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ABSTRACT

Our problem comes from the field of combinatorics known as Ramsey theory. Ramsey theory, in a

general sense, is about identifying the threshold for which a family of objects, associated with a

particular parameter, goes from never or sometimes satisfying a certain property to always

satisfying that property. Research in Ramsey theory has applications in design theory and coding

theory.

For integers m, r, and t, we say that a set of n integers colored with r colors is

(m, r, t)-permissible if there exist t monochromatic subsets B1, B2, . . . , Bt such that (a)

|B1| = |B2| = · · · = |Bt| = m, (b) the largest element in Bi is less than the smallest element in

Bi+1 for 1 ≤ i ≤ t− 1, and (c) the diameters of the subsets are nondecreasing.

We define f(m, r, t) to be the smallest integer n such that every string of length n is

(m, r, t)-permissible. In this thesis, we first look at some preliminary results for values of

f(m, r, t), specifically when each individual parameter is 1 as the others vary. We then show that

f(m, r, t) exists for all possible positive parameters. We proceed by determining f(2, 2, t) for all

positive integers t. We conclude by considering colorings with more than two colors and

monochromatic sets that have more than 2 elements, as well as investigating an enumeration of

the number of ways a string could be realized as (m, r, t)-permissible.

v



CHAPTER 1

INTRODUCTION AND DEFINITIONS

In this thesis, we study a Ramsey-type problem, originally presented by Bialostocki et al. [2] in

1995; for more information on Ramsey theory, see the book by Graham, Rothschild, and

Spencer [6]. We introduce this problem and explore the notion of permissibility. We begin with

some necessary definitions. For integers a, b, and n, we use the notation [n] to refer to the set

{1, 2, . . . , n} and [a, b] to refer to the set {a, a+ 1, . . . , b}.

Definition 1.1. Let n and r be positive integers and R a set of r elements. Then an integer

coloring, or r-coloring of [n], is a function from [n] to R; that is, a function which assigns to each

integer a particular “color” from R. In this and the following definitions, we use the following

example: Let n = 15 and R = {a, b}. Define ∆ : [15]→ R as the 2-coloring given below.

x 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

∆(x) b b a b a a b a b b a a a b a
(1.1)

We often represent an integer coloring as a string. In this example, that string is

∆ = bbabaababbaaaba. We abbreviate using exponents. In this example, the abbreviation is

∆ = b2aba(ab)2ba3ba.

Furthermore, if A ⊆ [n], then ∆(A) is the set of all colors used to color the elements of A. For

example, let A = {1, 4, 6} and B = {1, 2, 7}, then ∆(A) = {a, b} and ∆(B) = {b}.

Definition 1.2. Let n and r be positive integers, R a set of r elements, and ∆ : [n]→ R an

r-coloring of [n]. Let A,B ⊆ [n]. We say that a set A is monochromatic with respect to ∆ if

every element in A is mapped to the same color in R by ∆. That is, |{∆(x) | x ∈ A}| = 1. The

diameter of A, denoted as diam(A), is the difference of its largest and smallest elements. We say

that A precedes B, denoted as A <p B, if max(A) < min(B); this matches notation used by

Bialostocki et al. [2]. We also say A and B are non-overlapping if either A <p B or B <p A.

Let ∆ be the coloring giving in (1.1). Let A = {3, 5, 6} and B = {8, 12}. Here, ∆(x) = a for each
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x ∈ A, so A is monochromatic with respect to ∆ and diam(A) = max(A)−min(A) = 3. Since

max(A) = 6 and min(B) = 8, we have that A <p B.

We now introduce the notion of permissibility, a major focus of this thesis.

Definition 1.3. Let m, r, t, and n be positive integers. Let ∆ be an r-coloring of [n]. We say a

collection of t m-subsets of [n], B1, B2, . . . , Bt, is permissible with respect to ∆, or simply

permissible, if

1. for each i ∈ [t], Bi is monochromatic with respect to ∆,

2. {B1, B2, . . . , Bt} are ordered by precedence; that is, if i < j, Bi <p Bj , and

3. the diameters of B1, B2, . . . , Bt are nondecreasing; that is, if i < j, diam(Bi) ≤ diam(Bj).

We say that ∆ is (m, r, t)-permissible if there exists a permissible collection of t sets in [n]

with respect to ∆. For a positive integer d, we say that ∆ is (m, r, t; d)-permissible if there

exists a permissible collection t sets in [n] with respect to ∆, all of which have the same

diameter, d. That is, diam(Bi) = d for all i ∈ [t]. Throughout this thesis, we use m to denote the

size of the sets in a collection, r to denote the number of colors being used in a coloring, and t to

denote the number of sets being taken in a collection. Again, this matches notation used by

Bialostocki et al. [2].

Example 1.4. Let m = 3, r = 2, t = 3, n = 15 and R = {a, b}. Let ∆ : [n]→ R be defined as

in (1.1). Let B1 = {1, 2, 4}, B2 = {5, 6, 8}, and B3 = {11, 13, 15}. We know the following about

these sets with respect to ∆:

i 1 2 3

∆(Bi) {b} {a} {a}

diam(Bi) 3 3 4

Since |∆(Bi)| = 1 for each i ∈ [3], each of the sets is monochromatic with respect to ∆. Clearly,

B1 <p B2 <p B3 and diam(B1) ≤ diam(B2) ≤ diam(B3). So B1, B2, and B3 form a collection of 3

permissible sets which demonstrate that ∆ is (3, 2, 3)-permissible. In fact, by letting

B3 = {12, 13, 15}, we show that ∆ is (3, 2, 3; 3)-permissible.
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Definition 1.5. Let m, r, and t be positive integers. We define the function f(m, r, t) to be the

least positive integer n such that all r-colorings of [n] are (m, r, t)-permissible. Similarly, we define

the function s(m, r, t) to be the least positive integer n such that all r-colorings of [n] are

(m, r, t; d)-permissible for some positive integer d. We establish the f(m, r, t) and s(m, r, t) are

well-defined in Chapter 2. Note that f(m, r, t) ≤ s(m, r, t) because if an r-coloring is

(m, r, t; d)-permissible for some positive integer d, then it is necessarily (m, r, t)-permissible.

Considering the function f(m, r, t), we arrive at the following question:

Question. Let m, r, and t be positive integers. Does there exist a positive integer n such that all

r-colorings of [n] are (m, r, t)-permissible? If so, what is the minimum value for n?

The existence of such an integer is known. Bialostocki et al. [2] prove the existence of f(m, r, t)

is a consequence of a result from van der Waerden [11] that uses arithmetic progressions. In

Chapter 2, we use an alternative method to prove the existence of f(m, r, t).

We compute f(m, r, t) when any one parameter is equal to 1 in Chapter 2; they are routine

proofs and as such, all published work studying this function involve all the parameters being at

least 2. Below, we give a comprehensive list of known values for f(m, r, t) beginning with those

established by Bialostocki et al. [2].

Theorem 1.6 (Bialostocki et al. [2]). Let m, r, and t be integers at least 2.

(a) f(m, 2, 2) = 5m− 3.

(b) f(m, 3, 2) = 9m− 7.

(c) If r ≥ 4, then 3r(m− 1) + 3 ≤ f(m, r, 2) < ((2m− 2)− r + 1) · (2 + log2 r)− 1.

(d) f(m, 2, t) ≤ cmt2 for some constant c.

(e) 8m− 4 ≤ f(m, 2, 3) ≤ 10m− 6.

(f) f(2, r, t) ≤ (r(t− 1) + 1)(r + 1).

In 2005 Grynkiewicz [9] showed the lower bound of the inequality in Theorem 1.6(c) is sharp

when r = 4.
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Theorem 1.7 (Grynkiewicz [9]). Let m ≥ 2 be an integer. Then f(m, 4, 2) = 12m− 9.

