segments during the overarm throw, the injuries that occur at the 

shoulder can be caused by improper mechanics at other parts of the body. Improper timing of 

trunk rotation causes an inefficient force transfer from the trunk to the shoulder which was 

associated with a higher proximal force at the shoulder, and a higher internal rotation torque at 

the shoulder (Oyama et al., 2014). Fatigue of the lumbar spine musculature is associated with 

potential for compensatory muscular injury, and fatigue of the lumbar spine musculature reduces 

the elastic storage properties of the muscle (serape effect), which is associated with an increased 

stress on the shoulder (Watkins et al., 1989; Young et al., 1996). An alteration in the shape of the 

thoracic spine can cause the scapula to change its position, which can reduce clearance of the 

humeral head and increase the shear force on the shoulder (Fu, Harner, & Klein, 1991; Hertling, 

Kessler, & Shimandle, 1990; Kibler, 1998; Young et al., 1996). The complex interaction 

between body segments and injury risk make understanding the relationship between the lower 

trunk and the forces at the shoulder crucial to improving injury prevention.  
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The kinetic chain sequence used during the overarm throwing motion in baseball 

identifies how important the transfer of momentum form the proximal body segments to the 

distal body segments are to the athlete’s success and risk of injury. Using the inverse dynamics 

model we can determine how the transfer of momentum from the lower trunk affects the shear 

and compressive forces applied to the shoulder. Understanding the relationship between the 

lower trunk and the shoulder during the overarm throw yields the potential to create a more 

efficient transfer of momentum, and reduce the amount of forces applied to the shoulder, which 

would result in better performance and reduce the risk for an injury. To better understand how 

overarm throwing athletes can optimize ball velocity (performance) while minimizing injury 

risk, the purpose of this thesis is to explore the relationship between the maximum angular 

momentum of the lower trunk and the throwing shoulder joint resultant compressive and shear 

forces during the overarm throwing motion of baseball athletes.  
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CHAPTER 3 

METHODS 

Experimental Approach to the Problem 

The purpose of this thesis was to explore the relationship between the angular momentum 

of the lower trunk and the throwing shoulder joint resultant compressive and shear forces during 

the overarm throwing motion. I hypothesized that there would be a negative correlation between 

the maximum angular momentum about the superior and inferior axis of the lower trunk during 

the arm cocking phase and the throwing shoulder joint anterior shear force at ball release of the 

overarm throwing motion. I also hypothesized that there would be a negative correlation between 

the maximum angular momentum about the superior and inferior axis of the lower trunk during 

the arm cocking phase and the maximum throwing shoulder joint compressive force at ball 

release of the overarm throwing motion. The independent variable was: the angular momentum 

of the lower trunk (pelvis). The lower trunk was defined in width from the right hip to the left 

hip, and defined in length from the midpoint of the right and left hip to the sacrum. The 

dependent variables were: shear force at the shoulder joint and compressive force at the shoulder 

joint. The covariates included age, years played, dominant arm, position (infield, outfield, and 

pitcher), release speed (ball velocity), height, and weight. The study was a cross-sectional 

observational design. 

Subjects 

 A total of 24 male subjects who currently play or played baseball competitively were 

tested. The subjects were 22.8 ± 3.6 years of age, had a height of 1.83 ± 0.07 meters, weighed 

90.3 ± 13.9 kg, had a release speed (ball velocity) of 31.6 ± 3.9 m/s, and had 14.5 ± 4.2 years of 

playing experience. Two of the subjects were left-handed, and the remaining 22 were right-
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handed. Fourteen of the subjects were pitchers, seven infielders (two second baseman, one 

shortstop, two third baseman, and two first baseman), and three outfielders. Fifteen of the 

subjects’ highest level of play was college baseball (twelve played at the D1 level, and three 

played at the D3 level), three of the subjects’ highest level of play was professional baseball, and 

six of the subjects’ highest level of play was at the high school level. The inclusion criteria were: 

overarm throwers, subjects that played or currently play baseball at the high school, college, or 

professional level, subjects who played a position that was required to throw during the sport 

(infielder, outfielder, and pitcher), subjects who had at least three years of throwing experience 

in a competitive situation, subjects who were 18 years of age or older, and subjects who had been 

healthy for at least one year before being tested. Healthy was categorized as no hip, trunk, 

shoulder, or elbow surgeries in the past year or any current injuries. The subjects were healthy 

and had experience throwing in a game to prevent variance from causing an error in the data 

collected. The exclusion criteria included: underarm or sidearm throwers, subjects who did not 

play competitive baseball at the high school, college, or professional level, subjects who did not 

have three years of throwing experience in a competitive situation, designated hitters, and 

subjects who were not considered healthy at the time of testing. Subjects filled out an informed 

consent and injury/information questionnaire that was approved by the local IRB before being 

tested. All aspects of the study, including ethics and safety, were approved by the local IRB 

(IRBNet ID 1314003-1 provided in appendix A).  

Protocol 

 Testing was conducted at three different practice facilities. Seven of the subjects were 

tested outdoors on a grass baseball field located in Huntington, West Virginia. Six of the subjects 

were tested at an indoor practice facility in Portsmouth, Ohio. Eleven of the subjects were tested 
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at an outdoor grass baseball field in Wayne, New Jersey. The researcher explained the entire 

procedure and answered any questions the subject had. The subject was instructed to wear a 

tight-fitting shirt, and tight-fitting shorts to increase the accuracy of the data collected when 

using the Vicon Motus (Vicon, Oxford, UK) manual digitizing software. The athlete was also 

instructed to wear cleats or athletic shoes (indoor facility) to replicate a game situation. The 

subject was not required to wear a hat and or sunglasses but was allowed to if he wanted to. The 

subject brought their baseball glove with them.  

 The subject was then allowed to warm-up before the testing. The subject was instructed 

to warm-up as they would before a game, and no time limit was placed on the warm-up. The 

subject also threw the ball back and forth with one of the researchers until they felt ready to 

throw the ball at maximum velocity. The subject threw a regulation NCAA baseball weighing 

0.142 kg.   

