
Marshall University
Marshall Digital Scholar

Theses, Dissertations and Capstones

2019

Potential Applications of Capsaicinoids in Small
Cell Lung Cancer Therapy
Jamie Rae Friedman
Jamie.Friedman29@gmail.com

Follow this and additional works at: https://mds.marshall.edu/etd
Part of the Medical Cell Biology Commons, Medical Pharmacology Commons, and the

Oncology Commons

This Dissertation is brought to you for free and open access by Marshall Digital Scholar. It has been accepted for inclusion in Theses, Dissertations and
Capstones by an authorized administrator of Marshall Digital Scholar. For more information, please contact zhangj@marshall.edu,
beachgr@marshall.edu.

Recommended Citation
Friedman, Jamie Rae, "Potential Applications of Capsaicinoids in Small Cell Lung Cancer Therapy" (2019). Theses, Dissertations and
Capstones. 1226.
https://mds.marshall.edu/etd/1226

https://mds.marshall.edu/?utm_source=mds.marshall.edu%2Fetd%2F1226&utm_medium=PDF&utm_campaign=PDFCoverPages
https://mds.marshall.edu/etd?utm_source=mds.marshall.edu%2Fetd%2F1226&utm_medium=PDF&utm_campaign=PDFCoverPages
https://mds.marshall.edu/etd?utm_source=mds.marshall.edu%2Fetd%2F1226&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/669?utm_source=mds.marshall.edu%2Fetd%2F1226&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/960?utm_source=mds.marshall.edu%2Fetd%2F1226&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/694?utm_source=mds.marshall.edu%2Fetd%2F1226&utm_medium=PDF&utm_campaign=PDFCoverPages
https://mds.marshall.edu/etd/1226?utm_source=mds.marshall.edu%2Fetd%2F1226&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:zhangj@marshall.edu,%20beachgr@marshall.edu
mailto:zhangj@marshall.edu,%20beachgr@marshall.edu


 POTENTIAL APPLICATIONS OF CAPSAICINOIDS IN SMALL CELL LUNG 
CANCER THERAPY 

 
  

Marshall University 
May 2019 

 

A dissertation submitted to 
the Graduate College of 

Marshall University 
In partial fulfillment of 

the requirements for the degree of 
Doctor of Philosophy 

In 
Biomedical Sciences 

by 
Jamie Rae Friedman 

Approved by 
Dr. Piyali Dasgupta, Committee Chairperson 

Dr. Monica Valentovic 
Dr. Gary Rankin 

Dr. Richard Egleton 
Dr. Travis Salisbury 





iii 

  

© 2019 
Jamie Rae Friedman 

ALL RIGHTS RESERVED 



iv 

DEDICATION 

I would like to dedicate this work to my family (both human and canine) who have 

supported me throughout all of my studies. To my parents, Steve and Kathy, always told me I 

could achieve anything I wanted and stayed by my side through the ups and downs. To my 

brother, Scott, who was always a phone call away to make me laugh and watch sports together 

even though we were 8 hours away. My parents and brother let me talk about my project often, 

even though they usually didn’t have a clue what I was talking about. To my Pop-pop and Mom-

mom, Stan and Alma, who always were interested in my research, facetiming me almost daily to 

check in. My aunts and uncles always sent words of encouragement to me, reminding me that 

eventually I would actually finish. I also can’t forget to mention the Friedman Dogs, Jake, Sosa, 

and Josie. Josie has worked hard by my side (usually napping) so that she could earn her puppy 

PhD with me. Lastly, I’d like to dedicate this to my grandparents who were diagnosed with lung 

cancer and inspired my interest in cancer related research, Pete and Rae. And to my Grammy, 

Shelia, who I know has been with me through this whole journey. I love you all.  



v 

AKNOWLEDGEMENTS 

First, I’d like to acknowledge my mentor Piyali Dasgupta. She took a chance on me when 

she allowed me to join her lab and become her first PhD student. She allowed me to work 

independently and taught me a lot about what it takes to become a successful scientist. Next, I 

need to thank my committee members, Monica Valentovic, Gary Rankin, Travis Salisbury, and 

Richard Egleton. They always had their doors open to me. They all helped me tremendously 

during my course work as well, always believing in me. Sarah Miles, thank you for helping me 

with the writing of my dissertation and for dealing with all of my crazy text messages. Thank 

you all for helping me to become a scientist that I had always wanted to be.  

Thank you Dr. Valentovic for allowing me to become an unofficial lab member and 

borrow Katie Brown or Dakota Ward. I do not know what I would have done if I hadn’t been 

able to run across the hall to them. Working with Katie and Dakota both every day was some of 

the most fun I could’ve had while “sciencing.” Both of them have become my little lab family 

and I’m so grateful that they (and their families) took me in. I’m also thankful for being able to 

work with great people in the lab who knew exactly how to push my buttons, yet always got their 

work done. Nick, Kate, Stephen, and Justin were the best undergraduates I could have had the 

chance to work with. Austin Akers was my first lab friend and maintained my friendship 

throughout my four years. He has made a lasting impact on my time here at Marshall. I also 

would like to acknowledge my friends outside of the BMS Program, who all have had to bring 

me back down to reality when I needed it. Lastly, I would like to acknowledge the original ladies 

I came into this program with, Morghan Getty Collins, Sarah Stevens, and Lexie Blalock. I 

would never have survived my classes without them and can’t believe we’ve made it this far. 

Morghan, Sarah, and Lexie are some of the strongest women I know, and I look up to each one 



vi 

of them. I can’t imagine my time at Marshall without any of those mentioned; thank you so much 

for helping me along the way. I owe all of my success at Marshall to all of you.   



vii 

TABLE OF CONTENTS 

Dedication ...................................................................................................................................... iv 

Aknowledgements ........................................................................................................................... v 

List of Tables ................................................................................................................................ xii 

List of Figures .............................................................................................................................. xiii 

Abstract ........................................................................................................................................ xvi 

Chapter 1: Introduction ................................................................................................................... 1 

Lung Cancer and Capsaicin ................................................................................................ 1 

Lung cancer ............................................................................................................. 1 

Capsaicin ................................................................................................................. 3 

Statement of hypothesis .......................................................................................... 4 

Chapter 2: Capsaicinoids Enhance Chemosensitivity to Chemotherapeutic Drugs ....................... 6 

Abstract ............................................................................................................................... 7 

Introduction ......................................................................................................................... 8 

Antimetabolites ................................................................................................................. 10 

Platinum-Based Drugs ...................................................................................................... 17 

Anthracyclines .................................................................................................................. 29 

Camptothecin Analogs ...................................................................................................... 35 

Targeted Signal Transduction Inhibitors .......................................................................... 42 

Radiation Therapy ............................................................................................................. 46 

Conclusions and Future Directions ................................................................................... 50 

Chapter 3: Capsaicin Synergizes with Camptothecin to Induce Increased Apoptosis in Human 

Small Cell Lung Cancers Via the Calpain Pathway ..................................................................... 51 



viii 

Abstract ......................................................................................................................................... 52 

Introduction ....................................................................................................................... 52 

Materials and methods ...................................................................................................... 55 

Reagents ................................................................................................................ 55 

Cell culture ............................................................................................................ 56 

Preparation of lysates ............................................................................................ 56 

Measurement of caspase-3 activity ....................................................................... 56 

Cell death ELISA .................................................................................................. 57 

Chicken chorioallantoic membrane (CAM) assay ................................................ 58 

Preparation of tumor lysates from CAM .............................................................. 58 

Measurement of calpain activity ........................................................................... 59 

Statistical analysis ................................................................................................. 60 

Results ............................................................................................................................... 61 

A concentration of 10 µM capsaicin does not cause significant apoptosis (p£0.05) 

in human small cell lung cancer (SCLC) cell lines. .............................................. 61 

The combinatorial apoptotic activity of camptothecin and capsaicin is greater than 

these drugs treated alone in human SCLC cells .................................................... 65 

Capsaicin synergizes with camptothecin to display increased apoptotic activity in 

vivo in chicken chorioallantoic membrane (CAM) assay ..................................... 72 

The synergistic activity of capsaicin and camptothecin was dependent on 

intracellular calcium and the calpain pathway ...................................................... 74 

SCLC cells treated with 10 µM capsaicin and 1 µM camptothecin show increased 

calpain activity relative to each of the drugs alone ............................................... 78 



ix 

Discussion ......................................................................................................................... 81 

Conflict of interest ................................................................................................ 84 

Acknowledgements ............................................................................................... 84 

Chapter 4: Anticancer Activity of Natural and Synthetic Capsaicin Analogs .............................. 85 

Funding ................................................................................................................. 86 

Abstract ............................................................................................................................. 86 

Introduction: Capsaicin ..................................................................................................... 87 

Structure Activity Relationship of Capsaicin ................................................................... 91 

Antineoplastic Activity of Natural Capsaicin Analogs ..................................................... 91 

Capsiates ............................................................................................................... 91 

Evodiamine and Rutaecarpine .............................................................................. 93 

Resiniferatoxin ...................................................................................................... 97 

Dihydrocapsaicin .................................................................................................. 99 

Antineoplastic Activity of Synthetic Capsaicin Analogs ................................................ 100 

N-Acylvanillamides ............................................................................................ 100 

RPF, Epoxide-Based Analogs ............................................................................. 104 

Miscellaneous Capsaicin Analogs. ..................................................................... 106 

Conclusions and Future Directions ................................................................................. 109 

Acknowledgements ............................................................................................. 110 

Authorship Contributions ................................................................................... 110 

Chapter 5: Anti-cancer Activity of Synthetic Capsaicinoids in Small Cell Lung Cancer .......... 111 

Introduction ..................................................................................................................... 111 

Methods........................................................................................................................... 113 



x 

Reagents .............................................................................................................. 113 

Cell culture .......................................................................................................... 114 

Treatment of cultured cells ................................................................................. 115 

Preparation of lysates .......................................................................................... 115 

Cell viability assay .............................................................................................. 116 

Caspase-3 activity assay ..................................................................................... 116 

Cell death ELISA ................................................................................................ 116 

Calpain activity assay ......................................................................................... 117 

Statistical analysis ............................................................................................... 117 

Results ............................................................................................................................. 118 

Arvanil, linvanil, and livanil reduce cell viability in SCLC cell lines ................ 118 

Arvanil induces apoptotic cell death in SCLC cells but not normal lung cells .. 119 

Arvanil does not induce cell death via the TRPV receptor in SCLC .................. 121 

Arvanil does not induce cell death of SCLC via the cannabinoid 1 receptor ..... 124 

Arvanil induces apoptosis via intracellular calcium and the calpain pathway in 

SCLC .................................................................................................................. 126 

Arvanil causes increased calpain pathway activity in SCLC .............................. 131 

Conclusions and Discussion ........................................................................................... 133 

Chapter 6: Conclusions and Discussion ...................................................................................... 137 

References ................................................................................................................................... 145 

Appendix A: IRB Letter .............................................................................................................. 179 

Appendix B: JPET Permissions Letter ....................................................................................... 180 

Appendix C: Abbreviations ........................................................................................................ 181 



xi 

Appendix D: Vita ........................................................................................................................ 186 



xii 

LIST OF TABLES 

Table 1. Combination index of the growth inhibitory activity of camptothecin along with 

capsaicin in DMS53 human small cell lung cancer cells .............................................................. 40 

 



xiii 

LIST OF FIGURES  

Figure 1. A schematic of the various anticancer and chemopreventive mechanisms triggered by 

capsaicin in experimental models of carcinogenesis and metastasis. ........................................... 10 

Figure 2. Antimetabolites .............................................................................................................. 13 

Figure 3. Platinum-based drugs .................................................................................................... 18 

Figure 4. Anthracyclines ............................................................................................................... 29 

Figure 5. A simplified schematic of the signaling mechanisms of the synergistic anticancer 

activity of doxorubicin and capsaicin in human cancer cells. ...................................................... 32 

Figure 6. Camptothecin analogs ................................................................................................... 37 

Figure 7. Combinatorial effects of capsaicin and camptothecin in small cell lung cancer ........... 38 

Figure 8. Targeted signal transduction inhibitors ......................................................................... 43 

Figure 9. Structure of (A) camptothecin and (B) capsaicin .......................................................... 54 

Figure 10. Concentration dependent apoptotic activity of capsaicin in human SCLC cells over 24 

hours, as measured by the caspase-3 activity kit .......................................................................... 62 

Figure 11. Cell Death ELISA assays were used to confirm the apoptotic activity of capsaicin 

over 24 hours ................................................................................................................................. 64 

Figure 12. Capsaicin (CPZ) sensitizes human SCLC cells to the apoptotic activity of 

camptothecin (CPT) ...................................................................................................................... 67 

Figure 13. The synergistic apoptotic activity of capsaicin (CPZ) and camptothecin (CPT) is 

observed in multiple SCLC cell lines ........................................................................................... 70 

Figure 14. Camptothecin (CPT) and capsaicin (CPZ) induce synergistic cell death in the classical 

human SCLC cell line H69 ........................................................................................................... 71 



xiv 

Figure 15. The combination of 1 µM camptothecin and 10 µM capsaicin inhibited the growth of 

human SCLC tumors in vivo in chicken chorioallantoic membrane (CAM) model ..................... 73 

Figure 16. The combinatorial apoptotic activity of 1 µM camptothecin and 10 µM capsaicin was 

mediated by intracellular calcium and the calpain pathway ......................................................... 75 

Figure 17. H69 human SCLC cells were treated with 1 µM camptothecin, 10 µM capsaicin or a 

combination of 1 µM camptothecin and 10 µM capsaicin in the presence or absence of 10 µM 

BAPTA-AM for 24 hours ............................................................................................................. 77 

Figure 18. The combination of 1 µM camptothecin and 10 µM capsaicin potently stimulates 

calpain activity in human SCLC cells ........................................................................................... 79 

Figure 19. Elevation of calpain activity in H69 tumors treated with a combination of 1 µM 

camptothecin and 10 µM capsaicin .............................................................................................. 80 

Figure 20. Structures of natural capsaicinoids .............................................................................. 88 

Figure 21. Signaling pathways underlying the anticancer activity of natural capsaicinoids ........ 93 

Figure 22. Signal transduction pathways mediating the antitumor activity of natural capsaicinoids

....................................................................................................................................................... 99 

Figure 23. A panel of UN-AVAMs that have been investigated for their growth-suppressive 

activity in cell culture or mice models ........................................................................................ 102 

Figure 24. Signaling pathways underlying the antiproliferative and proapoptotic activity of 

synthetic capsaicin analogs ......................................................................................................... 105 

Figure 25. Capsaicin analogs containing a sulfonamide and epoxide motif in their structure 

trigger apoptosis in human cancer cells ...................................................................................... 106 

Figure 26. Miscellaneous capsaicin analogs that display growth-inhibitory activity in human and 

mouse cancer cell lines ............................................................................................................... 108 



xv 

Figure 27. Molecular mechanisms underlying the apoptotic activity of capsazepine and 

nonivamide .................................................................................................................................. 109 

Figure 28. The molecular structures of capsaicin, olvanil, livanil, linvanil, and arvanil ............ 114 

Figure 29. Effect of capsaicinoids on SCLC viability ................................................................ 119 

Figure 30. Comparison of caspase-3 activity induced by arvanil and capsaicin in SCLC cell lines

..................................................................................................................................................... 120 

Figure 31. Effect of arvanil and capsaicin on caspase-3 activity and cell death in normal human 

pulmonary alveolar epithelial cells ............................................................................................. 121 

Figure 32. Effect of TRPV receptor inhibition on arvanil-induced caspase-3 activity in SCLC 122 

Figure 33. Effect of TRPV receptor inhibition on arvanil-induced cell death in SCLC ............ 123 

Figure 34. Effect of cannabinoid 1 receptor inhibition on arvanil-induced caspase-3 activity in 

SCLC .......................................................................................................................................... 125 

Figure 35. Effect of cannabinoid 1 receptor inhibition on arvanil-induced cell death in SCLC 126 

Figure 36. Effect of intracellular calcium chelator on arvanil-induced caspase-3 activity in SCLC

..................................................................................................................................................... 128 

Figure 37. Effect of intracellular calcium chelation on arvanil-induced cell death in SCLC ..... 129 

Figure 38. Effect of calpeptin on arvanil-induced caspase-3 activity in SCLC .......................... 130 

Figure 39. Effect of calpeptin on arvanil-induced cell death in SCLC ....................................... 131 

Figure 40. Arvanil-induced calpain activity in the presence of calcium chelator (BAPTA-AM) 

and calpain pathway inhibitor (calpeptin) ................................................................................... 133 



xvi 

ABSTRACT 

Lung cancer continues to be the leading cause of cancer related mortality worldwide. Lung 

cancer is not a single disease but an umbrella that encompasses two major classifications, non-

small cell lung cancer (NSCLC) and small cell lung cancer (SCLC). SCLC represents about 15-

20% of all lung cancer cases and is almost exclusively diagnosed in smokers. Typically, patients 

will respond very well to first line treatment, but face inevitable relapse. The fact that SCLC still 

carries a grim 5-year survival rate of less than 5% highlights the lack of advancement in 

treatment options to effectively improve patient response and survival. Capsaicinoids, in 

particular Capsaicin (the spicy compound in chili peppers), have previously been reported to be 

an advantageous adjunct treatment with traditional chemotherapeutic options in several cancer 

types. One challenge to the use of capsaicin is the variety of side effects, such as gastrointestinal 

pain, sweating and ulcers that are frequently reported with clinical administration. Synthetic non-

pungent capsaicinoids, which show many of the same bioactive properties as capsaicin may, 

however, be a promising alternative. The studies in this dissertation investigated the use of 

capsaicin and several non-pungent analogs as chemotoxic or adjuvant therapy for SCLC. 

Utilizing various in vitro and in vivo models we investigated the synergistic effects of capsaicin 

and camptothecin. We provide new evidence that capsaicin synergistically sensitizes SCLC to 

the effects of camptothecin, inducing a rise in intracellular calcium levels and activating the 

calpain pathway to induce apoptosis. Analysis of the antineoplastic capacity of various 

capsaicinoid analogs found arvanil to be the most potent capsaicinoid at inducing apoptosis in 

SCLC cell lines. Similar to capsaicin, arvanil also induced apoptosis in SCLC cell lines by 

raising intracellular calcium levels leading to increased calpain activity. The chemotoxic potency 

and non-pungent character of arvanil supports the future investigation of the adjuvant use of 
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arvanil with camptothecin or other chemotherapeutic agents to find a combination therapy that 

provides the same synergistic effects as capsaicin, while lacking the adverse side effect profile. 

Taken together, these studies demonstrate that capsaicin and arvanil have the potential to 

successfully treat SCLC in combination with conventional chemotherapeutics, as well as 

possibly treating other cancer types.  
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CHAPTER 1: INTRODUCTION  

LUNG CANCER AND CAPSAICIN 

Lung cancer 

In 2018 cancer was the second leading cause of death worldwide. The incidence of 

cancer in men has gone down slightly from 2008 to 2014, while the incidence of cancer in 

women has stayed consistent since 1999 ("Cancer," 2018; Cronin et al., 2018). The mortality 

associated with cancer, however, has decreased in both sexes (Cronin et al., 2018). Lung cancer 

is the second most common form of cancer in both men and women, second to prostate and 

breast cancer respectively. Lung cancer is the leading cause of cancer related death regardless of 

sex. The mortality rate for lung cancer is about 53 per 100,000 for men; approximately 2.8 times 

higher than for prostate cancer (Cronin et al., 2018). For women, the mortality rate is about 35 

per 100,000, which is about 1.8 times higher than for breast cancer. Smoking has been identified 

as a leading risk factor for lung cancer. It is estimated that tobacco use causes between 80 and 

90% of all lung cancers (Latimer & Mott, 2015). While higher smoking rates among men likely 

contribute to the apparent gender difference in lung cancer mortality rates, other risk factors for 

lung cancer including first- or second-hand smoke, as well as environmental exposures, such as 

asbestos and radon affect both genders equally.  

Lung cancer is comprised of two major groups based on tissue histology, non-small cell 

lung cancer (NSCLC) and small cell lung cancer (SCLC). NSCLC, which accounts for 

approximately 80-85% of lung cancers, is further divided into subtypes; lung adenocarcinoma 

(LAC), squamous cell carcinoma (SCC), large cell carcinoma (LCC) and neuroendocrine 

carcinoid tumors (Friedman et al., 2019). Classification of each subtype of NSCLC is based on 

the tissue of origin of the tumor. LAC, which is the most common form of lung cancer, 
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originates from the mucus-secreting glands in the lungs and is typically found in the outer 

regions of the lung. SCC develops in the central air passages of a patient’s lungs and is the most 

common type of NSCLC found in smokers. LCC is found anywhere in the lung and is 

characterized by rapid growth and spread. Each subtype is then further characterized by defined 

stages of progression (Latimer & Mott, 2015). NSCLC has a staging system ranging from stage 0 

to stage 4, being the most critical. Treatment for NSCLC includes surgical removal for early 

stage disease. Later stages of NSCLC are treated with chemotherapy, radiation, and targeted 

immunotherapies. Generally speaking, NSCLC has a better survival rate, especially for those 

diagnosed in early stages (Latimer & Mott, 2015). In recent years, new treatment options have 

become available for NSCLC and have led to improved therapeutic outcomes and survival rates.  

SCLC differs in a variety of ways from NSCLC. SCLC represents about 15-20% of all 

lung cancer cases. While NSCLC can occur in patients who are never-smokers, SCLC is found 

almost exclusively in smokers. SCLC arises from neuroendocrine cells of the lung (Alvarado-

Luna & Morales-Espinosa, 2016). SCLC also generally spreads much quicker and more 

aggressively than NSCLC. There are no subtypes of SCLC, it is simply divided into two stages; 

limited where the cancer is confined to one lung or extensive when the cancer has spread to 

secondary locations outside of the single hemithorax region. About two-thirds of those diagnosed 

with SCLC are already in the extensive stage. Initial treatment consists of a platinum-based 

chemotherapy (cisplatin or carboplatin) combined with etoposide (Pietanza, Byers, Minna, & 

Rudin, 2015). Despite high initial response rates of 60-80%, SCLC commonly develops 

chemotherapeutic resistance, which leaves patients with no viable treatment options (Alvarado-

Luna & Morales-Espinosa, 2016; Bunn et al., 2016; Pietanza et al., 2015). Irinotecan is used as a 

second-line agent in the treatment of refractory SCLC, however, it also induces frequent tumor 
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resistance in patients within 14-26 weeks (S. L. Wood, Pernemalm, Crosbie, & Whetton, 2015). 

Radiotherapy is utilized in patients whose cancer is confined to the chest, and prophylactic 

cranial irradiation is also used in some cases due to the common feature of secondary brain 

metastases in SCLC (Pietanza et al., 2015). When diagnosed in the limited stage, the 5-year 

survival rate for SCLC is about 25%. Extensive stage SCLC has a 5-year survival rate of almost 

zero (Latimer & Mott, 2015). Despite the urgent need for more effective therapy, treatment 

options for SCLC have not seen any significant progress in decades (Pietanza et al., 2015; Qiu et 

al., 2017). Current therapeutic modalities only extend patient survival by 4 to 8 months, 

compared to non-treatment. SCLC has been described as a “graveyard” for drug development 

research. Given the grim outlook for those diagnosed with SCLC, identifying effective, novel 

adjuvant or secondary treatment options is imperative.  

Capsaicin 

Natural compounds have been associated with medicinal benefits for hundreds of years 

(Basith, Cui, Hong, & Choi, 2016). Capsaicin is the main pungent ingredient isolated from chili 

peppers. It has commonly been utilized for its analgesic activity, and ability to treat pain and 

inflammation associated with a variety of diseases (Chapa-Oliver & Mejia-Teniente, 2016; X. F. 

Huang, Xue, Jiang, & Zhu, 2013). Capsaicin is considered to be the prototypical agonist of the 

transient receptor potential vanilloid (TRPV) 1 receptor (Elokely et al., 2016; Hazan, Kumar, 

Matzner, & Priel, 2015). The TRPV receptors are a family of cation channels and are responsible 

for our sense of temperature. The analgesic activity of capsaicin is believed to involve TRPV1 

signaling (Jara-Oseguera, Simon, & Rosenbaum, 2008). Diabetic neuropathy, arthritis, and skin 

disorders are just a few of the maladies in which capsaicin has been shown to have potent 

therapeutic pain-relieving properties (Janusz et al., 1993; Luo, Peng, & Li, 2011; Rollyson et al., 
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2014). Capsaicin has also been shown to have potent antineoplastic activity against several 

cancer types, including prostate, lung, and bladder (Basith et al., 2016; Chapa-Oliver & Mejia-

Teniente, 2016; Pramanik, Boreddy, & Srivastava, 2011; Srinivasan, 2016). There has also been 

evidence that capsaicin has the ability to enhance the cytotoxic effect of FDA approved 

chemotherapeutic agents, suggesting a potential role for capsaicin as an effective adjuvant 

therapy to improve chemotherapeutic response- and survival-rates in SCLC (Dai et al., 2018; 

Vendrely et al., 2017; N. Wang, Chaoran, Zhang, Zhai, & Lu, 2018; Zheng et al., 2016).  

A potential hindrance to the use of capsaicin as a therapeutic agent, particularly following 

oral administration, is the spectrum of unpleasant side effects associated with its pungent nature. 

These side effects, which often include gastric pain, sweating, ulcers, and tearing of the eyes, 

frequently cause patients to discontinue use, rendering any clinical trials useless or inconclusive 

(Fuhrer, Vogelsang, & Hammer, 2011; Hammer, 2006; Hammer, Fuhrer, Pipal, & Matiasek, 

2008; Hammer & Vogelsang, 2007). One potential way to circumvent this issue is to explore the 

use of natural or synthetic derivatives of capsaicin (capsaicinoids), which may lack many of 

these adverse effects. Various capsaicinoids have been extensively evaluated in order to 

determine if they are able to maintain their anti-cancer activity, while minimizing their side 

effect profile. Many of these compounds show much promise as viable treatment options for 

lung cancer, as well as, other types of cancer (Luo et al., 2011; Macho et al., 2003).  

Statement of hypothesis  

There continues to be a lack of treatment options for those diagnosed with SCLC. The 

studies in this dissertation focus on evaluating two major aspects of the use of capsaicin as an 

adjuvant antineoplastic agent against SCLC to improve therapeutic response. The combinatorial 

effects of capsaicin with a current chemotherapeutic agent is assessed first based on the 
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hypothesis that capsaicin is able to sensitize human SCLC cells to the chemotherapeutic effects 

of camptothecin. These studies evaluate the possible synergy that occurs when these agents are 

used concurrently both in vitro and in vivo. Signaling mechanisms controlling these effects are 

also examined. Second, a study of a panel of synthetic capsaicin analogs was conducted to 

identify potentially potent anti-cancer agents with equal or greater antineoplastic activity than 

capsaicin, but without the adverse side effect profile. The signaling pathways activated by these 

analogs are also examined and compared to capsaicin. Taken together, these studies have laid the 

foundation for the use of capsaicin and capsaicinoids as potential adjuvant SCLC treatment 

options. The long-term implications of this study will hopefully lead a way to increasing the 

dismal survival rate of SCLC patients, as well as potentially utilizing the knowledge found to 

treat additional types of cancers.  
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ABSTRACT 

Cytotoxic chemotherapy is the mainstay of cancer treatment. Conventional 

chemotherapeutic agents do not distinguish between normal and neoplastic cells. This leads to 

severe toxic side effects, which may necessitate the discontinuation of treatment in some 

patients. Recent research has identified key molecular events in the initiation and progression of 

cancer, promoting the design of targeted therapies to selectively kill tumor cells while sparing 

normal cells. Although the side effects of such drugs are typically milder than conventional 

chemotherapies, some off-target effects still occur. Another serious challenge with all 

chemotherapies is the acquisition of chemoresistance upon prolonged exposure to the drug. 

Therefore, identifying supplementary agents that sensitize tumor cells to chemotherapy-induced 

apoptosis and help minimize drug resistance would be valuable for improving patient tolerance 

and response to chemotherapy. The use of effective supplementary agents provides a two-fold 

advantage in combination with standard chemotherapy. Firstly, by augmenting the activity of the 

chemotherapeutic drug it can lower the dose needed to kill tumor cells and decrease the 

incidence and severity of treatment-limiting side effects. Secondly, adjuvant therapies that lower 

the effective dose of chemotherapy may delay/prevent the development of chemoresistance in 

tumors. Capsaicinoids, a major class of phytochemical compounds isolated from chili peppers, 

have been shown to improve the efficacy of several anti-cancer drugs in cell culture and animal 

models. The present chapter summarizes the current knowledge about the chemosensistizing 

activity of capsaicinoids with conventional and targeted chemotherapeutic drugs, highlighting 

the potential use of capsaicinoids in novel combination therapies to improve the therapeutic 

indices of conventional and targeted chemotherapeutic drugs in human cancers. 
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INTRODUCTION 

The term capsaicinoid refers to the class of compounds found in the capsicum family 

(also known as chili peppers) (Luo et al., 2011). The most common capsaicinoid is capsaicin, 

responsible for the spicy characteristics of chili peppers. Other natural capsaicinoids isolated 

from peppers include: capsiate, found in Japanese CH-19 sweet peppers; capsiconiate, found in 

Capsicum baccatum L.; and resiniferatoxin (RTX), isolated from the cactus plant Euphorbia 

resinifera and the Nigerian plant Euphorbia poissonii (Friedman et al., 2018; Luo et al., 2011). 

All capsaicinoids display potent analgesic activity (Basith et al., 2016; Chapa-Oliver & Mejia-

Teniente, 2016; Evangelista, 2015; Srinivasan, 2016). Capsaicin is a common ingredient in over-

the-counter pain-relieving lotions and creams (Basith et al., 2016; Evangelista, 2015). The 

analgesic activity of capsaicinoids is mediated by the transient receptor potential vanilloid 

(TRPV) family of receptors, which is comprised of six members (TRPV1-TRPV6) (Satheesh et 

al., 2016). All capsaicinoids are high affinity agonists of the TRPV1 receptor (Satheesh et al., 

2016). However, several lines of evidence have shown that capsaicinoids exert biological 

functions that are independent of TRPV1 receptor activation or are mediated by other TRPV 

receptors (Chapa-Oliver & Mejia-Teniente, 2016; Chow, Norng, Zhang, & Chai, 2007; Clark & 

Lee, 2016; Diaz-Laviada & Rodriguez-Henche, 2014; Friedman et al., 2018; Lau et al., 2014; 

Shintaku et al., 2012). 