In 2015 Bernstein et al. [1] concluded the value of f(m, 2, 3), which was initially bounded by

Theorem 1.6(e).

Theorem 1.8 (Bernstein et al. [1]). Let m ≥ 2 be an integer. Then

f(m, 2, 3) = 8m− 5 +

⌊
2m− 2

3

⌋
+ δ,

where δ = 1 if m ∈ {2, 5} and δ = 0 otherwise.

Recent work has been done on generalizations of our question, as well as investigations into its

relationship to a theorem by Erdös, Ginzburg, and Ziv (see [3, 4, 5, 7, 8, 10] for examples). With

possibly the only exception being the bounds given in Theorem 1.6(d) and (f), all work in this

area focuses on parameter families with t = 2 and, more recently, t = 3 [1]. In our work we

compute values for f(2, 2, t) for arbitrarily large t which, after significant literature review, is the

first set of computed values of f(m, r, t) with m, r ≥ 2 and arbitrarily large t.

In this thesis, we prove the following:

Theorem 1.9. Let t ≥ 4 be an integer. Then f(2, 2, t) = 5t− 4.

Note f(2, 2, t) has been computed when t ≤ 3; f(2, 2, 1) = 3 which is a special case of Theorem

2.4, f(2, 2, 2) = 7 by Theorem 1.6(a), and f(2, 2, 3) = 12 by Theorem 1.8. Additionally,

f(2, 2, t) ≤ 6t− 3 by Theorem 1.6(f).

In Chapter 2, we discuss preliminary results as well as present a construction necessary for the

proof of Theorem 1.9. We proceed in Chapter 3 by showing bounds for s(m, r, t) and f(m, r, t) as

well as prove a series of lemmas which culminate in a proof of Theorem 1.9. We end the thesis in

Chapter 4 with a conclusion and discussion of future work.
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CHAPTER 2

PRELIMINARY RESULTS AND THE AST PARTITION

We begin this chapter in Section 2.1 by proving some preliminary results, such as the Pigeonhole

Principle, and showing that s(m, r, t) and f(m, r, t) are both well-defined for all positive

parameters. We proceed in Section 2.2 by looking at some additional results involving colorings of

the positive integers. In Section 2.3, we present a construction necessary for proving Theorem 1.9

and close this chapter in Section 2.4 with a look at properties of alternating 2-colorings.

2.1 Preliminary Results

In this section, we begin by acheiving values for s(m, r, t) and f(m, r, t) when any single

parameter is set to 1 and conclude by showing that both functions are well-defined for all positive

parameters.

Observation 2.1. Let m, r, and t be positive integers. Clearly, s(m, r, t) ≥ mt since the union of

t permissible m-sets that demonstrate (m, r, t; d)-permissibility must have cardinality no less than

s(m, r, t). Similarly, f(m, r, t) ≥ mt.

We begin by showing that if m = 1 or r = 1, the above inequality is sharp.

Lemma 2.2. Let m, r, and t be positive integers. Then s(1, r, t) = f(1, r, t) = t and

s(m, 1, t) = f(m, 1, t) = mt.

Proof. We first show that s(1, r, t) = t. Let ∆1 be an r-coloring of [t]. For i ∈ [t], let Bi = {i}.

Then {Bi | i ∈ [t]} demonstrates that ∆1 is (1, r, t; 1)-permissible. By definition, since ∆1 is

(1, r, t; 1)-permissible, it is also (1, r, t)-permissible. So it follows from Observation 2.1 that

s(1, r, t) = f(1, r, t) = t.

Now, let ∆2 : [mt]→ {a}. For i ∈ [t], let Bi = {(i− 1)m+ k | k ∈ [m]}. This takes consecutive

sets of m integers. So we have that {Bi | i ∈ [t]} demonstrates that ∆2 is

(m, 1, t;m− 1)-permissible. By definition, since ∆2 is (1, r, t;m− 1)-permissible, it is also

(m, 1, t)-permissible. It again follows from Observation 2.1 that s(m, 1, t) = f(m, 1, t) = mt.
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To handle the case where t = 1, we need the Pigeonhole Principle.

Theorem 2.3. The Pigeonhole Principle. Let a and b be positive integers and let both X and

Y be sets with |X| = a and |Y | = b. Let f : X → Y and, for each y ∈ Y , let

f−1(y) = {x ∈ X | f(x) = y}. Then there exists y ∈ Y such that
∣∣f−1(y)

∣∣ ≥ ⌈ab ⌉.
Proof. Observe that

⌈
a
b

⌉
− 1 < a

b ≤
⌈
a
b

⌉
. Now suppose that for each y ∈ Y ,

∣∣f−1(y)
∣∣ ≤ ⌈ab ⌉− 1.

Then

a =
∑
y∈Y

∣∣f−1(y)
∣∣ ≤ b(⌈a

b

⌉
− 1
)
< b

(a
b

)
= a,

which produces a contradiction. Therefore, it must be that there exists y ∈ Y such that∣∣f−1(y)
∣∣ ≥ ⌈ab ⌉.

Theorem 2.4. Let m and r be positive integers. Then s(m, r, 1) = f(m, r, 1) = (m− 1)r + 1.

Proof. We first show that s(m, r, 1) > (m− 1)r. Let R = {a1, a2, . . . , ar} and consider

∆1 : [(m− 1)r]→ R as am−11 am−12 . . . am−1r . Observe that ∆1 is not (m, r, 1; d)-permissible for any

d since each color appears only m− 1 times. Thus no m-set is monochromatic with respect to ∆1.

We now show that s(m, r, 1) ≤ (m− 1)r + 1. Let ∆2 be an r-coloring of [(m− 1)r + 1]. Then

by Theorem 2.3, there exists an ai ∈ R such that
∣∣∆−12 (ai)

∣∣ ≥ ⌈ (m−1)r+1
r

⌉
= m. So ∆2 is

(m, r, 1; d)-permissible where d = diam
(
∆−12 (ai)

)
. Therefore, s(m, r, 1) ≤ (m− 1)r + 1.

Thus, since s(m, r, 1) > (m− 1)r and s(m, r, 1) ≤ (m− 1)r + 1, we have that

s(m, r, 1) = (m− 1)r + 1. Hence, s(m, r, 1) = f(m, r, 1) = (m− 1)r + 1.

By bootstrapping the previous result, we show that s(m, r, t) and f(m, r, t) are well-defined for

all positive parameters.

Theorem 2.5. Let m, r, and t be positive integers. Then s(m, r, t) and f(m, r, t) are both

well-defined for all positive parameters.

Proof. Let q = (m− 1)r + 1, p = ((t− 1)(q −m+ 1) + 1), and M = qp. Note that

s(m, r, 1) = f(m, r, 1) = q. Let ∆ be an r-coloring of [M ]. Let {S1, S2, . . . , Sp} be a partition of

[M ], where Si = {(i− 1)q + 1, . . . , iq} for each i ∈ [p].
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Let ∆i be the restriction of ∆ to Si for each i ∈ [p]. So ∆i(x) = ∆(x) for all x ∈ Si and i ∈ [p].

By Theorem 2.4, for each i ∈ [p], there exists Bi ⊆ Si such that |Bi| = m and

|∆i(Bi)| = |∆(Bi)| = 1.

Let g : [p]→ [m− 1, q − 1] with g(i) = diam(Bi). Then by Theorem 2.3, there exists

d ∈ [m− 1, q − 1] such that

|g−1(d)| ≥
⌈

p

q − 1− (m− 1) + 1

⌉
=

⌈
(t− 1)(q −m+ 1) + 1

q −m+ 1

⌉
=

⌈
(t− 1) +

1

q −m+ 1

⌉
= t.