 Four cones were used to mark the throwing area which was approximately 3 meters long 

and 2 meters wide. The throwing area was in the middle of the outfield for the outdoor locations, 

and for the indoor location, the throwing area was in the back corner of the practice facility. A 

Rukket Sports seven by seven foot throwing net (Rukket Sports, Wilmington, DE) was placed 

exactly 36.58 meters (120 feet) from the middle of the throwing area. At the outdoor locations, 

the Rukket Sports net was placed in the infield directly behind second base (36.58 meters away 

from the throwing area). At the indoor practice facility, the Rukket Sports net was placed in the 

corner opposite of the throwing area (36.58 meters away from the throwing area). The subject 

was instructed to throw the ball with at least 90% effort at the Rukket Sports net placed 36.58 

meters away, and directly in front of them. The subject was handed a baseball and told to throw 

the ball at the net as if they were trying to throw out a base runner. The subject was allowed but 
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not required to take one step before throwing (whichever was more natural), and the subject was 

allowed to practice throwing at the net to become comfortable before testing. For the trial to be 

considered successful, the subject had to start and end their throwing motion within the throwing 

area marked by the cones, and the subject had to hit the Rukket Sports net. Each subject 

completed three successful throwing trials.  

Instrumentation 

 A radar gun (Bushnell, Overland Park, KS) with a manufacturer stated variance of +/- 1 

mph was used to measure the subject’s throwing velocity. A Rukket Sports seven by seven foot 

throwing net (Rukket Sports, Wilmington, DE) was used as the throwing target. Two Sony RX10 

III video cameras (Sony, Tokyo, Japan) capturing at 59.94 frames per second (fps) were used to 

record the subject. Four custom made poles with nine points on them spaced 0.305 meters apart 

were used for calibration. Contemplas Templo software (Contemplas, Kempten, Germany) was 

used to trim the 2D video recordings obtained from the cameras. Vicon Motus software (Vicon, 

Oxford, UK) was used to digitize anatomical landmarks on the subject from the 2D video 

recordings. The 2D coordinates, obtained from the digitizing, were converted to 3D coordinates, 

and position data was established using custom-built MotionSoft software (MotionSoft LLC., 

Durham, NC, USA). MotionSoft and a custom built MatLab (Mathworks Inc., Natick, MA) 

program were used to calculate kinematic and kinetic data. SPSS version 22 (IBM, Chicago, IL) 

was used for statistical analysis. G*Power software (Heinrich Heine University Düsseldorf, 

Düsseldorf, Northrhine-Westphalia, Germany) was used to determine the sample size needed.  

Data Collection 

 An appropriate location in the outfield or the indoor facility was chosen to be the capture 

volume where forward (positive X) was the throwing direction. Two high-speed cameras (Sony, 
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Tokyo, Japan) capturing at 59.94 fps were used to record every throw. One camera was placed 

on the right side of the capture volume, and one camera was placed behind the capture volume 

(Figure 2). The angle between the optical axes of the two high-speed cameras was approximately 

90° (Figure 2). A calibration frame was used at the indoor complex and outdoor baseball fields to 

calibrate the high-speed cameras’ positions and orientations in reference to the capture volume. 

The calibration frame consisted of four poles with nine points on each pole, with a total of 36 

points (Figure 2). Each point on the pole was a known 0.305 meters apart. Thirty-six control 

points were selected because it is more than the minimum number of 16 points which are 

required for acceptable accuracy (Chen, Armstrong, & Raftopoulos, 1994). A rectangle was 

formed with the poles around the capture volume. The volume of the rectangle was 

approximately 2.00 meters for the width, 3.00 meters for the length, and 2.75 meters for the 

height (Figure 2). The distance between all the poles was measured using a steel measuring tape. 

Five markers (cones) were placed on the ground in the middle of the capture volume to establish 

a global reference frame for the data reduction process (Figure 3). For the global reference frame 

the positive X was forward (the throwing direction), the positive Y was to the left, and the 

positive Z was up. One researcher also stood directly behind the subject with a radar gun 

(Bushnell, Overland Park, KS) and they measured the ball velocity at the subject’s hand for the 

first three subjects to validate using Vicon Motus for release speed (ball velocity).  
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Figure 2. Data Collection Setup 
A top-down view of the setup of the four calibration poles and camera positioning for 
calibration. The black lines by the camera represent the line of the optical axes of the camera, 
which meet at a 90° angle. Each pole had nine calibration points on it spaced 0.305 meters apart 
vertically. 
 

Data Reduction 

 The best trial out of the three recorded for each subject was selected for data processing. 

The best trial was based on the accuracy of the throw, and accuracy was determined qualitatively 

by the ball hitting the center of the Rukket Sports net. One trial was re-digitized and processed 

for one subject at each location to assess measurement error. All three recorded trials were 

digitized and processed for two subjects at each location to assess the consistency of movement 

kinematics within subjects. The calibration video clips and the selected throwing video clips 

were exported from the cameras and then trimmed in the Contemplas Templo software 

(Contemplas, Kempten, Germany). For the calibration videos, two frames with no movement or 

obstructions of view were trimmed. For the throwing trials, the start of the video was when the 

subject’s lead foot came off the ground, and the end of the video was five frames after the ball 

left the subject’s hand (5 frames after ball release). 
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Data Processing 

Once the videos were trimmed, they were uploaded into the Vicon Motus manual 

digitizing software (Vicon, Oxford, UK). The nine points on all four poles were digitized in 

order, starting with the bottom point of pole 1 moving up until all 9 points on the pole were 

selected. Then pole 2, pole 3, and pole 4 were digitized in the same manner. The trimmed video 

from both the side and back view of the athlete was also digitized using Vicon Motus. Twenty-

three anatomical landmarks on the subject were digitized for each trial and view. The twenty 

three landmarks included the top of the head (vertex), the chin, the suprasternal notch, the right 

shoulder, the left shoulder, the right elbow, the left elbow, the right wrist, the left wrist, the right 

middle knuckle, the left middle knuckle, the right hip, the left hip, the sacrum, the right knee, the 

left knee, the right ankle, the left ankle, the right heel, the left heel, the right middle toe, the left 

middle toe, and the ball (baseball). For any landmark that was obstructed in a frame, the best 

estimate of the location of the landmark was digitized. 

The 2D coordinates were then mathematically synchronized. Three critical instants of 

throwing were identified. Foot contact, maximum external rotation, and ball release were 

identified from each high-speed camera view for every trial. The identification process was done 

qualitatively by watching the recorded video. 