Early studies found that capsaicinoids exert potent chemopreventive activities in a variety 

of human cancers including lung, prostate, pancreatic, cholangiocarcinoma and skin cancer. 

Subsequent research demonstrated that capsaicinoids display anti-neoplastic activity in human 

breast, lung, prostate, gastric, renal, oral and hepatocellular carcinoma (Basith et al., 2016; 

Chapa-Oliver & Mejia-Teniente, 2016; Srinivasan, 2016). However, conflicting evidence also 
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exists on the anti-cancer activity of capsaicin. The long-term dietary administration of chili 

peppers was found to produce neoplastic changes in the liver and cecum (Hoch-Ligeti, 1951). 

More recent published reports indicated that capsaicin promoted the survival and growth of 

bladder, colon and skin cancers (Bode & Dong, 2011; Hoch-Ligeti, 1951; Toth & Gannett, 

1992). Similarly, studies by Erin et al., (2004 and 2006) showed that the administration of 

capsaicin at high doses (125 mg capsaicin/kg body weight) increased breast cancer 

aggressiveness and promoted mammary tumor metastasis to the lung and heart (Erin, Boyer, 

Bonneau, Clawson, & Welch, 2004; Erin, Zhao, Bylander, Chase, & Clawson, 2006). The aim of 

their studies was to demonstrate that capsaicin caused denervation of sensory neurons in breast 

carcinomas and such denervation promoted breast cancer metastasis (Erin et al., 2004; Erin et al., 

2006). Apart from these few published reports, the majority of studies have confirmed that low 

doses of capsaicin suppress the growth and progression of human cancers (Figure 1).  

While capsaicinoids are accepted to be high affinity agonists of the TRPV1 receptor, the 

anti-tumor activity of capsaicinoids appears to be predominantly independent of TRPV1 and 

involves multiple molecular mechanisms, including activation of cell death mechanisms, 

inhibition of mitogenic pathways and blockage of mitochondrial respiration, tumor angiogenesis 

and metastasis (reviewed in (Chapa-Oliver & Mejia-Teniente, 2016; Clark & Lee, 2016; Diaz-

Laviada & Rodriguez-Henche, 2014; Friedman et al., 2018; Srinivasan, 2016). Recent studies 

have indicated that capsaicinoids sensitize human cancer cells to the apoptotic effects of anti-

cancer drugs and compounds. These include phytochemicals, synthetic small molecules, 

conventional chemotherapeutic drugs, as well as novel targeted signal-transduction inhibitors. 

The present chapter will focus on the chemosensitization activity of capsaicinoids on 

classifications of FDA-approved chemotherapeutic drugs that are used clinically for the 
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treatment of cancer patients. We will discuss the signaling pathways underlying the 

combinatorial growth-inhibitory activity of capsaicinoids and the anti-cancer drugs in vitro and 

in vivo. Finally, we will discuss the pharmacokinetic nature of the interaction between 

capsaicinoids and the chemotherapeutic drug, whether it is additive, synergistic or antagonistic 

and the statistical methods used to determine such drug-drug interactions. 

Figure 1. A schematic of the various anticancer and chemopreventive mechanisms 
triggered by capsaicin in experimental models of carcinogenesis and metastasis. 

 

ANTIMETABOLITES 

Antimetabolites are a class of chemotherapeutic drugs which function by mimicking 

endogenous molecules required for cell cycle progression (Chabner et al., 2011; Peters, 2014). 

By mimicking these compounds, antimetabolites become incorporated into the DNA or RNA of 

replicating cells, causing errors in these essential molecules. These errors lead to DNA/RNA 

damage and subsequently cause cell death (Longley, Harkin, & Johnston, 2003; Longley & 

Johnston, 2005). Knowledge of nucleic acid biosynthetic processes allowed for the development 

of various antimetabolites, the earliest with clinical utility included methotrexate, 6-

mercaptopurine (6-MP) and 5-fluorouracil (5-FU; Figure 2A) (Burchenal et al., 1953; Farber & 
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Diamond, 1948; Heidelberger et al., 1957; Jolivet, Cowan, Curt, Clendeninn, & Chabner, 1983; 

Rutman, Cantarow, & Paschkis, 1954). Two shortcomings of antimetabolites are the dose-

dependent toxicities and development of drug resistance (Longley & Johnston, 2005; N. Zhang, 

Yin, Xu, & Chen, 2008). One strategy to overcome these problems is to combine these potent 

antimetabolite drugs with a bioactive nutritional compound that will act synergistically to reduce 

the IC50 of the main chemotherapeutic treatment (Cheung-Ong, Giaever, & Nislow, 2013). The 

exploration of capsaicin in combination with antimetabolite agents is ongoing and has provided 

some promising results.  

Several studies have examined the combinatorial anti-cancer activity of 5-FU and 

capsaicin. 5-FU is an integral part of the treatment regimens for a variety of malignancies, 

including skin, colorectal, breast, pancreatic and gastrointestinal cancer (Sorrentino, Kim, 

Foderaro, & Truesdell, 2012). Side effects of 5-FU include cardiotoxicity, along with diarrhea, 

mucositis, myelosuppression, and thrombophlebitis (Sorrentino et al., 2012). Combination 

chemotherapy involving 5-FU is the cornerstone of gastrointestinal tract adenocarcinomas 

(Chabner et al., 2011; Tang, Feng, Liang, & Cai, 2016). The combination of capsaicin and 5-FU 

was investigated in HGC-27 metastatic gastric cancer cells. Meral et al., (2014) showed that 

various concentration combinations of 5-FU and capsaicin effectively inhibited the growth of 

HGC-27 cells. Treatment with 50 µM 5-FU along with 12, 25, 50 or 100 µM capsaicin showed 

significant decrease in cell viability when compared to the control at 24 and 48 hours (Meral et 

al., 2014). The authors inferred that capsaicin at high concentrations ranging from 25-100 µM 

sensitized HGC-27 human gastric cancer cells to 5-FU-induced apoptosis at 48 hours (Meral et 

al., 2014). This group also assessed cell injury and found that 25-200 µM of capsaicin 

significantly altered both LDH and glucose concentrations, while low concentrations of capsaicin 
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(12 µM) caused no elevation of LDH or glucose levels. Such observations suggest that the 

combinatorial growth-inhibitory activity of 5-FU and capsaicin is maximal at 50 µM 5-FU and 

12 µM capsaicin, while capsaicin (as a single agent) displays marginal growth-inhibitory activity 

and no cell injury (Meral et al., 2014). Although the authors claimed the interaction between 5-

FU and capsaicin to be synergistic, statistical analysis such as the Chou-Talalay isobologram 

method to confirm synergy between the two drugs was not performed. The isobologram analysis 

yields a factor known as combination index (CI). A value of CI lower than 1 indicates synergy 

between the drugs. The CI equals 1 for additive drug interactions. If the CI is greater than 1, the 

drugs are antagonistic to one another (Chou, 2008, 2010). 
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Figure 2. Antimetabolites  
(A) 5-Fluorouracil. (5-FU). (B) Gemcitabine. (C) Resiniferatoxin (RTX). (D) Signaling 
mechanisms underlying 5-FU induced drug resistance in human CCA cells. The presence of 
capsaicin along with 5-FU downregulates autophagy and triggers downstream apoptosis in 
human CCA cells.  

Human cholangiocarcinoma (CCA) is a diverse group of hepatobiliary cancers, which 

originate from the biliary tree (Banales et al., 2016). CCAs are classified into intrahepatic 

(iCCA), perihilar (pCCA) and distal (dCCA) based on their anatomical location. The main 

challenge of CCA therapy is its aggressive clinical course and chemotherapy-refractory nature 

(Banales et al., 2016). Hong et al., (2015) analyzed the cytotoxicity of 5-FU in a panel of human 

CCA cell lines, namely QBC939, MZ-ChA-1 and SK-ChA-1 (Z. F. Hong et al., 2015). They 

observed that all three cell lines were relatively resistant to 5-FU and displayed growth-

inhibitory activity only at high concentrations above 100 µM. A similar trend was observed with 

25-150 µM capsaicin at 48 hours, with IC50 values approximately 100 µM in all the three cell 

lines. Subsequently, the authors used varying concentrations of capsaicin (0, 20, 40 and 80 µM) 
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in the presence or absence of varying 5-FU concentrations (0, 20, 40 and 80 µM). Capsaicin 

sensitized QBC939 human CCA cells to 5-FU-induced apoptosis at multiple concentrations (Z. 

F. Hong et al., 2015). Chou-Talalay isobologram analysis was performed and the interaction 

between 5-FU and capsaicin was found to be synergistic at two combinations. The presence of 

40 µM capsaicin along with 40 µM 5-FU lowered the IC50 of 5-FU from 126 µM to 35 µM 

(CI=0.69). Maximal synergy was observed at 40 µM capsaicin and 80 µM 5-FU (CI=0.48) in 

QBC939 cells. When stained for Annexin-V the combination of 40 µM capsaicin along with 40 

µM 5-FU showed significantly more Annexin-V-positive cells than that of either drug alone (Z. 

F. Hong et al., 2015). The authors also showed capsaicin sensitized human CCA to the apoptotic 

activity of 5-FU in athymic mouse models, lending strength to the study. The CCA-tumor-

bearing mice were administered 60 mg 5-FU/kg body weight/day, 150 mg capsaicin/kg body 

weight/day or a combination of both. Notably, 5-FU and capsaicin alone did not have any impact 

on tumor volumes, while the combination of the two drugs showed significantly greater anti-

tumor activity (Z. F. Hong et al., 2015). Terminal deoxynucleotidyl transferase dUTP nick end 

labeling (TUNEL) staining on the CCA tumors (isolated from athymic mice) showed significant 

increase in apoptosis in tumor-bearing mice treated with the combination of 5-FU and capsaicin 

than either drug administered as single agents (Z. F. Hong et al., 2015). 

Autophagy is one of the mechanisms underlying 5-FU-induced resistance of 

gastrointestinal cancers (Tang et al., 2016). Established tumors need autophagy to protect 

themselves from hostile microenvironments like hypoxia, nutrient deprivation and 

chemotherapeutic drugs (Levy, Towers, & Thorburn, 2017; White, Mehnert, & Chan, 2015). The 

synergistic anti-cancer activity of 5-FU and capsaicin was due to the ability of capsaicin to 

inhibit 5-FU-induced autophagy of QBC939 human CCA cells. The treatment of QBC939 with 
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40 µM 5-FU upregulated the expression of autophagic genes beclin1, atg5 and the autophagic 

biomarker protein LC3II. The presence of 40 µM capsaicin along with 5-FU decreased the levels 

of beclin1, atg and LC3II comparable to untreated cells. When the autophagy inhibitor 3-

methyladenine (3-MA) was incorporated along with 5-FU the above-mentioned 5-FU induced 

alterations in beclin1, atg5 and LC3II were also reversed supporting that capsaicin has the ability 

to chemosensitize resistant cells by inhibiting drug-induced autophagy (Z. F. Hong et al., 2015). 

The mechanistic target of rapamycin (mTOR) pathway is a vital controller of cellular autophagy 

(Levy et al., 2017; Paquette, El-Houjeiri, & Pause, 2018). mTOR is a serine/threonine protein 

kinase comprised of two distinct complexes called mTORC1 and mTORC2. The mTORC1 

complex plays a crucial role in autophagic signaling processes. The activity of mTORC1 is 

regulated by a diverse range of upstream signals such as growth and stress signals, as well as 

cytoplasmic kinases like extracellular related kinase (ERK), phosphoinositol-3 kinase (PI-

3K)/Akt and ribosomal S6 kinase (RSK) (Paquette et al., 2018). Hong et al., (2015) observed that 

5-FU inhibited the phosphorylation of Akt (Ser473) and pS6 (Ser235/236), while the presence of 

capsaicin reversed 5-FU inhibition of Akt and pS6 phosphorylation (Z. F. Hong et al., 2015). 

These findings suggest that capsaicin reduces chemoresistance to 5-FU by inhibiting 5-FU-

induced autophagy via the Akt/mTOR pathway to induce cell death (Figure 2D). 

Gemcitabine (Figure 2B), an antimetabolite pyrimidine analog, is the first-line 

monotherapy treatment for pancreatic cancer (Chabner et al., 2011). Vendrely et al., (2017) 

examined the effect of three nutritional compounds namely, capsaicin, resveratrol and 

sulforaphane on the anti-tumor activity of gemcitabine. Chou-Talalay isobologram analysis 

showed that capsaicin and gemcitabine displayed synergistic growth-inhibitory activity in 

CAPAN-2 human pancreatic cancer cells (CI=0.5). The maximal synergistic activity was 
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observed with a combination of resveratrol, capsaicin and gemcitabine (CI=0.05). Subsequently, 

the authors tested the anti-tumor activity of these drug combinations in athymic mice (Vendrely 

et al., 2017). CAPAN-2 human pancreatic tumor-bearing mice were treated with 12.5 mg 

gemcitabine/kg body weight three times a week by intraperitoneal (i.p.) injection. Resveratrol 

(50 mg/kg body weight) and capsaicin (5 mg/kg body weight) were administered by oral gavage 

three times a week. Treatment with resveratrol and capsaicin did not sensitize CAPAN-2 tumors 

to the growth-suppressive effects of gemcitabine at the standard dose. Interestingly, when the 

dose of gemcitabine was reduced by 33% (8.3 mg/kg body weight) such that gemcitabine alone 

did not have any impact on the growth rate of CAPAN-2 tumors in athymic mice, the 

combination with capsaicin and resveratrol to the low-dose gemcitabine fully restored the anti-

tumor response to gemcitabine equivalent to the full dose (12.5 mg/kg body weight). 

Histological examination of the tumors showed increased therapeutic response in tumors treated 

with low dose gemcitabine (8.3 mg/kg body weight), resveratrol and capsaicin (hereafter referred 

as C+R+GL) compared to the other treatment groups. The anti-tumor activity of C+R+GL 

correlated with increased Bax/Bcl2 ratio and decreased phospho-Akt/total Akt ratio, suggesting 

that C+R+GL selectively stimulated pro-apoptotic pathways with concomitant downregulation of 

cell survival mechanisms (Vendrely et al., 2017).  

Resiniferatoxin (RTX; Figure 2C) is a naturally occurring capsaicinoid isolated from the 

latex of the cactus Euphorbia resinifera (Friedman et al., 2018). Hartel et al., (2006) examined 

the combinatorial apoptotic activity of RTX with gemcitabine or 5-FU. Although RTX alone 

displayed robust apoptotic activity in MIA-PaCa-2 and CAPAN-1 human pancreatic cancer cells, 

it showed no synergistic interaction with gemcitabine or 5-FU in these studies. Statistical 
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analysis could not confirm whether the interaction between RTX and 5-FU (or gemcitabine) was 

additive (Hartel et al., 2006). 

PLATINUM-BASED DRUGS 

Platinum-based drugs are the standard of care for the treatment of many solid tumors and 

are a vital component in both curative-intent and palliative combination chemotherapy regimens 

(Chabner et al., 2011; Dasari & Tchounwou, 2014; Dilruba & Kalayda, 2016; Fuertes, Alonso, & 

Perez, 2003). Combination chemotherapy involving cisplatin has been used for cancers of the 

lung, ovaries, testes, solid head and neck tumors, and sarcomas (Chabner et al., 2011). The first 

platinum drug, Cisplatin (cis-diamminedichloroplatinum; Figure 3A), was originally described in 

the late 1900s for its ability to block binary fission in bacteria (Oun, Moussa, & Wheate, 2018). 

Cisplatin directly binds to DNA causing intra/interstrand crosslinking, resulting in DNA damage 

and subsequent apoptosis (Chabner et al., 2011).  

A major drawback to the clinical use of platinum-based drugs is the dose-limiting 

toxicities, including nephrotoxicity, which can lead to acute, and often-irreversible kidney injury 

(Bai et al., 2017; Dilruba & Kalayda, 2016; Manohar & Leung, 2018; Oun et al., 2018). 

Ototoxicity resulting in damage to cochlear hair follicles can cause permanent hearing loss 

(Dilruba & Kalayda, 2016; Paken, Govender, Pillay, & Sewram, 2016). Neurotoxicity leading to 

pain, weakness or numbness in the extremities, especially the hands and feet, has been reported 

in patients. Hepatotoxicity, evidenced by increased hepatic enzymes in the serum, as well as 

gastrointestinal and hematological toxicities have also been reported (Dasari & Tchounwou, 

2014; Manohar & Leung, 2018; Oun et al., 2018). With toxicities affecting almost every major 

organ system, one can see why dose monitoring and using the lowest dose possible is crucial 

when treating patients. Newer drugs of this class, including carboplatin and oxaliplatin, have 
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similar mechanisms of action as cisplatin, but display divergent dose-limiting toxicity profiles 

(Kilari, Guancial, & Kim, 2016). The administration of carboplatin is associated with a lower 

incidence of nausea and vomiting (relative to cisplatin) and a lower risk of nephrotoxicity and 

ototoxicity in cancer patients (Dilruba & Kalayda, 2016; Oun et al., 2018). However, carboplatin 

possesses greater myelosuppressive activity, while oxaliplatin has the lowest risk of 

nephrotoxicity and ototoxicity amongst these drugs (Oun et al., 2018).  

Figure 3. Platinum-based drugs 
(A) Cisplatin. (B) LH4. (C) LH5. (D) Stomach cancer cells acquire resistance to cisplatin by 
increased expression of Aurora Kinase A. When capsaicin is added it stimulates the degradation 
of Aurora Kinase thereby circumventing cisplatin induced drug resistance.  

The clinical efficacy of platinum-based drugs is further limited by the development of 

chemoresistance in tumor cells (Dasari & Tchounwou, 2014; Kilari et al., 2016). Almost all solid 

tumors eventually develop resistance to cisplatin and its related compounds. Cisplatin-based 

combination therapy frequently gives excellent initial outcomes in lung cancer patients. 

However, the disease often relapses, and the tumor is unresponsive to cisplatin (Fennell et al., 

2016). The mechanisms underlying cisplatin resistance involve multiple pathways, including the 
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elevation and conjugation by glutathione (GSH) and binding by metallothionein, which minimize 

DNA binding by active forms of platinum-based drugs (Amable, 2016; Galluzzi et al., 2012; 

Oun et al., 2018). Cisplatin resistance also involves the activation of DNA repair pathways, 

dysregulation of p53 tumor suppressor gene function, amplification of the pro-survival 

Ras/MAPK signaling pathway, and upregulation of heat shock proteins (HSP) in neoplastic cells 

(Amable, 2016; Dasari & Tchounwou, 2014). Furthermore, the acquisition of cisplatin resistance 

also involves down-regulation of drug uptake transporters and upregulation of the functional 

activity of efflux transporters (Kilari et al., 2016). Despite these limitations, cisplatin-based 

chemotherapy remains a standard of care for a variety of solid tumors (Dasari & Tchounwou, 

2014; Dilruba & Kalayda, 2016). All of these observations have led to intense research to 

identify potential compounds that can improve the therapeutic index of cisplatin, improve its 

toxicity profile, circumvent drug resistance mechanisms, and augment its cytotoxic activity in 

human cancers.  

Recent interest has increased focus on natural fruit- and vegetable-derived compounds as 

potential agents to reduce cisplatin nephrotoxicity and increase tumor sensitivity to 

chemotherapy (Athira, Madhana, & Lahkar, 2016; Gomez-Sierra, Eugenio-Perez, Sanchez-

Chinchillas, & Pedraza-Chaverri, 2018). Garufi et al., (2016) investigated the growth-inhibitory 

activity of cisplatin with capsaicin in human p53 mutant glioblastoma cells (Garufi, Pistritto, 

Cirone, & D'Orazi, 2016). The authors treated U373 human glioblastoma cells with 100 µM 

capsaicin, 2.5 µg/ml cisplatin or a combination of both drugs over 24 hours and observed that the 

combination of capsaicin with cisplatin induced 3-fold higher cell death relative to either 

capsaicin or cisplatin alone (Garufi et al., 2016). This study further showed that capsaicin 

reactivated p53 function in U373 cells, using over-expression and siRNA techniques to confirm 
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the role of the p53 wild type pathway in the growth-suppressive activity of capsaicin as a single 

agent. The authors speculated that capsaicin was sensitizing U373 cells to cisplatin by restoration 

of p53 wild type activity. The caveat of the study is the authors did not present direct 

experimental evidence (by p53-siRNA and p53 plasmid vectors) showing that the enhanced 

growth-inhibitory activity of cisplatin-capsaicin combination was mediated by the p53 pathway. 

Notably, cell authentication experiments have shown that the U373 MG cell line (available at 

ATCC and EACC) is genetically distinct from the original U373 MG cell line isolated by 

Westmark et al., (1973) in Uppsala, Sweden (Ishii et al., 1999; "Misidentified Cell Lines," ; 

Westermark, 1973). The U373 MG cell line obtained by ATCC and EACC was identical to 

another human glioma cell line U251. Subsequently, both ATCC and EACC have discontinued 

this cell line from their inventory. 

Huh et al., (2011) analyzed the cooperative growth-suppressive activity of cisplatin and 

capsaicin in human stomach cancers using a panel of Korean human stomach cancer cell lines 

(Huh, Lee, Lee, Park, & Han, 2011). They treated SNU01, SNU-5, SNU-16, SNU-601, SNU-

638 and SNU-668 cells with 100-500 µM cisplatin for 6 hours. The authors observed that out of 

all the cell lines tested, SNU-668 was the most resistant to cisplatin, with an IC50 value of over 

500 µM (Huh et al., 2011). Subsequently, they tested whether 300 µM capsaicin could sensitize 

SNU-668 cells to cisplatin-induced apoptosis. The combination of 20 µM cisplatin with 300 µM 

capsaicin decreased viability of SNU-668 cells approximately 7-fold, relative to vehicle treated 

or cisplatin only treated cells (Huh et al., 2011). Similarly, the combination of cisplatin and 

capsaicin displayed 5-fold lower cell viability, compared to SNU-668 cells treated with capsaicin 

alone. By using flow cytometry, Huh and colleagues were able to detect that the treatment of 

SNU-668 cells with both capsaicin (300 µM) and cisplatin (20 µM) resulted in an accumulation 
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of G1- and S-phase cells. When SNU688 cells were treated with cisplatin alone, the cells 

accumulated in the G2/M-phase, which led to the conclusion that capsaicin overcame cisplatin-

induced G2/M-phase arrest in SNU-688 cells and caused accumulation in G1 (Huh et al., 2011). 

TUNEL apoptosis assays revealed the treatment with 20 µM cisplatin alone caused apoptosis in 

5.16% of SNU-668 cells; 300 µM capsaicin alone in 22.4% of cells; however, the combination 

induced apoptotic cell death in 48.5% of cells. Capsaicin induced a greater magnitude of 

apoptosis in SNU-668 cells than cisplatin probably due to the fact that SNU-688 cells are 

cisplatin resistant and therefore have a low apoptotic response towards cisplatin. The 

combination of cisplatin and capsaicin abolished the expression of both Bcl-2 and Bcl-xL. 

Notably, cisplatin increased the expression of Bcl-2 in SNU-688, implying that Bcl-2 may be one 

of the mechanisms underlying a cisplatin resistant phenotype.  

Several lines of evidence show that overexpression of Aurora kinase A (Aurora A) leads 

to tumor-acquired chemotherapeutic resistance, especially to cisplatin (Figure 3D) (Kuang et al., 

2017; Polacchini et al., 2016; L. Wang, Arras, et al., 2017; Xu et al., 2014). Aurora A is a serine 

threonine kinase involved in several steps of mitosis, such as centrosome function, spindle 

assembly, chromosome alignment and mitotic entry (Borisa & Bhatt, 2017). Treatment with 

cisplatin was found to increase the expression of Aurora A levels in SNU-668 cells (Huh et al., 

2011). In contrast, the treatment of SNU-668 with 300 µM capsaicin almost abolished the levels 

of Aurora A in these cells. The combination of cisplatin and capsaicin also decreased expression 

of Aurora A below detectable levels, effectively inhibiting cisplatin-induced increase in Aurora 

A. Experiments using the proteasome inhibitor MG132 revealed that capsaicin suppressed the 

levels of cellular Aurora A via enhancement of proteasomal degradation (Huh et al., 2011). Such 

capsaicin-induced degradation of Aurora A prevents cisplatin-induced nuclear factor kappa-B 
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(NF-kB) activation and survival of drug resistant SNU-338 cells (Huh et al., 2011). Therefore, 

the inclusion of capsaicin along with cisplatin may provide a valuable strategy for overcoming 

cisplatin resistance in human stomach cancer cells. 

In other studies, the combination of cisplatin and capsaicin robustly decreased viability of 

the human neuroblastoma cell line KELLY (Altun, Altun, Olgun, Pamukoglu, & Olgun, 2016). 

KELLY cells were treated with 5 µM capsaicin, 100 µM cisplatin or a combination of both for 

24 hours. WST-1 assays revealed that 5 µM capsaicin had no effect on the viability of these 

cells. In contrast, 100 µM cisplatin decreased the viability by approximately 25% (Altun et al., 

2016). When 5 µM capsaicin was combined with 100 µM cisplatin there was a dramatic decrease 

in the viability (by about 88%). Annexin-V/PI flow cytometric analysis revealed that the 

combination of cisplatin and capsaicin induced greater magnitudes of apoptosis than either drug 

alone (Altun et al., 2016).  

Arzuman et al., (2014) synthesized a new platinum-based compound 

tris(benzimidazole)chloroplatinum(II) or LH4 (Figure 3B) (Arzuman, Beale, Chan, Yu, & Huq, 

2014) and examined the combinatorial activity of LH4 with various phytochemicals including 

capsaicin. MTT assays were used to determine the concentration-dependent growth-inhibitory 

activity of LH4 and cisplatin at concentrations ranging from 0.16-20 µM in three variants of the 

human ovarian cancer cell line A2780 at 72 hours. These three variant ovarian cancer cell lines 

are characterized by their chemoresistant behavior; A2780 is cisplatin sensitive, A2780cisR is 

cisplatin resistant, and A2780ZDO473R is picoplatin resistant (Arzuman et al., 2014). They 

observed that capsaicin decreased the viability of all three lines. Using Chou-Talalay 

isobologram, the authors found that the combination of LH4 and capsaicin was synergistic in 

A2780 (CI=0.41), A2780cisR (CI=0.48) and A2780ZDO473R (CI=0.36) cells (Arzuman et al., 2014). 
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They also investigated whether pretreatment with one of the drugs could enhance synergistic 

growth suppressive activity. They pretreated all the cell lines with LH4 and then treated the cells 

with capsaicin four hours later and revealed that the interaction remained synergistic in A2780 

(CI=0.52), A2780cisR (CI=0.94) and A2780ZDO473R (CI=0.84) cells. A noteworthy observation is 

the magnitude of synergy between LH4 and capsaicin was maximal when both drugs were added 

simultaneously to the cells, especially in the platinum resistant A2780 cell lines (Arzuman et al., 

2014). The combination of capsaicin and LH4 added together to A2780 and A2780cisR showed 

higher intracellular platinum levels than when LH4 was given alone (Arzuman et al., 2014). The 

combination of LH4 and capsaicin induced a higher magnitude of intracellular platinum 

accumulation in A2780cisR cells (6-7 fold higher than LH4 alone) than in the parent line A2780 

(1.5 fold higher than LH4 alone). The combination of LH4 and capsaicin showed no changes in 

platinum-DNA binding in A2780 and A2780cisR cells, relative to LH4 alone. However, when the 

cells were treated with capsaicin followed by LH4, there was a robust increase in the amounts of 

platinum-DNA complexes in A2780cisR human ovarian cancer cells (Arzuman et al., 2014). 

A monofunctional platinum (II) drug tris(quinoline)monocloroplatinum(II) or LH5 

(Figure 3C) (Arzuman, Beale, Yu, & Huq, 2016) was used to evaluate the combinatorial growth-

suppressive effects of LH5 and capsaicin in human ovarian cancer cells. The authors observed 

that the greatest synergistic effect was seen when both LH5 and capsaicin were used to treat the 

cells at the same time (the 0/0 protocol) in ED50, ED75, and ED90 measured across A2780, 

A2780cisR and A2780ZDO473R human ovarian cancer cells (Arzuman et al., 2016). The picoplatin 

resistant cell line A2780ZDO473R showed the lowest degree of synergy, when compared to the 

other two cell lines. Although the authors have not performed any experiments to investigate the 

signaling pathways underlying the synergistic growth-suppressive activity of LH5 and capsaicin, 
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they speculate that capsaicin induces an accumulation of cells in the G1-phase, while LH5 causes 

cell cycle arrest in the G2-phase and subsequent apoptosis via the p53 pathway. Experiments 

involving pretreatment of LH5 followed by capsaicin 4 hours after (0/4 protocol) showed greater 

magnitude of synergy and lower CI values than the 4/0 protocol, when LH5 was added 4 hours 

after capsaicin (Arzuman et al., 2016). Further studies are warranted to investigate why the 0/0 

protocol showed a greater synergistic interaction than pretreatment of either drug.  