Then {Bi | i ∈ g−1(d)} is a set of monochromatic non-overlapping m-sets with respect to ∆ of

diameter d. Thus ∆ is (m, r, t; d)-permissible and hence, any string of length M is

(m, r, t; d)-permissible. It follows that s(m, r, t) and f(m, r, t) are both well-defined for all positive

parameters.

2.2 Colorings of the Positive Integers

In this section we show that, for positive integers m and r, in an r-coloring ∆ of N = {1, 2, . . .},

there exists an infinite set of monochromatic m-sets with respect to ∆, ordered by precedence, of

the same diameter. To do so, we first establish a derivative of the Pigeonhole Principle.

Theorem 2.6. Let h : N→ Y be a function where Y is nonempty and finite. Then there exists

y ∈ Y such that
∣∣h−1(y)

∣∣ is infinite.

Proof. Assume otherwise, that for each y ∈ Y ,
∣∣h−1(y)

∣∣ is finite. Then |N| =
∑

y∈Y
∣∣h−1(y)

∣∣ is

finite. Thus we have arrived at a contradiction. So there must be some y ∈ Y for which
∣∣h−1(y)

∣∣
is infinite.

Theorem 2.7. Let m and r be positive integers and ∆ an r-coloring of N. Then there exists an

infinite set of monochromatic non-overlapping m-sets with respect to ∆ of the same diameter.

Proof. We proceed in a manner similar to Theorem 2.5. Again, let q = (m− 1)r + 1. Let

{S1, S2, . . .} be a partition of N where Si = {(i− 1)q + 1, . . . iq} for each i ∈ N.

Let ∆i be the restriction of ∆ to Si for each i ∈ N. That is, ∆i(x) = ∆(x) for all x ∈ Si. By

Theorem 2.4, there exists Bi ∈ Si such that |Bi| = m and |∆i(Bi)| = |∆(Bi)| = 1.

7



Let g : N→ [m− 1, q − 1] with g(i) = diam(Bi). Then by Theorem 2.6, there exists

d ∈ [m− 1, q − 1] such that
∣∣g−1(d)

∣∣ is infinite. Thus there exists an infinite set of monochromatic

m-sets all of diameter d, namely {Bi | i ∈ g−1(d)}.

2.3 Alternating Substring-Triples Partition

To discuss the Alternating Substring-Triples Partition, or AST Partition, we first give some

definitions relating to subsets of a coloring.

Definition 2.8. Let i, k, r, and n be positive integers and ∆ be an r-coloring of [n]. For i ∈ [n]

and k ∈ [n− i+ 1], we say that a set of consecutive elements [i, i+ (k − 1)] is a k-tuple if ∆,

when restricted to [i, i+ (k − 1)], is monochromatic; that is, |∆ ([i, i+ (k − 1)])| = 1. We call a

2-tuple a double and a 3-tuple a triple. If [i, i+ (k − 1)] is a k-tuple for some i ∈ [n] and

k ∈ [n− i+ 1], we call the k-tuple isolated if

1. either i = 1 or ∆(i− 1) 6= ∆(i) and

2. either n = i+ (k − 1) or ∆(i+ (k − 1)) 6= ∆(i+ k).

We say ∆ is alternating if ∆(i) 6= ∆(i+ 1) for each i ∈ [n− 1].

Having those definitions, we now give the AST Partition.

Construction 2.9. Alternating Substring-Triples Partition Let n be a positive integer and

∆ : [n]→ {a, b}. In what follows, we partition [n] into S, which contains alternating substrings,

and T , containing triples.

1. Find the maximum number of pairwise disjoint triples with respect to ∆. Suppose that there

are w of them; call them T1, T2, . . . , Tw, and suppose the minimal element in each is τi. We

assume that either τi = 1 or whenever τi > 1, ∆(τi − 1) 6= ∆(τi) or τi − 1 ∈ Ti−1. This ensures

that we “frontload” the triples. In other words, we take the first possible triple whenever

possible. We define the collection of all triples as T := {T1, T2, . . . , Tw}.

2. Find all remaining doubles in S = [n] \ (T1 ∪ T2 ∪ · · · ∪ Tw) (we think of S as w + 1 possibly

empty subsets that are separated by the triples; if a string begins or ends with a triple, or if we

8



have consecutive triples in a string, this corresponds to an empty subset of S). Say that there

are v of them. Observe that these doubles occur precisely at the beginning and end of

consecutive, maximal, alternating substrings in S. Now partition S into v + w + 1 (possibly

empty) parts corresponding to maximal, alternating substrings, each called Si for

i ∈ [v + w + 1]. Define S := {S1, S2, . . . , Sv+w+1}. For i ∈ [v + w + 1], let ki = |Si|, which we

call this the length of Si.

The partition of [n] given by S ∪ T , where elements of S and T correspond to alternating

substrings and triples, respectively, is the Alternating Substring-Triple Partition, or AST

Partition, of [n] with respect to ∆. We denote the AST Partition of [n] with respect to ∆ with

parameters v and w as (S, T ; v, w).

Example 2.10. Let ∆ : [25]→ {a, b} be defined as ∆ = ababababababbbbabaabbabab. Then the

AST Partition of [25] with respect to ∆ is ({S1, S2, S3, S4}, {T1}; 2, 1) where S1 = [11],

S2 = [15, 18], S3 = [19, 20], S4 = [21, 25], and T1 = [12, 14]. This is illustrated below in (2.1).

∆ : abababababa

S1

bbb

T1

baba

S2

ab

S3

babab

S4
(2.1)

2.4 Properties of Alternating 2-colorings

Alternating 2-colorings have some characteristics which will be useful to us in the proof of

Theorem 1.9. First, each alternating 2-coloring contains a particular number of what we call

MCD2s, defined below in generality.

Definition 2.11. Let r and n be positive integers and ∆ an r-coloring of [n]. A set A ⊆ [n] is a

monochromatic set of diameter d, or MCDd, if |∆(A)| = 1 and diam(A) = d.

Example 2.12. Let ∆ = ababaab. Then A = {1, 3, 6} is an MCD5. Similarly, B = {2, 4} is an

MCD2.

Much of what we use in this thesis will refer to MCD2s. As such, we classify below how many

MCD2s an alternating 2-coloring contains. Similarly, we describe a set of MCD2s any 2-coloring

contains using the AST Partition.
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Observation 2.13. Let k be a positive integer and ∆ an alternating 2-coloring of [k]. Without

loss of generality, we may assume that ∆ = ab · · · a if k is odd and ∆ = ab · · · ab if k is even. Then{
{3i− 2, 3i} | i ∈

[⌊
k
3

⌋]}
is a collection of

⌊
k
3

⌋
MCD2s, none of which overlap. This means that

any alternating string contains a permissible collection of
⌊
k
3

⌋
MCD2s. Note that the MCD2s

identified in a given substring are also “frontloaded”. That is, we take the first possible MCD2

whenever possible.

Definition 2.14. Let n be a positive integer, ∆ a 2-coloring of [n], and (S, T ; v, w) the AST

Partition of [n] with respect to ∆. We know that |S| = v + w + 1. For i ∈ [v + w + 1], recall that

ki = |Si| and define k′i ∈ {0, 1, 2} as k′i = ki (mod 3). Note that n = 3w +
v+w+1∑
i=1

ki. By Observation

2.13, for each i ∈ [v +w+ 1], Si contains
⌊
ki
3

⌋
=

ki−k′i
3 MCD2s. Furthermore, each of the w triples

contains an MCD2. Then ∆ contains σ := w +
v+w+1∑
i=1

⌊
ki
3

⌋
= w +

v+w+1∑
i=1

ki − k′i
3

permissible

MCD2s. We call these σ MCD2s the canonical MCD2s of ∆. Then ∆ is (2, 2, σ; 2)-permissible, or

simply (2, 2, σ)-permissible.

