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ABSTRACT

In this thesis, we examine properties of the variance of the sample variance, which we will denote
V(S?). We derive a formula for this variance and show that it only depends on the sample size,
variance, and kurtosis of the underlying distribution. We also derive the maximum likelihood
estimators for this parameter, V(SQ), under the normal, exponential, Bernoulli, and Poisson
distributions and end the thesis with simulations demonstrating the distributions of these

estimators.
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CHAPTER 1

INTRODUCTION

In statistics, the sampling distribution of the sample variance, 52, is known under the assumption
of sampling from a normal distribution. While there are many instances in which normality of the
underlying distribution is a reasonable assumption, this is not always the case. In this thesis we
examine the variance of the sampling distribution of S? when the sample is not necessarily drawn
from a normal distribution.

The goal of this thesis is to provide a formula for V(S?) in terms of the moments of the
underlying distribution. The derivation of this formula for a general distribution is shown in
Chapter 2 and then the formula is used to find expressions for V(S52) under the assumptions of
normal, Bernoulli, exponential, and Poisson distributions. Although V(S?) for the normal
distribution is a known result, we have included the derivation to show we arrive at the same
conclusion.

In practice, population parameters may be unknown and collecting all samples of size n is not
likely to be feasible. In these cases, V(S?) cannot be observed and calculating a theoretical value
of V(5?) using the formula is not possible. These limitations necessitate a method of estimating
V(S?) based on sample data. In Chapter 3 we derive maximum likelihood estimators for V(52)
and then discuss the asymptotic distributions of these MLEs.

To end, we use simulated samples from the normal, Bernoulli, exponential, and Poisson
distributions to demonstrate our results. Samples of varying sizes and population parameters are
used to determine how changes in each affect both the value of V(S?) and the distribution of the

estimators.



CHAPTER 2

VARIANCE FORMULA

2.1 STATEMENT OF FORMULA FOR. V(S5?)

In general, collecting all samples of size n from a population to compute V (S?) is not feasible. It
is useful to have a formula for V' (S?) in terms of moments that are more easily observed or
calculated. It can be shown that V/(S52) is dependent on the sample size, the 2nd central moment,
and the 4th standardized moment (known as the variance and kurtosis, respectively) of the

underlying distribution. For most common distributions, these moments can be easily derived.

Theorem 2.1.1. If X1, Xo, ..., X}, is a random sample from a distribution with mean px and

variance o2, then the variance of the sampling distribution of S?, denoted V (S?), is given by

V(S2) = ok {E

n

2.2 PROOF

Assume a random sample X1, Xo, ..., X, from a distribution with mean uy and variance 0. To
simplify our calculations, we will work with the standardized random variables and note how the
linear transformation affects the variance. We begin by laying some groundwork concerning the
standardized random variables.

Let Y; be the standardization of X; given by Y; = Xla_% (or alternatively, Y; = iXZ- — ’;—i) It
will be useful to know the moments of Y;. Since the Y;s are identically distributed, the kth
moments of all ¥;s are equivalent. The first moment, F(Y;), is 0 since Y; is a standardization of

X;. Similarly, since the variance of a standardization is 1 and V(Y;) = E(Y;?) — [E(Y;)]?, we have
that B(Y?) = 1.

It can be shown that if Y; = aX; +b for i =1,2,...,n then S2 = a?- 52, so it is clear that
S2 = U%S)Q( Furthermore, since sample variance is an unbiased estimator of population variance,
X

we have that F(S2) = (%2 02 = 1. This can also be seen directly since the sample variance, S2,
X



is an unbiased estimator of population variance, and the variance of a standardized random

variable is always 1. Now, V(S2) = E[(S2)?] — [E(S2)]2. Since E(S2) = 1, we have that
V(S7) = E[(S7)*] - 1. (2.1)

Of particular interest is the first term on the right-hand side. Using the computational formula

for sample variance, we have that

Bl E({Z% il @’”D

n—1

After some algebraic manipulation and using the properties of linear operators, we have

<;Y2 ~ (ZZ;; Yi)?>2

E(iﬁfﬁXiWX§ﬁfnﬂiﬁf
£| ST 0en)- ZZZW”kZZZZZMW4

B = g

(n-

=RAJZZEMﬂ LYY e - LYY S sy
7 J k l

We will refer to 35, 55, B(Y?Y?), =2 32, 50, 3o B(Y2Y;Yk), and 15 37,57, 37, 30 E(YiY; YY)

as Term A, Term B, and Term C, respectively, and examine each term in turn.