Wang et al., (2018) have demonstrated that capsaicin synergizes with cisplatin in 

osteosarcoma cells xenografted in athymic mice (Y. Wang et al., 2018). As a proof of concept, 

they investigated the combinatorial activity of cisplatin and capsaicin in three human 

osteosarcoma cell lines, namely MG63, 143B and HOS. The combination of 50 µM or 100 μM 

capsaicin synergistically decreased cell viability of MG63 and 143B cells across a range of 

cisplatin concentrations (16.7-66.7 µM). Furthermore, the combination of 100 μM capsaicin with 

16.7 μM cisplatin induced a greater magnitude of apoptosis and cell cycle arrest in all 

osteosarcoma cell lines than either drug administered alone (Y. Wang et al., 2018). This 

correlated with enhanced upregulation of pro-apoptotic and cell cycle inhibitory proteins (Bax, 

caspase-3, cytochrome C, p21, p18) and decreased expression of pro-survival biomarkers (Bcl-2, 

survivin, cyclins D1, D3 and cdk4/6). Most interestingly, the presence of 100 μM capsaicin 

increased the anti-invasive activity of cisplatin (Y. Wang et al., 2018). The functional activity of 

matrix metalloproteinase-2 and -9 (MMP2 and MMP9) was suppressed to a greater extent when 

cisplatin and capsaicin were added together than either drug alone. Finally, the administration of 

20 mg capsaicin/kg body weight along with 4 mg cisplatin/kg body weight decreased the growth 

rate of 143B human osteosarcoma tumors xenotransplanted in athymic mice more potently than 

either drug administered alone (Y. Wang et al., 2018). 
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Innovative studies have also examined the ability of capsaicin to diminish/minimize the 

toxic side effects of cisplatin. A major toxic side effect of cisplatin is ototoxicity, which is 

defined as hearing loss due to temporary or permanent damage to the sensory hair cells in the 

cochlea (Oun et al., 2018; Paken et al., 2016). Altun et al., (2016) evaluated the possibility of 

using capsaicin as a preventative agent to combat cisplatin-induced ototoxicity in murine mouse 

ear organ corti cells (HEI-OC1) (Altun et al., 2016). The treatment of HEI-OC1 with 100 µM 

cisplatin caused a 64% decrease in cell viability. Notably, 5 µM capsaicin did not impact the 

viability of HEI-OC1 cells (Altun et al., 2016). The combination of capsaicin and cisplatin 

displayed lower growth-inhibitory activity (20% decrease in cell viability) relative to cisplatin 

alone (64% decrease in cell viability). Gene expression analysis revealed that the combination of 

cisplatin and capsaicin upregulated mitosis-related cell cycle genes (cdc25c), DNA repair genes 

(Fancg, Mif, M1H3), and downregulated apoptosis-related genes (Bax, PARP2, p53), leading to 

survival of HEI-OC1 ear organ corti cells (Altun et al., 2016). 

Capsaicin was also shown to protect against cisplatin-induced nephrotoxicity. Shimeda et 

al., (2005) induced nephrotoxicity in Sprague-Dawley rats by i.p. injection of 5 mg cisplatin/kg 

body weight followed by 10 mg capsaicin/kg body weight by oral gavage twice daily for six days 

after cisplatin administration. Cisplatin-induced nephrotoxicity was characterized by decreased 

body weight, kidney GSH content and kidney superoxide dismutase (SOD) activity, an increase 

in kidney weight, kidney malondialdehyde levels, serum creatinine, and blood urea nitrogen 

(BUN) levels. The administration of capsaicin along with cisplatin significantly decreased BUN, 

serum creatinine and kidney malondialdehyde levels and increased kidney SOD activity 

(Shimeda et al., 2005). Capsaicin administration also reversed the cisplatin-induced increase in 

kidney weight, returning kidneys to normal weights. The authors went on to show that capsaicin 
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mitigated cisplatin-induced nephrotoxicity by scavenging free radicals (generated by cisplatin-

treatment) via the SOD pathway. 

Jung et al., (2014) observed that capsaicin abrogated the growth-suppressive effect of 

cisplatin in HK2 human renal proximal tubule cells. Subsequently, they extended their studies to 

a mouse model to confirm the protective activity of capsaicin in cisplatin-induced nephrotoxicity 

in C57BL6 mice (Jung et al., 2014; Shimeda et al., 2005). Their study design was slightly 

different from Shimeda et al., (2005). The differences in cisplatin treatment regimens was most 

likely due to rats being more susceptible to cisplatin nephrotoxicity than mice (Katayama et al., 

2011; Perse & Veceric-Haler, 2018). They orally administered three doses of capsaicin (2.5, 5, or 

10 mg/kg body weight) once a day for five consecutive days. A single dose of cisplatin (5 mg/kg 

body weight) was i.p. injected on day 4 (twelve hours after the administration of capsaicin). The 

administration of cisplatin induced an 8-fold increase in serum creatinine and a 4-fold increase in 

BUN. The pretreatment of mice with capsaicin at doses of 5 mg/kg body weight or 10 mg/kg 

body weight decreased cisplatin-induced increases in serum creatinine and BUN levels. Notably, 

the dose of 10 mg/kg body weight capsaicin, completely normalized creatinine and BUN levels 

in mice. The kidneys of mice treated with cisplatin showed tubular and glomerular injury, 

namely tubular dilation, vacuole formation and necrosis. However, when the mice were pre-

administered capsaicin, their kidney reverted to near normal morphology, with only slight 

changes in glomeruli and minor edema of the tubular cells (Jung et al., 2014).  

Several convergent studies have shown that oxidative stress, inflammation, 

proinflammatory cytokines and toll-like receptors (TLR) contribute to tubular toxicity and 

vascular injury observed in cisplatin-induced renal injury (Cenedeze et al., 2007; Kuhad, 

Pilkhwal, Sharma, Tirkey, & Chopra, 2007; Mitazaki et al., 2013; Mukhopadhyay et al., 2010; 
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Ramesh & Reeves, 2002; Sahu, Kuncha, Sindhura, & Sistla, 2013; Valles, Lorenzo, Bocanegra, 

& Valles, 2014). Jung et al., (2014) observed that cisplatin induced the upregulation of 

proinflammatory cytokines (TNF-α, IL-1b and IL-6), TLR4 and its ligands (high mobility group 

box 1, HMB1; advanced glycation end product, AGE) in the kidney. The pre-administration of 

capsaicin (10 mg/kg body weight) abolished cisplatin-induced alterations in TNF-α, IL-1b, IL-6, 

TLR, HMB1 and AGE in the kidneys of mice (Jung et al., 2014). Next, the authors examined the 

effect of capsaicin on cisplatin-induced production of ROS in the kidney. The enzymes of the 

NADPH oxidase family (NOX) play a vital role in ROS generation by catalyzing the transfer of 

electrons from NADPH to molecular oxygen (Bedard & Krause, 2007). Out of seven NOX 

isoforms, NOX4 (and to a lesser extent NOX2) have been implicated in cisplatin-induced 

nephrotoxicity (Sedeek, Nasrallah, Touyz, & Hebert, 2013). Jung et al., (2014) measured ROS 

levels in HK2 immortalized human proximal tubule cells (Jung et al., 2014). They observed that 

the treatment of HK2 cells with 30 μM cisplatin induced robust ROS activity. The presence of 

100 μM capsaicin along with cisplatin decreased the ROS levels close to those observed in 

vehicle-only treated cells. Similarly, the combination of 30 μM cisplatin and 100 μM capsaicin 

reversed cisplatin-induced NOX4 expression in HK2 cells over 24 hours. IHC of kidney tissues 

from cisplatin-treated mice showed vigorous expression of NOX-4 and 4-hydroxynonenal (4-

HNE; a biomarker for lipid peroxidation), which was reduced by pre-treatment with 10 mg 

capsaicin/kg body weight (Jung et al., 2014). These findings suggest that capsaicin reduced 

oxidative stress and ROS formation mediated by cisplatin treatment. 

A previous study showed that increased expression of heme oxygenase-1 (HO-1) via 

overexpression or pharmacological induction confers protection from cisplatin-induced 

ototoxicity in both cell culture and in vivo mouse models (So et al., 2008). Traditionally, the 
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principal function of HO-1 is to catalyze the breakdown of heme into biliverdin, carbon 

monoxide and iron (Loboda, Damulewicz, Pyza, Jozkowicz, & Dulak, 2016). Several congruent 

studies have indicated that the induction of HO-1 functions as a defense mechanism, shielding 

cells from the damaging effects of oxidative stress (Bolisetty, Zarjou, & Agarwal, 2017). The 

disruption of HO-1 activity in rats or deletion of the HO-1 gene in mice results in exacerbation of 

cisplatin-induced renal injury, emphasizing the protective role of this enzyme in cisplatin-

induced nephrotoxicity (Bolisetty et al., 2017). Jung et al., (2014) found that HO-1 was 

substantially decreased in the kidneys of cisplatin-treated mice. When the mice were pretreated 

with 2.5, 5.0 and 10 mg capsaicin/kg body weight (before the administration of cisplatin), there 

was an induction of HO-1 protein levels in kidney homogenates (Jung et al., 2014). The 

protective effect of capsaicin on the growth-suppressive activity of cisplatin (in HK2 cells) was 

reversed in the presence of pharmacological inhibitors of the HO-1 pathway (namely ZnPP 1X) 

or HO-1 siRNA. Notably, the treatment of HK2 cells with 100 μM capsaicin caused robust 

upregulation of HO-1 levels starting at 6 to 24 hours. Taken together, the data of Jung et al., 

(2014) indicate a pivotal role of the HO-1 pathway in the cytoprotective activity of capsaicin 

against cisplatin-induced nephrotoxicity (Jung et al., 2014). We believe that the protective 

activity of capsaicin against cisplatin-induced nephrotoxicity is extremely clinically relevant. 

Such observations may facilitate the design and application of novel capsaicin-cisplatin based 

combination therapies that will improve the therapeutic index of cisplatin in cancer patients. 

Furthermore, the synergistic cytotoxic activity of cisplatin and capsaicin suggests that lower 

doses of cisplatin (along with capsaicin) may be required to achieve optimal therapeutic response 

in patients. The ability to lower the dose of cisplatin administered to a patient, while maintaining 
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or increasing potential cancer cell kill would be predicted to minimize the adverse effects and 

toxicity profile of cisplatin, while improving health outcomes for cancer patients. 

ANTHRACYCLINES  

Anthracyclines are a class of chemotherapeutic drugs originally isolated from 

Streptomyces peucetius bacteria (Arcamone et al., 1969; Chabner et al., 2011). Daunorubicin 

(Figure 4A) is considered to be the prototypical anthracycline, being the first anthracycline 

shown to have anti-cancer properties (Davis & Davis, 1979). A derivative of daunorubicin, 

doxorubicin (Figure 4B), was the second anthracycline to be discovered and evaluated for its 

antineoplastic activity (Baboota et al., 2014; Tacar, Sriamornsak, & Dass, 2013). Additional 

derivatives and metabolites have since joined the anthracycline chemotherapy family, including 

epirubucin, idarubicin and pirarubicin (Cersosimo & Hong, 1986; Hollingshead & Faulds, 1991; 

Minotti, Menna, Salvatorelli, Cairo, & Gianni, 2004). Anthracycline drugs have the ability to 

treat a variety of cancers, including both solid tumors and hematological malignancies (Chabner 

et al., 2011). Doxorubicin intercalates into the DNA and RNA and inhibits topoisomerase II 

function, preventing DNA and RNA replication, and inducing cell death in both normal and 

cancerous cells (Baboota et al., 2014; Tacar et al., 2013) .  

Figure 4. Anthracyclines  
(A) Daunorubicin. (B). Doxorubicin. (C). Pirarubicin.  
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Similar to other nonspecific chemotherapeutic agents, doxorubicin has a variety of toxic 

side effects associated with its use. Apart from nausea, gastrointestinal problems and 

neurological disturbances, doxorubicin has been documented to cause toxicity in the liver, brain 

and kidneys (Tacar et al., 2013). The dose-limiting toxicity of doxorubicin is acute and chronic 

cardiotoxicity, characterized by myofibrillar loss, cytoplasmic vacuolization, apoptosis, 

interstitial edema, and fibroplasia (Chatterjee, Zhang, Honbo, & Karliner, 2010; Y. Shi, Moon, 

Dawood, McManus, & Liu, 2011). Due to the highly documented cardiotoxicity associated with 

doxorubicin, different types of clinical restrictions have been put in place for use in patients. 

Different types of drugs, such as beta-blockers or angiotensin II inhibitors, are now administered 

with doxorubicin in hopes of lowering the chance of the patient experiencing cardiotoxicity 

(Chatterjee et al., 2010). Due to the variety and severity of toxicities, the ability to use a lower 

dose of doxorubicin while maintaining its antineoplastic qualities would be a valuable 

therapeutic strategy to improve both the short-term and long-term safety of patients.  

The second generation doxorubicin analog, pirarubicin (also called THP-Adriamycin or 

THP-doxorubicin; Figure 4C), displays a wide spectrum of anti-tumor activity amongst solid 

tumors of the urinogenital system like bladder cancer (Arakawa et al., 2011; Crijnen & De 

Reijke, 2018). Almost 80% of all bladder cancers are superficial and do not invade surrounding 

muscles (Crijnen & De Reijke, 2018). Intravesical chemotherapy involving pirarubicin is the 

standard of care for non-invasive bladder cancer after transurethral resection of bladder tumors 

(TURBT) (Arakawa et al., 2011; Crijnen & De Reijke, 2018). A drawback of this therapeutic 

regimen is that the five-year recurrence rate amongst bladder cancer patients is relatively high 

(greater than 30%) (Crijnen & De Reijke, 2018). The capsaicin-receptor TRPV1 functions as a 

tumor suppressor in bladder cancer (Mistretta et al., 2014; Santoni et al., 2012). Capsaicin has 
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been shown to induce robust apoptosis and prevent metastasis of human bladder cancers via a 

TRPV1-dependent mechanism (Amantini et al., 2009; Santoni et al., 2012). Based on these 

findings, Zheng et al., (2016) investigated the anti-tumor activity of the combination of the 

TRPV1 agonist capsaicin in addition to the current standard of care, pirarubicin, in human 

bladder cancer cell lines (Zheng et al., 2016).  

The authors chose two human bladder transitional cell carcinoma cell lines (5637 and 

T24) for their studies. The 5637 cells expressed robust amounts of TRPV1 (at both mRNA and 

protein levels), whereas T24 cells are null for TRPV1 (Zheng et al., 2016). Their studies revealed 

that capsaicin displayed growth-suppressive activity only in TPRV1 expressing 5637 cells (IC50 

=150 µM) but not in the TRPV1 null T24 cells. Subsequently, they treated 5637 cells with a 

range of concentrations of pirarubicin (0-800 µM) in the presence or absence of 150 µM 

capsaicin for 12 hours and measured cell viability. They observed that the presence of capsaicin 

along with pirarubicin decreased the IC50 value of pirarubicin from 566 nM to 335 nM (Zheng et 

al., 2016).  

The predominant mechanism by which anthracycline compounds like pirarubicin 

suppress cell growth is intercalation between DNA strands, causing S- or G2/M-phase cell cycle 

arrest (Figure 5). Flow cytometry analysis revealed that the treatment of 5637 cells with 150 µM 

capsaicin caused G0/G1 arrest at 12 hours. When pirarubicin was combined with capsaicin, there 

was an elevation in the number of cells arrested in G2/M- and S-phase and a concomitant 

decrease in the fraction of cells in G0/G1-phase (Zheng et al., 2016). The presence of TRPV1 

antagonist capsazepine partially reversed the observed elevation of G2/M- and S-phase 

populations observed in the pirarubicin plus capsaicin treated 5637 cells. These findings suggest 
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that the TRPV1 pathway is at least in part responsible for capsaicin-induced sensitization of 5637 

cells to the anti-proliferative activity of pirarubicin.  

 

Figure 5. A simplified schematic of the signaling mechanisms of the synergistic anticancer 
activity of doxorubicin and capsaicin in human cancer cells. 

 

One of the important proteins involved in the entry of cells into S-phase is proliferating 

cell nuclear antigen (PCNA), which becomes elevated as cells progress from G1- to S-phase. 

Translocation of PCNA from the cytosol to the nucleus then facilitates cell cycle progression 

from S- to G2/M-phase (Zheng et al., 2016). The combination of capsaicin and pirarubicin did 

not induce significant elevation of PCNA relative to each drug alone; however, it potently 

blocked nuclear translocation of PCNA, thereby arresting the 5637 cells in S- and G2/M-phase 

(Zheng et al., 2016).  

A major factor that limits the efficacy of chemotherapy is the acquisition of multi-drug 

resistance in tumors during prolonged treatment. The molecular basis of such drug resistance 

(intrinsic or acquired) is multifactorial; however, drug efflux and drug metabolism mechanisms 
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play a major role in this process (Chabner et al., 2011). Drug efflux is mediated by membrane-

bound transporters that pump many of these anticancer drugs back out of the cell. This process 

decreases the bioavailability of the anti-cancer drug, and ablates their ability to kill cancer cells 

(Miller, 2003). Out of the seven subfamilies of ATP-binding cassette (ABC) transporters, the 

most extensively studied efflux transporter protein is the P-glycoprotein (P-gp), whose functional 

activity is elevated in a diverse array of human cancers (Z. Chen et al., 2016). Li et al., (2018) 

investigated the effect of capsaicin on the functional activity of P-gp in doxorubicin-resistant 

Caco-2 human colon carcinoma cells (H. Li, Krstin, Wang, & Wink, 2018). The efflux of the 

fluorescent dye Rho123 was used as a measure of cellular P-gp activity. The authors observed 

that the treatment of Caco-2 cells with capsaicin resulted in a concentration-dependent cellular 

retention of Rho123, implying that capsaicin blocked the activity of P-gp in Caco-2 cells. 

Furthermore, they confirmed the inhibitory effect of capsaicin on P-gp activity in a second 

resistant human leukemic cell line CEM/ADR5000 and obtained similar results (H. Li et al., 

2018). This is in contrast with the observations of Sadzuka et al., (2008) who did not see any 

effect of capsaicin on doxorubicin influx or efflux in Ehlrich ascitis carcinoma (EAC) cells and 

M5076 ovarian carcinoma cells (Sadzuka, Hatakeyama, Daimon, & Sonobe, 2008). Such 

differences may be explained by alterations in experimental design and in the nature of the 

cancer cell lines, such as differences in expression or function of P-gp, used in the two 

experiments. Sadzuka et al., (2008) measured total doxorubicin influx and efflux in neoplastic 

cells, whereas Li et al., (2018) specifically measured P-gp activity in human colon cancer and 

leukemia cell lines (H. Li et al., 2018; Sadzuka et al., 2008). There were also species differences 

of the cell lines used in the two research papers. The experiments by Sadzuka et al., (2008) were 

performed in M5076 murine ovarian sarcoma and mouse ascites carcinomas whereas the studies 
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by Li et al., (2018) used doxorubicin resistant human colon cancer and leukemia cell lines for 

their investigations (H. Li et al., 2018; Sadzuka et al., 2008). Whereas capsaicin blocks human P-

gp activity, it may have minimal impact on the functional activity of the abovementioned mouse 

ABC transporters. If capsaicin does not regulate the functional activity of murine ABC 

transporters, then doxorubicin transport in M5076 and EAC cells may not be sensitive to 

capsaicin. 

Subsequently, Li et al., (2018) explored the synergistic growth-inhibitory activity of 

doxorubicin and capsaicin in Caco-2 cells (H. Li et al., 2018). They combined the serial dilution 

doses of doxorubicin with fixed, non-toxic doses of capsaicin (IC10, IC20 or IC30) and determined 

the effect of these combinations on the viability of Caco-2 cells (H. Li et al., 2018). All three 

combinations of doxorubicin and capsaicin displayed synergistic growth inhibitory activity 

(CI<1) and significantly reduced the IC50 value of doxorubicin in Caco-2 cells. The magnitude of 

the CIs was very similar across all three groups. They repeated the experiments in 

CEM/ADR5000 cells and obtained analogous results. The magnitude of CI was higher 

(indicating less synergy) in CEM/ADR5000 cells relative to Caco-2 cells (H. Li et al., 2018). 

Studies in mouse models have indicated that capsaicin minimizes the acute cardiotoxic 

side effects of doxorubicin administration. Patel & Mehta, (2017) administered capsaicin at two 

doses (1 mg/kg body weight and 2 mg/kg body weight) to mice via intraperitoneal injections 

daily for ten days (Patel & Mehta, 2017). On day eight they injected the mice with 20 mg 

doxorubicin/kg body weight via i.p. Mice that were administered vehicle only or doxorubicin 

alone served as one of the control groups of the study. The authors observed that the acute 

administration of doxorubicin caused a reduction in the body and heart weights of the mice. 

However, doxorubicin-induced decreases of body weight and heart weights were abrogated when 
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the mice were pretreated with 1 mg capsaicin/kg body weight before doxorubicin administration 

(Patel & Mehta, 2017). The authors observed that the acute administration of doxorubicin caused 

cardiotoxicity as evidenced by elevation in creatinine kinase-muscle/brain (CK-MB), LDH and 

tissue malonaldehyde (MDA) levels. Similarly, the amounts of antioxidant enzymes like SOD, 

myocardial catalase (CAT) and GSH were reduced. The pre-administration of 1 mg capsaicin/kg 

body weight significantly abrogated doxorubicin-induced elevation of CK-MB, LDH and MDA 

levels (Patel & Mehta, 2017). Furthermore, capsaicin elevated the levels of SOD, CAT and GSH 

(which were lowered by the administration of doxorubicin). Histological analysis of heart 

sections from doxorubicin treated mice showed inflammation and cardiac necrosis as evidenced 

by vascular dilatation and loss of myofibrils network. In contrast, the heart sections of mice 

pretreated with 1 mg capsaicin/kg body weight before administration of doxorubicin were 

morphologically and histologically normal and comparable to vehicle-treated mice (Patel & 

Mehta, 2017). 

CAMPTOTHECIN ANALOGS 

Camptothecins are natural topoisomerase-1 inhibitors isolated from the Chinese tree 

Camptotheca accuminata (Chabner et al., 2011). Camptothecin (Figure 6A) and its related 

analogs form a tertiary complex with single-stranded DNA (during S-phase of the cell cycle) and 

topoisomerase 1, leading to DNA damage and cell death (Chabner et al., 2011). Two synthetic 

analogs of camptothecin, topotecan and irinotecan (Figure 6B and 6C), are used clinically for the 

treatment of ovarian, SCLC and colorectal cancer (Chabner et al., 2011). Irinotecan is a prodrug, 

which is cleaved by carboxylesterases in the tumor, liver or red blood cells to generate the active 

drug SN-38, which displays 10-100 fold more potent anti-tumor activity than irinotecan 

(Chabner et al., 2011). 



36 

The dose-limiting toxicities of topotecan are mainly hematological in nature, causing 

neutropenia, with or without thrombocytopenia in cells (Chabner et al., 2011). The dose-limiting 

toxicity of irinotecan is severe diarrhea (experienced by about 35% of patients) with or without 

neutropenia. Another challenge with irinotecan is poor bioavailability in the plasma and tissues 

(Chabner et al., 2011). Although the active metabolite SN-38 can be measured in the plasma 

(shortly after intravenous infusion), the amount of SN-38 is only 4% of the amount of irinotecan 

injected, suggesting that only a small portion of the pro-drug is converted to the active form of 

the drug. In contrast, intravenous topotecan is detected at about 25-35% in the plasma (Chabner 

et al., 2011).  

Studies in our laboratory focus on the cell biology of small cell lung cancer (SCLC). 

SCLC is characterized by rapid doubling time, aggressive clinical course and a dismal survival 

rate (Gazdar, Bunn, & Minna, 2017; Ujhazy & Lindwasser, 2018). Cisplatin-based 

chemotherapy is the cornerstone for SCLC therapy. Initially, SCLC patients respond very well to 

therapy, with 80-100% of patients showing remission; however, the tumors typically relapse 

within a year and frequently do not respond to chemotherapy or radiation (Ujhazy & Lindwasser, 

2018). A significant drawback with the cisplatin-etoposide regimen is its toxicity, which 

frequently renders SCLC patients more susceptible to adverse symptoms upon subsequent 

treatments. Patients with recurrent SCLC have very limited treatment options. The standard 

second-line chemotherapy for recurrent SCLC, camptothecin (topotecan, irinotecan), has an 

objective response rate of approximately 3% and little or no survival benefit (Ardizzoni, 2004; 

Horita et al., 2015). A subset of patients also presents with refractory platinum-resistant SCLC, 

which does not respond to cisplatin-based combination therapy from the beginning (Lara et al., 

2015). 
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Figure 6. Camptothecin analogs 
(A) Camptothecin. (B) Topotecan. (C) Irinotecan. (D) SN-38. 
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Figure 7. Combinatorial effects of capsaicin and camptothecin in small cell lung cancer 
(A) Caspase-3 activity of DMS53 human small cell lung cancer cells when treated with various 
concentrations of capsaicin (CAP). Data points denoted with a * are statistically significant 
relative to control (p£0.05). (B) Caspase-3 activity of DMS53 human small cell lung cancer cells 
when treated with various concentrations of camptothecin (campto) alone or in combination with 
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10 𝜇M capsaicin. Data points denoted with a * are statistically significant relative to campto 
alone (p£0.05). (C) Tumor volumes of DMS53 xenograft mice treated with vehicle, 10 mg 
capsaicin/kg food, 0.5 camptothecin/kg body weight (administered twice weekly), capsaicin in 
combination with camptothecin as above-mentioned doses. Doses denoted with * are statistically 
significant relative to the vehicle, capsaicin alone and camptothecin alone (p£0.05). 

Studies in our laboratory have explored the ability of capsaicin to increase the anti-

neoplastic activity of camptothecin in human SCLC cell lines. Using a panel of three human 

SCLC cell lines, namely DMS 114, NCI-H69 and NCI-H82, we performed apoptosis assays 

using multiple concentrations of capsaicin (0-100 µM) and observed that 10 µM was the highest 

concentration of capsaicin that did not trigger cellular apoptosis (Friedman et al., 2017). These 

assays were repeated in DMS 53 human SCLC cells with similar results (Figure 7A). Apoptosis 

was then evaluated following treatment with a concentration range of camptothecin (10 nM-100 

µM) in the presence or absence of 10 µM capsaicin (Figure 7B). Isobologram analysis 

demonstrated that capsaicin and camptothecin synergistically induce apoptosis (CI<1) in DMS 

53 SCLC cells (Table 1). Signal transduction studies revealed that the combinatorial apoptotic 

activity of capsaicin and camptothecin was mediated by increased intracellular calcium and 

subsequent activation of the calpain family of calcium-sensitive proteases (Friedman et al., 

2017). This chemosensitizing mechanism of capsaicin on camptothecin-induced apoptosis was 

further verified in H69 chicken chorioallantoic membrane (CAM) tumor models (Friedman et al., 

2017). Using a DMS 53 human SCLC xenograft mouse model, we found that the dietary 

administration of capsaicin (10 mg/kg food in AIN-76A diet) along with 0.5 mg/kg  

camptothecin (i.p. injection, twice/week) displayed greater anti-tumor activity relative to either 

drug administered as a single agent (Figure 7C). Future studies in our laboratory aim to examine 

the combinatorial activity of capsaicin with irinotecan, given its clinical use in the treatment of 

lung cancer patients. 
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Table 1. Combination index of the growth inhibitory activity of camptothecin along with 
capsaicin in DMS53 human small cell lung cancer cells 
CI<1: Synergy CI=1: Additive CI>1: Antagonistic 

The pharmacokinetics of irinotecan is complex and involves several transporters and drug 

metabolizing enzymes (Mathijssen et al., 2001). Briefly, carboxylesterase enzymes transform 

irinotecan to SN-38 (Figure 6D), which is subsequently converted by UGT1A1 to form SN-38G 

(SN-38 Glucuronide), or by CYP3A4 to form APC (7-ethyl-10-[4-N-(5-aminopentanoic acid)-1-

piperidino]-carbonyloxycamptothecin (Mathijssen et al., 2001). The OAT1B1 transporter 

predominantly mediates the hepatic uptake of SN-38 (Iusuf et al., 2014). Several studies have 

indicated that capsaicin regulates bioavailability of drugs metabolized by CYP3A4 and inhibits 

the activity of OAT1B1 (F. Chen, Zhai, Zhu, & Lu, 2015; Duan et al., 2013; X. J. Zhai, Shi, 

Chen, & Lu, 2013).  

Wang et al., (2018) explored if the presence of capsaicin could increase the 

bioavailability of irinotecan and SN-38 in both cell culture and rat models (N. Wang et al., 

2018). They pretreated Sprague-Dawley rats daily with 3 mg capsaicin/kg body weight (by oral 

gavage) for seven days. On the seventh day, 20 mg irinotecan/kg body weight was injected 

intravenously, 30 minutes after capsaicin administration. They observed that the plasma 

concentration of active SN-38 was about 1.5-fold higher in the capsaicin-pretreated mice relative 

to mice treated with irinotecan only. The presence of capsaicin prevented SN-38 from binding to 

Concentration of 
Camptothecin 

Concentration of 
Capsaicin 

Combination Index 
(CI) 

100 nM 10 µM 0.031 
10 µM 10 µM 0.03 
25 µM 10 µM 0.045 
50 µM 10 µM 0.055 

100 µM 10 µM 0.066 
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plasma protein and increased the unbound fraction of SN-38 by about 2.0-2.5-fold. Similarly, the 

liver/plasma ratio (L/P ratio) for SN-38 was substantially lower in capsaicin-pretreated mice 

compared to mice injected with irinotecan only. Taken together, these findings suggest that the 

presence of capsaicin increases the bioavailability of SN-38 in the plasma so that it can display 

greater anti-cancer activity (N. Wang et al., 2018). An innovative study by L. Wang et al., (2017) 

involved the synthesis of an oral self-emulsifying hydrophobic drug delivery system in which 

both SN-38 and capsaicin were encapsulated (referred to as 1-SEEDS) (L. Wang, Chen, et al., 

2017). Subsequently, the authors characterized the drug release profiles, morphology, and 

droplet size of these polymeric encapsulated drug systems. They measured the effect of 1-

SEEDS on the viability of a panel of human cancer cell lines, namely HCT-116, SW680 (colon 

carcinoma), MCF-7, MDA-MB231 (breast carcinoma) and H1299 (lung carcinoma). The 

growth-inhibitory activity of 1-SEEDS in colon and breast cancer cell lines was 1.5-3.0-fold 

higher than SN-38 alone. Furthermore, 1-SEEDS induced almost 2-fold higher apoptosis than 

SN-38 alone and 4-fold higher apoptosis than capsaicin alone in HCT-116 cells (L. Wang, Chen, 

et al., 2017). Studies in an athymic mice bearing HCT-116 human colon cancer tumors showed 

that 30 mg 1-SEEDS/kg body weight suppressed the growth of HCT-116 tumors to a greater 

extent than SN-38 or capsaicin-alone. The administration of 1-SEEDS did not produce any toxic 

side effects, like hemolysis or alteration in the body weights of mice (L. Wang, Chen, et al., 

2017). Future research in the development of targeted drug delivery systems may make delivery 

of both an anti-cancer drug and a chemosensitizing agent to the site of the tumor, in a selective 

efficacious manner, a clinical reality. This would greatly improve the anti-tumor activity of these 

compounds in human cancers. 
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TARGETED SIGNAL TRANSDUCTION INHIBITORS 

The proteasome inhibitor bortezomib (also called Velcade; Figure 8A) is used for the 

treatment of patients suffering from multiple myeloma (Kouroukis et al., 2014). Bhutani et al., 

(2007) analyzed the combinatorial apoptotic activity of capsaicin and bortezomib in U266 human 

multiple myeloma cells in vitro (Bhutani et al., 2007). The treatment of U266 cells with 25 μM 

capsaicin along with 20 nM bortezomib increased the fraction of apoptotic cells by about 4-fold 

compared to 20 nM bortezomib alone and by about 8-fold relative to 25 μM capsaicin alone. The 

combinatorial apoptotic effects of capsaicin and bortezomib were mediated by disruption of 

STAT3 activation and phosphorylation (Bhutani et al., 2007). Notably, a recent “Editor Note” 

alerted readers about certain ambiguities in the figures of this published report, involving the 

apoptosis assays performed with bortezomib and capsaicin (Bhutani et al., 2018). Figure 6A of 

the paper by Bhutani et al., (2007) describes the combinatorial apoptotic activity of thalidomide 

and capsaicin in U266 cells. Figure 6B shows that capsaicin sensitizes U266 cells to bortezomib-

induced apoptosis. The images used to represent controls and capsaicin-treated cells are identical 

between Figure 6A and B. The editorial note mentions that the authors were unable to provide 

the original data for these images at the time of institutional review (Bhutani et al., 2018). 
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Figure 8. Targeted signal transduction inhibitors 
 (A) Bortezomib. (B) Sorafenib. (C). Gefitinib.  