Example 2.15. Let ∆ be as defined in (2.1). Then ∆ contains 6 canonical MCD2s which are

{1, 3}, {4, 6}, {7, 9}, {12, 14}, {15, 17}, and {21, 23}, seen in (2.2). So ∆ is (2, 2, 6; 2)-permissible.

∆ : abababababa

S1

bbb

T1

baba

S2

ab

S3

babab

S4
(2.2)

We now discuss what it means for a coloring ∆ to have a particular type.

Definition 2.16. Let n be a positive integer, ∆ a 2-coloring of [n], and (S, T ; v, w) the AST

partition of [n] with respect to ∆. Observe that S ∪ T is a partition of [n] into v + 2w + 1 parts

which have an implied order based on the way the construction parsed [n] with respect to ∆. We

often abbreviate ∆ by its type. We use a (v + 2w + 1)-tuple to record the relative location of the

alternating substrings and the triples associated with the AST Partition of ∆. For example, the

coloring given in (2.2) is of type (11, τ, 4, 2, 5). Note that a coloring cannot be reconstructed given

only its type.

Furthermore, the coloring in (2.2) contains (τ, 4, 2) and ends with (2, 5). For ease, we use the
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notation ā, where a is a positive integer, to mean “is congruent to a (mod 3) and at least a”. So

we may say that the coloring in (2.2) contains (τ, 1̄, 2) and ends with (2, 2̄).

Let ` be a positive integer and a1, a2, . . . , a` ∈ {a, b}. We say that ∆ contains a1a2 · · · a` if

there exists k ∈ [n− `] such that ∆, when restricted to [k+ 1, k+ `], is a1a2 · · · a`. Further, we say

that ∆ ends with a1a2 · · · a` if k = n− `. So the coloring in (2.2) contains ababbb and ends with

babab.
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CHAPTER 3

PROOF OF THEOREM 1.9

In Section 3.1, we begin by establishing s(2, 2, t) for all positive integers t. We conclude the

section by showing a lower bound for f(m, r, t) for positive integers m, r, and t. We follow this in

Section 3.2 by proving a series of lemmas necessary to show Theorem 1.9.

3.1 Bounds on s(m, r, t) and f(m, r, t)

Lemma 3.1. Let t be a positive integer. Then s(2, 2, t) > 5t− 3.

Proof. Let ∆ : [5t− 3]→ {a, b} be represented by (ababa)t−1ab. In what follows, we show that ∆

is not (2, 2, t; d)-permissible for any integer d. We proceed by induction.

Observe that when t = 1, we have that ∆ = ab and clearly this is not (2, 2, 1; d)-permissible for

any integer d as [2] contains no monochromatic subsets of order 2 with respect to ∆.

Now assume that for some t ≥ 1, (ababa)t−2ab is not (2, 2, t− 1; d)-permissible for any integer d

and by way of contradiction assume that ∆ = (ababa)t−1ab is (2, 2, t; d)-permissible for some

integer d. Let B1, B2, . . . , Bt be the sets that realize ∆ as (2, 2, t; d)-permissible. Observe that

∆ = (ababa)t−1ab = ababa
[
(ababa)t−2ab

]
. So min(B2) ≤ 5 because, otherwise, the sets B2, . . . , Bt

would realize (ababa)t−2ab to be (2, 2, t− 1; d)-permissible, contradicting the inductive hypothesis.

So B1 ⊆ [4]. Since we know that B1 must be monochromatic with respect to ∆, B1 = {1, 3}

or {2, 4}. This implies that d = 2. Since all of the sets have the same diameter, diam(B2) = 2.

This means that B2 = {4, 6} or {5, 7}, neither of which are monochromatic with respect to ∆.

Therefore, we have reached a contradiction and ∆ is not (2, 2, t; d)-permissible for any d. So

s(2, 2, t) > 5t− 3.

To show that s(2, 2, t) ≤ 5t− 2, we first prove a lemma relating to the number of doubles and

triples in a given 2-coloring.

Lemma 3.2. Let t and n be a positive integers, ∆ a 2-coloring of [n], and (S, T ; v, w) the AST

Partition of [n] with respect to ∆. If v + w ≥ t, then ∆ is (2, 2, t; 1)-permissible.
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Proof. Note that each of the w triples contains a double. Hence, there are v + w monochromatic,

non-overlapping doubles in [n] with respect to ∆. Since v + w ≥ t, we have at least t permissible

doubles. Thus ∆ is (2, 2, t; 1)-permissible.

Lemma 3.3. Let t be a positive integer. Then s(2, 2, t) ≤ 5t− 2.

Proof. Let ∆ : [5t− 2]→ {a, b} and (S, T ; v, w) the AST Partition of [5t− 2] with respect to ∆.

In this proof, we show that for any positive integer t, any 2-coloring of [5t− 2] is

(2, 2, t; d)-permissible for some integer d ≤ 2. By Lemma 3.2, if v + w ≥ t, then ∆ is

(2, 2, t; 1)-permissible. So in what follows, we assume that v + w ≤ t− 1 or v + w + 1 ≤ t. Let σ,

ki, k
′
i be as defined in Definition 2.14. Then

σ = w +
v+w+1∑
i=1

ki − k′i
3

,

which implies

3σ = 3w +
v+w+1∑
i=1

ki −
v+w+1∑
i=1

k′i.

Since k′i ≤ 2 for all i ∈ [v + w + 1], we have that

3σ ≥ 3w +

v+w+1∑
i=1

ki − 2(v + w + 1). (3.1)

Also, from Definition 2.14, we have that

5t− 2 = 3w +
v+w+1∑
i=1

ki. (3.2)

Additionally, t ≥ v + w + 1, so combining (3.1) and (3.2), we get

3σ ≥ 3w +
v+w+1∑
i=1

ki − 2(v + w + 1) ≥ 3w + (5t− 2− 3w)− 2t = 3t− 2.

So σ ≥ t− 2
3 , and since σ and t are integers, σ ≥ t. Hence, by choosing t of the σ canonical

MCD2s, we have a collection of t permissible sets realizing ∆ to be (2, 2, t; 2)-permissible.

Hence, any coloring of length 5t− 2 is (2, 2, t; d)-permissible with d ≤ 2, so s(2, 2, t) ≤ 5t− 2.

13



Lemmas 3.1 and 3.3 then establish s(2, 2, t) for all positive integers t.

Theorem 3.4. Let t be a positive integer. Then s(2, 2, t) = 5t− 2.

We conclude this section by showing a lower bound on f(2, 2, t). Using a similar argument to

Lemma 3.1, a lower bound for f(m, r, t) is found.

Theorem 3.5. Let m, r, and t be positive integers. Then f(m, r, t) > (mr + 1)(t− 1).

Proof. Let R = {a1, a2, . . . , ar} and ∆ : [(mr + 1)(t− 1)]→ R be an r-coloring of [n]. Let

∆ = [(a1a2 · · · ar)m a1]t−1. Similar to Lemma 3.1, we proceed by induction. When t = 1, ∆ is

empty and is therefore not (m, r, t)-permissible. Assume that for some t ≥ 2

∆ = [(a1a2 · · · ar)m a1]t−2 is not (m, r, t− 1)-permissible. By way of contradiction, assume that

∆ = [(a1a2 · · · ar)m a1]t−1 is (m, r, t)-permissible. Let B1, B2, . . . , Bt be the t sets which realize ∆

as (m, r, t)-permissible. Observe that min(B2) ≤ mr + 1. Otherwise, [(a1a2 · · · ar)m a1]t−2 would

be (m, r, t− 1)-permissible with sets B2, B3, . . . , Bt. So B1 ⊆ [mr]. Since B1 is monochromatic,

B1 is of the form {i, i+ r, . . . , i+ r(m− 1)} for some i ∈ [r]. Therefore diam(B1) = r(m− 1).