2.2.1 TERM A

There are two possible cases to consider for Term A: either ¢ = j or i # j. There are n ways that
i=j and (nﬁ—;), ways that i # j. If i = j, then E(Y?Y?) = E(Y;*), and if i # j then

E(YZ2Y]2) = E(YZQ)E(YJQ) = 1 because Y; and Y; are independent. Note that E(Y;!) is the 4th

moment of ¥; and E(Y;?) is the 2nd moment of Y;. This gives us that



>3 B = [nE 05 + o]

- n[E(Y;*) +(n— 1)]

2.2.2 TERM B

In the middle term there are five cases: either 7,7, and k all have distinct values; the value of i = j
which is distinct from k; the value of ¢ = k which is distinct from j; the value of k = j which is
distinct from 4; or the value of i = j = k.

There are n(n — 1)(n — 2) ways to get three distinct values for 4,5, and k. The contribution to

the sum from this case is

n(n —1)(n - 2)E(Y?)E(Y;)E(Yy) = n(n — 1)(n — 2)(1)(0)(0)

=0.

There are n(n — 1) ways for i to equal j but be distinct from k. In this case the contribution to
the sum is

n(n — VE(Y)E(Y;) = n(n — DEY)(0)

7

=0.

Similarly, if ¢ is equal to k& but distinct from j, there is no contribution to the sum.

There are n(n — 1) ways for k to equal j but be distinct from . In this case the contribution to



the sum is

n(n — DE(Y2)E(Y?) = n(n — 1)(1)(1)

=n(n—1).

Finally, there are n ways for all 3 values to be equal, and in this case the contribution to the
sum is nE(Y).

Since only the terms from the last two cases are nonzero, we have that

_% SN BV = —%[nE(Yf) +n(n—1)]
itk

= —2[B(Y;") + (n - 1)].

2.2.3 TERM C

For the last term in the equation for E[(S%)?], we will again consider 5 cases in terms of
equivalence classes: either 4, j, k, and [ all fall into the same equivalence class; they all fall into
distinct equivalence classes; there are 3 equivalence classes of order 2, 1, and 1; there are 2
equivalence classes of order 2 and 2; or there are 2 equivalence classes of order 3 and 1. For any
case that contains an equivalence class of order 1, the independence of the random variables can
be used to split £(Y;Y;Y;Y]) into a product of expected values containing a factor of E(Y;),
E(Y;), E(Y)), or E(Y}). Since each of these expected values is 0, there is no contribution to the
sum from these cases.

There are two nonzero cases for Term C: either i, j, k, and [ all fall into the same equivalence
class or there are 2 equivalence classes of order 2 and 2. There are n ways for i = j =k =1 to
hold. In this case, E(Y;Y;Y:Y;) = E(Y;?), so the contribution to the sum from this case is nE(Y;*).
For the case of 2 equivalence classes both of order 2, E(Y;Y;Y,Y]) = E(Yf)E(Y]Q) = 1. There are
3n(n — 1) ways for this case to occur, so the contribution to the sum from this case is 3n(n — 1).

Putting the two nonzero cases together, we have that



% SN Y EWivY) = = B + 3n(n — 1)]
PGkl

n2

= % [EYH) +3(n—1)].