The anti-cancer drug sorafenib (Figure 8B) is an inhibitor of multiple receptor and 

cytoplasmic kinases including vascular endothelial growth factor receptor 1 and 2 (VEGFR-1, 

VEGFR-2), and platelet-derived growth factor-b (PDGF-b) -tyrosine kinase (Wilhelm et al., 

2008). Sorafenib is the only systemic treatment for patients with unresectable hepatocellular 

carcinoma (HCC). Clinical studies indicate that it prolongs overall survival of HCC patients by 

approximately 2.8 months (Daher, Massarwa, Benson, & Khoury, 2018). A challenge with 

sorafenib therapy is the acquisition of drug resistance upon long-term treatment (Niu et al., 

2017). Cell culture data suggest that sorafenib resistance may be partially abrogated by the use of 

PI3K/Akt inhibitors (Matter, Decaens, Andersen, & Thorgeirsson, 2014; B. Zhai et al., 2014; H. 
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Zhang, Wang, Liu, & Cao, 2018). Capsaicin triggers apoptosis and autophagy in many types of 

human cancers by blocking the PI3K/Akt/mTOR pathway (Clark & Lee, 2016; Diaz-Laviada & 

Rodriguez-Henche, 2014; Srinivasan, 2016). With this finding in mind, Dai et al., (2018) 

investigated the combinatorial growth-suppressive activity of sorafenib and capsaicin in LM3, 

Hep3B and HuH7 human HCC cell lines (Dai et al., 2018). The combined treatment of capsaicin 

and sorafenib decreased the viability of all HCC cell lines to a greater magnitude than either drug 

alone. The authors confirmed these findings using colony formation assays in LM3 cells, 

showing that multiple concentrations of capsaicin (80, 100 and 120 μM) and sorafenib (2, 3 and 

4 μM) showed synergistic inhibition (CI<1) of colony formation in all possible combinations 

(Dai et al., 2018). The synergistic induction of apoptosis (by capsaicin and sorafenib) was 

accompanied by an increase in pro-apoptotic proteins like Bax, cleaved caspase-3, cleaved PARP 

and decrease of pro-survival proteins like Bcl-2 (Dai et al., 2018). Similarly, the combination of 

capsaicin and sorafenib displayed synergistic autophagic activity upregulating autophagic 

biomarkers Beclin-1 and LC3A/B-II and decreasing the levels of autophagy-specific substrate 

P62. Furthermore, Boyden chamber and wound healing assays revealed that the treatment with 

capsaicin (80 µM) along with sorafenib (4 µM) synergistically inhibited (CI<1) the migration 

and invasion of LM3 cells (Dai et al., 2018). A notable point here is that it is unclear whether this 

observed anti-migratory and anti-invasive activity is due to cell death or due to inhibition of cell 

motility pathways. The combination of capsaicin and sorafenib decreased the expression of pro-

invasive proteins like vimentin, N-cadherin, MMP2 and MMP9, and increased the expression of 

the epithelial biomarker E-cadherin. The authors further confirmed the synergistic anti-tumor 

activity of sorafenib and capsaicin in LM3 human HCC tumors xenografted in athymic mice. 

The administration of 2.5 mg capsaicin/kg body weight together with 50 mg sorafenib/kg body 
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weight showed greater decrease in tumor volumes than when the drugs were administered as 

single agents (Dai et al., 2018). The combinatorial anti-neoplastic activity of sorafenib and 

capsaicin correlated with inhibition of EGFR, PI3K/Akt and activation of their downstream 

substrates like mTOR and p70S6 kinase. 

A similar study exploring the synergistic growth inhibitory activity of sorafenib and 

capsaicin was performed by Zhang et al., (2018), using PLC/PRF/5, HuH7 and HepG2 human 

HCC cells (S. S. Zhang et al., 2018). Chou-Talalay isobologram analysis revealed that 100 µM 

capsaicin showed synergistic growth-suppressive activity with 3, 10 and 30 µM sorafenib. The 

interaction between capsaicin and lower concentrations of sorafenib (0.3 or 1 µM) showed a 

moderate-to-slightly antagonistic interaction. No synergy between capsaicin and sorafenib was 

observed in normal liver cells. The combination of 200 µM capsaicin and 50 mg sorafenib/kg 

body weight synergistically inhibited the growth of PLC/PRF/5 tumors in athymic mouse model 

(S. S. Zhang et al., 2018). Analogous to the results of Dai et al., (2018), the combination of 5 or 

10 µM sorafenib with 100 µM capsaicin showed robust apoptosis with inhibition of ERK and 

STAT3 activation (Dai et al., 2018; S. S. Zhang et al., 2018).  

Parashar et al., (2019) synthesized folic acid functionalized nanoparticles, enabling the 

co-administration of the epidermal growth factor receptor (EGFR) inhibitor gefitinib (Figure 8C) 

along with capsaicin (Parashar et al., 2019). Overexpression and activating mutations in EGFR 

have been reported in 10-15% of caucasian non-small cell lung cancer (NSCLC) and in about 

50% of Asian NSCLC patients. The EGFR inhibitors, namely gefitinib and erlotinib, are first 

line therapies for such NSCLC patients (Hirsh, 2018). The authors characterized these gefitinib-

capsaicin-folic acid based nanoparticles (referred hereafter as Gnb-CAP-NP) by transmission 

electron microscopy (TEM), measuring the particle size, drug loading, efficiency, drug 
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entrapment efficiency and release kinetics (Parashar et al., 2019). Cell viability and cell 

proliferation assays showed that Gnb-CAP-NP displayed greater growth-suppressive activity 

relative to capsaicin-loaded folic acid nanoparticles (CAP-NP) or gefitinib-loaded nanoparticles 

(Gnb-FA-NP) in A549 human NSCLC cells (Parashar et al., 2019). The encapsulated 

formulations of gefitinib and capsaicin decreased the viability of A549 cells to a greater 

magnitude than the unmodified compounds. The interaction between gefitinib and capsaicin was 

synergistic (CI<1). 

The enhanced growth-inhibitory effect of Gnb-CAP-NP was observed to be due to both 

apoptosis and cell cycle arrest (Parashar et al., 2019). Cell cycle analysis revealed that Gnb-

CAP-NP induced G0/G1-phase arrest in A549 cells. Gnb-CAP-NP decreased the expression of 

the pro-invasive protein MMP9, and the cell cycle regulatory protein p16, as well as an increase 

of pro-apoptotic proteins (caspase-3 and caspase-9) in A549 cells. The intravenous 

administration of Gnb-CAP-NP (releasing 20 mg/kg gefitinib and 10 mg/kg capsaicin 

simultaneously) robustly suppressed urethane-induced lung carcinogenesis in both male and 

female albino Wistar rats (Parashar et al., 2019). Drug delivery systems capable of co-

administration of the chemotherapeutic drug as well as the chemosensitizer may represent a 

promising breakthrough for the treatment and management of human cancers.  

RADIATION THERAPY 

Radiation therapy is a modality of cancer therapy that involves administration of 

high doses of radiation to kill cancer cells and shrink tumors. Radiotherapy induces the death of 

cancer cells by causing DNA damage (Baskar, Dai, Wenlong, Yeo, & Yeoh, 2014; Eriksson & 

Stigbrand, 2010). Apoptosis is the predominant mechanism of cell death in response to radiation 

therapy, especially in hematopoietic cells and their malignant counterparts. However, radiation 
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therapy can also initiate cell death by other mechanisms including cell cycle arrest, senescence, 

and mitotic catastrophe (Eriksson & Stigbrand, 2010). As with chemotoxic therapeutics, the 

predominant challenges of radiation therapy are also disease recurrence and tumor resistance. 

The main reason for innate or acquired resistance to radiation therapy is still unknown, but 

current evidence suggests that multiple pathways like hypoxia and DNA-repair enzymes 

contribute to radiation resistance of neoplastic cells. Therefore, radiosensitizers like dietary 

compounds, gold nanoparticles, and HSP inhibitors have potential to improve the efficacy of 

radiation therapy for cancer. 

Combined modality therapy refers to the combination of radiotherapy with drugs which 

enhance the lethal effect of radiation on cancer cells (Tannock, 1989). The radiosensitizing 

ability of capsaicin has been studied in human prostate cancer. Venier et al., (2013, 2015) 

evaluated the effects of capsaicin and radiation therapy using three distinct human prostate cell 

lines, namely LNCAP (androgen-receptor positive, wild type p53), DU145 (androgen-receptor 

negative, mutant p53 P223L, and V274F) and PC3 (androgen-receptor negative, p53 null; 

(Venier, Colquhoun, Klotz, Fleshner, & Venkateswaran, 2013; Venier et al., 2015). The authors 

wanted to compare the radiosensitizing ability of capsaicin between prostate cancer cells and 

normal prostate epithelial cells. They selected RWPE-1 as the normal prostate epithelial cell line 

(undetectable androgen receptor expression, p53 null, Rb null). The authors measured the 

radiosensitizing ability of capsaicin using colony formation assays. They treated LNCAP, PC-3 

and RWPE-1 cells with radiation in the presence or absence of capsaicin for 5 days (Venier et 

al., 2015). The capsaicin was added one hour prior to irradiation. The sensitizer enhancement 

ratio (SER) was calculated by dividing the area under the curve (AUC) for vehicle (DMSO) and 

the AUC for capsaicin-treated cells. The authors observed that the radiosensitizing activity of 
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capsaicin was not concentration-dependent. LNCAP showed robust radiosensitizing activity of 

capsaicin at all three concentrations (0.01, 1 and 10 μM; SER greater than 1). However, RWPE-1 

only showed synergistic radiosensitization with capsaicin at the 10 μM dose (Venier et al., 2015). 

It was found that the treatment of LNCAP and PC3 cells with radiation and capsaicin increased 

the expression of the DNA damage marker phospho-H2AX and decreased the number of cells in 

S-phase. The combinatorial growth-inhibitory activity of capsaicin and radiation was determined 

to be independent of TRPV1 and correlated with decreased levels of phospho-NF-kB (Venier et 

al., 2013; Venier et al., 2015). Previous studies by the same research group showed that the 

radiosensitization of capsaicin coincided with upregulation of Bax, Bad, p21and p27 and 

decrease in the levels of androgen receptor in a panel of human prostate cancer cell lines (Klotz 

et al., 2011; Venier et al., 2012). Subsequently, the authors confirmed the radiosensitizing ability 

of capsaicin in athymic mice xenografted with LNCAP tumors (Venier et al., 2015). Mice were 

given a dose of 6 Gray (Gy) units of ionizing radiation on day 16 in the presence or absence of 

capsaicin. HPLC analysis confirmed the presence of capsaicin and its metabolites in the serum of 

mice. The combination of capsaicin and radiation significantly decreased the growth rate of 

LNCAP tumors compared to vehicle-treated mice or mice administered each drug alone (Venier 

et al., 2015). IHC analysis of the tumors revealed that radiation upregulated the expression of 

NF-kB, which was decreased when capsaicin was included in the treatment regimen. Notably, 

they did not observe any alteration of total NF-kB expression when they treated LNCAP cells in 

vitro with radiation alone, capsaicin alone or in combination. However, they did observe that 

capsaicin suppressed radiation-induced phospho-NF-kB levels in both LNCAP cells (in cell 

culture) and in LNCAP tumors excised from athymic mice. The combination of radiation and 

capsaicin resulted in sustained DNA damage in LNCAP tumors as evidenced by increased 
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expression of the DNA damage marker g-H2AX in the sections prepared from LNCAP tumors 

xenografted in athymic mice (Venier et al., 2015). Moreover, LNCAP tumor bearing mice 

administered radiation in the presence of capsaicin showed significantly lower Ki-67 index (a 

marker for cell proliferation) and androgen receptor expression. Conflicting data exists on the 

radiosensitizing activity of capsaicin. Nishino et al., (2016) did not find any combinatorial 

growth-inhibitory activity of radiation and capsaicin in A549 human lung adenocarcinoma cells 

(Nishino et al., 2016). However, such divergent results can be explained by differences in 

experimental design in the two studies. Whereas the studies described by Venier et al., (2015) 

pretreated the cells with 10 µM capsaicin one hour prior to irradiation, Nishino et al., (2016) 

treated cells with 10 µM capsaicin 5 minutes after irradiation (Nishino et al., 2016; Venier et al., 

2015). The data obtained from drug-combination studies are often dependent on the treatment 

protocol (pretreatment versus adding both drugs simultaneously versus post-treatment). Also, 

Nishino et al., (2016) used A549 human lung cancer cells for their studies. Other studies have 

reported that capsaicin decreased the viability of A549 cells at high concentrations (above 200 

µM) via inflammatory signaling and genotoxic stress mechanisms rather than apoptosis (Halme 

et al., 2016; Lewinska, Jarosz, et al., 2015; Reilly et al., 2003). Such observations seem to 

suggest that capsaicin may have divergent bioactivity depending on the nature of the cell line, the 

concentration of capsaicin being used, or the time sequence of the experiments. The studies by 

Klotz et al., (2011) and Venier et al., (2012, 2013 and 2015) used prostate cancer cells, whereas 

Nishino et al., (2016) investigated the radiosensitizing activity of capsaicin in lung 

adenocarcinoma and melanoma cells (Klotz et al., 2011; Nishino et al., 2016; Venier et al., 2013; 

Venier et al., 2012; Venier et al., 2015). A strength of the research report by Venier et al., (2015) 
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is that they validated their findings both in cell culture and athymic mouse models of prostate 

cancer (Venier et al., 2015). 

CONCLUSIONS AND FUTURE DIRECTIONS 

The capsaicinoid family of nutritional compounds, isolated from chili peppers, can 

sensitize multiple types of human cancers to the apoptotic effects of conventional, as well as 

targeted anti-cancer drugs. However, only a handful of targeted therapies, namely sorafenib, 

gefitinib and bortezomib, have been combined with capsaicin to investigate their combinatorial 

growth inhibitory activity. It is hoped that several classes of targeted therapies like anti-

angiogenic agents, immunotherapies, hormonal agents and signal transduction inhibitors will 

display synergistic anti-cancer activity upon combination with capsaicinoids. Recent research 

has characterized novel drug delivery systems like liposomes and nanoparticles which 

simultaneously release the chemosensitizer (capsaicin) and the anti-cancer drug namely SN-38 or 

gefitinib.  

The clinical application of capsaicin is limited by its unpleasant side effects including gut 

pain, hyperalgesia, stomach cramps and nausea (Drewes et al., 2003; Hammer, 2006; O'Neill et 

al., 2012). This drawback could be circumvented by natural non-pungent capsaicinoids, like the 

capsiates, which retain the anti-tumor activity of capsaicin but do not produce the “heat-

sensation” of capsaicin and RTX (Friedman et al., 2018). Apart from natural non-pungent 

capsaicinoids, structure-activity relationship studies have generated synthetic non-pungent 

capsaicin analogs (Friedman et al., 2018). Future research involving the chemosensitization 

activity of these non-pungent capsaicin analogs will facilitate the development of clinically 

relevant combination therapies for the treatment and management of cancer. 
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CHAPTER 3: CAPSAICIN SYNERGIZES WITH CAMPTOTHECIN TO INDUCE 
INCREASED APOPTOSIS IN HUMAN SMALL CELL LUNG CANCERS VIA THE 

CALPAIN PATHWAY 
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ABSTRACT  

Small cell lung cancer (SCLC) is characterized by excellent initial response to 

chemotherapy and radiation therapy with a majority of the patients showing tumor shrinkage and 

even remission. However, the challenge with SCLC therapy is that patients inevitably relapse 

and subsequently do not respond to the first line treatment. Recent clinical studies have 

investigated the possibility of camptothecin-based combination therapy as first line treatment for 

SCLC patients. Conventionally, camptothecin is used for recurrent SCLC and has poor survival 

outcomes. Therefore, drugs which can improve the therapeutic index of camptothecin should be 

valuable for SCLC therapy. Extensive evidence shows that nutritional compounds like capsaicin 

(the spicy compound of chili peppers) can improve the anticancer activity of chemotherapeutic 

drugs in both cell lines and animal models. Statistical analysis shows that capsaicin synergizes 

with camptothecin to enhance apoptosis of human SCLC cells. The synergistic activity of 

camptothecin and capsaicin is observed in both classical and variant SCLC cell lines and in vivo, 

in human SCLC tumors xenotransplanted on chicken chorioallantoic membrane (CAM) models. 

The synergistic activity of capsaicin and camptothecin are mediated by elevation of intracellular 

calcium and the calpain pathway. Our data foster hope for novel nutrition-based combination 

therapies in SCLC. 

INTRODUCTION  

Small cell lung cancer (SCLC) accounts for about 15–20% of all lung cancer cases and is 

the most aggressive type of lung cancers (Kahnert, Kauffmann-Guerrero, & Huber, 2016; Koinis, 

Kotsakis, & Georgoulias, 2016). Cisplatin or carboplatin in combination with etoposide is the 

standard of care for SCLC patients. Although this regimen initially works very well in SCLC 

patients with a response rate of greater than 80%, the disease inevitably relapses within a year, at 
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which point the tumor is non-responsive to cisplatin-based combination therapies (Alvarado-

Luna & Morales-Espinosa, 2016). Another drawback with the cisplatin- etoposide regimen is its 

toxicity, which may render SCLC patients more susceptible to adverse symptoms upon 

subsequent treatments (Stewart, 2004). Patients with recurrent SCLC have very limited options, 

as the only standard chemotherapy with an FDA-approved drug, camptothecin (Figure 9A), has 

an objective response rate of approximately 3% and little or no survival benefit (Asai, Ohkuni, 

Kaneko, Yamaguchi, & Kubo, 2014). Clinical trials have explored the possibility of 

camptothecin-based combination regimens for standard of care therapy for SCLC patients 

(Stewart, 2004). Therefore, agents which can increase the therapeutic efficacy of camptothecin 

may improve the outcomes of SCLC therapy. Several convergent studies have shown that dietary 

compounds can sensitize neoplastic cells to the apoptotic effects of chemotherapeutic drugs (Ho 

& Cheung, 2014; Mohan, Narayanan, Sethuraman, & Krishnan, 2013). Our published data show 

that capsaicin (the spicy compound of chili peppers; Figure 9B) can induce robust apoptosis in 

human SCLC cells in cell culture and mouse models (Lau, Brown, Dom, & Dasgupta, 2012; Lau 

et al., 2014). Therefore, we conjectured that low doses of capsaicin (where it does not cause cell 

death) may sensitize human SCLC cells to the apoptotic activity of camptothecin and its 

derivatives.  
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Figure 9. Structure of (A) camptothecin and (B) capsaicin  
A survey of literature shows that capsaicin increases the therapeutic index of several 

anticancer treatments. The administration of capsaicin increased the therapeutic efficacy of 

radiation in prostate cancer. Monofunctional platinum-based drugs, like LH5, showed increased 

apoptotic activity in combination with capsaicin (Arzuman et al., 2016). Similarly, the treatment 

of stomach cancer cells with a combination of cisplatin and capsaicin caused greater apoptosis 

than either of these agents given singly (Huh et al., 2011; Wiwanitkit, 2012). A similar effect 

was also observed when capsaicin was given in combination with the doxorubicin analog 

pirarubicin (Zheng et al., 2016). The present manuscript investigates for the first time the 

anticancer activity of the combination of capsaicin and camptothecin. We show that low doses of 

capsaicin (where it does not cause any apoptosis) synergizes with camptothecin to induce high 

levels of cellular apoptosis in human SCLCs. We confirmed the synergistic apoptotic activity of 
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capsaicin and camptothecin in classical human SCLC cell lines (NCI-H69 and DMS 114), as 

well as the variant human SCLC cell line NCI-H82. Another innovative feature about our study 

is that we have analyzed the synergistic interaction between these two drugs by the Chou-Talalay 

isobologram method (Chou, 2008, 2010). 

The apoptotic activity of capsaicin-camptothecin combination was confirmed using two 

independent apoptosis assays. Subsequently, we show that the combination of capsaicin and 

camptothecin enhances apoptosis (compared to these agents given alone) in vivo, in human 

SCLC tumors xenotransplanted on chicken chorioallantoic membranes (CAM) (Nowak-

Sliwinska, Segura, & Iruela-Arispe, 2014). We also examined the signaling pathways underlying 

the combinatorial synergistic apoptotic activity of capsaicin and camptothecin. We found that the 

synergistic apoptotic activity capsaicin and camptothecin was mediated by elevation of 

intracellular calcium and activation of the calpain pathway both in cell culture and in chicken 

CAM models. The results of our studies may lead to improved treatment regimens for SCLC. 

MATERIALS AND METHODS 

Reagents 

Camptothecin, capsaicin, BAPTA-AM (1,2-Bis(2-aminophenoxy)ethane-N,N,N’,N’-

tetraacetic acid tetrakis(acetoxymethyl ester) and calpeptin were purchased from Sigma-Aldrich 

(St. Louis, MO, USA). All cell culture reagents, including RPMI-1640, FBS, Trypsin-EDTA, 

and HEPES, were purchased from American Type Culture Collection (ATCC; Manassas, VA, 

USA). Sodium pyruvate, glucose, and penicillin-streptomycin solutions were obtained from 

Corning (NY, USA). 
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Cell culture 

The human SCLC cell lines NCI-H82, NCI-H69 (hereafter referred to as H82 and H69) 

and DMS 114 were purchased from ATCC (Manassas, VA). The ATCC used Short Tandem 

Repeat (STR) profiling for authentication of these cells. H69 and H82 were cultured in RPMI-

1640 supplemented with 2 mM glutamine, 4.5 g/L glucose, 100 units/ml penicillin, 100 units/ml 

streptomycin and 10% fetal bovine serum (FBS). DMS 114 was cultured in RPMI-1640 

containing 2 mM glutamine, 25 mM HEPES, 1 mM sodium pyruvate, 4.5 g/L glucose, 100 

units/ml penicillin, 100 units/ml streptomycin and 10% FBS. All cell lines were maintained in a 

37°C humidified incubator with 5% carbon dioxide (NuAire Laboratory Equipment, Plymouth 

MN). 

Preparation of lysates 

Cell lysates were made using detergent-based lysis protocol as described previously 

(Hurley et al., 2017). Cells were harvested and washed three times with cold PBS. Cells were 

then lysed with M2 lysis buffer (20 mM Tris, pH 7.6, 0.5% IGEPAL-CA-630, 250 mM NaCl, 3 

mM EGTA, 3 mM EDTA, 4 µM DTT, 5 mM PMSF, 1 mM sodium fluoride, 1 mM sodium 

orthovanadate, 25 µg/ml leupeptin, 5 µg/ml pepstatin, 5 µg/ml aprotinin, and 25 µg/ml trypsin-

chymotrypsin inhibitor) and the lysates were prepared as detailed elsewhere (Hurley et al., 2017). 

The protein concentration of the lysate was measured using Bradford Reagent (Bio-Rad 

Laboratories, Hercules, CA, USA). 

Measurement of caspase-3 activity 

DMS 114 human SCLC cells were cultured to 80% confluence as described above. On 

the day of the experiment, the medium of the cells was changed to RPMI medium containing 1% 

FBS. Subsequently, cells were treated with the indicated concentrations of the relevant drugs for 
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24 hours at 37°C. A few of the drug treatments involved treating the human DMS 114 cells with 

both camptothecin and capsaicin. In these cases, capsaicin was added 45 minutes before 

camptothecin and then the cells were incubated for 24 hours at 37°C. 

Cell lysates were made using the Caspase-3 Activity Kit (EMD Millipore Corporation, 

Billerica, MA, USA). The protein concentration of the lysate was measured using Bradford 

Reagent (Bio-Rad Laboratories, Hercules, CA, USA). An aliquot of the cell lysate containing 

one hundred micrograms of protein was used for the measurement of caspase-3 activity, 

according to the manufacturer’s protocol. 

Each sample was measured in triplicate and the whole experiment was repeated three 

times using independent sets of cell lysates. Caspase-3 Activity in untreated lysates was 

considered to be equal to 1, and the activity observed in treated lysates was calculated as fold 

increase relative to the untreated control sample. The experimental procedure was identical in 

H69 and H82 cells. 

Cell death ELISA  

DMS 114 human SCLC cells were cultured to 80% confluence in T-75 tissue culture 

flasks (Nunc, Roskilde, Denmark). On the day of the experiment, the medium of the cells was 

changed to RPMI medium containing 1% FBS. The DMS 114 human SCLC cells were treated 

with the indicated concentration of the appropriate drug for 24 hours at 37°C. A few experiments 

involved treating the human DMS 114 SCLC cells with both camptothecin and capsaicin. In 

these cases, capsaicin was added 45 minutes before camptothecin, and then the cells were 

incubated for 24 hours at 37°C. 

Cells were then lysed with M2 lysis buffer (described above), and the lysates were 

prepared as detailed above (Hurley et al., 2017). The protein concentration of the lysate was 



58 

measured using Bradford Reagent (Bio-Rad Laboratories, Hercules, CA, USA). Twenty 

micrograms of lysate were used for each sample. Cellular apoptosis was measured by the Cell 

Death ELISA Kit (Roche Life Sciences, Indianapolis, IN, USA), according to manufacturer’s 

protocol. The absorbance value of control untreated cells was taken as 1, and the absorbance of 

drug-treated cells were graphically represented as fold-increase relative to the control. The 

protocol was identical for H69 and H82 human SCLC cells. Each sample was measured in 

duplicate and the entire experiment was repeated three times with independent sets of lysates. 

Chicken chorioallantoic membrane (CAM) assay 

Specific pathogen-free (SPF) fertile chicken eggs (Charles River Laboratories, North 

Franklin, CT) were incubated at 37.5°C with 75% relative humidity and continuously rotated 

slowly by an automatic egg turner (G.Q.F. Manufacturing Company, Savannah, GA). At Day 9, 

eggs were candled and windows opened on the shell to expose the CAM (Nowak-Sliwinska et 

al., 2014). H69 cells (1.5 X 106) were suspended in 100 µL cold serum-free medium, mixed with 

100 µL cold BD Matrigel Matrix (BD Biosciences, San Jose, CA) and treated with 10 µM 

capsaicin or 1 µM camptothecin or a combination of 10 µM capsaicin and 1 µM camptothecin 

(K. C. Brown et al., 2013; Lau et al., 2013). These cells were applied to the CAM of each 

chicken embryo. Eggs were incubated at 37°C for seven days before tumor implants were 

removed, photographed and weighed. A total of eight eggs were assayed for each group. 

Preparation of tumor lysates from CAM 

Chicken CAM experiments were performed as described above. After the H69 human 

SCLC tumors were excised, they were snap frozen in liquid nitrogen. An aliquot of 30 mg of the 

tumor was weighed and used to make tumor lysates. Tumor lysates were prepared using T-Per 

lysis buffer (Pierce Biotechnology, Rockford, IL, USA), according to manufacturer’s protocol 
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(K. C. Brown et al., 2013; Dasgupta et al., 2011; Lau et al., 2014; Lau et al., 2013). The caspase-

3 activity assay was performed with four independent sets of tumor lysates prepared from control 

CAM H69 tumors, 10 µM capsaicin-treated CAM H69 tumors, 1 µM camptothecin-treated CAM 

H69 tumors, and H69 CAM tumors treated with a combination of 1 µM camptothecin and 10 

µM capsaicin. The cellular apoptosis in these lysates was measured by using the Caspase-3 

Activity Kit (Chemicon, Temecula, CA, USA). Each sample was measured in triplicate and the 

entire experiment was repeated four times with independent sets of lysates. 

Measurement of calpain activity 

H69 human SCLC cells were treated with 10 µM capsaicin or 1 µM camptothecin or a 

combination of 10 µM capsaicin and 1 µM camptothecin (for 24 hours) in RPMI medium 

containing 1% FBS. Subsequently, cells were harvested and washed twice with PBS. Cell lysates 

were prepared using the assay buffer provided in the Sensolyte 520 Calpain Activity Assay Kit 

(Anaspec, Freemont, CA, USA). An aliquot of the cell lysate containing two hundred 

micrograms of protein was used for each replicate sample. The samples were incubated with 50 

µl of calpain substrate for 60 minutes at 37°C (Guha et al., 2010; Lau et al., 2014). The rest of 

the assay was performed according to manufacturer’s instructions. The fluorescence intensity 

was measured using a Biotek Synergy2 spectrofluorometer (Biotek Instruments, Winooski, VT, 

USA) at excitation and emission wave- lengths of 490 and 520 nm, respectively. Each sample 

was measured in duplicate and the whole experiment was repeated three times with independent 

sets of lysates. Calpain activity in untreated lysates was considered to be equal to 1, and the 

activity observed in treated lysates was calculated as fold increase relative to the untreated 

control sample. 
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The calpain enzyme activity assay was also performed using the tumor lysates from H69 

tumors xenografted on chicken CAM (K. C. Brown et al., 2013; Dasgupta et al., 2011; Lau et al., 

2014; Lau et al., 2013). The tumor lysates were made as described above. An aliquot of two 

hundred micrograms of the protein was used in the calpain assay. The methodology and data 

representation of the assay was similar to the one described for H82 and H69 cells. 