An XYZ global reference frame was created using the top points of the five cones which 

came from the same calibration video with the four poles (Figure 3). Cone one was placed in the 

middle of all the cones, and defined the origin. Cone two was placed in the throwing direction 

between cone one and the throwing target. Cone three was placed behind cone one, directly away 

from the throwing direction. Cone four was placed to the left of cone one. Cone five was placed 

to the right of cone one. The global X-axis was defined as a straight line joining cones 2, 1, and 
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X 

Y 

3. The positive X-axis direction pointed towards cone 2 and the negative X-axis direction 

pointed towards cone 3. The global Y-axis was defined as a straight line joining cones 4, 1, and 

5. The positive Y-axis direction pointed towards cone 4 and the negative Y-axis direction 

pointed towards cone 5. The global Z axis was defined as the cross product of the X and Y axes 

with up as positive. 

 

 

 

 

 

 

 

 

Figure 3. Five Cones Inside Capture Volume for Global X, Y, Z Axis 
A top-down representation of the configuration of the cones inside the capture volume used to 
create the X, Y, Z global axes. Cone one is the origin, cone two defines the positive end of the X-
axis (toward the throwing target), cone three defines the negative end of the X-axis, cone four is 
to the left and defines the positive end of the Y-axis, and cone five is to the right and defines the 
negative end of the Y-axis. 
 

Using the calibration points from the four poles, the Direct Linear Transformation (DLT) 

procedure (Abdel-Aziz and Karara, 1971) was used to obtain real-life three-dimensional (3D) 

coordinates of the global reference markers, anatomical body landmarks, and the center of the 

ball (softball or baseball) from the 2D coordinates. The calibration points were used as inputs to 

the DLT equations (equation 1 and 2). The conversion factors from the image-plane reference 
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frame as digitized on the horizontal axis of the screen to the object-space reference frame was 

calculated as: 

  𝑢𝑢 = 𝐿𝐿1𝑋𝑋+𝐿𝐿2𝑌𝑌+𝐿𝐿3𝑍𝑍+𝐿𝐿4
𝐿𝐿9𝑋𝑋+ 𝐿𝐿10𝑌𝑌+ 𝐿𝐿11𝑍𝑍+1

 (Eqn 1) 

where: u was the horizontal axis of the screen in the image-plane reference frame, Ln 

refers to the DLT parameters, X was the object-space reference frame x-axis, Y was the object-

space reference frame y-axis, and Z was the object-space reference frame z-axis. 

The conversion factors from the image-plane reference frame as digitized on the vertical 

axis of the screen to the object-space reference frame was calculated as: 

 𝑣𝑣 = 𝐿𝐿5𝑋𝑋+ 𝐿𝐿6𝑌𝑌+ 𝐿𝐿7𝑍𝑍+ 𝐿𝐿4
𝐿𝐿9𝑋𝑋+ 𝐿𝐿10𝑌𝑌+ 𝐿𝐿11𝑍𝑍+1

 (Eqn 2) 

 where: v was the vertical axis of the screen in the image-plane reference frame, Ln refers to the 

DLT parameters, X was the object-space reference frame x-axis, Y was the object-space 

reference frame y-axis, and Z was the object-space reference frame z-axis. 

The mean error calculated from the calibration points was 9.94 mm. The estimated 3D 

coordinates were filtered using a Butterworth low-pass digital filter with an optimal cut-off 

frequency of 7.14Hz (Yu and Andrews, 1998). The synchronization of the digitized 2D 

coordinates, the direct linear transformation of the digitized 2D coordinates to real-life 3D 

coordinates, and data smoothing was performed using software which was custom written for the 

task in visual basic by MotionSoft. The MotionSoft 2016 version was used. 

 The ball was defined as a point mass at the location of the ball landmark. The hand was 

defined as a truncated cone between the wrist landmark and the middle knuckle landmark. The 

forearm was defined as a truncated cone between the elbow landmark and the wrist landmark. 

The upper arm was defined as a truncated cone between the shoulder landmark and the elbow 

landmark. The thigh was defined as a truncated cone between the hip landmark and the knee 
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landmark. The lower leg (shank) was defined as a truncated cone between the middle knee 

landmark and the ankle landmark. The foot was defined as a wedge between the ankle landmark, 

the heel landmark, and the toe landmark. The head was defined as a sphere between the head 

landmark (vertex) and the chin landmark. The trunk was defined as a cylinder with width 

determined by the left and right hips and height determined by the hips and shoulders. The upper 

trunk was defined as a cylinder with width determined by the left and right shoulders and height 

determined by the suprasternal notch and shoulders. The lower trunk was defined as a cylinder 

with a width determined by the left and right hips and height determined by the sacrum and hips. 

The local reference frame of the lower trunk was determined by the right hip, left hip, and 

right knee landmarks so that x was positive anterior, y was positive left, and z was positive 

upwards. The local reference frame of the upper trunk was determined by the right shoulder, left 

shoulder, and suprasternal notch landmarks so that x was positive anterior, y was positive left, 

and z was positive upwards. The local reference frame of the upper arm was determined by the 

right shoulder, right shoulder, and right wrist landmarks so that x was positive anterior, y was 

positive left, and z was positive upwards. The local reference frame of the forearm was 

determined by the right elbow, right wrist, and right knuckle landmarks so that x was positive 

anterior, y was positive left, and z was positive upwards. 

 The segment angles were calculated as Euler angles of the segment reference frame with 

respect to the global reference frame in an x, y, z rotation order. The segment angular velocities 

and accelerations were calculated as the first and second derivatives of angular position with 

respect to time, respectively. The segment length of the lower trunk was calculated as the vector 

pointing from the coordinate of the sacrum marker to the coordinates of the midpoint of a line 

joining the left and right hip markers, the segment length of the hand was calculated as the vector 
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pointing from the coordinate of the wrist marker to the coordinate of the third knuckle marker, 

the segment length of the forearm was calculated as the vector pointing from the coordinate of 

the elbow marker to the coordinate of the wrist marker, and the segment length of the upper arm 

was calculated as the vector pointing from the coordinate of the shoulder marker to the 

coordinate of the elbow marker. The COM coordinates were calculated from the landmark 

coordinates. The COM coordinates for the hand were calculated as 62.8% of the distance from 

the wrist to the middle knuckle in the x-axis, 51.3% in the y-axis, and 40.1% in the z-axis (de 

Leva, 1996). The COM coordinates for the forearm were calculated as 27.6% of the distance 

from the elbow to the wrist in the x-axis, 26.5% in the y-axis, and 12.1% in the z-axis (de Leva, 

1996). The COM coordinates for the upper arm were calculated as 28.5% of the distance from 

the shoulder to the elbow in the x-axis, 26.9% in the y-axis, and 15.8% in the z-axis (de Leva, 

1996).  