2.2.4 FINAL DERIVATION

Combining the results from section 2.2.1, 2.2.2, and 2.2.3, we have that

BISEP) = gy {1 [BOR) 4 (0= 1] = 2B + (0= D]+ 2B + 300 - D]}

(n—1)

Using some algebra to simplify, we have

PSR - ! = [(n P i) B + <n oy i) (n— 1)]

- n(nl—l)2 [(n* —2n+ D)E(Y;") + (n* = 2n + 3)(n — 1)]
= n(nl_l)z [(n—1)2E(Y) + (n? —2n+3)(n — 1)]

1 n® —2n+3
= B+ T

Substituting into Equation 2.1, gives us

2
2y _ gy, " —2n+3
:lE (Xi—,ux> N 3—n
n ox n(n—1)




Recall that S2 = J%Sf(, thus giving us that V(S2) = V(J%Sf() = J%V(S)%). This implies
X X X

V(S82) = otV (S52). So we have

V(S3) = oxV(SY)

+ 3_"} (2.2)

n(n—1)

Since this formula involves moments of X, only, we will henceforth drop the subscripts and

refer only to the moments of X.
2.3 DERIVING V(S?) FOR SOME COMMON DISTRIBUTIONS

Using the formula to calculate the value of V(5?) for any distribution whose variance and kurtosis
are known is straightforward. We have derived these formulas for the normal, Bernoulli,

exponential, and Poisson distributions.

2.3.1 NORMAL

Suppose that a random sample is collected from N (u,0?). The variance of the distribution is o

and the kurtosis is equal to 3 regardless of the values of 1 and o2. Substituting into Equation 2.2,

we have

2y _ 41, 3—n
V(S*) =0 B 3+n(n—1)
4[3n—=1)4+3—n
=0
| n(n-—1)
4[3n—3+3—n
=0 _—
| n(n-—1)
4] 2n
— ¢ [n(n—1)
B 204
S on—1

As stated previously, the distribution of S? under normality is a known result. The ratio

(7170712)52 follows a chi-square distribution with (n — 1) degrees of freedom. Thus



o2

v [(nq)sz} = 2(n — 1) which implies

(”;41)21/(52) =2(n—1)
04
V(§*)=2(n-1)- CEE
9 204
V(s = .

This is the same result given by our derived formula for V/(S?).
2.3.2 BERNOULLI

For a random sample X7, Xo, ..., X, of Bernoulli random variables with success probability p, the

1-3

variance is pg and the kurtosis is qu where ¢ = 1 — p. Substituting into Equation 2.2 gives

V(5%) = (pg)?

1 1—3pq+ 3—n
ln pg n(n —1)
[1—3 3 -

pq+ n
| npg n(n —1)
[(1—3pg)(n—1)+ (3 — n)pq}
i npq(n — 1)
5 [n—1—3npg + 3pq + 3pqg — npq
= (pg)

I npq(n — 1)
n — 1 —4npq + 6pq
n(n —1)
2(6 —4

_ P (pg)*( n)

n n(n —1)

= (pq)*

= (pq)*

=Drq



2.3.3 EXPONENTIAL

If a random sample X1, X, .., X,, is taken from Exp(f), then the variance is 4% and the kurtosis

is equal to 9. Substituting into Equation 2.2 gives us

V(s?*) =p!

2.3.4 POISSON

A random sample of size n with X; ~ Poisson(\) will have variance A and kurtosis

Substituting into Equation 2.2 yields

V(%) =

)\2

)\2

— )2

)\2

|

A

n

il

B4

54

64

]
_%n—D+3—n]

n(n — 1)
|

[9n —9+4+3—n
n(n —1)

[ 8n —6
1)

143X
N -

1+ 3\ 3—n

1
|n

[(1+3N)(n—1)+ (3—=n)A

|

A n(n —1)

-n—

An(n —1) }
14+3n—3XA+3X—n

-n—

| An(n—1)
n—1+2An
n(n —1)

1

n

|

An(n —1)
1+ 2)\71

|
|

22
(n—1)

2?2

n—1



CHAPTER 3

ESTIMATION

3.1 MAXIMUM LIKELTHOOD ESTIMATION

In practice, the true values of the parameters of the underlying distribution will be unknown
which renders our equation for V(S?) impractical. Instead, we will need a method of estimating
the value of V(S2) from a collected sample. In practice the invariance property of maximum

likelihood estimators can be used to find the MLE of V(S5?) [1].