Statistical analysis 

All data were plotted using GraphPad Prism 5 Software, Inc (La Jolla, CA, USA), and 

results were represented as the mean ± standard deviation (SD). Results from the control and 

treated samples were compared using an analysis of variance (ANOVA) followed by a Tukey 

posthoc multiple comparison test. All analyses were completed using a 95% confidence interval. 

Data were considered significant when p£0.05. 

All data involving combinatorial interactions between camptothecin and capsaicin were 

evaluated by the Chou-Talalay isobologram analysis using the method of non-constant ratios 

(Chou, 2008, 2010). The Chou-Talalay isobologram analysis (Calcusyn Graphing Software 

Version 2.11, Biosoft Inc., Ferguson, MO, USA) is an established method to determine if two 

drugs exhibit synergistic, additive or antagonistic interactions (Chou, 2008, 2010). This method 

was used to examine whether camptothecin and capsaicin displayed a synergistic increase in 

apoptotic activity. The Chou-Talalay isobologram analysis yields a parameter called the 

combination index (CI). A CI below 1 is taken to be an indicator of synergism. The lower the 

value of the CI, the stronger the synergy between the drugs. 
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RESULTS 

A concentration of 10 µM capsaicin does not cause significant apoptosis (p£0.05) in human 

small cell lung cancer (SCLC) cell lines. 

The first series of experiments analyzed the concentration dependent apoptotic activity of 

capsaicin in human SCLC cell lines over 24 hours, using the caspase-3 activity assay. We 

observed that the capsaicin displays little apoptotic activity until 10 µM and subsequently causes 

robust apoptosis at 50 and 100 µM in DMS 114 human SCLC cells (Figure 10A). The highest 

concentration at which capsaicin did not induce significant apoptosis (p£0.05) was 10 µM in 

DMS 114 cells. The caspase-3 activity assay was repeated in two additional human SCLC cell 

lines, H69 and H82, and similar results were obtained (Figure 10B and C). Our eventual goal 

was to test if low doses of capsaicin (where it does not display apoptotic activity) could sensitize 

human SCLC cells to camptothecin-induced apoptosis. Therefore, we selected the concentration 

of 10 µM capsaicin for all our subsequent experiments.  
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Figure 10. Concentration dependent apoptotic activity of capsaicin in human SCLC cells 
over 24 hours, as measured by the caspase-3 activity kit 
(A) Capsaicin displayed very little apoptotic activity until 10 µM, after which it induced robust 
apoptosis at 50 µM and 100 µM in DMS 114 cells. (B) The apoptotic activity of capsaicin was 
confirmed in H69 as well as H82 human SCLC cells (C) Each sample was measured in triplicate 
and the whole experiment was repeated three times using independent sets of cell lysates. 
Caspase-3 activity in untreated lysates was considered to be equal to 1, and the activity observed 
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in treated lysates was calculated as fold increase relative to the untreated control sample. 
Statistical analysis showed that 10 µM capsaicin (indicated by the box on the graph) was the 
highest concentration at which capsaicin did not display significant apoptotic activity (p£0.05). 
Values represented by the same letter are not statistically significantly different from each other. 

The results obtained from the caspase-3 activity assay were verified using a second 

apoptosis assay, the Cell Death ELISA Kit (Roche Life Science). We obtained similar results as 

the caspase-3 activity assay. The treatment of DMS 114 cells with varying doses of capsaicin 

caused little cell death until 10 µM, and after that the levels of cell death rose significantly over 

24 hours (p£0.05) (Figure11A). The experiment was repeated in H69 and H82 cells and similar 

results were obtained (Figure 11B and C). Based on the data of these two assays we selected 10 

µM capsaicin for our subsequent experiments.  
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Figure 11. Cell Death ELISA assays were used to confirm the apoptotic activity of 
capsaicin over 24 hours 
(A) The apoptotic activity of capsaicin was minimal in DMS 114 human SCLC cells until a 
concentration of 10 µM, after which it caused between 1.5 and 2.0-fold apoptosis at 50 µM and 
100 µM over 24 hours. (B) The pro-apoptotic activity of capsaicin was verified in a classical 
human SCLC cell line H69 and as well as a variant human SCLC cell line H82 (C) and 
analogous results were obtained. Each sample was measured in triplicate and the whole 
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experiment was repeated three times using independent sets of cell lysates. The absorbance 
obtained in untreated lysates was considered to be equal to 1, and the activity observed in treated 
lysates was calculated as fold increase relative to the untreated control sample. The highest 
concentration at which capsaicin did not display significant apoptotic activity was 10 µM 
(p£0.05). Values represented by the same letter are not statistically significantly different from 
each other. 

The combinatorial apoptotic activity of camptothecin and capsaicin is greater than these 

drugs treated alone in human SCLC cells 

Caspase-3 activity assays were performed to test the combinatorial apoptotic activity of 

capsaicin (referred as CPZ) and camptothecin (referred as CPT) in DMS 114 human SCLC cells 

(Figure 12A). DMS 114 cells were treated with multiple concentrations of camptothecin (0.01–

100 µM) in the presence or absence of 10 µM capsaicin. The 10 µM capsaicin was added 45 min 

before the addition of camptothecin. Figure 12A shows that the combination of camptothecin and 

capsaicin (indicated by solid black line with the black round dots) possessed greater apoptotic 

activity than corresponding concentrations of camptothecin alone (dotted line with black square 

dots) or capsaicin alone (Figure 10 and 11). The Chou-Talalay analysis was used to determine if 

capsaicin synergized with camptothecin to induce enhanced apoptotic activity (Chou, 2008, 

2010). As mentioned in Materials and Methods, a combination index (CI) below 1 is an indicator 

of synergism; the lower the magnitude of CI (below 1) the greater the synergy (Chou, 2008, 

2010). Figure 12A shows that the maximal synergy was observed for the combination of 10 µM 

capsaicin and 1 µM camptothecin (CI = 0.095). The combination of 10 µM capsaicin and 10 µM 

camptothecin was also synergistic (CI = 0.15); however, the magnitude of synergy was 

decreased. Figure 12B represents the normalized isobologram of the capsaicin-camptothecin 

combination in DMS 114 cells (Chou, 2008, 2010). The symbols on the isobologram indicate the 

CI of the two drugs namely camptothecin (CPT) and capsaicin (CPZ). The numbers 1–6 next to 

the symbols on the isobologram represent the different combination regimens (described in the 
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legends). The closer the CI is to the zero value the stronger is the synergy between the two drugs. 

Figure 12B shows that treatment number 3 (10 µM capsaicin and 1 µM camptothecin) showed 

the maximal synergistic interaction. 
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Figure 12. Capsaicin (CPZ) sensitizes human SCLC cells to the apoptotic activity of 
camptothecin (CPT) 
(A) Concentration dependent apoptosis observed in DMS 114 cells human SCLC cells in 
response to camptothecin (10 nM–100 µM; depicted by the dotted lines with square symbols). 
Apoptosis was measured by Caspase-3 Activity assays. The solid black line (with circular 
symbols) represents the concentrations of camptothecin (10 nM–100 µM) along with 10 µM 
capsaicin. The data were evaluated by the Chou-Talalay isobologram and the combination 
indices (CI) were determined. A CI value below 1 indicates synergy, the lower the CI value the 
stronger is the synergy. The maximal synergy was observed for the combination of 1 µM 
camptothecin and 10 µM capsaicin (CI = 0.095). The combination of 10 µM camptothecin and 
10 µM capsaicin (CI = 0.15) showed lower synergy than the 1 µM camptothecin–10 µM 
capsaicin combination. Each sample was measured in triplicate and the experiment was 
performed three independent times. Values indicated by the same letters are not statistically 
significant (p£0.05). (B) The normalized isobologram generated from the Chou-Talalay analysis 
of Figure 12A. The CI of the various combination treatments are numbered 1–6 on the graph (the 
details of the treatments are described in the legends). We observed that treatment # 3 
(corresponding to 1 µM camptothecin and 10 µM capsaicin) has the lowest CI. (C) The results 
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obtained from the caspase-3 activity assay were verified using the Cell Death ELISA assay in 
DMS 114 cells and similar results were obtained. The apoptotic activities of varying 
concentrations of camptothecin (CPT) are represented by the dotted lines with square symbols 
over 24 hours. When 10 µM capsaicin (CPZ) was added to each of these treatments, the 
magnitude of cell death was substantially increased (solid black lines with circular symbols). The 
maximal synergy was obtained with a combination of 1 µM camptothecin and 10 µM capsaicin 
(CI = 0.067) followed by 10 µM camptothecin–10 µM capsaicin combination (CI = 0.261) in 24 
hours. (D) The normalized isobologram obtained after the Chou-Talalay analysis of Figure 12C. 
The combination treatment #3 (1 µM camptothecin and 10 µM capsaicin) has the lowest CI 
followed by treatment #4 (10 µM camptothecin and 10 µM capsaicin). 

The synergistic apoptotic activity of capsaicin and camptothecin in DMS 114 cells was 

verified by a second apoptosis assay, the Cell Death ELISA Kit (Roche BioSciences). We 

observed similar results as the caspase-3 activity assay. The combination of 10 µM capsaicin 

(CPZ) with varying concentrations of camptothecin (CPT) produced increased apoptosis 

(indicated by solid black line with the black round dots) compared to camptothecin alone (dotted 

line with black square dots) or capsaicin alone (Figure 12C) in DMS 114 cells over 24 hours. 

The values for the combination indices (CI) showed that 10 µM capsaicin displayed the maximal 

synergy with 1 µM camptothecin (CI = 0.067) followed by 10 µM capsaicin and 10 µM 

camptothecin (CI = 0.261; Figure 12C). Figure 12D shows the corresponding normalized 

isobologram in DMS 114 cells. The pattern of CI in the isobologram corresponds to the Cell 

Death ELISA Kit (Figure 12C). As can be observed, the combination of 10 µM capsaicin (CPZ) 

and 1 µM camptothecin (CPT) has the lowest CI out of all other combinations. The results of 

these experiments were repeated in H82 human SCLC cells (Figure 13A) and H69 human SCLC 

cells (Figure 14A). Capase-3 Activity assays show that the synergistic interaction between 10 

µM capsaicin (CPZ) and 1 µM camptothecin (CPT) is stronger in H82 than in DMS 114 and 

H69 cells. Figure 13B represents the normalized isobologram of the capsaicin-camptothecin 

combination in H82 as measured by the caspase-3 activity assay. A similar isobologram was also 

obtained for H69 cells (Figure 14B). These combinatorial apoptotic activities of camptothecin 
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and capsaicin were proved in H82 cells (Figure 13C) and H69 cells (Figure 14C) using the Cell 

Death ELISA Kit. The pattern of synergy observed in the isobologram in both cell lines closely 

parallels the results obtained by the caspase-3 activity assay (Figure 13D and 14D). Taken 

together, the combination of 10 µM capsaicin (CPZ) and 1 µM camptothecin (CPT) displayed 

the maximum synergy in all three human SCLC cell lines, and this combination was used for the 

signal transduction experiments outlined later in the manuscript. 
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Figure 13. The synergistic apoptotic activity of capsaicin (CPZ) and camptothecin (CPT) is 
observed in multiple SCLC cell lines 
(A) Caspase-3 activity assays were used to measure the pro-apoptotic activity of a range of 
camptothecin concentrations (10 nM–100 µM; dotted lines with square symbols) in H82 human 
variant SCLC cells over 24 hours. When 10 µM capsaicin was added along with camptothecin 
there was a significant increase in cellular apoptosis (p£0.05; depicted by solid black lines) in 
H82 cells. Chou-Talalay isobologram analysis demonstrates that the greatest synergy was 
observed for the combination of 1 µM camptothecin and 10 µM capsaicin (CI = 0.02). 
Furthermore, the combination of 10 µM camptothecin and 10 µM capsaicin (CI = 0.133) 
exhibited poorer synergy than the 1 µM camptothecin–10 µM capsaicin combination in H82 
cells. Each sample was measured in triplicate and the experiment was performed three 
independent times. Values indicated by the same letters are not statistically significant (p£0.05). 
(B) The normalized isobologram generated from the Chou-Talalay analysis of Figure 13A. The 
CI of the various combination treatments represented as points within the isobologram 
(numbered 1–6 on the graph; the details of the treatments are described in the legends). (C) The 
data obtained in the Cell Death ELISA assay (with H82 cells), closely match the caspase-3 
activity assay; the utmost synergy was observed with a combination of 1 µM camptothecin 
and10 µM capsaicin (CI = 0.014) followed by blend of 10 µM camptothecin–10 µM capsaicin 
(CI = 0.058) in H82 cells over 24 hours. (D) The normalized isobologram obtained after the 



71 

Chou-Talalay analysis of Figure 13C. The combination regimen 3 (1 µM camptothecin and 10 
µM capsaicin) has the lowest CI followed by regimen #4 (10 µM camptothecin and 10 µM 
capsaicin). 

Figure 14. Camptothecin (CPT) and capsaicin (CPZ) induce synergistic cell death in the 
classical human SCLC cell line H69 
(A) Caspase-3 activity assays demonstrate that camptothecin (at concentrations ranging from 10 
nM to 100 µM; dotted lines with square symbols) induce 4–5-fold apoptosis in H69 cells over 24 
hours. When 10 µM capsaicin was added along with each of these concentrations of 
camptothecin there was upregulation of apoptotic cell death (shown by solid black lines) in H69 
cells. The highest synergy was observed 1 µM camptothecin and 10 µM capsaicin (CI = 0.023), 
as measured by the Chou-Talalay analysis. We also noted that the amalgamation of 10 µM 
camptothecin and 10 µM capsaicin (CI = 0.061) exhibited decreased synergy compared to the 1 
µM camptothecin–10 µM capsaicin combination in H69 cells. Each sample was measured in 
triplicate and the experiment was performed three independent times. Values indicated by the 
same letters are not statistically significant (p£0.05). (B) The normalized isobologram generated 
from the Chou-Talalay analysis of Figure 14A. The CI of the various combination modalities are 
represented as points within the isobologram (these points are numbered 1–6 on the graph; the 
details of the treatments are labelled in the legends) in H69 cells. (C) The outcomes obtained 
from the caspase-3 activity assay were confirmed using the Cell Death ELISA assay in H69 cells 
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and parallel results were obtained. (D) The normalized isobologram obtained after the Chou-
Talalay analysis of Figure 14C. The combination treatment # 3 (1 µM camptothecin and 10 µM 
capsaicin) has the lowest CI followed by treatment condition #4 (10 µM camptothecin and 10 
µM capsaicin). 

Capsaicin synergizes with camptothecin to display increased apoptotic activity in vivo in 

chicken chorioallantoic membrane (CAM) assay 

We wanted to study whether capsaicin and camptothecin display synergistic apoptotic 

activity in vivo. For this purpose, we selected the chicken CAM model (K. C. Brown et al., 2013; 

Lau et al., 2013; Nowak-Sliwinska et al., 2014). The advantage of the chicken CAM model is 

that the concentrations used in cell culture can be directly translated in the chicken CAM 

experiments. In contrast, the doses in mice experiments are usually expressed in mg/kg body 

weight, and it is difficult to correlate these doses to the concentration of the drugs used in cell 

culture models (Kain et al., 2014; Lokman, Elder, Ricciardelli, & Oehler, 2012). Keeping these 

considerations in mind we opted for the chicken CAM model to determine whether capsaicin 

could sensitize H69 human SCLC cells to the apoptotic activity of capsaicin. An aliquot of 

1.5X106 H69 cells were treated with 1 µM camptothecin in the presence or absence of 10 µM 

capsaicin and then implanted on the chorioallantoic membrane of a fertilized chicken egg. The 

H69 cells formed tumors on the chicken CAM. The chicken CAM was incubated at 37°C for 

seven days, and then the tumors were excised and weighed. Figure 15A shows that the 

combination of 10 µM capsaicin and 1 µM camptothecin displayed significantly greater anti-

tumor activity than either of these agents alone (p£0.05). An aliquot of these tumors was snap 

frozen in liquid nitrogen and lysates were made. Four independent sets of lysates were made for 

every treatment. Caspase-3 activity apoptosis assays showed that the tumors treated with 10 µM 

capsaicin and 1 µM camptothecin showed significantly greater apoptosis than 10 µM capsaicin 
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alone or 1 µM camptothecin alone (p£0.05; Figure 15B). Each sample was measured in duplicate 

and the entire experiment was repeated three independent times. 

Figure 15. The combination of 1 µM camptothecin and 10 µM capsaicin inhibited the 
growth of human SCLC tumors in vivo in chicken chorioallantoic membrane (CAM) model 
The tumor weights in the control group were taken as 100, and the tumor volumes in the rest of 
the samples were calculated as percentage of control. (A) Chicken CAM assays showed that the 
treatment of 10 µM capsaicin (as a single agent) did not significantly suppress the growth of H69 
tumors xenotransplanted on chicken CAM (tumor weights = 92 ± 18% relative to control; 
p£0.05). The treatment of H69 tumors with 1 µM camptothecin caused a decrease in tumor 
volumes (tumor volumes = 66 ± 20.6% relative to control). However, the combination of 1 µM 
camptothecin and 10 µM capsaicin decreased tumor volumes down to about 36 ± 10% relative to 
control. Each group was comprised of eight chicken CAMs. (B) After seven days, the tumors 
were excised and snap frozen in liquid nitrogen. Four independent tumor lysates were made for 
each sample. Caspase-3 apoptosis assays reveal that the control tumors (1–4) and capsaicin-
treated tumors (5–8) displayed very little apoptotic activity. Camptothecin-treated H69 tumors 
(9–12) induced about 1.5-fold increase in caspase-3 activity. However, the H69 tumors treated 
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with both 1 µM camptothecin and 10 µM capsaicin (13–16) displayed robust apoptotic activity 
which was significantly higher than any of the drugs as single agents (p£0.05). Each sample was 
measured in triplicate and the experiment was performed four independent times. Values 
indicated by the same letters are not statistically significantly different (p£0.05). 

The synergistic activity of capsaicin and camptothecin was dependent on intracellular 

calcium and the calpain pathway 

The signal transduction pathways underlying the combinatorial activity of capsaicin and 

camptothecin was probed by using specific chemical inhibitors. Multiple convergent studies have 

shown that the elevation of intracellular calcium and subsequent activation of the calpain 

pathway is important in mediating camptothecin-induced apoptosis in several experimental 

systems (Cao, Deng, & May, 2003; Mandic et al., 2002; D. E. Wood & Newcomb, 1999; D. E. 

Wood et al., 1998). Similarly, our published data and those of others have also shown a role for 

calcium signaling pathway and calpain activation in the apoptotic effects of capsaicin (Lau et al., 

2014; Oh & Lim, 2009). We conjectured that perhaps these two drugs were converging on the 

calcium-calpain pathway and the amplification of this signaling network was responsible for the 

synergistic apoptotic activity of capsaicin and camptothecin. 

Caspase-3 Activity apoptotic assays were used to determine the role of intracellular 

calcium in the apoptotic effects of capsaicin and camptothecin over 24 hours. The calcium 

chelator BAPTA-AM potently abrogated the apoptotic activity of camptothecin-capsaicin 

combination (Figure 16A) in H69 cells (Lau et al., 2014; Oh & Lim, 2009). The experiment was 

repeated in H82 cells and similar results were obtained (Figure 16B). The role of the calpain 

pathway in the synergistic apoptotic activity of capsaicin and camptothecin was analyzed by the 

calpain inhibitor calpeptin. The presence of calpeptin ablated the synergistic apoptotic activity of 

capsaicin and camptothecin (in H69 human SCLC cells), as measured by the caspase-3 activity 
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(Figure 16C). The experiment was repeated in a second human SCLC cell line H82, and similar 

results were obtained (Figure 16D). 

Figure 16. The combinatorial apoptotic activity of 1 µM camptothecin and 10 µM capsaicin 
was mediated by intracellular calcium and the calpain pathway 
(A) Caspase-3 activity assays indicate that the presence of 10 µM BAPTA-AM abrogated the 
combinatorial apoptotic activity of capsaicin and camptothecin in both H69 and H82 (B) human 
SCLC cells over 24 hours. (C) Similarly, the treatment of H69 human SCLC cells with 10 µM 
calpeptin suppressed the synergistic apoptotic activity of 1 µM camptothecin and 10 µM 
capsaicin (as measured by caspase-3 activity assays) in H69 cells. (D) The experiment was 
repeated in H82 cells and similar results were obtained in 24 hours. Each sample was measured 
in triplicate and the experiment was performed three independent times. Values indicated by the 
same letters are not statistically significant (p£0.05). 

The results obtained with BAPTA-AM and calpeptin were verified by using a second 

apoptosis assay, the Cell Death ELISA Kit. The presence of BAPTA-AM reversed the 
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combinatorial apoptotic activity of capsaicin and camptothecin in H69 human SCLC cells in 24 

hours (Figure 17A). These experiments were repeated in H82 human SCLC cells and similar 

results were obtained (Figure 17B). Similarly, we observed that calpeptin suppressed the 

synergistic apoptotic activity of capsaicin and camptothecin in H69 human SCLC cells (Figure 

17C), as measured by the Cell Death ELISA Kit. The assay was repeated in the human SCLC 

cell line H82, and similar results were obtained (Figure 17D).  
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Figure 17. H69 human SCLC cells were treated with 1 µM camptothecin, 10 µM capsaicin 
or a combination of 1 µM camptothecin and 10 µM capsaicin in the presence or absence of 
10 µM BAPTA-AM for 24 hours 
 (A) Cell death ELISA assays show that BAPTA-AM reversed the apoptotic activity of the 
capsaicin-camptothecin combination in H69 human SCLC cells. (B) The experiment was 
repeated in H82 human SCLC cells and analogous results were obtained. (C) The calpain 
inhibitor calpeptin suppressed cell death induced by a combination of 1 µM camptothecin and 10 
µM capsaicin in H69 cells over 24 hours. (D) The entire experiment was repeated in the H82 
variant human SCLC cells and similar results were obtained. Each sample was measured in 
duplicate and the experiment was performed three independent times. Values indicated by the 
same letters are not statistically significant (p£0.05). 
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SCLC cells treated with 10 µM capsaicin and 1 µM camptothecin show increased calpain 

activity relative to each of the drugs alone 

The role of the calpain pathway in the synergistic apoptotic activity of 10 µM capsaicin 

and 1 µM camptothecin was confirmed by the measurement of calpain activity in H69 and H82 

cells. Figure 18A shows that the treatment of H69 human SCLC cells with 10 µM capsaicin and 

1 µM camptothecin produces a potent increase in calpain activity (over 24 hours), which is 

significantly greater than each of these drugs as single agents. The calpain activity (induced by 

capsaicin-camptothecin combination) was abrogated by the intracellular calcium chelator 

BAPTA-AM (Figure 18A; white bars). The experiment was repeated in the variant human SCLC 

cell line and analogous results were obtained (Figure 18B). 

We also observed that the combination of 10 µM capsaicin and 1 µM camptothecin 

caused a 4–5-fold increase in calpain activity in H69 human SCLC cells in 24 hours, which was 

suppressed by the calpain pathway inhibitor calpeptin (Figure 18C; white bars) (Lopatniuk & 

Witkowski, 2011). The experiment was repeated in H82 cells and similar results were obtained 

(Figure 18D). 
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Figure 18. The combination of 1 µM camptothecin and 10 µM capsaicin potently stimulates 
calpain activity in human SCLC cells 
(A) H69 human SCLC cells treated with 1 µM camptothecin or 10 µM capsaicin or a 
combination of both for 24 hours. Cell lysates were made and calpain activity was measured. 
The combination of 1 µM camptothecin and 10 µM capsaicin induced greater than 4-fold 
increase in calpain activity, which was greater than either drugs used as single agents. The 
elevation of calpain activity (in response to the combination of 1 µM camptothecin and 10 µM 
capsaicin) was dependent on the calcium pathway, as demonstrated by its abrogation by 
BAPTA-AM. (B) The results of these experiments were confirmed using H82 human SCLC 
cells. (C) The combination of 1 µM camptothecin and 10 µM capsaicin elevated specifically 
calpain activity in H69 cells, and such elevation of calpain activity was blocked by the calpain-
specific inhibitor calpeptin over 24 hours. (D) The calpain enzyme assay was repeated in a 
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second human SCLC cell line H82 and comparable results were obtained. Each sample was 
measured in duplicate and the experiment was performed three independent times (p£0.05). 

Finally, we tested whether calpain activity was upregulated in the H69 tumors implanted 

on chicken CAM which had been treated with a combination of camptothecin and capsaicin. 

Four tumor lysates were analyzed per treatment regimen. Figure 19 shows that the calpain 

activity in the H69 tumors treated with 10 µM capsaicin and 1 µM camptothecin is substantially 

higher than those treated with 10 µM capsaicin alone and 1 µM camptothecin alone. Our data 

suggest that the synergistic apoptotic activity of capsaicin and camptothecin involves elevation 

of intracellular calcium which in turn induces enhanced activation of calpain pathway, leading to 

cellular apoptosis. 

Figure 19. Elevation of calpain activity in H69 tumors treated with a combination of 1 µM 
camptothecin and 10 µM capsaicin 
Four independent tumor lysates were used for the assay for each sample. Calpain activity assays 
show that 10 µM capsaicin-treated tumors (5–8) displayed very little increase of calpain activity 
relative to control tumors (1– 4). Camptothecin-treated H69 tumors (9–12) induced modest 
elevation increase in calpain activity. However, the H69 tumors treated with both 1 µM 
camptothecin and 10 µM capsaicin (13–16) displayed a greater magnitude of increase in calpain 
activity, relative of the drugs as single agents (p£0.05). Each sample was measured in duplicate 
and the experiment was performed four independent times. Values indicated by the same letters 
are not statistically significant (p£0.05). 
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DISCUSSION 

Camptothecin is primarily an inhibitor of topoisomerase 1. Topoisomerase 1 is an 

enzyme which relaxes supercoiled DNA during DNA replication. During DNA replication and 

repair, the enzyme topoisomerase 1 creates single strand breaks in the DNA. Camptothecin 

forms a tertiary complex with topoisomerase 1 and the cleaved DNA, thereby blocking the 

annealing of DNA sister strands (Nagourney, Sommers, Harper, Radecki, & Evans, 2003; 

Stewart, 2004). This camptothecin-DNA-Topoisomerase 1 complex causes DNA damage and 

eventually leads to cellular apoptosis. Other mechanisms of camptothecin-induced cell death 

include cell cycle arrest at the G1 or G2/M phase (depending on the dose of drug used), 

generation of reactive oxygen species, causing activation of apoptotic proteases of the calpain 

family, and direct induction of cytosolic calcium which triggers apoptotic proteins of the Bcl-2 

family, leading to cell death (Gokduman, 2016). 

Camptothecin and its related compounds are used for second line therapy for a variety of 

cancers including SCLC and is well tolerated (Asai et al., 2014). Patient-oriented studies show 

that camptothecin is active against brain metastases in SCLC (Nagourney et al., 2003; Stewart, 

2004). The clinic profile of camptothecin, its broad-spectrum anti-tumor activity, and its lack of 

cross resistance with other anticancer agents has prompted clinical studies investigating the 

feasibility of camptothecin being used in a first-line setting for SCLC patients (Asai et al., 2014; 

Gokduman, 2016; Stewart, 2004). 

A unique feature of camptothecin is its ability to induce enhanced anticancer activity with 

multiple anti-neoplastic compounds (Gokduman, 2016; O'Brien, Eckardt, & Ramlau, 2007). In 

many of these studies, the interactions between camptothecin and other cancer chemotherapeutic 

drugs was found to be potentially synergistic (Asai et al., 2014; Gokduman, 2016; Stewart, 
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2004). Although the combinatorial activity of other anticancer drugs (like cisplatin) has been 

investigated with multiple dietary compounds, there are very few such studies involving 

camptothecin. This study investigates for the first time the potential combinatorial apoptotic 

activity of camptothecin and capsaicin in SCLC. We selected a concentration of capsaicin which 

did not induce any cell death in SCLC, and when we combined it with varying concentrations of 

camptothecin we found that the two agents synergistically enhance apoptosis within a range of 

concentrations. A rare feature of our studies is that we used the Chou-Talalay isobologram 

analysis to determine whether the interactions between capsaicin and camptothecin were truly 

synergistic (Chou, 2008, 2010). Hormann et al., (2012) showed that the apoptotic efficacy of the 

camptothecin analog topotecan was increased in the presence of the flavonoid genistein 

(Hormann, Kumi-Diaka, Durity, & Rathinavelu, 2012). However, they did not perform any 

statistical analysis to show whether the topotecan-genistein combination was additive or 

synergistic. Similarly, several studies have shown that capsaicin increased the therapeutic 

efficacy of cisplatin or radiation in stomach and prostate cancer, but rigorous statistical analyses 

of the nature of the interaction between the two therapies were absent (Arzuman et al., 2016; 

Chou, 2008; Huh et al., 2011; Wiwanitkit, 2012; Zheng et al., 2016). 

The present manuscript also shows that the combination of capsaicin and camptothecin 

showed increased anti-tumor activity in vivo (compared to the agents administered singly) in 

chicken CAM models. Previous studies have shown that human cancer cells implanted on CAM 

constitute an established model to study tumor growth in vivo (Canela et al., 2017; Dehelean et 

al., 2013; Michaelis et al., 2015). The advantage of the chicken CAM model is that we can take 

the optimal concentrations, found in cell culture models, and directly apply them in the in vivo 

setting (Kain et al., 2014; Lokman et al., 2012). This is in contrast to athymic mouse models 
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where dosages are translated to mg/kg body weight, and it is difficult to correlate whether the 

concentration of the drug in vitro is similar to the dose of the drug in the tumor 

microenvironment in vivo (de Jong, Essers, & van Weerden, 2014; M. Liu et al., 2013). Our 

previous publications have already shown that the administration of capsaicin does not cause any 

gross discomfort in mice (K. C. Brown et al., 2010; Lau et al., 2012; Lau et al., 2014). Our 

published reports reveal that capsaicin displays significant bioavailability in the lungs of mice 

(Rollyson et al., 2014). Taken together, our data suggest that the combination of camptothecin 

and capsaicin has the potential for being a feasible strategy for therapy and management of 

human SCLCs. 