Similarly, max(Bt−1) ≥ (mr + 1)(t− 1)−mr. Otherwise, [(a1a2 · · · ar)m a1]t−2 would be

(2, r, t− 1)-permissible with sets B1, B2, . . . , Bt−1. Then Bt ⊆ {(mr + 1)(t− 2) + i+ 1 | i ∈ [mr]}.

Since Bt is monochromatic, Bt = {(mr + 1)(t− 2) + i+ 1 + (j − 1)r | j ∈ [m]} for some i ∈ [r].

Therefore diam(Bt) = r(m− 1). Since diam(B1) = diam(Bt) = r(m− 1) and ∆ is

(m, r, t)-permissible, it must be that ∆ is actually (m, r, t; r(m− 1)) permissible. So we may

assume diam(B2) = r(m− 1). If follows that if ∆(min(B2)) = a1, then ∆(max(B2)) = ar.

Similarly, if ∆(min(B2)) = ai, for some i ∈ [2, r], then ∆(max(B2)) = ai−1. In either case, B2 is

not monochromatic. Therefore ∆ is not (2, r, t)-permissible and f(m, r, t) > (mr + 1)(t− 1).

The following corollary, a special case of Theorem 3.5, establishes a lower bound for f(2, 2, t).

Corollary 3.6. Let t be a positive integer. Then f(2, 2, t) > 5t− 5.

3.2 Proof of Theorem 1.9

We now begin the proof of a series of lemmas which conclude in a proof of Theorem 1.9. These

lemmas fit into two major categories. First, for a positive integer t, if a 2-coloring ∆ of [5t− 4]
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exhibits certain properties, then ∆ is (2, 2, t)-permissible. Second, for a positive integer t, if ∆ is

not (2, 2, t)-permissible, then ∆ must exhibit certain properties.

Lemma 3.7. Let t be a positive integer, ∆ a 2-coloring of [5t− 4], and (S, T ; v, w) the AST

Partition of [5t− 4] with respect to ∆. If v + w < t− 1, then ∆ is (2, 2, t; 2)-permissible.

Proof. If v + w < t− 1, then v + w + 1 ≤ t− 1. Let σ be as defined in Definition 2.14. Then

3σ = 3w +
v+w+1∑
i=1

(
ki − k′i

)
= 5t− 4−

v+w+1∑
i=1

k′i ≥ 5t− 4− 2(v + w + 1) ≥ 5t− 4− 2(t− 1) = 3t− 2.

Since σ and t are both integers, σ ≥ t. So if v + w < t− 1, there are at least t canonical MCD2s.

Therefore, ∆ is (2, 2, t; 2)-permissible.

By combining the previous result with Lemma 3.2, we have the following lemma.

Lemma 3.8. Let t be a positive integer, ∆ a 2-coloring of [5t−4] which is not (2, 2, t)-permissible,

and (S, T ; v, w) the AST Partition of [5t− 4] with respect to ∆. Then v + w = t− 1.

Proof. By Lemma 3.2, since ∆ is not (2, 2, t)-permissible, v + w ≤ t− 1 and, by Lemma 3.7,

v + w ≥ t− 1. Therefore, if ∆ is not (2, 2, t)-permissible, v + w = t− 1.

Lemma 3.9. Let t be a positive integer, ∆ a 2-coloring of [5t− 4], and (S, T ; v, w) the AST

Partition of [5t− 4] with respect to ∆. If a string contains an isolated 4-tuple or k-tuple with

k ≥ 6, then ∆ is (2, 2, t)-permissible.

Proof. Assume by way of contradiction that ∆ is not (2, 2, t)-permissible. Then by Lemma 3.8,

v + w + 1 = t. For each i ∈ [w], let T ′i be the set containing the smaller two elements in Ti for

each Ti ∈ T .

Suppose {`, `+ 1, `+ 2, `+ 3} is an isolated 4-tuple in ∆ where ` ∈ [5t− 7]. We know from the

AST Partition that Tj = {`, `+ 1, `+ 2} for some j ∈ [w] and `+ 3 does not belong to any double

or triple identified by the AST Partition of [5t− 4] with respect to ∆. Let D be the set of all

doubles in [5t− 4] with respect to ∆ as identified using the AST Partition. Recall that |D| = v.

Then we have that D ∪ {T ′1, T ′2, . . . , T ′w} ∪ {`+ 2, `+ 3} is a permissible collection of v +w + 1 = t

doubles. So ∆ is (2, 2, t; 1)-permissible hence ∆ is (2, 2, t)-permissible.
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Now, let {`, `+ 1, . . . , `+ (k − 1)} be a k-tuple, k ≥ 6, in ∆ where ` ∈ [5t− 3− k]. Assume that

` = 1 or ∆(`− 1) 6= ∆(`). Then Tj = {`, `+ 1, `+ 2} and Tj+1 = {`+ 3, `+ 4, `+ 5} for some

j ∈ [w − 1]. Then D ∪
(
{T ′1, T ′2, . . . , T ′w} \ {T ′j+1}

)
∪ {`+ 2, `+ 3} ∪ {`+ 4, `+ 5} is a permissible

collection of v + w + 1 = t doubles. So ∆ is (2, 2, t; 1)-permissible. Hence ∆ is

(2, 2, t)-permissible.

Lemma 3.10. Let t be a positive integer, ∆ a 2-coloring of [5t− 4] which is not

(2, 2, t)-permissible, and (S, T ; v, w) the AST Partition of [5t− 4] with respect to ∆. Then ∆

contains t− 1 canonical MCD2s.

Proof. The computation in this proof is similar to that in Lemma 3.3. Since ∆ is not

(2, 2, t)-permissible, by Lemma 3.8, v + w + 1 = t. Let σ, ki, and k′i be as defined in

Definition 2.14. Then

3σ = 3w +
v+w+1∑
i=1

(
ki − k′i

)
= 3w +

v+w+1∑
i=1

ki −
v+w+1∑
i=1

k′i ≥ 5t− 4− 2(v + w + 1) = 5t− 4− 2t = 3t− 4.

Thus σ ≥ t− 4
3 . Since σ and t are both integers, σ ≥ t− 1. Further, since ∆ is not

(2, 2, t)-permissible, σ ≤ t− 1. Therefore σ = t− 1.

Lemma 3.11. Let t be an integer, ∆ a 2-coloring of [5t− 4] which is not (2, 2, t)-permissible, and

(S, T ; v, w) the AST Partition of [5t− 4] with respect to ∆. Then each substring in S must have

length congruent to 2 (mod 3) except for one which has length congruent to 1 (mod 3).

Proof. Since ∆ is not (2, 2, t)-permissible, by Lemma 3.8, v + w + 1 = t. Let σ, ki, and k′i be as

defined in Definition 2.14. Then

3σ = 3w +
v+w+1∑
i=1

ki −
v+w+1∑
i=1

k′i = 3w +
t∑

i=1

ki −
t∑

i=1

k′i. (3.3)
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Since ∆ is not (2, 2, t)-permissible, by Lemma 3.10, σ = t− 1 or 3σ = 3t− 3. So

3t− 3 = 3w +
t∑

i=1

ki −
t∑

i=1

k′i,

3t− 3 = 5t− 4−
t∑

i=1

k′i,

t∑
i=1

k′i = 2t− 1.

Since k′i ≤ 2 for all i ∈ [t], the result follows.

As a direct result of Lemma 3.11, we have the following corollary.

Corollary 3.12. Let t be a positive integer and ∆ a 2-coloring of [5t− 4]. Then if ∆ contains (0̄)

or at least two copies of (1̄), then ∆ is (2, 2, t)-permissible.

We next give a result relating to how a 2-coloring of [5t− 4] ends.