Lemma 3.1.1 (Invariance Property of MLEs). Ifé 1s the maximum likelihood estimator of 6 and

t(0) is any function of 0, then the mazimum likelihood estimator of t(0) is given by t(6).

We have used Lemma 3.1.1 to derive the MLEs for V(S?) under the assumption of sampling
from the normal, Bernoulli, exponential, and Poisson distributions.

3.1.1 NORMAL

Recall that for a random sample of size n from N(u,o?),

204
n—1

V(S?) =

Y (Xi—X)?

Since the MLE for o2 is known to be the biased estimator of variance, , we have that

the MLE of V(S?) is given by

Equivalently, we can write that

10



3.1.2 BERNOULLI

For a random sample of size n from Bernoulli(p),

1-p) p*(1—p)*(6 — 4n)

_
V(s?) = n n(n—1)

Using the fact that the MLE of p is the sample proportion, p , we have

V(SQ) — ﬁ(l _ﬁ) + ]52(1 _ﬁ)2(6 — 4”)

n n(n —1)

3.1.3 EXPONENTIAL

If our random sample of size n is from Exp(/3), we have

8n — 6
2\ _ pd
V=5 [n(n—l)] '
Substituting the MLE of 3, X, gives us
~ - 8n — 6
2y _ w4
V(s =X [n(n—l)} .

3.1.4 POISSON

If our random sample of size n comes from Poisson(\), then

A 2N
V(s?) == :
(5% n + n—1
Substituting in the MLE, X, gives
(s =Xy 2K
T n n-—1

11



3.2 DISTRIBUTION OF THE MLES

The asymptotic distribution of the MLEs is worth noting. Let 8 be the MLE of 6 and let t(0) be
a differentiable function of . For sufficiently large n,

A~

t(0) — t(0)
] [ g

converges to a standard normal distribution under some conditions of regularity [2]. So for

Z:

sufficiently large n, t(é) is approximately normal with mean ¢(6) and variance

] ol 2]

In our case, we will take 6 to be the population parameter of the underlying distribution and
t(6) to be the formula for V(S?). Also, f(X|6) will be the density function of the underlying
distribution. A similar result holds utilizing the probability mass function for discrete
distributions. We will calculate Z for the Bernoulli, exponential, and Poisson distributions, first,

then look at the normal distribution last.

12



3.2.1 BERNOULLI

Assuming we take a random sample of size n from Bernoulli(p),

Rt s

iz Cpe 6p2 + 4p%)(6 — 4n) 1 >

- i :1_712]3 (1_37;(1 ;pii 6 — 4n ]]L

{:1n2p 2 (1—27;)(7(11__1) 6— 4n) ]}2
L n(n —1)

- {(1 - 29) [i + 2p<1n—(n>_<61)— 4n)] }

— (1-2p)’ [; N 2P<17;(5>_<61)— 4n)r

Furthermore, the pmf is given by f(z|p) = p*(1 — p)'~* so that

Inf(z|p) = Inp® + In(1 — p)l””

=zlnp + (1 — z)In(1 — p).

The first partial derivative with respect to p is

onf(zlp) = 1-=z
Op p 1-p

leaving the second partial derivative with respect to p to be

821nf(x]p)__£_ 1—x
o p? (1-p*

13



Negating and taking the expected value gives us

op? p? (1—p)?
P I—p
==+
p?  (1-p)?
1 1
p 1-p
I1—-p+p
p(1—p)
1
p(1—p)

When substituted into (3.1) we have that

p(1=p) | P*(1=H)*(6= 4%)}_[(1 p) 4 P2(A=p)*(6= 4n)]

n n(n—1) n n(n—1)

W—?p) 3+ 2]} [

and after simplification we find that

s

p(1=p) | P*(1—p)2(6—4n) p(1—p) | p*>(1—p)?(6—4n)
w T n(n—1) } - [ + n(n—1) ]

s

1 2p)[1+ 2] | o2

follows an approximate standard normal distribution for sufficiently large n.