Once the 3D coordinates were calculated and smoothed, landmark coordinates, segment 

angles, segment angular velocities, segment angular accelerations, segment lengths, segment 

centers of mass (COM) coordinates, and segment COM accelerations were obtained using the 

MotionSoft software. 

The maximum angular velocity of the lower trunk was selected from the MotionSoft 

output qualitatively by identifying the frame in which the arm cocking phase started, and 

finished, and then the maximum lower trunk velocity in between those frames was identified for 

each subject (radians per second). The lower trunk moment of inertia was calculated by 

multiplying the mass of the lower trunk by the radius of gyration squared. The mass of the lower 

trunk (pelvis) was calculated as 11.17% of the subject’s mass (de Leva, 1996). The radius of 

gyration was calculated as 58.7% of the segment length of the pelvis (de Leva, 1996). Maximum 
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angular momentum of the lower trunk was then calculated as moment of inertia of the lower 

trunk multiplied by angular velocity of the lower trunk. 

The inverse dynamics technique was used to calculate joint forces (Equation 3-6) 

(Hirashima et al., 2008; Lu & O’Connor, 1999; Rao, Amarantini, Berton, & Favier, 2006). The 

baseball used in the study was weighed using a scale, and had a mass of 0.14178 kg. The 

baseball center of mass accelerations (x, y, and z), forearm center of mass accelerations (x, y, 

and z), and upper arm center of mass accelerations were calculated by MotionSoft from the 

digitized videos (accelerations at ball release). The acceleration due to gravity was assumed 

constant at 9.81 m/s. The mass of the hand was calculated as 0.61% of the subject’s mass, the 

forearm mass was calculated as 1.62% of the subject’s mass, and the mass of the upper arm was 

calculated as 2.71% of the mass of the subject (de Leva, 1996). The inverse dynamic procedure 

was used to calculate the force the ball applied to the hand at release as: 

 𝐹𝐹𝑏𝑏ℎ = (−𝑚𝑚𝑏𝑏  × 𝑎𝑎𝑏𝑏) +  (𝑚𝑚𝑏𝑏  ∗ 𝑔𝑔) (Eqn 3) 

where: Fbh was the force vector of the ball applied to the hand, mb was the mass of the 

ball, ab was the acceleration vector of the ball, and g was the gravitational acceleration vector. 

The force applied to the wrist by the hand was calculated as: 

 𝐹𝐹ℎ𝑤𝑤 = 𝐹𝐹𝑏𝑏ℎ + (−𝑚𝑚ℎ  × 𝑎𝑎ℎ) +  (𝑚𝑚ℎ  ∗ 𝑔𝑔) (Eqn 4) 

where: Fhw was the force vector of the hand applied to the wrist, Fbh was the force vector 

of the ball applied to the hand, mh was the mass of the hand, ah was the acceleration vector of the 

hand, and g was the gravitational acceleration vector. 

The force applied to the elbow by the forearm was calculated as: 

                                𝐹𝐹𝑓𝑓𝑓𝑓 = 𝐹𝐹ℎ𝑤𝑤 + (−𝑚𝑚𝑓𝑓𝑎𝑎  × 𝑎𝑎𝑓𝑓𝑎𝑎) +  (𝑚𝑚𝑓𝑓𝑎𝑎  ∗ 𝑔𝑔)  (Eqn 5) 
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where: Ffe was the force vector of the forearm applied to the elbow, Fhw was the force 

vector of the hand applied to the wrist, mfa was the mass of the forearm, afa was the acceleration 

vector of the forearm, and g was the gravitational acceleration vector. 

The force applied to the shoulder by the upper arm was calculated as: 

 𝐹𝐹𝑢𝑢𝑢𝑢 = 𝐹𝐹𝑓𝑓𝑓𝑓 + (−𝑚𝑚𝑢𝑢𝑢𝑢  × 𝑎𝑎𝑢𝑢𝑢𝑢) + (𝑚𝑚𝑢𝑢𝑢𝑢  ∗ 𝑔𝑔)  (Eqn 6) 

where: Fus was the force vector of the upper arm applied to the shoulder, Ffe was the force 

vector of the forearm applied to the elbow, mua was the mass of the upper arm, aua was the 

acceleration vector of the upper arm, and g was the gravitational acceleration vector. 

The resultant shoulder joint forces were resolved into the local reference frame using 

direction cosines of the upper trunk reference frame relative to the global reference frame to 

calculate compression and shear components.  

 Statistical Analysis 

For statistical analyses, SPSS version 22 was used (IBM, Chicago, IL). A one-way 

ANOVA was conducted to ensure consistency among testing sites. The mean absolute 

difference, Cronbach’s alpha, and intraclass correlation coefficients of maximum lower trunk 

angular momentum, shoulder joint anterior shear force at release, shoulder joint compressive 

force at release, and release speed were computed for the re-digitized trials to assess 

measurement agreement and intra-rater reliability, respectively. Variance and coefficient of 

variation were computed for the different trials of the same subjects to assess the consistency of 

movement kinematics within subjects. A bivariate correlation was computed to determine the 

association between the maximum angular momentum of the lower trunk during the arm cocking 

phase and the shear force on the shoulder at ball release to test the first hypothesis. Another 

bivariate correlation was computed to determine the association between the maximum angular 



35 

momentum of the lower trunk during the arm cocking phase and the compressive force on the 

shoulder at ball release to test the second hypothesis. A re-sampling, bootstrapping method was 

employed to determine uncertainty in the bivariate correlations associated with the measurement 

error while avoiding assumptions about population distributions (Efron and Tibshirani, 1986). 