Lemma 3.13. Let t be an integer and ∆ a 2-coloring of [5t− 4] such that ∆(5t− 6) = ∆(5t− 4).

Then ∆ is (2, 2, t)-permissible.

Proof. Let ∆1 be the restriction of ∆ to [5t− 7]. That is ∆1(x) = ∆(x) for all x ∈ [5t− 7]. Note

that 5t− 7 = 5(t− 1)− 2. Then, by Theorem 3.4, ∆1 is (2, 2, t− 1; d)-permissible with d ≤ 2. Let

B1, B2, . . . Bt−1 be the t− 1 sets that realize ∆1 as (2, 2, t− 1; d)-permissible. Define Bt as

{5t− 6, 5t− 4}. Note that Bt is monochromatic with respect to ∆, |Bt| = 2 and diam(Bt) = 2.

Since diam(Bi) ≤ 2 for all i ∈ [t− 1], B1, B2, . . . , Bt are t permissible 2-sets with respect to ∆.

Therefore, B1, B2, . . . , Bt realize ∆ as (2, 2, t)-permissible.

As a corollary to Lemma 3.13, for some positive integer t, a 2-coloring of [5t− 4] which is not

(2, 2, t)-permissible cannot end with a triple or an alternating substring with length 3 or larger.

Corollary 3.14. Let t be an integer, ∆ a 2-coloring of [5t− 4], and (S, T ; v, w) the AST

Partition of [5t− 4] with respect to ∆. If ∆ ends with (τ) or (k) where k ≥ 3 is an integer, then

∆ is (2, 2, t)-permissible.
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Proof. If ∆ ends with (τ), then we know that ∆(5t− 6) = ∆(5t− 4). So by Lemma 3.13, ∆ is

(2, 2, t)-permissible. Similarly, if ∆ ends with (k) where k ≥ 3 is an integer, then we know that

∆(5t− 6) = ∆(5t− 4). Therefore, ∆ is (2, 2, t)-permissible.

We now discuss the properties of triples contained in a coloring.

Lemma 3.15. Let t be a positive integer and ∆ a 2-coloring of [5t− 4]. If ∆ contains consecutive

triples, then ∆ is (2, 2, t)-permissible.

Proof. Either both triples have the same color or they have different colors. If the triples have the

same color then, by Lemma 3.9, ∆ is (2, 2, t)-permissible. If the triples have different colors, then

∆ contains (τ, 0̄, τ). So, by Corollary 3.12, ∆ is (2, 2, t)-permissible.

Lemma 3.16. Let t be a positive integer, ∆ a 2-coloring of [5t− 4], and (S, T ; v, w) the AST

Partition of [5t− 4] with respect to ∆. If ∆ begins with a triple, then ∆ is (2, 2, t)-permissible.

Proof. Let S1 ∈ S be the first alternating substring in ∆. If ∆ begins with a triple, then S1 is

empty and thus has length 0 so ∆ contains (0). So by Corollary 3.12, ∆ is (2, 2, t)-permissible.

Lemma 3.17. Let t be a positive integer, ∆ a 2-coloring of [5t− 4], and (S, T ; v, w) the AST

Partition of ∆. If w > 0 and ∆ contains (2̄, τ, 2̄), then ∆ is (2, 2, t)-permissible. So if ∆ is not

(2, 2, t)-permissible and contains any triples, then those triples are contained in copies of (1̄, τ, 2̄)

or (2̄, τ, 1̄).

Proof. Assume by way of contradiction that ∆ is not (2, 2, t)-permissible. Further, by Lemmas

3.14 and 3.16, ∆ cannot begin or end with a triple. So each triple in ∆ must be bounded on

either side by an alternating substring.

Assume that ∆ contains (2̄, τ, 2̄). Let T = {j, j + 1, j + 2} for some j ∈ [3, 5t− 8] be the triple.

Recall that for i ∈ [v + w + 1], ki = |Si|. Let Si and Si+1 be the substrings immediately preceding

and following T , respectively. By Observation 2.13, Si contains a1 := ki−2
3 MCD2s, Si+1 contains

a2 := ki+1−2
3 MCD2s, and the triple contains 1 MCD2. Say that there are p other canonical

MCD2s in ∆. Since ∆ is not (2, 2, t)-permissible, by Lemma 3.10, there are t− 1 canonical

MCD2s in ∆ so a1 + a2 + p+ 1 = t− 1 or a1 + a2 + p+ 2 = t.
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Observe that, due to the construction of triples in the AST Partition of [5t− 4] with respect

to ∆, we have that ∆(j) 6= ∆(j − 1). Note that ∆(j + 3) 6= ∆(j + 4) since ki+1 ≥ 2. Furthermore,

∆(j + 2) 6= ∆(j + 3); otherwise, ∆ would be (2, 2, t)-permissible by Lemma 3.9. Observe that

S′i = Si ∪ {j} is an alternating substring with length 3(a1 + 1) so S′i contains a1 + 1

non-overlapping MCD2s. Similarly, S′i+1 = Si+1 ∪ {j + 2} is an alternating substring with length

3(a2 + 1) so S′i+1 contains a2 + 1 non-overlapping MCD2s.

Using this regrouped partition of [5t− 4], ∆ contains (a1 + 1) + (a2 + 1) + p = a1 + a2 + p+ 2 = t

non-overlapping MCD2s. Therefore, ∆ is (2, 2, t)-permissible. Note that a triple in ∆ cannot be

bounded on both sides by (1̄) by Corollary 3.12. So if ∆ contains any triples, they must be

bounded on one side by (1̄) and the other side by (2̄) and the result follows.

We now give an example to illustrate the previous result.

Example 3.18. Let t = 3 and ∆ = abababbbab, which is of type (2̄, τ, 2̄). By Definition 2.14, we

have 2 canonical MCD2s; they are {1, 3} and {6, 8}. Using the method described in the proof of

Lemma 3.17, we find 3 MCD2s, which are {1, 3}, {4, 6} and {8, 10}, realizing ∆ as

(2, 2, 3)-permissible.

We now show that if, for some positive integer t, a 2-coloring of [5t− 4] contains more than 1

triple, then the 2-coloring is (2, 2, t)-permissible.

Corollary 3.19. Let t be a positive integer, ∆ a 2-coloring of [5t− 4], and (S, T ; v, w) the AST

Partition of ∆. If w ≥ 2, then ∆ is (2, 2, t)-permissible.

Proof. By Lemma 3.17, if ∆ contains any triples, then those triples are contained in copies of

(1̄, τ, 2̄) or (2̄, τ, 1̄). Suppose that ∆ contains w1 copies of (1̄, τ, 2̄) and w2 copies of (2̄, τ, 1̄) such

that w1 + w2 = w ≥ 2. If w1 ≥ 2 or w2 ≥ 2, this implies that ∆ contains at least 2 substrings

whose length is congruent to 1 (mod 3). So ∆ is (2, 2, t)-permissible by Corollary 3.12. Therefore,

w1 = w2 = 1 and thus ∆ contains (2̄, τ, 1̄, τ, 2̄).

If ∆ contains (2̄, τ, 1̄, τ, 2̄), then by way of contradiction assume that ∆ is not

(2, 2, t)-permissible. Again recall that for i ∈ [v + w + 1], ki = |Si|. For j ∈ [w − 1], define

Tj = {α, α+ 1, α+ 2} for α ∈ [3, n− 5− ki+1] and Tj+1 = {β, β + 1, β + 2} for β ∈ [6, 5t− 8]. Let
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Si, Si+1, and Si+2 for some i ∈ [v + w − 1] be the alternating substrings around Tj and Tj+1 in

order.

We first establish that Tj and Tj+1 are isolated triples. Let the 2 colors used in this coloring

be a and b. Without loss of generality, assume that ∆(Tj) = {a}. Then ∆(α− 1) = b, otherwise

the AST Partition is violated by having not taken the correct triple. Further, ∆(α+ 3) = b.