Several convergent studies have shown that the calpain super-family of calcium-regulated 

intracellular cysteine proteases (Ono, Saido, & Sorimachi, 2016; Potz, Abid, & Sellke, 2016) are 

involved in the biological activities of camptothecin. Calpains have been shown to mediate 

camptothecin-induced apoptosis and play a role in camptothecin-induced DNA damage and drug 

resistance (Cao et al., 2003; Mandic et al., 2002; D. E. Wood & Newcomb, 1999; D. E. Wood et 

al., 1998). Our published data and those of other research laboratories show that calpains are also 

vital regulators of capsaicin-induced apoptosis (Lau et al., 2014; Oh et al., 2008). Therefore, we 

conjectured that perhaps an intracellular calcium and calpain pathway was the converging point 

for the two drugs. We show that the combination of camptothecin and capsaicin amplifies 

cellular calpain activity leading to a large increase in cellular apoptosis. 

Although, the results presented in this manuscript are unique and innovative, our study 

has a few limitations. One of the limitations of the study is that the synergistic apoptotic activity 

of capsaicin and camptothecin has not been investigated in athymic mouse models. It is well 

established that several pro-apoptotic and pro-survival proteins are substrates of the calpain 
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pathway. These include p53, Bcl-2, Bcl-xl, Bid, Bax, caspase-3, caspase-7, - 8, and -9, caspase-

12, and NFjB (Lopatniuk & Witkowski, 2011; Moretti, Del Bello, Allavena, & Maellaro, 2014). 

Several of these proteins have been shown to be downstream targets of both camptothecin- and 

capsaicin-induced apoptosis (Clark & Lee, 2016; Legarza & Yang, 2006). However, we do not 

know the precise calpain substrates that are key players in the combinatorial activity of capsaicin 

and camptothecin. Finally, we have yet to investigate whether capsaicin and camptothecin 

display synergistic apoptotic activity in cisplatin- resistant human SCLC cells. These studies are 

currently underway in the laboratory and will form the basis of a future publication. 
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ABSTRACT  

The nutritional compound capsaicin is the major spicy ingredient of chili peppers. 

Although traditionally associated with analgesic activity, recent studies have shown that 

capsaicin has profound antineoplastic effects in several types of human cancers. However, the 

applications of capsaicin as a clinically viable drug are limited by its unpleasant side effects, 

such as gastric irritation, stomach cramps, and burning sensation. This has led to extensive 

research focused on the identification and rational design of second-generation capsaicin 

analogs, which possess greater bioactivity than capsaicin. A majority of these natural 

capsaicinoids and synthetic capsaicin analogs have been studied for their pain-relieving activity. 

Only a few of these capsaicin analogs have been investigated for their anticancer activity in cell 

culture and animal models. The present review summarizes the current knowledge of the growth-
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inhibitory activity of natural capsaicinoids and synthetic capsaicin analogs. Future studies that 

examine the anticancer activity of a greater number of capsaicin analogs represent novel 

strategies in the treatment of human cancers. 

INTRODUCTION: CAPSAICIN 

 Capsaicin (trans-8-methyl-N-vanillyl-6-noneamide; Figure 20A) is the principal, 

pungent ingredient of chili peppers in the plant genus Capsicum. The compound can be found 

predominantly within the white pith and membrane of both cayenne and chili peppers (Chapa-

Oliver & Mejia-Teniente, 2016). It is a potent analgesic and is used topically to treat pain and 

inflammation associated with a variety of diseases (Basith et al., 2016; O'Neill et al., 2012). The 

analgesic activity of capsaicin is mediated by transient receptor potential subfamily vanilloid 

member 1 receptor (TRPV1), which belongs to the transient receptor potential superfamily of 

cation-channel receptors (J. Chen et al., 2014). The transient receptor potential vanilloid receptor 

family is comprised of six members (TRPV1-6). Capsaicin functions as the classic agonist of the 

TRPV1 receptor (Caterina et al., 1997). The binding of TRPV1 to capsaicin trigger a plethora of 

molecular events ultimately inducing to depletion of substance P, and desensitization of sensory 

neurons leading to its analgesic activity. This paved the way for the isolation, design, and 

synthesis of capsaicin-like compounds (which were TRPV1 agonists) that displayed more potent 

analgesic activity than capsaicin.  
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Figure 20. Structures of natural capsaicinoids 
(A) Pharmacophore of capsaicin. The blue structural moiety represents Region A; the red portion 
of the structure represents Region B; the green alkyl side chain represents Region C. (B) 
Structures of natural capsaicinoids, which have been investigated for their growth-inhibitory 
activity in cell culture or animal models.  

 Emerging evidence shows that capsaicin displays anticancer activity in several human 

cancers, both in cell culture and mouse models (for excellent reviews please refer to (Basith et 

al., 2016; Chapa-Oliver & Mejia-Teniente, 2016; Clark & Lee, 2016; Diaz-Laviada & 

Rodriguez-Henche, 2014; Srinivasan, 2016)). This led researchers to conjecture that natural and 

synthetic TRPV1 agonists would display growth-inhibitory effects analogous to capsaicin. 

Because a large number of TRPV1 agonists (which had been tested for analgesic activity) had 

already been described in literature, they were initially investigated for their anticancer activity. 

However, a majority of research studies have shown that the anticancer activity of capsaicin and 
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capsaicin analogs is completely independent of TRPV1 receptor. This is true of both natural 

capsaicinoids and synthetic capsaicin mimetics (the reader is referred to excellent reviews and 

papers (Basith et al., 2016; Chapa-Oliver & Mejia-Teniente, 2016; Clark & Lee, 2016; Ziglioli et 

al., 2009). Although these natural synthetic capsaicin mimetics are TRPV1 ligands, their 

anticancer activity does not involve the TRPV1 receptor (Lau et al., 2012). The anticancer 

activity is mediated through the direct interaction of these compounds with key signaling 

molecules of the cytoplasmic, mitochondrial, and metabolic survival pathways (Basith et al., 

2016; Chapa-Oliver & Mejia-Teniente, 2016; Clark & Lee, 2016; Diaz-Laviada & Rodriguez-

Henche, 2014; Srinivasan, 2016). The cellular pathways underlying the anticancer activity of 

capsaicin are not fully understood; however, multiple mechanisms such as increase of 

intracellular calcium, induction of calpain activity, reactive oxygen species (ROS) generation, 

inhibition of coenzyme Q, suppression of mitochondrial respiration, and inhibition of 

transcription factors like p53, signal transducer and activator of transcription (STAT) 3, and 

nuclear factor κΒ have been involved (for excellent reviews, see (Bode & Dong, 2011; Cho, Lee, 

& Choi, 2017; Clark & Lee, 2016; Fernandes, Cerqueira, Soares, & Costa, 2016; Lau et al., 

2012)). In addition to suppressing the growth of human cancer cells, capsaicin promotes the 

apoptotic activity of cancer chemotherapy agents by multiple mechanisms (Arzuman et al., 2016; 

Clark & Lee, 2016; Friedman et al., 2017; Huh et al., 2011; Vendrely et al., 2017). For example, 

capsaicin has been reported to inhibit p-glycoprotein efflux transporters in KB-C2 human 

endocervical adenocarcinoma cells. The presence of capsaicin in vinblastine-treated KB-C2 cells 

increases the concentration of vinblastine in the cellular microenvironment and thereby sensitizes 

these cells to undergo apoptosis (Khan, Maryam, Mehmood, Zhang, & Ma, 2015). The p-
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glycoprotein is a well-characterized transmembrane ATP-binding cassette, multidrug resistance 1 

transporter involved in efflux of numerous drugs and other xenobiotics (Silva et al., 2015).  

 The development of capsaicin as a clinically useful drug for pain relief or cancer therapy 

is hindered by its adverse side effects. The topical or oral administration of capsaicin in humans 

causes skin redness, hyperalgesia nausea, intense tearing in the eyes, conjunctivitis, 

blepharospasm (sustained, forced, involuntary closing of the eyelids), vomiting, abdominal pain, 

stomach cramps, bronchospasm, and burning diarrhea (Drewes et al., 2003; Evangelista, 2015; 

Hammer, 2006). Clinical trials exploring the pain-relieving activity of capsaicin have shown that 

such side effects have results in patients discontinuing use of capsaicin due to its strong 

pungency and nociceptive effect (Drewes et al., 2003; Evangelista, 2015; Hammer, 2006). Such 

observations have led to research focused on the discovery and design of capsaicin-like 

compounds, which display greater anticancer activity than capsaicin with a gentler side effect 

profile. Another incentive for the design of capsaicin-based drug candidates is to obtain 

compounds endowed with improved pharmacological activity, bioavailability, biologic half-life, 

selectivity, specificity, and therapeutic index relative to capsaicin (Lau et al., 2012). The 

anticancer activity of capsaicin is covered in several review articles (Chapa-Oliver & Mejia-

Teniente, 2016; Clark & Lee, 2016; Khan, Bi, Qazi, Fan, & Gao, 2015). However, the anticancer 

activity of these natural and synthetic capsaicin-like compounds has yet to be summarized. The 

present review fills this void of knowledge and discusses the growth-suppressive activity of 

natural and synthetic capsaicin-like compounds in human cancers. Specifically, the growth-

inhibitory activity of these in both tissue culture and animal models will be discussed. We 

believe that this detailed discussion of the anticancer activity of capsaicin analogs is both timely 

and relevant, for the potential applications of such compounds in cancer therapy.  
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STRUCTURE ACTIVITY RELATIONSHIP OF CAPSAICIN  

The potential clinical application of capsaicin is restricted by its unfavorable side effect 

profile. Clinical studies investigating the analgesic activity of capsaicin have shown that oral 

capsaicin administration in humans leads to intense abdominal pain, hyperalgesia, stomach 

cramps and nausea (Basith et al., 2016; O'Neill et al., 2012). These adverse side effects have 

caused patients to abandon taking capsaicin. This has led to intense research involving capsaicin 

structure activity relationship studies to isolate or develop new, less irritating analogs (Drewes et 

al., 2003; Evangelista, 2015; Hammer, 2006). A second driving force behind the identification 

and synthesis of capsaicin analogs is that of novel drug discovery that aims to generate new 

capsaicin mimetics with better pharmacological and therapeutic profile than the parent molecule. 

The structure of capsaicin can be broken down into three major areas, which are depicted in 

Figure 20A. The three major regions are as follows: aromatic (Region A), amide (Region B), and 

the hydrophobic (Region C) (Basith et al., 2016; Chapa-Oliver & Mejia-Teniente, 2016; Clark & 

Lee, 2016; Diaz-Laviada & Rodriguez-Henche, 2014; X. F. Huang et al., 2013; Srinivasan, 

2016).  

ANTINEOPLASTIC ACTIVITY OF NATURAL CAPSAICIN ANALOGS 

Capsiates  

Data from several independent research laboratories have led to the discovery of natural 

capsaicin-like compounds that resemble the structure of capsaicin but contain variations in 

Regions A (aromatic), B (amide), or C (hydrophobic). There are few published reports about 

natural capsaicin-like compounds (capsaicinoids) that have alterations in Region A (Gavaraskar, 

Dhulap, & Hirwani, 2015; Ogasawara, Matsunaga, Takahashi, Saiki, & Suzuki, 2002). However, 

several capsaicinoids having variations in Region B have been reported to suppress the growth of 
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human cancer cells in cell culture. The non-pungent capsaicinoid, capsiate (Figure 20B3), is 

isolated from a strain of peppers called CH-19 Sweet. Apart from capsiate, CH-19 Sweet is also 

the source for two additional capsiate-like compounds, namely dihydrocapsiate and 

nordihydrocapsiate (Figure 20B4 and B5) (Macho et al., 2003; Watanabe, Ohnuki, & Kobata, 

2011). These three compounds differ from capsaicin in Region B; dihydrocapsiate and 

nordihydrocapsiate contain an ester bond instead of an amide bond between the vanillyl motif 

and the fatty acid side chain. Dihydrocapsiate and nordihydrocapsiate also differ in Region C 

relative to capsaicin. Dihydrocapsiate and nordihydrocapsiate have only saturated bonds in the 

alkyl chain of Region C instead of a single double bond observed in capsaicin. Macho et al., 

(2003) studied the antiapoptotic activity of capsiate, dihydrocapsiate, and nordihydrocapsiate in 

Jurkat human acute T-cell leukemia cells. They observed that all three compounds induced 

apoptosis in a concentration-dependent manner when incubated with Jurkat cells.  

Several convergent studies have indicated that capsaicin may also function as a tumor 

promotor in skin cancer, breast cancer, and colon cancer (Bode & Dong, 2011). In contrast, all 

capsaicin-like compounds (natural capsaicinoids or synthetic capsaicin mimetics) have shown 

only growth-inhibitory activity toward numerous cell lines (Basith et al., 2016). 

Nordihydrocapsiate further showed potent chemopreventive activity in an in vivo two-stage 

model of mouse skin carcinogenesis. These findings would suggest that, in this experimental 

model and with application of a promotor, nordihydrocapsiate may provide protection against 

skin cancer (Macho et al., 2003). The mechanism of action of these capsiates was similar to 

capsaicin and was mediated by inhibition of transcription factor nuclear factor kB, elevation of 

reactive oxygen species, and loss of mitochondrial membrane potential (Figure 21A) (Macho et 

al., 2003; Watanabe et al., 2011). Most interestingly, nordihydrocapsiate showed better 
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proapoptotic activity than capsaicin in Jurkat cells, as reflected by the IC50 values 

(nordihydrocapsiate, IC50=75 mM; capsaicin, IC50=125 mM) (Macho et al., 2003). Both capsiate 

and dihydrocapsiate displayed antiangiogenic activity in cell culture and mouse models (Figure 

21A). These compounds suppressed vascular endothelial growth factor–induced angiogenesis in 

human umbilical cord endothelial cells via direct suppression of Src kinase activity and 

phosphorylation of its downstream substrates, such as p125FAK and vascular endothelial 

cadherin. Most interestingly, capsiate and nordihydrocapsiate do not affect autophosphorylation 

of the vascular endothelial growth factor receptor kinase insert domain/fetal liver kinase (Min et 

al., 2004; Pyun et al., 2008). The antiangiogenic activities of the two compounds were 

comparable to each other and to capsaicin. Such non-pungent capsaicinoids (capsiate and its 

related compounds) may be more applicable in cancer therapy than capsaicin.  

 

Figure 21. Signaling pathways underlying the anticancer activity of natural capsaicinoids 
(A) Capsiate and dihydrocapsiate. (B) Evodiamine and Rutaecarpine. 

Evodiamine and Rutaecarpine  

Evodiamine (EVO; Figure 20B6) and rutaecarpine (RUT; Figure 20B7) are alkaloids 

isolated from the fruit of the Chinese medical plant Evodia rutaecapra, otherwise known as 

Evodia fruit (Wu, Chien, Chen, & Chiu, 2016; Wu, Chien, Liu, Chen, & Chiu, 2017; Yu, Jin, 
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Gong, Wang, & Liang, 2013). Capsaicin and EVO share pharmacophore elements, but their 

lipophilic moiety (Region C) is different, encompassing a saturated isononenyl unsaturated group 

in capsaicin, and two phenyl rings in evodiamine (De Petrocellis et al., 2014; Pearce et al., 2004; 

S. Wang et al., 2015; T. Wang, Wang, & Yamashita, 2009). Wang et al., (2012, 2015) have 

performed docking and molecular modeling on the pharmacophore of EVO and capsaicin and 

observed a remarkable similarity between the pharmacophore of the two compounds (S. Wang et 

al., 2015; Z. Wang et al., 2012). EVO has been characterized as a potent, selective agonist of the 

TRPV1 receptor, similar to capsaicin (Ivanova & Spiteller, 2014; S. Wang et al., 2016). Cell 

culture studies show that EVO displays growth-inhibitory activity in human breast cancer, 

prostate cancer, leukemia, urothelial cell carcinoma, gastric cancer, osteosarcoma, oral cancer, 

non-small lung cancer, colon cancer, glioma, glioblastoma, thyroid cancer, melanoma, and 

cervical cancer cells (M. C. Chen et al., 2010; Du et al., 2013; Fang et al., 2014; Gavaraskar et 

al., 2015; Hu et al., 2016; J. Huang et al., 2015; Kan et al., 2007; Khan, Bi, et al., 2015; T. J. Lee 

et al., 2006; Sachita, Kim, Yu, Cho, & Lee, 2015; Shen et al., 2015; C. S. Shi et al., 2017; Wu et 

al., 2017; F. Yang et al., 2017). However, EVO has been shown to be an antagonist of the aryl 

hydrocarbon receptor as well (Yu et al., 2010). The growth-suppressive activity of EVO is 

mediated by cell cycle arrest, apoptosis, and autophagy, which involve a symphony of 

mechanisms (Figure 21B), including downregulation of survivin, Akt, STAT3, Mcl-1, B-cell 

lymphoma-2 (Bcl-2) and cdc-p15, and upregulation of caspase-3, phosphatase and tensin 

homolog, Bcl-2 associated killer, Bax, Fas ligand, microRNA-429, matrix metalloproteinase-9, 

Jun kinase, cyclin B1, cdc25c, and cdc2-p161 (T. C. Chen, Chien, Wu, & Chen, 2016; Fan et al., 

2017; Fang et al., 2014; Han et al., 2016; J. Huang et al., 2015; Khan, Bi, et al., 2015; T. J. Lee et 

al., 2006; Y. L. Li et al., 2016; Liu, Huang, Wu, & Wen, 2016; Meng et al., 2015; Peng et al., 
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2015; L. Wei, Jin, Cao, & Li, 2016; Wu et al., 2017; F. Yang et al., 2017; Zhu et al., 2011; Zou 

et al., 2015). EVO-induced autophagy in human glioblastoma cells is mediated by Jun kinase, 

Bcl-2, and elevation of Bax, intracellular calcium, and induction of ROS/nitric oxide (A. J. Liu, 

S. H. Wang, K. C. Chen, et al., 2013; A. J. Liu, S. H. Wang, S. Y. Hou, et al., 2013). The 

antitumor activity of EVO has been explored in athymic mouse models of human hepatocellular 

carcinoma, colon cancer, and renal carcinoma (Wu et al., 2016; J. Yang et al., 2013; C. Zhang et 

al., 2010). The anticancer activity of EVO in hepatocellular cancer (Figure 21B) may be 

attributed to its ability to suppress β-catenin–mediated angiogenesis (L. Shi et al., 2016). In 

contrast, EVO suppressed the growth of human renal carcinoma cells in vivo by inducing 

phosphorylation of Bcl-2 (Wu et al., 2016). In addition, EVO targeted breast cancer stem-like 

cells by activating p53 and p21 expression (Han et al., 2016). In gastric cancer stem cells, EVO 

inhibited proliferation via inhibition of the Wingless/β-catenin pathway (Wen et al., 2015). 

EVO has been shown to induce apoptosis in drug-resistant human cancer cells. EVO 

displays antiproliferative activity in camptothecin-resistant human leukemia cells (Pan et al., 

2012).The mechanism of EVO-induced G2/M arrest involves the inhibition of topoisomerase 1 

and 2 (Y. C. Lee et al., 2015). Similarly, EVO induces cell cycle arrest in Taxol-resistant ovarian 

cancer cells and in Adriamycin-resistant human breast cancer cells (Liao et al., 2005; Zhong, 

Tan, Wang, Qiang, & Wang, 2015). EVO triggers apoptosis in human colon cancer cells 

resistant to oxaliplatin and cisplatin (Ogasawara, Matsubara, & Suzuki, 2001; Wen et al., 2015). 

EVO sensitizes human cancer cells to the apoptotic effects of chemotherapeutic agents. EVO 

synergizes with doxorubicin and gemcitabine to produce increased apoptosis in breast cancer and 

pancreatic cancer cells, respectively (S. Wang et al., 2014; W. T. Wei et al., 2012). Likewise, 

EVO enhances the efficacy of erlotinib in human lung cancer and in human ovarian cancers (Y. 
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L. Li et al., 2016). Moreover, EVO sensitizes U87MG human glioblastoma cells to the 

proapoptotic effects of tumor necrosis factor–related apoptosis-inducing ligand. Hu et al., (2016) 

observed that EVO sensitizes human gastric cancer cells to the growth-suppressive effects of 

radiotherapy in vitro and in vivo (Hu et al., 2016). In addition to promoting apoptosis in various 

cancer cells, EVO alters the ATP-binding cassette subfamily G member 2 breast cancer–resistant 

protein transporter to increase chemosensitivity of colorectal cancer cells. EVO was not a 

substrate inhibitor of ABCG2, as EVO diminished ABCG2 protein expression in HCT-116/L-

OHP cells, which increased cancer chemosensitivity to cisplatin (Sui et al., 2016). Additional 

studies are needed to explore whether EVO can modify ABCG2 protein expression in other 

cancer cells. 

EVO displays antimigratory, anti-invasive, and anti-metastatic activity in human lung 

cancer, breast cancer, and nasopharyngeal cancer cells in vitro and in mouse models. EVO exerts 

anti-metastatic activity by multiple mechanisms, such as regulation of matrix metalloproteinase-

3 activity, p38 kinase activity, extracellular signal-regulated kinase activity, and Janus 

kinase/STAT pathway, and downregulation of phosphoglucose isomerase (Du et al., 2013; Peng 

et al., 2015; Zhao et al., 2015). 

RUT is the second major alkaloid isolated from E. rutaecapra. It is a potent agonist of 

TRPV1 (Ivanova & Spiteller, 2014). RUT displayed antiproliferative activity in three- 

dimensional spheroid models of human breast cancer cells (Guo et al., 2016). The antineoplastic 

activity of EVO and RUT has led to intense research involving design and synthesis of second-

generation EVO-like or RUT-like analogs with improved anticancer activity (Figure 21B). The 

reader is referred to some excellent reviews on this subject (Y. H. Hong et al., 2010; Li-Weber, 
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2013; Song et al., 2013; Yu et al., 2013). Further studies are needed to investigate whether 

TRPV1 signaling pathway plays a role in the anticancer activity of EVO and Rut. 

Resiniferatoxin  

The capsaicin analog resiniferatoxin (RTX; Figure 20B8) is a tricyclic diterpene isolated 

from the latex of the cactus plant Euphorbia resinifera (Iadarola & Gonnella, 2013). RTX is one 

of the most potent TRPV1 agonists ever described in literature (D. C. Brown, 2016). As can be 

seen in the figure above, the structure of capsaicin and RTX closely resembles each other, except 

that Region C is a diterpene moiety of the daphnane class (Carnevale & Rohacs, 2016). 

Furthermore, pharmacophore clustering and docking studies reveal a close similarity between the 

two compounds (Athanasiou et al., 2007; Carnevale & Rohacs, 2016; Elokely et al., 2016; Hartel 

et al., 2006; Y. H. Lee, Im, Kim, & Lee, 2016). Based on previous studies, four sites represent 

the pharmacophore of RTX, as follows: 1) 4-hydroxy-3-methoxyphenyl, 2) C20 ester, 3) C3- 

keto, and 4) orthophenyl groups (X. F. Huang et al., 2013). The growth-inhibitory activity of 

RTX has been investigated in multiple human cancer cells. Of these, RTX caused robust 

apoptosis in human bladder cancer cell lines (T24, 5637) and in athymic mouse models 

xenografted with T24 bladder cancer cells (Farfariello et al., 2014). However, it did not trigger 

cell death in normal human urothelial cells. This observation is interesting because RTX 

selectively targeted human bladder cancer cells, but not the normal urothelial cells. 

RTX mimics capsaicin-producing selective apoptosis for human cancer cells while 

sparing the normal cells (Lau et al., 2014). However, RTX differs by inducing prolonged cell 

cycle arrest (within G0 phase) in IEC-18 rat ileal epithelial cells. Such differences can be 

explained by the fact that the IEC-18 is an immature epithelial cell line derived from rat 

intestinal crypt, and therefore its growth characteristics cannot be compared with normal primary 



98 

adult epithelial cells (Frey et al., 2004). Additionally, species-specific differences between rat 

and human cell lines may explain the varying response of RTX between IEC-18 and normal 

urothelial cells. In agreement with other studies, the growth-suppressive effects of RTX were 

found to be independent of TRPV1 receptor and involved a decrease of cyclin D1 at mRNA and 

protein levels (Frey et al., 2004). The compound resiniferanol-9, 13, 14 ortho-phenylacetate 

(ROPA) is a hydrolysis product of RTX (Figure 20B9). Frey et al., (2004) investigated the 

growth-inhibitory activity of ROPA on IEC-18 cells (Frey et al., 2004). ROPA was found to 

induce a transient protein kinase C–dependent cell cycle arrest in G1 phase. The cell cycle–

inhibitory effects of ROPA were accompanied by a decrease in cyclin D1 levels and 

simultaneous upregulation of p21 expression (Figure 22A) (Frey et al., 2004). In contrast, RTX 

did not have any effect on p21 levels in IEC-18 cells. A remarkable observation was that the 

growth- inhibitory activity of ROPA as well was found to be independent of the TRPV1 receptor 

family (Frey et al., 2004). The apoptotic activity of RTX was mediated by diverse mechanisms 

(Figure 22A) such as mitochondrial depolarization, generation of reactive oxygen species, 

suppression of mitochondrial respiration, blockage of protein kinase C, inhibition of cyclin D1, 

and induction of p21waf1/Cip1 (Athanasiou et al., 2007; Farfariello et al., 2014; Hartel et al., 2006; 

Vercelli et al., 2014; Ziglioli et al., 2009). 
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Figure 22. Signal transduction pathways mediating the antitumor activity of natural 
capsaicinoids 
(A) RTX and ROPA. (B) DHC.  

Dihydrocapsaicin  

The capsaicin analog dihydrocapsaicin (DHC) differs from capsaicin in the hydrophobic 

Region C. It contains a saturated bond between C6 and C7 carbon atoms of Region C (Figure 

20B2). DHC is less pungent than capsaicin based on the Scoville heat unites. The anticancer 

activity of DHC has been observed in several human cancer cell lines, including human breast 

cancer cells, colon cancer cells, and gliomas (Oh et al., 2008; Oh & Lim, 2009). A majority of 

these studies have been done in cell culture. An intriguing observation was that DHC showed 

greater growth-inhibitory activity than capsaicin in these cell lines. The growth-inhibitory effects 

of DHC (Figure 22B) were mediated via cell cycle arrest, apoptosis, and autophagy inhibition of 

cellular metabolism (Halme et al., 2016; Oh et al., 2008). The antitumor activity of DHC was 

observed in athymic mouse models of human gliomas as well (Xie et al., 2016). However, the 

drawback with DHC is that it has pungent and irritant properties like capsaicin (Schneider, Seuß-

Baum, & Schlich, 2014). 
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ANTINEOPLASTIC ACTIVITY OF SYNTHETIC CAPSAICIN ANALOGS 

N-Acylvanillamides 

Among all synthetic analogs of capsaicin, the N-acylvanillamides (N-AVAMs) are of the 

most extensively researched for their analgesic activity (X. F. Huang et al., 2013; Kobata et al., 

2010; Melck et al., 1999). There are numerous studies that have investigated their anticancer 

activities in diverse human cancer cell lines (Sanchez-Sanchez et al., 2015; Sancho et al., 2003; 

Stock et al., 2012). This class of compounds is modified in the hydrophobic Region C of 

capsaicin (Figure 23). Early studies experimented with substituting the acyl side chain with 

saturated long-chain lipophilic groups. However, these compounds were inactive (Melck et al., 

1999). The introduction of long-chain unsaturated fatty acids fully restored the analgesic activity 

of these compounds. The N-AVAMs are non-pungent and do not have the unfavorable side 

effects of capsaicin. Structure activity studies experimented with the magnitude of unsaturation 

in these side chain and the length of the side chain to yield capsaicin analogs with improved 

analgesic activity and binding profile to TRPV1 (X. F. Huang et al., 2013). Recent studies 

examined the growth-inhibitory activity of these unsaturated N-AVAMs (UN-AVAMs). Tuoya 

et al., (2006) demonstrated that the UN-AVAM dohevanil (Figure 23A) induced a greater 

magnitude apoptosis in MCF-7 human breast cancer cells than capsaicin in vitro (Tuoya et al., 

2006). Appendino et al., (2005) synthesized a panel of UN-AVAM compounds with varying 

affinity for human TRPV1 receptor (Appendino et al., 2005; Appendino, Minassi, Morello, De 

Petrocellis, & Di Marzo, 2002). Of these compounds, several studies have investigated the 

growth-inhibitory activity of olvanil (Figure 23B), rinvanil (Figure 23C), and 

phenylacetylrinvanil (PhAR; Figure 23D). The 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT) assays showed that olvanil decreased the viability of C6 rat 
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glioma cells and EFM-19 breast cancer cells (Figure 24) (X. F. Huang et al., 2013; Melck et al., 

1999). Apart from being a potent TRPV1 agonist, these compounds displayed weak binding and 

activation of cannabinoid receptor 1 (CB1) and competitively inhibited the anandamide 

membrane transporter. Luviano et al., (2014) studied the growth-inhibitory activity of rinvanil 

and PhAR in J774, P388, and WEHI-3 mouse leukemic cell lines (Figure 24). PhAR showed 

improved growth-inhibitory activity relative to rinvanil and capsaicin in all of the cell lines 

studied (Luviano et al., 2014). Additionally, PhAR displayed some selectivity for leukemic cell 

lines relative to normal mouse bone marrow cells (Luviano et al., 2014). However, contradictory 

findings were found later by Sánchez-Sánchez et al., (2015), who analyzed the antiproliferative 

and cytotoxic activity in a panel of human cervical cancer cell lines, namely HeLa, CaSki, and 

ViBo. The growth-inhibitory activity of these compounds varied from cell line to cell line and 

did not correlate with their binding profile to human TRPV1 receptor (Sanchez-Sanchez et al., 

2015). The researchers also observed that rinvanil showed selective growth-inhibitory effects on 

the cervical cancer cells relative to normal lymphocytes, whereas PhAR showed no selectivity 

between normal and tumor cells (Sanchez-Sanchez et al., 2015). Such variance in results may be 

attributed to the nature of the cancer, species-specific differences (human cell lines versus mouse 

cell lines) and the disparity in the methodology used in the two studies. Whereas the studies 

performed by Luviano et al., (2014) studied the growth- inhibitory effects of PhAR and rinvanil 

by the Sulforhodamine B assay, Sánchez-Sánchez et al., (2015) used the lactate dehydrogenase 

assay to evaluate the effect of PhAR and rinvanil on normal lymphocytes (Luviano et al., 2014; 

Sanchez-Sanchez et al., 2015). 
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Figure 23. A panel of UN-AVAMs that have been investigated for their growth-suppressive 
activity in cell culture or mice models 
(A) Dohevanil. The first number in the rectangular brackets indicates the chain length and the 
number after the colon indicates the number of double bonds. For example: [C22:6] written next 
to dohevanil means dohevanil has a chain length of 22 carbon atoms and 6 double bonds in this 
alkyl side chain. (B) Olvanil [C18:1]. (C) Rinvanil [C18:1]. (D) Phenylacetylrinvanil [C18:1]. 
(E) Arvanil [C20:4]. 