Ten new data sets with random differences in the study variables based on the mean absolute 

difference were created using random re-sampling with replacement. The bivariate correlations 

used to test the thesis hypotheses were calculated for the new datasets. The 95% confidence 

interval of the bivariate correlation was used as the uncertainty measure of the relationship 

(Ellison, Rosslein, and Williams, 2000). Bivariate correlations were also computed for additional 

study variables to determine if there were associations among: lower trunk angular momentum, 

shoulder joint anterior shear force, shoulder joint compressive force, and release speed (ball 

velocity). For this experiment the strength of the relationship was interpreted based on the 

correlation coefficient value obtained, in comparison to previous correlation coefficient values 

obtained by other similar overarm throwing research studies. For this study, the type I error rate 

was set as α = 0.05 and the type II error rate was set as β = 0.2 (power = 80%). Based on 

previous similar research, correlation coefficients of approximately 0.5 were expected for this 

thesis (Huang, Wu, Learman, & Tsai, 2010; Sabick, Torry, Lawton, & Hawkins, 2004; van den 

Tillaar & Ettema, 2007). With error rates of 0.05 and 0.2, and anticipated correlation coefficients 

of 0.5, it was determined that a sample size of 23 participants was needed for statistical 

significance. Sample size power analysis was conducted with G*Power software (Heinrich Heine 

University Düsseldorf, Düsseldorf, Nordrhine-Westphalia, Germany).  
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CHAPTER 4 

RESULTS 

Demographics and Descriptive Statistics 

Descriptive statistics were computed for the entire sample size and the different testing 

sites (Table 1). The mean and standard deviations were computed for body mass, standing 

height, release speed (ball velocity), lower trunk angular momentum, shoulder joint anterior 

shear force (N), shoulder joint anterior shear force in bodyweights (BW), shoulder joint 

compressive force (N), and shoulder joint compressive force (BW) (Table 1). 

A one-way ANOVA was conducted to ensure consistency among testing sites. Subjects 

at the West Virginia testing site were taller than subjects at New Jersey (1.89 m ± .07 vs 1.77 m 

± .05, F2,21 = 11.719,  p < .001 ) (Table 1), and the subjects at Ohio were taller than the subjects 

at New Jersey (1.84 m ± .04 vs 1.77 m ± .05, F2,21 = 11.719,  p = .009 ) (Table 1). The subjects at 

the West Virginia testing site were younger than subjects at New Jersey (20.3 ± 1.1 vs 25.5 ± 

3.3, F2,21 = 11.971, p < .001) (Table 1), and the subjects at Ohio were younger than the subjects 

at New jersey (20.7 ± 2.1 vs 25.5 ± 3.3, F2,21 = 11.971, p < .001) (Table 1). The subjects at the 

West Virginia testing site had a faster ball velocity than the subjects at New Jersey (34.3 m/s ± 

1.6 vs 29.4 m ± 4.3, F2,21 = 4.659,  p = .007) (Table 1). There were no other significant 

differences among the testing sites. 

The mean absolute difference (MAD) and its value relative to the study mean (RMAD), 

Cronbach’s alpha (α), and intraclass correlation coefficients (ICC) of thesis outcome variables 

were computed for the re-digitized trials to assess measurement agreement and intra-rater 

reliability. Lower trunk maximum angular momentum values had moderate agreement (MAD = 

0.020 kg.m²/s, RMAD = 6.4%), and exhibited strong reliability (α = 0.987, ICC2,2 = 0.974). 
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Shoulder joint anterior shear force had poor agreement (MAD = 0.026 BW, RMAD = 21.7 %), 

and exhibited strong reliability (α = 0.944, ICC2,2 = 0.894). Shoulder joint compressive force had 

moderate agreement (MAD = 0.031 BW, RMAD = 7.3%), and exhibited strong reliability (α = 

0.991, ICC2,2 = 0.981). Release speed had good agreement (MAD = 0.057 m/s, RMAD = 0.2%), 

and exhibited strong reliability (α = 0.991, ICC2,2 = 0.981). 

Variance and coefficient of variation were computed for the different trials of the same 

subjects to assess the consistency of the movement kinematics within subjects. Lower trunk 

maximum angular momentum had a variance of 0.020 kg.m²/s and a coefficient of variation of 

0.35%. Shoulder joint anterior shear force had a variance of 0.008 BW and a coefficient of 

variation of 1.48%. Shoulder joint compressive force had a variance of 0.004 BW and a 

coefficient of variation of 0.16%. Release speed had a variance of 1.817 m/s and a coefficient of 

variation of 0.04%.
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 Overall 
(Mean ± SD) 

West Virginia 
(Mean ± SD) 

Ohio 
(Mean ± SD) 

New Jersey 
(Mean ± SD) F2,21 

Body Mass (kg) 90.3 ± 13.9 94.7 ± 15.8 88.5 ± 9.9 88.5  ± 15.1 0.471 

Standing Height (m) 1.82 ± .07 1.89 ± .07 1.84 ± .04 1.77  ± .05 11.719* 

Age (years) 22.8 ± 3.6 20.3 ± 1.1 20.7 ± 2.1 25.5 ± 3.3 11.971* 

Experience (years) 14.5 ± 4.2 12.4 ± 3.2 15.2 ± 2.6 15.5 ± 5.2 1.277 

Release Speed (m/s) 31.6 ± 3.9 34.3 ± 1.6 32.4 ± 3.0 29.4  ± 4.3 4.659* 

Lower Trunk Angular 
Momentum (kg.m²/s) 0.313 ± .183 0.409 ± .129 0.330 ± .210 0.243  ± .180 1.972 

Shoulder Joint Anterior 
Shear Force (N) 108 ± 97 117 ± 97 62 ± 33 128  ± 116 0.918 

Shoulder Joint Anterior 
Shear Force (BW) 0.119  ± .100 0.120  ± .088 0.071 ± .036 0.144  ± .125 1.052 

Shoulder Joint 
Compressive Force (N) 375 ± 125 439 ± 109 392 ± 126 327 ± 124 1.915 

Shoulder Joint 
Compressive Force (BW) 0.423  ± .119 0.478  ± .120 0.446 ± .110 0.375 ± .115 1.889 

 
Table 1. Descriptive Statistics and F Values (ANOVA) for Variables and Testing Sites 
Note. F value shown with * indicates p values (< .05) with a significant difference. 
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Hypothesis Tests 

To test the first research hypothesis (H1), a bivariate correlation was computed to 

determine the association between lower trunk maximum angular momentum during the arm 

cocking phase and shoulder joint anterior shear force at ball release. There was no association 

between lower trunk maximum angular momentum during the arm cocking phase and shoulder 

joint anterior shear force at ball release (r = 0.149, p = 0.244, 95% CI = ± 0.016) (Table 2) 

(Figure 4). 