14



3.2.2 EXPONENTIAL

2 2
Under the assumption of a random sample from Exp(/3), [ag—(gﬂ = {4B3 [ng(fl:?)} } which gives

2 2 z
s [240]° = 1698 [ 325" The pat for Bxp(5) i a13) = 3. So then,

Inf(z|B) = In <;eé>

1 z
=In( =)+ Ine?
(ﬁ)

= —lnﬁ—xﬂ_l

Olnf(z|B) _ -1 -2
B B
0% I3 _ _

I:afﬁ(;‘ ) — 372 _ 22878,

Negating and taking the expected value on both sides yields

82lnf(X|,8) _ -2 -3
1) [_852] =042 E(X)
=572 4+2873(8)
1 2

g

So for an Exponential(/3) distribution,




follows an approximate standard normal distribution when n is sufficiently large.
3.2.3 POISSON

Assuming our sample is composed of iid random variables that follow Poisson(\),

ouo)* _fo [x, 2\’
00 S lod|n n-1
_r, 4 2
ln n—-1]"
AT A

The mass function for a Poisson distribution is given by f(z|\) = 2;

, SO

xT

A —-A
Inf(z|A) = lnae

=Ilne * +1n <)\>
z!

= —A+In\* — Inz!
= —A+ zln) — Inz!
Olnf(x|\) x
20 ol 17 Ik
ox 3
O*Inf(z|A) oz
ON? Y

Negating and taking the expected value on both sides yields

e

16



The Z value is then given by

r 2(2)° A 222
_n n71_|:ﬁ+ﬁ]
2
Al 4\
\/E[%""ﬁ]
r 2(2)° 222
Fr2 e )

where Z follows an approximate standard normal distribution for n sufficiently large.
3.2.4 NORMAL

Because the normal distribution has two parameters, the asymptotic distribution of the MLE will
be an extension of the property described in Section 3.2 to the multiparameter case [3]. Under the

assumption of normality, € is the vector

and although the formula for V(S?) under normality is not dependent on y, this parameter must
be considered in the calculation of Z. To standardize the MLE V/(52) we must know the
(asymptotic) mean and variance. We know V(52) is a consistent estimator, so the asymptotic

mean is the true value of V(S?). The asymptotic variance in the multivariate case is given by the

17



T -1
quadratic form % [%—(5)] E [— 82111];;)(‘6)} [8g(g )] . The vector in this expression is

2] 4 (33)
00 _&(%)
_0
"~ | a2
_n—l

and the matrix F [—%} will be a 2x2 symmetric Fisher information. For the normal

distribution,

Inf(xl0) = nf (], 02)

1 _ 2
= —511'10'2 — ln\/ 2 — (:1:20-51)

and the first partial derivatives are given by

onf(alp0?) _ 1

S = e (3.2)
Olnf(z|p, o2 1 x — p)?

The partial derivative of (3.2) with respect to u

Pnf(alp,o?) 1

O I
and the partial derivative of (3.3) with respect to o2

Pnf(zlp,o®) 1 (z—p)?
8(0-2)2 - 2(0-2)2 (0-2)3

form the diagonal elements of the matrix [%} . The off-diagonal elements are equal and are

given by

18



O’Inf(z|p,0?) _ PInf(alp,0?)  (z—p)

D020 Opdo? (022

We must negate this matrix and take its expected value to arrive at the Fisher information. Since

E(X —p) =0 and E[(X — p)?] = 02, we have

1 (X—p)
5 [_621nf(X|9)] _g| NCia
00 (X—p)  (X—p)? 1

(0-2)2 (0-2)3 - 2(0-2)2

_0?14_23;4
0 o

and the inverse of this matrix is easily shown to be

E[_821nf(X|9)]_1_ a0
90 0 20

Note that none of the elements of the vectors or matrices contain u. This implies that, as is

expected, the asymptotic variance will not depend on p. In fact,

1 [81&(6)]TE [_821nf(gc]0)]1 [(‘%(9)] 1 {0 402] o2 0 0
n| 00 00 a0 | n n—1 0 204 %
1 32°
n (n—1)2
_ 3208
" n(n—1)2
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so that in our final derivation,

does not depend on u.

sufficiently large.

n— n n—1
Z =
3208
n(n—1)2
2 X;—X)? 2
n_l{[n =i _04}
- ot 2

Again, Z follows an approximate standard normal distribution for n
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CHAPTER 4
SIMULATION
Our goal with this simulation was to see how closely simulated results lined up with our

theoretical findings as well as examine how varying values of the sample size and parameters from

the underlying distribution affect V' (S5?).
4.1 PROCEDURE

For each of the common distributions considered, the following procedure was followed:

1. Simulate 1,000 samples of size 100 each from the distribution with given values of

population parameters.