Di Marzo et al., (2002) developed arvanil, an extremely powerful TRPV1 agonist (Figure 

23E). Arvanil is a very potent agonist of the TRPV1 and CB1 receptor (Di Marzo et al., 2002). It 

also induces robust inhibition of anandamide membrane transporter and fatty acid amide 

hydroxylase (De Petrocellis, Bisogno, Davis, Pertwee, & Di Marzo, 2000; Di Marzo et al., 2002; 

Glaser et al., 2003; Melck et al., 1999). Experiments in cell culture systems showed that arvanil 

suppressed the growth of C6 mouse glioma cells, Jurkat human T-cell leukemia cells, human 
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breast cancer cells (MCF-7, T-47D, and EFM-19 cell lines), and prostate cancer cells (DU145, 

PPC-1, and TSU cell lines; Figure 24) (De Lago et al., 2006; Di Marzo, Melck, De Petrocellis, & 

Bisogno, 2000; W. Li & MooreII, 2014; Melck et al., 1999; Sancho et al., 2003). A majority of 

these studies showed that the growth-suppressive activity of arvanil was independent of TRPV1 

and CB1 receptor (Melck et al., 1999). Stock et al., (2012) investigated the antineoplastic activity 

of arvanil in HG-astrocytoma cells organotypically grown in mouse brain slices (Figure 24). 

Arvanil suppressed the growth of HG-astrocytoma at a relatively low concentration of 50 nM 

(Stock et al., 2012). Subsequently, Stock et al., (2012) confirmed the antineoplastic activity of 

arvanil in HG-astrocytoma tumors implanted in immunocompromised severe combined 

immunodeficiency mice. They observed that arvanil suppressed the tumor growth rate of HG 

astrocytomas better than temozolomide (the standard of care for astrocytoma patients). The 

survival time of mice administered with arvanil was greater than vehicle-treated mice (Stock et 

al., 2012). This study administered a combination of arvanil and temozolomide, which showed 

an increase in survival times compared with either agent administered alone or mice 

administered with vehicle only (Stock et al., 2012). Stock et al., (2012) observed that the 

anticancer activity of arvanil in human astrocytomas was dependent on the TRPV1 receptor only 

(Stock et al., 2012). These results are divergent from those found in human breast and prostate 

cancer cells (Melck et al., 1999). Such different observations may be due to differences in the 

cell biology of neuronal and non-neuronal human cancer cells. Small cell lung cancer is a 

neuroendocrine tumor characterized by rapid doubling time, aggressive clinical course, and a 

dismal 5-year survival rate. The N-AVAMs arvanil and olvanil suppressed the invasion of 

human small cell lung cancer cell lines via the 5’ AMP-activated protein kinase pathway (Hurley 

et al., 2017). 
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RPF, Epoxide-Based Analogs  

de-Sa-Junior et al., (2013) synthesized a capsaicin mimetic called RPF101 (Figure 25A). 

The structure of RPF101 differs from capsaicin, primarily in Region B, where the amide group 

has been replaced by a bioisosteric sulfonamide (de-Sa-Junior et al., 2013). The alkyl side chain 

in Region C was replaced with a benzene moiety. The antiproliferative and apoptotic activity of 

RPF101 in MCF-7 human breast cancer was greater than capsaicin. RPF101 caused cell 

shrinkage and pyknosis (Figure 24) in three-dimensional spheroid cultures of MCF-7 cells (de-

Sa-Junior et al., 2013). RPF101 caused a disruption of mitochondrial membrane potential, 

dysregulation of microtubule formation, and mitotic catastrophe to induce cell cycle arrest and 

apoptosis in human breast cancer cells (Figure 24) (de-Sa-Junior et al., 2013). The research 

group further modified RPF101 to produce an analog RPF151 (Figure 25B) with better stability 

and aqueous solubility properties (Ferreira et al., 2015). In addition, RPF151 displayed lower 

hyperalgesia relative to capsaicin. MTT assays showed that RPF151 decreased cell viability 

better than capsaicin in MDA-MB-231 human breast cancer cells. However, RPF151 did not 

differentiate between MCF-10A normal human breast epithelial cells and breast cancer cells 

(Ferreira et al., 2015). The mechanism of action of RPF151 was divergent from RPF101. 

RPF151 induced cell cycle arrest at S-phase with concomitant decrease in cyclin A, D1, and D3 

(Figure 24). RPF151 also induced apoptosis in MDA-MB-231 cells via downregulation of p21, 

reduction of mitochondrial membrane potential, and activation of the tumor necrosis factor–

related apoptosis-inducing ligand pathway (Ferreira et al., 2015). The antineoplastic activity of 

RPF151 was analyzed by nude mice model of human breast cancer, where it showed higher 

antitumor activity than capsaicin. Most remarkably, the growth-suppressive activity of RPF151 

is independent of the TRPV1 receptor. 
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Figure 24. Signaling pathways underlying the antiproliferative and proapoptotic activity of 
synthetic capsaicin analogs 

 

Lewinska et al., (2015) synthesized a constrained capsaicin analog that contained an 

epoxide motif in Region C of the capsaicin (Figure 25C). The growth-suppressive activity of 

capsaicin epoxide (CE) compared with capsaicin was studied in a diverse array of cell lines using 

the MTT assay (Lewinska, Chochrek, Smolag, Rawska, & Wnuk, 2015). Both capsaicin and CE 

did not reduce the viability of human dermal fibroblasts. However, CE decreased the viability of 

NIH/3T3 murine embryonic fibroblasts better than capsaicin (Lewinska, Chochrek, et al., 2015). 

The varying results in this study could be due to species and lineage differences between human 
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dermal fibroblasts and the NIH/3T3 cells. Similarly, the growth-inhibitory activity of CE was 

found to be better than capsaicin in prostate cancer, breast cancer, cervical cancer, and renal 

cancer cell lines. The human breast cancer cell line MCF-7 was found to be most responsive to 

CE-induced cell death (Lewinska, Chochrek, et al., 2015). CE was shown to trigger robust 

apoptosis in these cell lines by inducing oxidative stress (Figure 24).  

 

Figure 25. Capsaicin analogs containing a sulfonamide and epoxide motif in their structure 
trigger apoptosis in human cancer cells 
(A) RPF101. (B) RPF151. (C) Capsaicin epoxide. 

Miscellaneous Capsaicin Analogs.  

�e TRPV1 antagonist capsazepine (Figure 26A) displayed potent antitumor activity in 

human prostate cancer and osteosarcoma cells (J. K. Huang et al., 2006; J. H. Lee et al., 2017; 

Teng et al., 2004). Gonzales et al., (2014) showed that capsazepine suppressed the growth of 

human oral squamous cell carcinoma in cell culture and xenograft models in athymic mice 
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(Gonzales et al., 2014). The apoptotic activity of capsaicin was found to be independent of 

TRPV1 (J. K. Huang et al., 2006). The apoptotic activity of capsazepine was induced by 

endoplasmic reticulum stress, increase of ROS, followed by increase of intracellular calcium in a 

phospholipase C–independent pathway (Figure 27). Capsazepine was also found to be an 

inhibitor of Janus kinase/STAT3 signaling in prostate cancer cells (J. K. Huang et al., 2006). 

Capsazepine also sensitized A549 lung cancer cells to radiation therapy (Nishino et al., 2016). 

Thomas et al., (2007, 2011, 2012) synthesized the capsaicin analog nonivamide (Figure 26B), 

which decreased the viability of the immortalized human lung epithelial cell line BEAS-2B 

overexpressing TRPV1 (referred in this work as TRPV1-OE cells) (Thomas et al., 2011; Thomas 

et al., 2012; Thomas et al., 2007). Nonivamide and its analog N-(3-4 

dihydroxybenzyl)nonivamide (Figure 26C) displayed potent growth-suppressive activity in 

TRPV1-OE cells, and this process was mediated by the ROS oxidative stress pathway (Thomas 

et al., 2007). Damiao et al., (2014) synthesized a variety of capsaicin analogs (Figure 26 C–E) 

and tested for their cytotoxicity in B16F10 (mouse melanoma), SK-MEL-28 (human melanoma), 

NCI-H1299, NCI-H460 (human lung cancer), SK-BR-3, and MDA-MB-231 (human breast 

cancer) cell lines (Damiao et al., 2014). The capsaicin analog N-(benzo[d] [1,3]dioxol-5-

ylmethyl)-4-methoxybenzamide (Figure 26D) decreased the viability of human NCI-H1299 cells 

and mouse melanoma cells, comparable to capsaicin. Benzo[d][1,3]dioxol-5-ylmethyl 

hexanonate (Figure 26E) showed greater growth-inhibitory activity in SK-MEL-28 cells than 

capsaicin (Damiao et al., 2014), whereas its growth-suppressive effects are similar to capsaicin in 

mouse melanoma cells. Furthermore, the authors performed exploratory data analysis and 

molecular modeling on these both, N-(benzo[d][1,3]dioxol-5-ylmethyl)-4-methoxybenzamide 

and benzo[d][1,3]dioxol-5-ylmethyl hexanonate. These in silico experiments suggested that aryl 
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amides, esters, and alkyl esters may be promising scaffolds to develop capsaicin mimetics with 

improved anticancer activity (Damiao et al., 2014). The compound MRS1477 (Figure 26F), a 

positive allosteric modulator of TRPV1, was found to be very robust in inducing apoptosis in 

human breast cancer cells in vitro and in athymic mouse model (Naziroglu et al., 2017). The 

growth-inhibitory effects of MRS1477 were observed at five-fold lower concentration relative to 

capsaicin. The proapoptotic activity of MRS1477 was mediated by the TRPV1 receptor 

(Naziroglu et al., 2017). 

 

Figure 26. Miscellaneous capsaicin analogs that display growth-inhibitory activity in 
human and mouse cancer cell lines 
(A) Capsazepine, a TRPV1 antagonist. (B) Nonivamide. (C) N-(3-4 
dihydroxybenzyl)nonivamide. (D) N-(Benzo[d][1,3]dioxol-5-ylmethyl)-4-methoxybenzamide 
(N-BMB). (E) Benzo[d][1,3]dioxol-5yl-methyl hexanonate (BMH).  
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Figure 27. Molecular mechanisms underlying the apoptotic activity of capsazepine and 
nonivamide 

CONCLUSIONS AND FUTURE DIRECTIONS 

The nutritional compound capsaicin has shown potent anticancer activity in multiple 

human cancers. However, the therapeutic potential of capsaicin has been limited by its 

unpleasant side effects. This has led to intense research focused on the discovery and design of 

natural and synthetic capsaicin-like compounds. A variety of natural capsaicinoids has been 

isolated from peppers and other natural sources. Similarly, synthetic capsaicin analogs have been 

designed by manipulating the pharmacophore of capsaicin. Another aim of the rational design of 

capsaicin analogs has been to find compounds that will display better bioactivity and greater 

therapeutic index. A promising class of synthetic non-pungent capsaicin mimetics are long-chain 

unsaturated N-AVAMs. An exciting development in the field of capsaicin analogs has been the 

synthesis of allosteric TRPV1 modulators for cancer therapy. However, a majority of these 
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capsaicin mimetics have been tested for their analgesic activity and not their anticancer activity. 

The growth-inhibitory activity of some capsaicin analogs has been predominantly analyzed in 

cell culture and not in animal models. Such data underline the importance of examining the 

antineoplastic of different types of synthetic capsaicin mimetics in athymic mouse and patient- 

derived xenograft models. Capsaicin, capsiate, and EVO have been shown to display potent 

antiangiogenic activity in both cell culture and mouse models. In contrast, there are no reports of 

the antiangiogenic activity of other natural and synthetic capsaicin analogs. Another promising 

area of research is the combinatorial anticancer activity of these capsaicin analogs with 

conventional chemotherapy or radiation. The development of non-pungent second-generation 

capsaicin mimetics with anticancer and antiangiogenic activity will pave the way for novel 

treatment regimens in human cancers. 
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CHAPTER 5: ANTI-CANCER ACTIVITY OF SYNTHETIC CAPSAICINOIDS IN 
SMALL CELL LUNG CANCER 

 

INTRODUCTION  

Small cell lung cancer (SCLC) represents 15-20% of all lung cancer cases. SCLC is 

characterized as being aggressive showing rapid growth and quick dissemination (Bunn et al., 

2016; Herbst, Heymach, & Lippman, 2008; Kalemkerian et al., 2013). Frequently, patients are 

already in the extensive stage of disease at diagnosis, with the five-year survival rate being 

almost non-existent. One of the major obstacles with SCLC treatment is its pervasiveness for 

developing resistance to first line platinum-based chemotherapeutic options (Alvarado-Luna & 

Morales-Espinosa, 2016; S. L. Wood et al., 2015). After resistance has developed, patients have 

limited options for the next step of their treatment. Chemotherapeutic approaches typically only 

extend a patient’s life by 4-8 months, emphasizing both the severity of the disease and the 

continued lack of efficacious therapeutic modalities (Bunn et al., 2016; Latimer & Mott, 2015). 

The lack of successful treatment options has plagued patients diagnosed with SCLC for decades. 

The search for novel compounds or drugs to treat or augment chemotherapy currently used to 

treat SCLC is imperative to improving response to therapy and reducing the mortality rates 

associated with this disease (Alvarado-Luna & Morales-Espinosa, 2016; Bunn et al., 2016; 

Koinis et al., 2016; Polley et al., 2016).  

 Capsaicin, the major pungent compound in chili peppers, has been studied extensively 

for its analgesic properties. Along with being a potent analgesic, it has also been shown to have 

anti-cancerous properties in a handful of malignancies such as lung cancer, prostate cancer and 

melanoma (Basith et al., 2016; K. C. Brown et al., 2010; Lau et al., 2014; Meral et al., 2014; 

Patowary, Pathak, Zaman, Raju, & Chattopadhyay, 2017). Capsaicin is an agonist of the 
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transient receptor potential vanilloid (TRPV) family of receptors which can sense heat. This 

receptor is why a chili pepper elicits a noxious heat sensation (Chapa-Oliver & Mejia-Teniente, 

2016; Chow et al., 2007; Clark & Lee, 2016; Diaz-Laviada & Rodriguez-Henche, 2014; 

Friedman et al., 2018; Lau et al., 2014; Shintaku et al., 2012). The clinical application of 

capsaicin is hindered by its unpleasant side effect profile related to the heat sensation of 

capsaicin (Basith et al., 2016; Patowary et al., 2017). Despite being a proven analgesic, 

gastrointestinal burning, diarrhea, and abdominal discomfort are just a few of the many adverse 

reactions reported by patients when being treated in clinical trials (Fuhrer et al., 2011; Hammer, 

2006). The frequency of patient discontinuation of capsaicin therapy renders many trial 

outcomes useless, making the proposal and implementation of capsaicin as a medicinal agent 

challenging. One potential solution to this issue is to investigate the use of natural and synthetic 

analogs of capsaicin (here after called capsaicinoids), both of which have also been shown to be 

potent analgesics with similar anti-cancer effects of capsaicin (Appendino et al., 2002; Di Marzo 

et al., 2002; X. F. Huang et al., 2013; Janusz et al., 1993). Due to the structural similarity and the 

comparable analgesic activity of many of these capsaicinoids, it is plausible that these 

compounds may also maintain similar, if not better, anti-cancer properties (potentially due, in 

part, to therapeutic tolerability). In fact, previous studies have shown that non-pungent long-

chain capsaicinoids prevented invasion of lung cancer cells more effectively than capsaicin, 

suggesting that further investigation to evaluate their potential clinical use is warranted (Hurley 

et al., 2017).  

The studies presented in this chapter evaluate the anti-cancer capabilities and mechanism 

of capsaicinoids in SCLC. In order to compare the antineoplastic abilities of capsaicinoids to that 

of capsaicin, a variety of assays were performed. We evaluated the cytotoxic potency of a panel 
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of synthetic capsaicinoids to induce cell death in three SCLC cell lines first by MTT assay and 

then by measuring caspase-3 activity, as well as a cell death ELISA. Following the evaluation of 

the anti-cancer properties of multiple capsaicinoids, the most potent capsaicinoid was chosen to 

further investigate the anti-cancer mechanisms of action and to compare it to that of capsaicin, 

which had been established in previous studies by our laboratory (Lau et al., 2014). The selected 

synthetic capsaicinoids evaluated in these studies are considered to be non-pungent, which 

means they lack the adverse clinical side effects that are reported for capsaicin. The overall aim 

of these studies was to determine if the synthetic capsaicinoids provide an equal, if not better 

anti-cancer agent than capsaicin, and to evaluate and compare their mechanisms of action to that 

of capsaicin. Identifying non-pungent capsaicinoid compounds with equivalent or greater 

potency than capsaicin, in conjunction with understanding their mechanism of cytotoxicity, will 

greatly benefit the search for adjuvant therapy options with potential to augment current 

standard-of-care chemotherapeutic regimens and improve patient response and survival rates. 

METHODS  

Reagents  

Capsaicin, arvanil, olvanil, BAPTA-AM (1,2-Bis(2-aminophenoxy)ethane-N,N,N’,N’-

tetraacetic acid tetrakis(acetoxymethyl ester), Ruthenium Red (RR), AM-281, and calpeptin were 

purchased from Sigma-Aldrich (St. Louis, MO, USA). Livanil and Linvanil were synthesized by 

our collaborator Dr. John Rimaldi at the University of Mississippi. All cell culture reagents, 

including RPMI-1640, FBS, Trypsin-EDTA, and HEPES, were purchased from American Type 

Culture Collection (ATCC; Manassas, VA, USA). Sodium pyruvate, glucose, and penicillin-

streptomycin solutions were obtained from Corning (NY, USA). Alveolar Epithelial Cell 

Medium was purchased from ScienCell Research Laboratory.  
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Figure 28. The molecular structures of capsaicin, olvanil, livanil, linvanil, and arvanil 
The first number following the compound names in the brackets denotes the chain length. The 
number following the colon represents the number of double bonds within the chain. For 
example: Capsaicin has a 9-carbon chain with one double bond and is designated [C9:1].  

Cell culture  

Three human SCLC cell lines were utilized: NCI-H69 (H69), NCI-H82 (H82), and DMS 

114. H69 is considered a classical representative SCLC cell line, isolated from a 55-year-old 

male. H82 is a variant SCLC cell line, isolated from a 40-year-old. Both cell lines were isolated 

from men via pleural effusion (Broers et al., 1988; Carney et al., 1985; Gazdar, Carney, Nau, & 

Minna, 1985). DMS 114 is a human SCLC cell line isolated from a 68-year-old male and 

characterized by Pettengill et al., (1980). Both H69 and H82 are suspension cell lines which 

grow in aggregates. DMS 114 is an adherent cell line (Pettengill et al., 1980). All three cell lines 

were grown and maintained in RPMI-1650 with 2 mM glutamine, 25 mM HEPES, 1 mM sodium 

pyruvate, 4.5 g/L glucose, 100 units/mL penicillin, 100 units/mL streptomycin and 10% fetal 

bovine serum (Friedman et al., 2017; Lau et al., 2014). All cell lines were purchased from ATCC 

and grown in accordance with their suggestions. They were maintained in an incubator at 37°C 

and 5% CO2. These cell lines have been widely utilized in SCLC studies and possess 

characteristics similar to human patients (Broers et al., 1988; Carney et al., 1985; Pettengill et al., 

A. Capsaicin [C9:1] B. Olvanil [C18:1] C. Livanil [C18:2] 

D. Linvanil [C18:3] E. Arvanil [C20:4] 
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1980). Human pulmonary alveolar epithelial (HPAEpiC) cells were purchased from ScienCell 

Research Laboratory. HPAEpiCs were used to represent “normal” lung cells. They were 

maintained in Alveolar Epithelial Cell Medium (basal medium) supplemented with 10% of fetal 

bovine serum, 1% epithelial cell growth supplement, and 1% penicillin/streptomycin solution in 

accordance with the supplier’s suggestions. They were maintained in an incubator at 37°C and 

5% CO2.  

Treatment of cultured cells  

Cells were grown to 70-80% confluency. Cells were then treated with each compound at 

varying concentrations (10 nM, 100 nM, 1 µM, 2.5 µM, 5 µM, 10 µM, 20 µM) for 24 hours with 

RPMI-1640 + 1% FBS. Vehicle controls were treated with 0.2% DMSO. When cells were 

treated with BAPTA-AM (10 µM), RR (1 µM), or AM-281 (10 µM) the inhibitors were added 

45 minutes before the capsaicinoid.  

Preparation of lysates  

Cell lysates were prepared according to a previously established protocol (Brown et al., 

2010). Cells were harvested, washed 3 times with cold PBS and added to M2 Lysis Buffer (20 

mM Tris, pH 7.6, 0.5% IGEPAL CA-630, 250 mM NaCl, 3 mM EGTA, 3 mM EDTA, 4 µM 

DTT, 5 mM PMSF, 1 mM sodium fluoride, 1 mM sodium orthovanadate, 25 µg/ml leupeptin, 5 

µg/ml pepstatin, 5 µg/ml aprotinin and 25 µg/ml trypsin-chymotrypsin inhibitor). The lysates 

were incubated on an orbital rocker at 4°C for 40 minutes, and cleared by centrifugation at 

15,000 g for 15 minutes at 4°C. The supernatants were collected and stored at -80°C. Protein 

concentrations were determined by Bradford assay (Bio-Rad Laboratories, Hercules, CA, USA). 
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Cell viability assay 

 Cells were seeded in 96-well plates at a density of 1.0 x 104 cells per well and allowed to 

incubate for 24 hours to reduce cell stress. The cells were treated in RPMI + 1% FBS in triplicate 

with each compound and concentration as indicated. After 24-hour incubation the cells were 

analyzed using an MTT cell viability assay. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide) was added to the cells and allowed to incubate for 2-4 hours. 

During this time, viable cells reduced the MTT to purple formazan. The media was removed and 

DMSO was added to solubilize the formazan. Absorbance was measured at 540 nm in a 

microplate reader. Each cell line was performed independently with each compound in triplicate 

on the plate. Each plate was performed three times. The cell viability of the treatment groups 

were compared to the vehicle controls.  

Caspase-3 activity assay  

 The colorimetric Caspase-3 Activity Assay was purchased from EMD Millipore 

(Cambridge, MA) and run in accordance with the manufacturer’s specifications, using 100-150 

µg protein aliquot in a 96-well plate in duplicate. Lysates were normalized using the Bradford 

protein quantification method. The Caspase-3 Activity Assay detects the chromophore p-

nitroaniline (pNA). Following addition of the DEVD-pNA substrate to the cell lysate, pNA is 

released following cleavage of the substrate by active Caspase-3. Optical density of pNA was 

detected at 405 nm using a microplate reader. This assay was performed twice on three 

independent sets of cell lysates (n=6). The procedure was repeated for all cell lines.  

Cell death ELISA  

The Roche Cell Death Detection sandwich ELISA was purchased from Roche. The 

supplied 96-wells are precoated with anti-histone antibodies. Nucleosomes associated with 
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apoptosis bind to the anti-histone antibodies if they are present in the sample. A secondary 

antibody (anti-DNA-POD) with a reporter peroxidase was then added. Color change following 

addition of the ABTS solubilizing solution was then analyzed by measuring absorbance at 405 

nm (reference wavelength approximately 490 nm) with a microplate reader to provide a 

quantitative reading. Due to the specificity of the antibodies to apoptotic-associated 

nucleosomes, this assay shows apoptosis but not necrosis-related cell death. The manufacturer’s 

protocol was followed using the previously described cell lysates normalized by Bradford protein 

quantification method. The absorbance value of untreated control cells was set as 1 and the 

absorbance of the compound treated cells were reported as a fold increase in cell death relative to 

the control. The protocol was identical for all cell lines.  

Calpain activity assay  

SCLC cells were treated with either calpeptin or BAPTA-AM (10 µM) 45 minutes prior 

to adding 20 µM arvanil in RPMI media containing 1% FBS, as described above, for 24 hours. 

Cells were harvested and washed twice with PBS. Lysates were made using the provided buffer 

in the Sensolyte 520 Calpain Activity Assay Kit (Anaspec, Freemon, CA, USA). Two hundred 

micrograms of lysates were used and incubated with 50 µL of calpain substrate for 60 minutes at 

37ºC. The assay was performed according to manufacturer’s specifications. Fluorescence was 

measured in a microplate reader with an excitation wavelength of 490 nm and an emission 

wavelength of 520 nm.  

Statistical analysis 

Data were analyzed and plotted using GraphPad Prism 5 Software, Inc (La Jolla, CA, 

USA), and represented as the mean ± the standard deviation. The results were compared by one-
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way analysis of variance (ANOVA) followed by a Tukey post-hoc multiple comparison test. 

Data were considered significant at p£0.05.  

RESULTS  

Arvanil, linvanil, and livanil reduce cell viability in SCLC cell lines  

Initial experiments were conducted to evaluate the effects of four capsaicinoid 

compounds on cell viability in three SCLC cell lines. Previously published studies from our 

laboratory found that 10 µM capsaicin has no effect on the cell viability of SCLC cell lines; thus 

10 µM capsaicin was selected as the reference concentration for comparing the potency of the 

capsaicinoid compounds (Hurley et al., 2017). To evaluate and compare the cytotoxic potency of 

the capsaicinoid compounds relative to capsaicin, cell viability was measured by MTT assay 

following a 24-hour treatment of each cell line with 10 µM capsaicinoid (arvanil, linvanil, 

livanil, olvanil; Figure 28) or 10 µM capsaicin. In H69 cells there was a significant decrease in 

cell viability following treatment with 10 µM of arvanil, linvanil, and livanil but not olvanil or 

capsaicin (Figure 29A). Livanil decreased cell viability by about 20%, while linvanil decreased 

cell viability by about 30%. These findings were consistent in H82 (Figure 29B) and DMS 114 

(Figure 29C) cells as well. Arvanil demonstrated the most potent effect on cell viability in all 

three cell lines, decreasing cell viability by about 50% (Figure 29 A-C). Therefore, arvanil was 

selected as the representative capsaisinoid in subsequent experiments.  
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Figure 29. Effect of capsaicinoids on SCLC viability 
The effect of capsaicin, olvanil, livanil, linvanil, and arvanil (10µM) on cell viability over 24 
hours was compared in three SCLC cell lines by MTT assay; (A) H69, (B) H82 and (C) DMS 
114. * denotes statistical difference from control. Data is represented as the mean ± SD. * p 
£0.05, ** p £ 0.01, *** p £ 0.001.  

Arvanil induces apoptotic cell death in SCLC cells but not normal lung cells 

To elucidate the mechanism of cytotoxicity, each cell line was treated for 24 hours with a 

concentration range of arvanil or capsaicin (10 nM, 100 nM, 1 µM, 2.5 µM, 5 µM, 10 µM, 20 

µM) and caspase-3 activity was measured. Arvanil significantly increased caspase-3 activity at 

lower concentrations than the capsaicin treated cells. Capsaicin treatment failed to induce 

A.

A
rv

an
il

Li
nv

an
il

Li
va

ni
l

O
lv

an
il

C
ap

sa
ic

in

C
on

tr
ol

1.5

1.0

0.5

0.0

H69

***
***

**

Fo
ld

 C
ha

ng
e 

in
 C

el
l V

ia
bi

lit
y 

C.

DMS 114

A
rv

an
il

Li
nv

an
il

Li
va

ni
l

O
lv

an
il

C
ap

sa
ic

in

C
on

tr
ol

1.5

1.0

0.5

0.0

***
***

**

Fo
ld

 C
ha

ng
e 

in
 C

el
l V

ia
bi

lit
y 

B.

A
rv

an
il

Li
nv

an
il

Li
va

ni
l

O
lv

an
il

C
ap

sa
ic

in

C
on

tr
ol

H821.5

1.0

0.5

0.0

*

***
***

Fo
ld

 C
ha

ng
e 

in
 C

el
l V

ia
bi

lit
y 



120 

caspase-3 activity at all concentrations, in all cell lines. In H69 cells, arvanil significantly 

induced caspase-3 activity starting at a concentration of 2.5 µM (Figure 30A). In H82 cells, 

arvanil significantly induced caspase-3 activity at a concentration of 5 µM (Figure 30B). DMS 

114 cells were found to be the most susceptible to arvanil, showing induced caspase-3 activity at 

1 µM (Figure 30C). This showed that arvanil is more potent than capsaicin at inducing the 

apoptotic pathway in human SCLC cells.  

 

Figure 30. Comparison of caspase-3 activity induced by arvanil and capsaicin in SCLC cell 
lines 
Caspase-3 Activity Assay was used to compare the ability of arvanil and capsaicin (at identical 
concentrations; 10 nM, 100 nM, 1 µM, 2.5 µM, 5 µM, 10 µM, 20 µM) to induce caspase-3 
activity at 24 hours in (A) H69, (B) H82 and (C) DMS 114 cells. Data is represented as the mean 
± SD. * denotes statistically different from control; p£0.05. 

Next, we wanted to evaluate whether arvanil-induced cell death was selective for cancer 
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24 hours with either 20 µM arvanil or capsaicin. Twenty micromolar was selected due to the fact 

that it was statistically significant in all three SCLC cell lines. Previous data from our laboratory 

also suggests that 20 µM capsaicin is ineffective at inducing significant cell death in various lung 

cancer cell lines. Neither compound caused a significant increase in caspase-3 activity in 

HPAEpiC cells (Figure 31A). This was further examined using the cell death ELISA to verify 

the caspase-3 activity assay. Again, treatment with 20 µM arvanil or capsaicin failed to cause a 

significant increase in cell death activity in HPAEpiCs (Figure 31B). This data suggests that 

arvanil may be capable of selectively killing cancer cells while leaving normal lung cells 

unharmed.  