To test the second research hypothesis (H2), a bivariate correlation was computed to 

determine the association between lower trunk maximum angular momentum during the arm 

cocking phase and shoulder joint compressive force at ball release. There was no association 

between lower trunk maximum angular momentum during the arm cocking phase and shoulder 

joint compressive force at ball release (r = 0.222, p = 0.149, 95% CI = ± 0.004) (Table 2) (Figure 

5). 

Bivariate correlations were also computed between lower trunk maximum angular 

momentum, shoulder joint anterior shear force, shoulder joint compressive force, and ball release 

to determine associations between the variables, which was done to assess the independence of 

the variables. There was no association between lower trunk maximum angular momentum 

during the arm cocking phase and release speed (r = 0.171, p = 0.212) (Table 2). There was no 

association between release speed and shoulder joint anterior shear force at ball release (r = -

0.055, p = 0.399) (Table 2). There was a strong association between release speed and shoulder 

joint compressive force at ball release, indicating that as release speed increased shoulder joint 

compressive force also increased (r = 0.520, p = 0.005) (Table 2). There was no association 
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between shoulder joint compressive force at ball release and shoulder joint anterior shear force at 

ball release (r = 0.089, p = 0.339) (Table 2). 

 

 

 

 
Lower Trunk 

Angular Momentum 
(kg.m²/s) 

Shoulder Joint 
Anterior Shear Force 

(BW) 

Shoulder Joint 
Compressive Force 

(BW) 
Shoulder Joint Anterior 
Shear Force (BW) 0.149 (0.244)   

Shoulder Joint 
Compressive Force (BW) 0.222 (0.149) 0.089 (0.339)  

Release Speed (m/s) 0.171 (0.212) -0.055 (0.399) 0.520 (0.005)* 

 
Table 2. Bivariate Correlations among Independent and Dependent Variables  
Note. N= 24, r (p), significant p values are indicated with *. 
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Figure 4. Relationship between Lower Trunk Angular Momentum and Shoulder Joint 
Anterior Shear Force 
A scatter plot with line of best fit to demonstrate no relationship between lower trunk angular 
momentum (kg.m²/s) and shoulder joint anterior shear force (BW). r = 0.149, p = 0.244. 
 

 
 
Figure 5. Relationship between Lower Trunk Angular Momentum and Shoulder Joint 
Compressive Force 
A scatter plot with line of best fit to demonstrate no relationship between lower trunk angular 
momentum (kg.m²/s) and shoulder joint compressive force (BW). r = 0.222, p = 0.149. 
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CHAPTER 5 

DISCUSSION 

The purpose of this thesis was to explore the relationship between the angular momentum 

of the lower trunk and the throwing shoulder joint resultant compressive and shear forces during 

the overarm throwing motion of baseball athletes. The first research hypothesis developed to test 

the relationship between lower trunk angular momentum and shoulder force was that there would 

be a negative correlation between the maximum angular momentum about the superior-inferior 

axis of the lower trunk during the arm cocking phase and the throwing shoulder joint anterior 

shear force at ball release of the overarm throwing motion. This hypothesis was not supported, as 

maximum angular momentum about the superior-inferior axis of the lower trunk during the arm 

cocking phase was not associated with the throwing shoulder joint anterior shear force at ball 

release of the overarm throwing motion (r = 0.149, p = 0.244) (Table 2) (Figure 4). Lower trunk 

angular momentum is not determinative of shoulder joint anterior shear force when measured 

discretely in this study’s subject population. 

The second research hypothesis developed to test the relationship between lower trunk 

angular momentum and shoulder force was that there would be a negative correlation between 

the maximum angular momentum about the superior-inferior axis of the lower trunk during the 

arm cocking phase and the throwing shoulder joint compressive force at ball release of the 

overarm throwing motion. This second hypothesis was also not supported, as maximum angular 

momentum about the superior-inferior axis of the lower trunk during the arm cocking phase was 

not associated with the throwing shoulder joint compressive force at ball release of the 

overarm throwing motion (r = 0.222, p = 0.149) (Table 2) (Figure 5). Lower trunk angular 

momentum is not determinative of shoulder joint compressive force when measured discretely in 

this study’s subject population. 
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Overarm Throwing Motion 

This thesis did not identify an association between the maximum angular momentum at 

the lower trunk during the arm cocking phase and the forces at the shoulder joint at ball release. 

One potential explanation that no association was found between the angular momentum at the 

lower trunk and the forces at the shoulder joint is that the subjects in this thesis were inefficient 

at transferring momentum. It is possible that the subjects were able to generate a large amount of 

angular momentum at the lower trunk, but were unable to direct the momentum toward the 

throwing target. For example, if the momentum was directed towards the non-throwing shoulder 

instead of the throwing shoulder, it would require the throwing shoulder to make up for the 

momentum that was not transferred properly which could result in the throwing shoulder 

absorbing more force, even though the lower trunk did generate a large amount of angular 

momentum (Seroyer et al., 2010; Young et al., 1996). If some of the subjects were efficient at 

transferring momentum, but some were not, it could cause the data to show no association. 

Improper timing of the lower trunk in relation to the movement of the upper trunk and 

shoulder also could have resulted in the findings of this thesis. In the overarm throwing motion 

the body segment should begin to move as the adjacent body segment reaches maximum velocity 

(Putnam, 1993). If the timing of the body segments is inefficient, then a large amount of angular 

momentum can be generated but not transferred. For example, if the subject achieves maximum 

angular momentum at the lower trunk after the shoulder has already begun to move, that 

maximum angular momentum will not be transferred to the shoulder. Research identified that 

professional players did not exhibit a large difference in torque at the upper trunk than lower 

level athletes, but their timing was different which occurred later in the arm cocking phase much 

closer to when the shoulder began to accelerate (not early in the arm cocking phase or after the 
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shoulder had already moved) (Aguinaldo, Buttermore, & Chambers, 2007). The improper timing 

of the trunk reduces the transfer of momentum to the shoulder, and increases the force applied to 

the shoulder (Oyama et al., 2014). If some of the subjects did exhibit proper timing, and some 

did not, it could again result in no association between the angular momentum at the lower trunk 

and the forces at the shoulder joint. 