Otherwise, we would either have an isolated 4-tuple (if ki+1 > 1 or ki+1 = 1 and ∆(Tj+1) = {b})

or isolated 7-tuple (if ki+1 = 1 and ∆(Tj+1) = {a}) and ∆ is (2, 2, t)-permissible by Lemma 3.9.

So Tj is an isolated triple.

Now, without loss of generality, assume that ∆(Tj+1) = {a}. Then ∆(β − 1) 6= ∆(β), because

otherwise, the triples were not selected correctly in the AST Partition. Further, ∆(β + 3) = b.

Otherwise, we would either have an isolated 4-tuple (since ∆(β + 3) 6= ∆(β + 4) because

β + 3, β + 4 ∈ Si+2 and Si+2 is alternating) so ∆ is (2, 2, t)-permissible by Lemma 3.9. So Tj+1 is

an isolated triple.

By Observation 2.13, Si contains a1 := ki−2
3 MCD2s, Si+1 contains a2 := ki+1−1

3 MCD2s, Si+2

contains a3 := ki+2−2
3 MCD2s, and both Tj and Tj+1 contain 1 MCD2 each. Say that there are p

other canonical MCD2s in ∆. Since ∆ is not (2, 2, t)-permissible, by Lemma 3.10

a1 + a2 + a3 + p+ 2 = t− 1 or a1 + a2 + a3 + p+ 3 = t. Observe that S′i = Si ∪ {α} is an

alternating substring with length 3(a1 + 1) so S′i contains a1 + 1 non-overlapping MCD2s.

Similarly, S′i+1 = Si+1 ∪ {α+ 2, β} is an alternating substring with length 3(a2 + 1) so S′i+1

contains a2 + 1 non-overlapping MCD2s. Likewise, S′i+2 = Si+2 ∪ {β + 2} is an alternating

substring with length 3(a3 + 1) so S′i+2 contains a3 + 1 non-overlapping MCD2s. So ∆ contains

(a1 + 1) + (a2 + 1) + (a3 + 1) + p = a1 + a2 + a3 + p+ 3 = t non-overlapping MCD2s and we have

reached a contradiction. Thus, ∆ is (2, 2, t)-permissible.

We again give an example to illustrate the previous result.

Example 3.20. Let t = 5 and ∆ = abababbbababaaaba. Observe that ∆ is of type (2̄, τ, 1̄, τ, 2̄).

By Definition 2.14, we have 4 canonical MCD2s; they are {1, 3}, {6, 8}, {9, 11} and {13, 15}.

Using the method described in the proof of Lemma 3.17, we find 5 MCD2s, which are {1, 3},

{4, 6}, {8, 10}, {11, 13}, and {15, 17} realizing ∆ as (2, 2, 5)-permissible.
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We first make some observations that will be useful in the final arguments.

Observation 3.21. Let t ≥ 4 be an integer, ∆ a 2-coloring of [5t− 4] which is not

(2, 2, t)-permissible, and (S, T ; v, w) the AST Partition of [5t− 4] with respect to ∆.

(a) By Lemma 3.8 and, since ∆ is not (2, 2, t)-permissible, v + w + 1 = t.

(b) Since v + w + 1 = t, there are t maximal, alternating substrings contained in ∆. Further,

since t ≥ 4, there are at least 4 alternating substrings of nonzero length in ∆.

(c) By Lemma 3.10 and, since ∆ is not (2, 2, t)-permissible, there are t−1 canonical MCD2s in ∆.

(d) ∆(5t− 11) 6= ∆(5t− 9). Otherwise, by Lemma 3.13, ∆ when restricted to [5t− 9] is

(2, 2, t− 1)-permissible where the diameters of the t sets realizing ∆ as (2, 2, t)-permissible

are at most 2. Then, by Theorem 2.3, either {5t− 8, 5t− 6}, {5t− 8, 5t− 4}, or

{5t− 6, 5t− 4} is a monochromatic set with respect to ∆. So by taking the t− 1 sets

realizing the restriction of ∆ to [5t− 9] as (2, 2, t− 1)-permissible along with one of the other

listed sets, we realize ∆ as (2, 2, t)-permissible.

We now show that f(2, 2, t) = 5t− 4.

Proof of Theorem 1.9. Recall that t ≥ 4 be an integer and assume that ∆ be a 2-coloring of

[5t− 4] which is not (2, 2, t)-permissible. Let (S, T ; v, w) be the AST Partition of [5t− 4] with

respect to ∆. By Corollary 3.14, we know that ∆ must end with (1) or (2). By Corollary 3.19, ∆

contains at most 1 triple and by Lemma 3.17 if ∆ contains a triple, then it either contains (2̄, τ, 1̄)

or (1̄, τ, 2̄). With that in mind, Figure 3.1 illustrates the 12 types in which ∆ may end. In each of

these cases, we show that ∆ is (2, 2, t)-permissible and thus prove Theorem 1.9. Without loss of

generality, assume that ∆(5t− 4) = b. Suppose that ∆ ends with type:

(a) (τ, 2). By Lemma 3.13, ∆ cannot end with bbbab. So ∆ must end with aaaab. Since t ≥ 2,

there exists a nonempty alternating substring St−1 which precedes the triple corresponding

to (τ). Since the AST Partition frontloads triples, we know that the last character in St−1 is

b. So ∆ ends with baaaab and thus contains an isolated quadruple. Therefore, by Lemma 3.9,

∆ is (2, 2, t)-permissible.
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End of String

2 1

τ 2̄ 7̄ 1 4

τ 2̄ τ 2̄

2 5 8̄ τ

5̄ 2

(a) (b) (c)

(d) (e) (f) (g)

(h) (i) (j)

(k) (l)

Figure 3.1: Tree of Types in Which a Coloring May End
The above outlines the types in which a coloring ∆, that is not (2, 2, t)-permissible, may end.
Moving down the tree starts at the end of the string and works backwards. The lettering corresponds
to which part of the proof covers that particular ending.

(b) (2̄, 2). Then we know that ∆ ends with baab. By Observation 3.21(c), we know that there are

t− 1 canonical MCD2s and all of them precede [5t− 7, 5t− 4]. Thus, by taking the t− 1

canonical MCD2s along with {5t− 7, 5t− 4}, we realize ∆ as (2, 2, t)-permissible.

(c) (7̄, 2). Then ∆(5t− 11) = ∆(5t− 9). So by Observation 3.21(d), ∆ is (2, 2, t)-permissible.

(d) (τ, 1, 2). By Lemma 3.11 and Observation 3.21(b), there exists a nonempty alternating

substring St−2 which precedes the triple corresponding to (τ) and has length congruent to 2

(mod 3). So ∆ ends with type (2̄, τ, 1, 2). So ∆ ends with abaaaaab, baaaaaab, babbbaab, or

abbbbaab. For the first and third case, ∆(5t− 11) = ∆(5t− 9) so ∆ is (2, 2, t)-permissible by

Observation 3.21(d). In the second case, ∆ contains a 6-tuple and in the fourth case, ∆

contains an isolated 4-tuple. So ∆ is (2, 2, t)-permissible by Lemma 3.9.

(e) (2̄, 1, 2). This implies that ∆ ends with abaab. Observe that all of the t− 1 canonical MCD2s

precede [5t− 8, 5t− 4]. By taking the t− 1 canonical MCD2s along with {5t− 8, 5t− 5}, we

realize ∆ as (2, 2, t)-permissible.