Figure 31. Effect of arvanil and capsaicin on caspase-3 activity and cell death in normal 
human pulmonary alveolar epithelial cells 
Caspase-3 activity and cell death were evaluated in HPAEpiC cells following 24 hour treatment 
with 20 µM arvanil or capsaicin. Results of the (A) caspase-3 activity assay and (B) cell death 
ELISA showed that neither arvanil nor capsaicin caused a significant increase in caspase-3 
activity or cell death in HPAEpiCs. Data is represented as the mean ± SD. Statistical significance 
was considered at p£0.05. 

Arvanil does not induce cell death via the TRPV receptor in SCLC 

Next, we wanted to evaluate the signaling pathways through which arvanil may be 

initiating its anti-cancerous properties. Capsaicin is considered the prototypical TRPV agonist, 

and previous research in our laboratory has shown that capsaicin-induced cell death is TRPV6 

receptor-dependent in SCLC (Lau et al., 2014). To evaluate whether arvanil-induced cell death is 
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also TRPV receptor-dependent, we used Ruthenium Red (RR), a potent generalized TRPV 

receptor antagonist, to evaluate its ability to abrogate the effects of arvanil in SCLC. If arvanil-

induced cell death is TRPV receptor-dependent, RR should be able to block the effects of 

arvanil. Figure 32 shows that when SCLC were pretreated with 10 µM of RR, arvanil still 

induced a significant increase in caspase-3 activity in the three SCLC cell lines.  

Figure 32. Effect of TRPV receptor inhibition on arvanil-induced caspase-3 activity in 
SCLC 
To evaluate the role of TRPV receptor activation in arvanil-induced apoptosis, caspase-3 activity 
was measured in SCLC cell lines in response to10 µm arvanil (Arv) following pretreatment with 
10 µM ruthenium red (RR). (A) In H69 cells arvanil still induced a significant increase in 
caspase-3 activity in the presence of RR. Similar results were found in (B) H82 and (C) DMS 
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114 cells. Data is represented as the mean ± SD. Values represented by the same letter indicate 
no statistical difference from each other at p£0.05. 

To validate the caspase-3 activity assay, the lysates treated with RR were then used to 

perform a cell death ELISA. As seen with caspase-3 activity, pretreatment with RR was unable 

to inhibit arvanil-induced cell death in all SCLC cell lines, H69, H82, and DMS 114 (Figure 33). 

The inability of RR to prevent arvanil from inducing caspase-3 activity or cell death suggests 

that the anti-cancer effects of arvanil are TRPV receptor independent.  

Figure 33. Effect of TRPV receptor inhibition on arvanil-induced cell death in SCLC 
Fold change of cell death was evaluated when arvanil (Arv) was treated with 10 µM ruthenium 
red (RR) to see if it could reverse the anti-cancer activity. (A) In H69 cells arvanil was able to 
induce significant increases in cell death, as well as in (B) H82 cells and (C) DMS 114 cells. 
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Data is represented as the mean ± SD. Values represented by the same letter indicate no 
statistical difference from each other at p£0.05. 

Arvanil does not induce cell death of SCLC via the cannabinoid 1 receptor 

After finding that TRPV receptor inhibition had no effect on the anti-cancer properties of 

arvanil, a literature review showed that arvanil is a cannabinoid 1 receptor (CB1) agonist (Di 

Marzo et al., 2002). AM 281 is a selective CB1 antagonist. To evaluate whether arvanil-induced 

cytotoxicity is dependent on CB1 interaction, cells were treated with 1 µM AM 281 45 minutes 

before being treated with 20 µM arvanil. Blocking the CB1 receptor had no effect on arvanil-

induced caspase-3 activity in all three SCLC cell lines (Figure 34). Similar results were found 

when these treatment groups were assessed by cell death ELISA. AM 281 had no effect on 

arvanil-induced cell death in SCLC cells (Figure 35). The inability of AM281 to prevent arvanil 

from inducing caspase-3 activity or cell death suggests that the anti-cancer effects of arvanil are 

CB1 receptor independent.  
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Figure 34. Effect of cannabinoid 1 receptor inhibition on arvanil-induced caspase-3 activity 
in SCLC 
To evaluate the role of the cannabinoid 1 receptor (CB1) in the anticancer activity of arvanil in 
SCLC, caspase-3 activity was evaluated in response to arvanil (Arv) following pretreatment with 
1 µM AM-281. Following treatment with AM-281 to inhibit the CB1 receptor, arvanil was still 
capable of inducing a significant increase in caspase-3 activity in all three cell lines; (A) H69, 
(B) H82 and (C) DMS 114. Data is represented as the mean ± SD. Values represented by the 
same letter indicate no statistical difference from each other at p£0.05. 
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Figure 35. Effect of cannabinoid 1 receptor inhibition on arvanil-induced cell death in 
SCLC 
To evaluate the effect of CB1 receptor inhibition on arvanil-induced cell death, SCLC cells were 
treated with arvanil following pretreatment with 1 µM AM-281. CB1 inhibition had no effect on 
inhibiting arvanil-induced cell death in SCLC. Arvanil was able to induce significant cell death 
in the presence of AM-281 in all three SCLC cell lines; (A) H69, (B) H82 and (C) DMS 114. 
Data is represented as the mean ± SD. Values represented by the same letter indicate no 
statistical difference from each other at p£0.05. 
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intracellular calcium also plays a role in the apoptotic signaling of arvanil, our investigations 

used the chemical calcium chelator BAPTA-AM to evaluate the effect of calcium modulation on 

arvanil-induced apoptosis in SCLC. When H69, H82 and DMS 114 SCLC cells were pretreated 

with 10 µM BAPTA-AM, 20 µM arvanil failed to induce caspase-3 activity, which remained at 

control levels (Figure 36). The results of this experiment were further verified using the cell 

death ELISA. In line with the caspase-3 activity assay, BAPTA-AM was able to ablate the 

induction of cell death by arvanil in all three SCLC cell lines (Figure 37).  
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Figure 36. Effect of intracellular calcium chelator on arvanil-induced caspase-3 activity in 
SCLC 
To evaluate the role of intracellular calcium in the apoptotic activity of arvanil in SCLC, 
caspase-3 activity was evaluated following treatment of three SCLC cell lines with arvanil in the 
presence of 10 µM BAPTA-AM, a potent calcium chelator. Arvanil was unable to induce 
caspase-3 activity in the presence of BAPTA-AM in (A) H69, (B) H82 and (C) DMS 114 cells. 
Data is represented as the mean ± SD. Values represented by the same letter indicate no 
statistical difference from each other at p£0.05. 
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Figure 37. Effect of intracellular calcium chelation on arvanil-induced cell death in SCLC 
To evaluate the role of intracellular calcium in the anti-cancer activity of arvanil in SCLC, cell 
death was evaluated following treatment of three SCLC cell lines with arvanil in the presence of 
10 µM BAPTA-AM, a potent calcium chelator. Arvanil was unable to induce cell death in the 
presence of BAPTA-AM in (A) H69, (B) H82 and (C) DMS 114 cells. Data is represented as the 
mean ± SD. Values represented by the same letter indicate no statistical difference from each 
other at p£0.05. 
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measured by caspase-3 activity assay in H69, H82, and DMS 114 SCLC cell lines (Figure 38), 

which was further verified using the cell death ELISA (Figure 39).  

Figure 38. Effect of calpeptin on arvanil-induced caspase-3 activity in SCLC 
To evaluate the role of the calpain pathway in arvanil-induced caspase-3 activity in SCLC, 
caspase-3 activity was evaluated following treatment of three SCLC cell lines with 20 µM 
arvanil in the presence of 10 µM calpeptin (Cal), a calpain pathway inhibitor. Calpeptin 
effectively abrogated the anti-cancer activity of arvanil, as arvanil was unable to induce 
apoptosis in the presence of calpeptin in all three cell lines; (A) H69, (B) H82 and (C) DMS 114 
cells. Data is represented as the mean ± SD. Values represented by the same letter indicate no 
statistical difference from each other at p£0.05. 
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Figure 39. Effect of calpeptin on arvanil-induced cell death in SCLC 
To evaluate the role of the calpain pathway in the anti-cancer activity of arvanil, cell death was 
evaluated in all three SCLC cell lines following treatment with 20 µM arvanil in the presence of 
10 µM calpeptin (Cal), a calpain pathway inhibitor. Calpeptin effectively abrogated the anti-
cancer activity of arvanil, as arvanil was unable to induce cell death in the presence of calpeptin 
in all three cell lines; (A) H69, (B) H82 and (C) DMS 114. Data is represented as the mean ± SD. 
Values represented by the same letter indicate no statistical difference from each other at p£0.05. 
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prevented the induction of calpain activity in response to arvanil. This suggests that calcium 

plays a role in the arvanil-induced calpain pathway activation in SCLC cells. To further verify 

that activation of the calpain pathway plays a role in arvanil-induced cytotoxicity, a calpain 

activity assay was performed again on cells treated with arvanil in the presence of calpeptin, a 

calpain pathway inhibitor. Similar to the effects of BAPTA-AM, the presence of calpeptin 

brought the arvanil-induced calpain activity to control levels in both SCLC cell lines (Figure 40C 

and D).  
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Figure 40. Arvanil-induced calpain activity in the presence of calcium chelator (BAPTA-
AM) and calpain pathway inhibitor (calpeptin) 
To evaluate the role of the calpain pathway in the anti-cancer activity of arvanil, a calpain 
activity assay was used following treatment of SCLC cell lines with 20 µM arvanil in the 
presence or absence of 10 µM BAPTA-AM (calcium chelator) or 10 µM calpeptin (Cal; calpain 
pathway inhibitor). Pretreatment with BAPTA-AM abrogated arvanil-induced calpain activity in 
(A) H69 and (B) H82 SCLC cell lines. Similarly, calpeptin effectively abrogated arvanil-induced 
calpain activity in (C) H69 and (D) H82 SCLC cell lines. Data is represented as the mean ± SD. 
Values represented by the same letter indicate no statistical difference from each other at p£0.05. 

CONCLUSIONS AND DISCUSSION 

 Small cell lung cancer remains a malady in which there are few therapeutic options that 

significantly improve patient survival (Alvarado-Luna & Morales-Espinosa, 2016). Initial 

responses to the first-line platinum-based combination treatments, such as cisplatin, plus 

etoposide may cause initial hope in patients, but the inevitability of relapse is rarely avoided 

(Pietanza et al., 2015; S. L. Wood et al., 2015). The studies in this chapter provide evidence that 
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synthetic capsaicinoids may provide unique viable options to improve clinical response in SCLC 

treatment. One of the main problems with current chemotherapy options is the large incidence of 

side effects and the lack of cell selectivity, given the fact that standard chemotherapy often kills 

normal cells along with the cancer cells (McGowan et al., 2017; Oun et al., 2018; Willers, 

Azzoli, Santivasi, & Xia, 2013). In these studies, we found arvanil to be efficacious in its ability 

to kill SCLC cells while having no apparent negative effect on normal human pulmonary 

alveolar epithelial cells. This suggests that arvanil may have the unique capacity to selectively 

target cancerous cells while preserving normal cells in the surrounding tissue. Previous work 

from our laboratory shows that in SCLC capsaicin induces apoptosis via the TRPV6 receptor 

leading to increased activity of the calpain pathway (Lau et al., 2014). Despite its structural 

similarity to capsaicin, arvanil’s anti-cancerous properties appear to be independent of both the 

TRPV and CB1 receptors, as shown in Figures 33-36. While it remains unclear which receptors 

are responsible for eliciting arvanil’s anti-cancer properties in SCLC, the fact that arvanil does 

not act via the TRPV receptor suggests that arvanil should not induce a heat sensation similar to 

capsaicin, and supports other studies which indicate that arvanil is non-pungent. Lacking the heat 

sensation would lead to a more tolerable side effect profile, promoting patient compliance with 

therapy. One similarity capsaicin and arvanil have are the induction of the calpain pathway, with 

the calcium chelator BAPTA-AM and calpain inhibitor calpeptin being able to reverse the 

apoptotic activity seen in SCLC.  

 These studies provide evidence that arvanil induces elevated intracellular calcium levels, 

which leads to calpain pathway activation in SCLC cells. Calpains are a family of calcium-

activated proteases. The source of intracellular calcium that activates calpain activity is thought 

to be the mitochondria, the endoplasmic reticulum, or an influx of extracellular calcium 
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(Harwood, Yaqoob, & Allen, 2005; Laszlo Kovacs, 2014; M. J. Lee, Kee, Suh, Lim, & Oh, 

2009; Moretti et al., 2014; Ono et al., 2016; D. E. Wood & Newcomb, 1999). It is generally 

accepted that calpains play a role in cellular apoptotic signaling, as well as necrotic signaling. 

Due to the fact that arvanil treatment led to increased calpain activity as well as caspase-3 

activity, it is logical to postulate that the calpain activity is responsible for triggering arvanil-

induced apoptosis in this model. Further studies would be necessary to determine the specific 

mechanism by which the calpain pathway is activating apoptosis since calpains are involved in 

so many different biological pathways. Calpains have a growing list of substrates, such as 

apoptosis inducing factor (AIF), p53, Bax, Bid, PARP, and cytosolic proteins/enzymes 

(Lopatniuk & Witkowski, 2011; Ozaki, Yamashita, & Ishiguro, 2009; Potz et al., 2016; D. E. 

Wood et al., 1998). Future studies to evaluate the role of caspase and calpain activation in 

capsaicinoid-induced cytotoxicity will need to be performed in order to understand how the two 

pathways may work together or independently. These studies will further our understanding of 

capsaicinoid-induced apoptosis and how they can potentially be used in conjunction with other 

chemotherapeutic agents to bolster their activity, reduce side effects, and improve clinical 

outcomes in SCLC.  

Further studies are also needed to evaluate livanil and linvanil, which also demonstrated 

favorable anti-cancer activity in SCLC. If these analogs act in a similar way, they could prove 

useful in other cancer types, with survival rates comparable to SCLC. Identifying the 

mechanisms of action could also lead to additional modification of the capsaicin molecule to 

allow it to target specific receptors/proteins. Long term ramifications of such studies could lead 

to further modifications based on capsaicin as the parent compound, to be used concurrently with 

current chemotherapeutic treatments in SCLC, as well as other cancer types. The possibility of 
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additional interventions for cancer that could augment or deviate from the commonly used 

standard-of-care treatments leads to hope for patients who have run out of options. 
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CHAPTER 6: CONCLUSIONS AND DISCUSSION  

Over the past several decades, researchers have demonstrated that capsaicinoids display a 

wide variety of biological and physiological activities. Many of these compounds, capsaicin in 

particular, demonstrate analgesic, positive cardiovascular, anti-obesity, anti-inflammatory, and 

anti-tumor effects. The studies presented in this dissertation focused heavily on the anti-tumor 

effects of capsaicinoids in SCLC. Our goal was to substantiate and promote the use of 

capsaicinoids as a relevant chemopreventive or adjuvant chemotherapeutic option that may lead 

to the development of new and advanced treatment strategies for SCLC.  

Despite a decrease in smoking rates, SCLC rates remain consistent (Bunn et al., 2016; 

Cronin et al., 2018; Jamal et al., 2016). Efforts to develop effective therapeutic treatments for 

SCLC have been hindered by a variety of obstacles (Alvarado-Luna & Morales-Espinosa, 2016; 

Bunn et al., 2016; Pietanza et al., 2015). Of considerable challenge is the fact that the majority of 

SCLC patients are frequently diagnosed in later stages of the disease, after the cancer has 

metastasized to distant parts of the body. SCLC treatment is further complicated by the 

frequency of patients with refractory disease (relapse less than 45 days post treatment), resistant 

disease (relapse 45-90 days post treatment), or the rapid acquirement of chemoresistance to first 

line treatments in patients presenting with therapy sensitive disease (relapse more than 90 days 

post treatment) (Pietanza et al., 2015). Regardless of the initial classification, for those with 

refractory SCLC, or those who acquire chemoresistance, second line treatments rarely work, 

with the median survival in patients with relapsed disease ranging from two to six months (Foy 

et al., 2017; Gazdar et al., 2017; Pietanza et al., 2015). Though some advances have been made 

in NSCLC treatment with the use of targeted therapies like gefitinib or erlotinib, the primary 

treatment for patients with SCLC has not changed in several decades and remains limited to 
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platinum-based combination therapy in conjunction with radiotherapy (Latimer & Mott, 2015; S. 

L. Wood et al., 2015). The complexity of SCLC and its classification as a recalcitrant cancer 

underline the need to identify new novel treatment options that will improve patient response to 

chemotherapy, reduce side effects, and offer improved overall outcomes (Zeman, Brzezniak, & 

Carter, 2017). 

In Chapter 2, we reviewed and discussed the potential of capsaicin to be utilized as an 

adjunctive treatment option in combination with several clinically relevant and widely used 

chemotherapeutics. Numerous studies demonstrated that not only is capsaicin an effective 

monotherapy for potentially treating various cancer types, but it also demonstrates the capacity to 

effectively improve the response to chemotherapeutic agents when used in combination (Basith 

et al., 2016; Chapa-Oliver & Mejia-Teniente, 2016; Friedman et al., 2018; Srinivasan, 2016). 

Our published data presented in Chapter 3 further supported such findings, successfully 

demonstrating that capsaicin enhanced the anti-cancer activity of camptothecin, as evidenced by 

a greater induction of apoptosis at lower concentrations than camptothecin alone in three 

separate human SCLC cell lines. The presence of using a quantitative method to assess drug 

synergy is also a somewhat rare feature of our study. A mathematical calculation method allows 

for one to see if a drug combination is synergistic quantitatively, not just by the subjective 

opinion of a researcher (Chou, 2010). Using the Chou-Talaly method to analyze the data, we 

were able to demonstrate that the interaction of capsaicin and camptothecin was in fact 

synergistic in the SCLC cell lines and not simply additive or antagonistic. Another point 

verifying the synergistic effects was the use of 10 µM capsaicin to sensitize the SCLC cell lines 

when we have shown that at that concentration, capsaicin does not cause any apoptotic activity in 

these cells at 24 hours. In the CAM model, H69 xenografted tumors showed a significant 
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increase in caspase-3 activity, as well as a significant decrease in tumor weight. Similar to the 

previous studies in our laboratory, both the in vitro and in vivo models showed evidence of a rise 

in intracellular calcium levels leading to increased calpain activity. The origin of the rise in 

intracellular calcium is most likely due to an influx of calcium via the TRPV6 cation channel, as 

documented in other studies (Lau et al., 2014). TRPV6 was shown to be expressed in the SCLC 

cell lines utilized in our studies, and its role in the anti-cancer activity of capsaicin was 

recognized by using siRNA knock down of TRPV6 to reverse the effects of capsaicin. Future 

studies investigating capsaicin and camptothecin could utilize TRPV6 siRNA to evaluate its role 

in the ability of capsaicin to augment the effect of camptothecin in SCLC cells. It also may be 

advantageous to investigate a capsaicin/camptothecin treatment option in cancers which have 

already been shown to have higher levels of TRPV6 levels, for example prostate, colon, breast, 

thyroid, and ovarian carcinomas (Lehen'kyi, Raphael, & Prevarskaya, 2012). 

Despite its potential to sensitize human SCLC to the antineoplastic activity of 

camptothecin, capsaicin’s potent and pungent side effects are a challenge to patient compliance, 

compromising its efficacy. For this reason, additional studies in our laboratory were conducted to 

investigate the use of non-pungent synthetic capsaicinoids which lack the characteristic heat 

sensation associated with capsaicin administration. These analogs would lack the common 

gastrointestinal discomfort or burning sensation side effects which typically cause 

discontinuation of treatment. In Chapter 4 we discussed in detail multiple aspects of both natural 

and synthetically derived capsaicin analogs. Some of the most intriguing studies were the 

derivatization of unsaturated N-acylvanillamides or UN-AVAMs. These are compounds that 

maintain the main pharmacophore or “head” region of the capsaicin molecule but vary in the 

length and saturation of the hydrophobic fatty acid chain (Figure 23). These compounds are non-
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pungent and lack the negative side effects of capsaicin (Appendino et al., 2005; X. F. Huang et 

al., 2013; Tuoya et al., 2006). While arvanil, our UN-AVAM of interest, was originally reported 

to be both a CB1 and TRPV1 agonist, several anti-cancer studies have shown that arvanil 

induces growth suppression independently of both CB1 and TRPV1 (Di Marzo et al., 2002; 

Sancho et al., 2003). It was therefore of great interest to investigate the potential anti-cancer 

activity of these capsaicinoids in SCLC.  

Through our investigation discussed in Chapter 5, we found that arvanil was in fact able 

to induce apoptosis in several SCLC cell lines, similar to capsaicin. To compare the efficacy and 

potency of these capsaicin analogs, we chose to compare the effects of each compound to the 

effects found for capsaicin at 10 µM, a concentration at which capsaicin was unable to induce 

apoptosis in SCLC cell lines. Arvanil proved to be the most effective analog, inducing apoptosis 

in one SCLC cell line at as low as 1 µM (Lau et al., 2014). Importantly, we also noted that 

arvanil concentrations as high as 20 µM, which induced significant apoptosis and cell death in all 

SCLC cell lines, had no effect on normal human lung cells in culture. If arvanil were to be 

utilized in the clinic, not only would it lack capsaicin’s adverse side effect profile, but it appears 

to have the highly beneficial advantage of targeting cancerous cells while leaving normal cells 

intact. This finding is important given the commonly associated off target effects of conventional 

chemotherapeutics (Chabner et al., 2011; Cheung-Ong et al., 2013; Dasari & Tchounwou, 2014; 

McGowan et al., 2017; Oun et al., 2018; Tannock, 1989). The addition of an adjuvant therapy 

such as arvanil could lower the required dose of a toxic chemotherapy and would help reduce the 

side effects associated with normal tissue damage. As described in Chapter 2, the side effect 

profiles of commonly used chemotherapeutic drugs are extensive and often lead to death of 



141 

healthy tissue along with the cancerous tissue. If arvanil has little to no cytotoxic effects on 

normal cells, its addition would not contribute further off targets effects.  

Unlike our previous studies with capsaicin, which indicated a role for TRPV6 in the 

mechanism of action, the anti-cancer activity of arvanil proved to be independent of the TRPV 

receptor family, maintaining its antineoplastic activity in the presence of a general TRPV 

receptor antagonist. Studies also showed that CB1 had no role in arvanil’s antineoplastic activity. 

Despite these upstream differences, the anti-cancer mechanisms of arvanil did demonstrate some 

similarities to capsaicin. When treating SCLC cell lines with arvanil, the membrane permeable 

calcium chelator, BAPTA-AM, was able to reverse the effects, indicating a role for increased 

intracellular calcium in arvanil’s anti-cancer effects. The origin of this calcium, however, is still 

unclear. The rise in intracellular calcium level caused by capsaicin in SCLC cells was found to 

be dependent on TRPV6 receptor activity, indicating that capsaicin most likely induced an influx 

of calcium from the extracellular space via the 7TRPV6 receptor. To evaluate if increased 

intracellular calcium is caused in part by a TRPV independent influx of extracellular calcium in 

arvanil treated cells, further studies would be necessary, possibly by using a membrane 

impermeable calcium chelator. Also similar to capsaicin, arvanil caused an increase in calpain 

pathway activity. The mechanistic role of the calpain pathway in cancer is somewhat unclear; 

however, calpains are known to play an important role in cell cycle regulation and in some 

instances, have been shown to promote cell progression in cancer. Despite claims of calpains 

being important in the development of cancer, it is also known that calpain activity is required 

for a handful of chemotherapeutic agents, such as cisplatin (Leloup & Wells, 2011). If calpain 

activity were inhibited, such chemotherapeutic drugs could be rendered ineffective at promoting 

cell death by the inability to cleave vital signaling proteins like caspase-3. So, despite the 
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knowledge of calpains’ interaction in the development of cancer, it is also a vital signaling 

pathway involved in the induction of cell death when trying to treat cancer (Mandic et al., 2002; 

Moretti et al., 2014). In this dissertation, increased calpain activity was implicated in causing cell 

death with capsaicin and camptothecin treatments, as well as treatments with the capsaicinoid 

arvanil alone. This may suggest that in SCLC, increasing calpain activity with capsaicinoids may 

offer a means of intervention.  

There is still much to learn about how arvanil may function as an anticancer agent. Future 

studies from this research will investigate the downstream pathways involved in arvanil’s 

signaling mechanism. Calpain related substrates involve many that are required for the induction 

of apoptosis, like p53, PARP, BCL-2, BAX, Bid, AIF, and caspases (Harwood et al., 2005; 

Leloup & Wells, 2011; Moretti et al., 2014). Identifying which substrates are cleaved/activated 

in addition to caspase-3, would potentially identify additional targetable mechanisms for 

capsaicinoids in SCLC. In vivo models of SCLC are also still lacking and will contribute greatly 

to elucidating the effects of arvanil in SCLC. Currently, studies are being planned to utilize a 

patient derived xenograft (PDX) mouse model of SCLC. These models more effectively mimic 

the tumor microenvironment than other orthotopic or syngeneic mouse models. Furthermore, the 

results from such studies are critical to supporting the development of much needed human trials 

and applications. 

I believe that the most promising research to come from continuing these studies will 

ultimately be the development of clinical combination therapies with capsaicinoids such as 

arvanil and chemotherapeutic agents. The ability of arvanil to show apoptotic activity equivalent 

to capsaicin but at lower concentrations suggests it too might work at sensitizing human SCLC to 

chemotherapeutic agents such as camptothecin. It would also be important to combine capsaicin 
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and arvanil with additional chemotherapeutics, such as irinotecan, etoposide, or cisplatin, to see 

if they are able to sensitize SCLC lines to a variety of agents. Irinotecan is commonly the second 

line of treatment for SCLC. If combination with capsaicin or arvanil improves patient response it 

would be extremely clinically relevant to patients with refractory or recurrent disease. Future 

studies evaluating the efficacy of combination treatments with capsaicin or arvanil and 

chemotherapy in chemoresistant cell lines will also greatly further the field and help identify new 

treatment modalities for therapy resistant patients. Using cisplatin resistant cell lines to mimic 

the common occurrence of SCLC relapse, would have very relevant translational implications. 

Xenografts of the resistant cell lines or PDX models from patients whose tumor was resistant to 

cisplatin would mimic a human patient and provide an insight to see if combination therapies 

with capsaicin or arvanil would work in a clinic. If these compounds were proven effective 

against resistant tumors, it would further support the development of new therapy modalities to 

treat patients with resistant disease.  

Unfortunately, treatment failure, harsh side effects, and chemotherapy resistance aren’t 

issues limited to SCLC patients, as patients with nearly every type of cancer suffer many of the 

same fates. An adjunctive treatment, such as capsaicin or arvanil, could prove helpful in treating 

a multitude of cancer types. I believe that the use of capsaicin or arvanil in conjunction with an 

FDA approved chemotherapeutic agent is the most viable and advantageous application of the 

knowledge obtained in these studies. Arvanil has even greater possibilities due to its non-pungent 

nature. The use of combination therapy with an already FDA approved drug allows for a fast 

track into clinical application, which means patients could begin to use capsaicin and arvanil in 

the near future. The universal use of naturally derived products as a means of medicinal 

intervention supports the use of compounds like capsaicinoids in cancer intervention, and more 
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importantly, analogs of natural compounds such as arvanil, may hold even more promise than 

their natural parent compounds. The potential therapeutic uses of capsaicinoids and their 

synthetic analogs as single drugs or combination therapies are just starting to become realized, 

and is exciting for medical doctors, researchers, and patients alike. 
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APPENDIX C: ABBREVIATIONS 

3-MA…3-methyladenine 

4-HNE…4-Hydroxynonenal 

5-FU…5-fluorouracil 

6-MP…6-mercaptopurine 

ABC…ATP-binding cassette  

AGE…advanced glycation end product 

AIF…apoptosis inducing factor 

ANOVA…analysis of variance 

Arv…arvanil 
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Aurora A…Aurora kinase A  

BAPTA-AM…(1,2-Bis(2-aminophenoxy)ethane-N,N,N’,N’-tetraacetic acid tetrakis 

(acetoxymethyl ester) 

Bcl-2…B-cell lymphoma 2  

BMH…Benzo[d][1,3]dioxol-5yl-methyl hexanonate 

BUN…blood urea nitrogen 

Cal…calpeptin  

CAM…chicken chorioallantoic membrane 

CAP-NP…capsaicin-loaded folic acid nanoparticles  

CAT… catalase 

CB1…cannabinoid receptor 1  

CCA…Human cholangiocarcinoma 
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HMB1…high mobility group box 1 

HO-1…heme oxygenase-1  

HPAEpiC…Human pulmonary alveolar epithelial cells 

HSP…heat shock proteins  

i.p…intraperitoneal 
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MMP…matrix metalloproteinase 

mTOR…mechanistic target of rapamycin 
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N-BMB…N-(benzo[d][1,3]dioxol-5-ylmethyl)-4-methoxybenzamide 

NF-kB…nuclear factor kappa-B 

NOX…NADPH oxidase family 

NSCLC…non-small cell lung cancer 

P-gp…p-glycoprotein 

pCCA…perihilar cholangiocarcinoma 
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PCNA…proliferating cell nuclear antigen 

PDGF-b…platelet-derived growth factor-b  

PDX…patient derived xenograft 

PhAR…phenylacetylrinvanil 

PI-3K…phosphoinositol-3 kinase  

pNA…p-nitroaniline 

Rho123…rhodamine 123 

ROPA…resiniferanol-9, 13, 14 ortho-phenylacetate 

ROS…reactive oxygen species 

RR…Ruthenium Red 

RSK…ribosomal S6 kinase  

RTX…resiniferatoxin 

RUT…rutaecarpine  

SCC…squamous cell carcinoma 

SCLC…small cell lung cancer  

SD…standard deviation 

SER…sensitizer enhancement ratio 

SN-38G…SN-38 Glucuronide 

SOD…superoxide dismutase 
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STAT…signal transducer and activator of transcription 
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TLR…toll-like receptors 

TRPV… transient receptor potential vanilloid 

TUNEL…Terminal deoxynucleotidyl transferase dUTP nick end labeling  

TURBT…transurethral resection of bladder tumors 
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