Kinetic Chain 

An alternative possibility that no association was found between the angular momentum 

at the trunk and the forces at the shoulder is that the kinetic chain sequence does not exist. 

However, the kinetic chain sequence exists, as it is supported by considerable research. The 

shoulder and upper arm alone are not able to produce the force that is needed to throw a baseball 

at a high velocity (Fleisig et al., 1995; Pappas et al., 1985; Roach & Lieberman, 2014). If the 

shoulder and arm cannot generate the force on their own, then it must come from somewhere 

else in the body. In both baseball and handball the more experienced and efficient athletes are 

able to better utilize and transfer ground reaction force which results in more force being applied 

to the ball (increased ball velocity) (MacWilliams et al., 1998; Rousanoglou et al., 2014). A 

higher ground reaction force at the push-off foot and the lead foot during the stride phase is 

associated with an increase in wrist and ball velocity (Alexander, 1991; MacWilliams et al., 

1998; Young et al., 1996). From the legs, the force is then sent to the lower trunk, which has 

been identified as the power generator of the body, taking the load off of the shoulder 

musculature (Burkhart et al., 2003). Roach and Lieberman (2014) identified that the rapid 

accelerations of the distal segments (wrist and elbow) were generated by the power produced by 

the proximal segments such as the shoulder and trunk. Trunk flexion and rotation had a positive 

relationship with shoulder moments which indicated that the actions of the lower trunk and upper 
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trunk are strongly related to throwing performance especially at the shoulder (Oliver, 2014). A 

greater average lower trunk velocity and a greater average upper trunk velocity during the arm 

cocking phase resulted in a higher ball velocity (Stodden et al., 2005). It has also been identified 

that the upper trunk generates and receives rotational force from the lower trunk, generates force 

by leaning forward, works to absorb some of the force towards the end of the throwing motion, 

and has an important role in maintaining stiffness in the muscles which transfers force by 

releasing elastic stored energy to the shoulder (McGill & Hoodless, 1990; Oliver, 2014; Santana 

et al., 2015; Stodden et al., 2005; Young et al., 1996). Since there is strong evidence that the 

actions of the lower body are connected to the actions of the upper body, it is likely the kinetic 

chain sequence does exist, and was not the reason that no association was found between the 

angular momentum at the lower trunk and the forces at the shoulder. 

Shoulder Joint Forces 

The shoulder joint anterior shear force at ball release calculated for this thesis had a mean 

value of 108 N, which is about 12% of body weight (0.119 BW ± 0.100). Previous research 

investigating anterior shear force at the shoulder reported the force as approximately 100 N at 

ball release, which agrees with the findings of this thesis (Feltner & Dapena, 1986; Fleisig et al., 

1995).The mean shoulder joint compressive force at ball release in this thesis was 376 N, or 

approximately 42% of body weight (0.423 ± 0.119 BW). Previous research calculated shoulder 

joint compressive force to be around 860 N at ball release and closer to 95% of body weight 

(Feltner & Dapena, 1986; Fleisig et al., 1995; Werner, Gill, Murray, Cook, & Hawkins, 2001). 

The compressive force calculated by this thesis may be different from previous research for a 

few reasons. The calculations used to obtain force at the shoulder in this thesis, and previous 

research was similar, but the protocol and subject population was different. The previous 
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researchers used professional and college pitchers only, compared to this thesis which used 

subjects that played at the professional, college, and high school level (Feltner & Dapena, 1986; 

Fleisig et al., 1995; Werner et al., 2001). 

An athlete at a lower level of play may be less efficient at generating and transferring 

force, so the population I investigated may have generated less force or generated the maximum 

force before ball release (not efficient mechanically, slowing down before ball release). The 

previous investigators had mean release speeds of 40 m/s, 37.5 m/s, and 33.5 m/s, which are 

greater than the mean release speed for this thesis (31.6 m/s) (Feltner & Dapena, 1986; Fleisig et 

al., 1995; Werner et al., 2001). Higher ball velocity is often associated with a higher force, which 

was identified in this thesis as a significant correlation was found between release speed and 

shoulder distraction force (r = 0.520, p = 0.005) (Table 2). This thesis was also the first to 

investigate compressive forces from the non-pitching throwing motion in baseball. The previous 

studies investigated the pitching motion from a raised mound, where this thesis investigated a 

one-step throwing motion on flat ground (Feltner & Dapena, 1986; Fleisig et al., 1995; Werner et 

al., 2001). The differences in previous research compared to this thesis may explain the 

difference in the shoulder joint compressive force. 

Measurement Reliability 

Male subjects who currently play or played baseball were recruited and tested at three 

different locations on a baseball field in West Virginia (WV), in an indoor facility in Ohio (OH), 

and on a baseball field in New Jersey (NJ). There were no differences in thesis outcome 

variables among these locations. The only statistically significant differences in variables 

between locations were that the subjects from WV and OH were taller than the subjects from NJ, 

the subjects from WV and OH were younger than the subjects from NJ, and the subjects from 
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WV threw with a greater release speed than the subjects from NJ (Table 1). Age and height 

cannot be affected by the different testing locations. Release speed was higher in the WV 

subjects than the NJ subjects, because the WV subjects were division 1 collegiate athletes 

whereas the NJ subjects had a majority of athletes whose highest level of play was high school. 

There was adequate consistency among locations, meaning it was valid to analyze the study 

sample as a whole. 