(f) (τ, 4, 2). By Lemma 3.11 and Observation 3.21(b), there exists a nonempty alternating

substring St−2 which precedes the triple corresponding to (τ) and has length congruent to 2

(mod 3). So ∆ ends with type (2̄, τ, 4, 2). So ∆ ends with abaaababaab, abbbbbabaab,

baaaababaab, or babbbbabaab. In the first case, note that {5t− 12, 5t− 10} and {5t− 9, 5t− 7}

are canonical MCD2s and all other canonical MCD2s precede [5t− 12, 5t− 4]. By grouping
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the other t− 3 canonical MCD2s with the sets {5t− 14, 5t− 12}, {5t− 10, 5t− 8}, and

{5t− 7, 5t− 4}, we realize ∆ as (2, 2, t)-permissible. In the second case,

∆(5t− 11) = ∆(5t− 9), so ∆ is (2, 2, t)-permissible by Observation 3.21(d). In the third and

fourth case, ∆ contains an isolated 4-tuple so ∆ is (2, 2, t)-permissible by Lemma 3.9.

(g) (2̄, 4, 2). This implies that ∆ ends with abbabaab. Note that {5t− 9, 5t− 7} is a canonical

MCD2 and all other canonical MCD2s precede [5t− 11, 5t− 4]. So by taking the other t− 2

canonical MCD2s along with {5t− 11, 5t− 8} and {5t− 7, 5t− 4}, we realize ∆ as

(2, 2, t)-permissible.

(h) (2, 1). By Lemma 3.11 and Observation 3.21(b), there exists a nonempty substring St−2

which precedes the substring corresponding to (2) and has length congruent to 2 (mod 3). So

∆ ends with type (2̄, 2, 1) and ∆ ends with baabb. Observe that all of the t− 1 canonical

MCD2s precede [5t− 8, 5t− 4]. By taking the t− 1 canonical MCD2s along with

{5t− 8, 5t− 5}, we realize ∆ as (2, 2, t)-permissible.

(i) (5, 1). By Lemma 3.11 and Observation 3.21(b), there exists a nonempty alternating

substring St−2 which precedes substring corresponding to (5) and has length congruent to 2

(mod 3). So ∆ ends with type (2̄, 5, 1) and ∆ ends with abbababb. Note that {5t− 9, 5t− 7}

is a canonical MCD2 and all other canonical MCD2s precede [5t− 11, 5t− 4]. So by taking

the other t− 2 canonical MCD2s along with {5t− 11, 5t− 8} and {5t− 7, 5t− 4}, we realize

∆ as (2, 2, t)-permissible.

(j) (8̄, 1). Then ∆(5t− 11) = ∆(5t− 9). So by Observation 3.21(d), ∆ is (2, 2, t)-permissible.

(k) (5̄, τ, 1). Then ∆(5t− 11) = ∆(5t− 9). So by Observation 3.21(d), ∆ is (2, 2, t)-permissible.

(l) (2, τ, 1). By Lemma 3.11 and Observation 3.21(b), there exist two nonempty alternating

substrings St−2 and St−3 which precede the substring corresponding to (2) and have length

congruent to 2 (mod 3). So ∆ ends with type (2̄, 2̄, 2, τ, 1). So ∆ ends with baabaaab,

baabbbbb, abbaaaab, or abbabbbb. In the first case, ∆, when restricted to [5t− 9], ends with

(2̄, 2̄, 1). Since t− 1 ≥ 3, ∆, when restricted to [5t− 9], is (2, 2, t− 1)-permissible where the

t− 1 sets have diameter at most 4 by (h), (i), and (j). By taking those t− 1 sets along with
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{5t− 8, 5t− 4}, we realize ∆ as (2, 2, t)-permissible. In the second case, the AST Partition is

violated since the triples aren’t frontloaded. Properly partitioning the ending yields that

there are more than 1 substring with length congruent to (mod 3) so by Corollary 3.12, ∆ is

(2, 2, t-permissible. In the third and fourth cases, ∆ contains an isolated 4-tuple so by

Lemma 3.9, ∆ is (2, 2, t)-permissible.

In each case, ∆ is (2, 2, t)-permissible. Since those 12 cases are every possible way that ∆ ends,

it must be that any 2-coloring of [5t− 4] is (2, 2, t)-permissible. Therefore, f(2, 2, t) = 5t− 4.
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CHAPTER 4

CONCLUSION

Our further work on this topic has split into two directions: (1) increasing the set size (m) and

number of colors used (r), or (2) focusing on colorings that are (m, r, t)-permissible for positive

integers t ≥ 4 and determining how many ways there are to realize that coloring as

(m, r, t)-permissible.

4.1 Increasing Parameters

From Theorems 3.5 and 2.5, we have that a range in which value for f(m, r, t) will live given by

(mr + 1)(t− 1) + 1 ≤ f(m, r, t) ≤ ((m− 1)r + 1) [(t− 1)(((m− 1)r + 1)−m+ 1) + 1] . (4.1)

Note that the bounds on f(m, r, t) give us that f is O(m2r2t) and f is o(mrt); the upper bound is

quadratic in both m and r but the lower bound is linear in both m and r (both are linear in t).

Thus, for large values of m and r, the range in which f(m, r, t) lives is enormous. Initial

investigations into shrinking this range have not given much insight into where in these regions

exact values for f lie. Our work particularly leverages the alternating structure of 2-colorings by

exploiting their binary nature. When the set size or number of colors increases, the binary nature

disappears. As such, other methods of proof will need to be developed in order to find more exact

values for f .

4.2 Enumeration of Permissible Collections

The proofs presented in this paper simply show the existence of a permissible collection of sets

that demonstrate (m, r, t)-permissibility for positive integers m, r, and t. It is a natural question

to want to determine how many ways in which a coloring can be realized as (m, r, t)-permissible.

For positive integers m, r, t, and n, we define the function g(m, r, t;n) to be the number of ways a

coloring of [n] could be realized as (m, r, t)-permissible. Observe that g(1, r, t;n) =
(
n
t

)
. This

means that there are
(
n
t

)
ways to realize an r-coloring of [n] as (1, r, t)-permissible. We now

calculate g(m, 1, t;n) for m ≥ 2 and arbitrary positive integers t and n. Given a monochromatic
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coloring of [n], we construct B1, B2, . . . , Bt, the t sets which realize a 1-coloring as

(m, 1, t)-permissible, in the following way:

• Select the diameter di for each Bi where i ∈ [t]. Observe that for i ∈ [t], di ≥ m− 1 since Bi

is an m-subset of [n]. Further, d1 + d2 + · · ·+ dt ≤ n− t because each Bi is contained in

non-overlapping subsets of cardinality di + 1 for i ∈ [t]. Let the sum of the diameters be

denoted as D.

• Choose the minimum element mi (and therefore the maximum element mi + di) of each Bi

so that Bi ⊆ [mi,mi + di] for i ∈ [t]. To achieve this we take one of the
(
n−D
t

)
solutions to

the equation

x0 + x1 + · · ·+ xt = n−D − t,

where, for each i ∈ [t], xi is a nonnegative integer. Define m0 = 0 and d0 = 0. Then

recursively define mi = mi−1 + xi−1 + di−1 + 1 for i ∈ [t].

• Choose the remaining elements in each Bi for i ∈ [t]. By definition, mi,mi + di ∈ Bi, so

there are
(
di−1
m−2

)
ways to select the other elements of Bi for i ∈ [t].

Therefore, we may enumerate g(m, 1, t;n) as

g(m, 1, t;n) =
∑
~d∈I

(
n−D
t

)(
d1 − 1

m− 2

)(
d2 − 1

m− 2

)
· · ·
(
dt − 1

m− 2

)
, (4.2)

where I = {(d1, d2, . . . , dt) | m− 1 ≤ d1 ≤ · · · ≤ dt, d1 + · · · dt = D ≤ n− t}. Considering that the

enumeration in (4.2) counts the number of realizations of (m, 1, t)-permissibility for a

monochromatic coloring, extending this to r-colorings with r ≥ 2 seems quite challenging.
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