The re-digitized trials varied in measurement agreement. The mean absolute differences 

for lower trunk maximum angular momentum and shoulder joint compressive force 

demonstrated mean absolute differences of 6.4% and 7.3% of the mean study value, which 

indicates good intra-rater agreement. The mean absolute difference for shoulder joint anterior 

shear force demonstrated a mean absolute difference of 21.7%, which indicates poor intra-rater 

agreement. The intra-rater reliability of the re-digitized trials for lower trunk maximum angular 

momentum, shoulder joint compressive force, and shoulder joint anterior shear force were all 

strong, with values of Cronbach’s alpha greater than 0.9 for each. The strong intra-rater 

reliability suggests that the differences in measurements were due to random errors, possibly 

attributable to the sampling rate and only being able to identify the critical instant of release to 

the nearest 0.017 seconds. The inability to identify a critical instant appears to be particularly 

impactful for the measurements of shoulder joint anterior shear force. The measurement errors 

had little effect on the relationships between lower trunk angular momentum and shoulder joint 

force. The bootstrapped correlation coefficients were of the same direction and similar 

magnitude to the initial data. The similarity among re-sampled data indicates that the 

relationships between discrete variables as determined by this thesis were not affected by 

measurement error. 
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The variance and coefficient of variation calculated among the different trials for the 

subjects were small, generally less than 1%, indicating that there was consistency of movement 

kinematics within subjects. That is, the subjects did not have much variance in their throwing 

motion from trial to trial. The small variance results do not necessarily mean that they were 

efficient, only that they were consistent. The subjects could have consistently inefficient 

mechanics, or consistently mis-timed their joint rotations, which does not contradict the first 

explanation of the findings of this thesis. 

The mean maximum lower trunk angular momentum at arm cocking was 0.313 kg.m²/s 

for this thesis. This thesis is one of the first to report the lower trunk angular momentum during 

the arm cocking phase for baseball throwing. As angular velocity is a key component of angular 

momentum, the average angular velocity for this study was compared to previous research. The 

mean maximum lower trunk angular velocity for this thesis was 480 °/s (8.399 radians/s) which 

is similar to 490 °/s and 570 °/s reported in previous research (Escamilla, Fleisig, Barrentine, 

Zheng, & Andrews, 1998; Stodden et al., 2001). 

An association was found in this thesis between release speed and shoulder joint 

compressive force (r = 0.520, p = 0.005), indicating that as release speed increased, so did the 

compressive force at the shoulder. Since release speed and compressive force at the shoulder 

exhibited a positive association, this may further indicate that the subjects had improper timing 

as Oyama et al. (2014) found that pitchers with improper trunk rotation sequence showed an 

increased force applied to the shoulder (Oyama et al., 2014). 

It is unlikely that the power was too small to identify significant correlations. Before data 

collection, G*Power software was used, and 23 subjects were required to have a power of 80 

percent (r= 0.5 and type I error rate was set as α = 0.05). A sample size of 24 subjects was used 
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which was larger than the 23 subjects needed to obtain a power of 80 percent. A significant 

correlation was found between release speed and shoulder joint compressive force (r = 0.520, p = 

0.005) (Table 2). If the power was not adequate, it would be unlikely to find any significant 

correlations, and this correlation was of the magnitude predicted. Since the estimated required 

sample size for a power of 80 percent was smaller than the sample size used in the thesis, and a 

significant correlation was found, the reason for not finding a significant correlation between the 

angular momentum of the lower trunk and the forces at the shoulder is likely, not due to lack of 

power. 

Limitations and Future Directions 

There were several limitations present in this thesis. Some of the subjects were tested on 

a grass baseball field with visual cues, while some were tested at an indoor facility without the 

visual cues that would normally be present on a baseball field, and the indoor facility had a 

harder surface. The different facilities were compared to make sure they did not cause 

inconsistencies in the data collected, but it may be ideal to test all subjects at the same site to 

ensure the surfaces and visual cues are the same. Since the researcher only had the indoor testing 

site available for the Ohio group, this limitation could not be avoided. Anatomical landmarks 

were digitized on the subjects from the videos in Vicon Motus. All the videos were digitized by 

the same experienced researcher, but in some cases there was not a clear view of the landmarks 

in which the best estimate of the landmark had to be used. It is difficult to avoid small digitizing 

errors due to landmark obstruction. Another limitation of the thesis was that the phases and 

instants where the variables were selected, was done qualitatively by looking at the frames on the 

video. It is possible that the arm cocking phase or instant of ball release could be off by a frame 

or so. The inability to identify critical instants precisely is a limitation due to sampling 
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frequency, but timing errors will be less than 0.017 seconds. This thesis also had a sample size 

on the smaller end (N = 24). It is possible that these 24 subjects are not representative of the 

entire larger population. When possible, a larger sample size is usually preferred in research.  

There is one major suggestion recommended for future research. The variables used in 

this thesis were calculated as a maximum value during a phase, or at the instant of ball release. 

When examining the data there may have been inefficiencies in both timing and the transfer 

momentum exhibited by the subjects. For example, some of the subjects had maximum angular 

momentum of the lower trunk occur early in the arm cocking phase, and some of the subjects 

exhibited high accelerations at the shoulder before the hip reached maximum angular velocity, 

which would affect the association between the angular momentum of the lower trunk and the 

forces at the shoulder. Some of the subjects also began to slow their arm down before ball release 

which exhibited a smaller acceleration of the arm at ball release, hence exhibiting a smaller force 

at the shoulder (F=ma). For these reasons, it would be best to examine the variables during the 

entire throwing motion in a way that would allow for the influence of the amount and the timing 

of the force or momentum to be determined. Investigating the relationship between angular 

momentum of the lower trunk and forces at the shoulder during the entire throwing motion 

should provide more insight to the association between the variables. 

Conclusions 

 In conclusion, there was no significant correlation between the maximum angular 

momentum at the lower trunk and the shoulder joint anterior shear force, or the shoulder joint 

compressive force at ball release. It is possible that no association was found due to inefficient 

timing and inefficient transfer of forces through the kinetic chain by the subjects tested. It is 

unlikely that no relationship exists, as previous research has provided evidence connecting 
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movements of the lower trunk and shoulder, and identified the kinetic chain sequence (Feltner, 

1989; Hirashima et al., 2002; Hirashima et al., 2008; Oliver, 2014; Roach & Lieberman, 2014). 

The depth and specificity of the results of this thesis demonstrates how important biomechanical 

research is to improving athlete performance and reducing injury risk. Researchers must be able 

to communicate their findings to coaches and athletes clearly. In the future it may be more 

beneficial to examine the variables throughout the entire throwing sequence, and identify the 

amount and the timing in which the momentum and forces occur at the different body segments.  
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