2. Using our derived formula, calculate the true value of V(S?) with given parameters of the

underlying distribution.

3. Calculate the 1,000 MLEs of the population parameters and use these MLEs to calculate

the MLEs for V(S2).
4. Create a histogram of the MLEs of V (S?).
5. Repeat steps 1-4 two more times changing the population parameter values each time.

Once this process is completed with three different population parameter values and samples of
size 100, repeat the entire process using samples of size 1,000 and then 10,000. Use the same three
values of the population parameters for each value of the sample size. In total, each distribution

should have 9 sets of 1,000 samples each.
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4.2 NORMAL

For the normal distribution, we used the values ¢ = 1,10, 100 and held g = 0 as the mean did not
affect V(S2). Table 1 gives the true values of V(S?) produced when the formula derived in

Chapter 2 is applied to the listed values of n and o.

Normal oc=1 oc=10 o =100

n=100 0.020202 | 202.02 | 2.0202e+06

n=1000 0.002002 20.02 200200

n=10000 || 0.00020002 | 2.0002 20002

Table 1: Selected Computations - Normal
True values of V(S?) with varying sample sizes and values of 0. Mean parameter, j, assumed to
be 0.

Notice that as you move across the rows of the table from left to right, the value of V(52)
increases by a factor of 10* which is expected since the value of ¢ increases by a factor of 10 and
the formula for V' (52) contains a factor of o%. Similarly, moving down the rows of the table, the
value of V(S?) decreases by a factor of 10, approximately, as n increases by a factor of 10. This
comes from the division by n — 1 in the formula.

The histograms in Figure 1 correspond to the values of V(%) in the same relative locations in
Table 1. That is, the top leftmost histogram represents the distribution of the MLEs from
samples of size 100 taken from N(0,1) and the bottom rightmost histogram represents the
distribution of the MLEs from samples of size 10,000 taken from N (0,100,000). The histograms
corresponding to samples of size 100 are centered around the true value of V' (.5?) but are highly
right skewed. Increasing the sample size to 1,000 significantly reduces the skewness apparent in
the histograms, but there is still an obvious right skew. At sample sizes of 10,000 the histograms

very nearly resemble a normal distribution.

22



Sigma =1 and n =100 Sigma =10 and n = 100 Sigma = 100 and n = 100

3
z z 3 z 5
(%} (%} o (%}
5 g o 5 <
o g a} a}
o o
o 8 g
I T T S I T T T 1 8 I T T
001 002 003 004 100 200 300 400 500 1e+06 2e+06 3e+06 4e+06
MLE MLE MLE
Sigma = 1 and n = 1000 Sigma = 10 and n = 1000 Sigma = 100 and n = 1000
S 8
> > ° 2 @
2 3 2 g 2 2
o O s - S -
a -~ a o a o
8 g
o = )
I T T T T o I T T T =} I T T T T
0.0016  0.0020  0.0024 16 18 20 22 24 26 © 160000 200000 240000
MLE MLE MLE
Sigma =1 and n = 10000 Sigma = 10 and n = 10000 Sigma = 100 and n = 10000
©
2 o 2z o z S
n S (2] a )
c S c c <
) S ) )
[a] ) [a] N [a]
o
o
o o +
I T T T 1 I T T T 1 8 I T T T 1
0.00018 0.00020 0.00022 18 1.9 2.0 21 2.2 18000 19000 20000 21000 22000
MLE MLE MLE

Figure 1: Histogram of Estimators - Normal
Histograms of maximum likelihood estimators for V' (S2) given varying sample sizes and true values
of ¢ while holding p = 0.

4.3 BERNOULLI

When sampling from the Bernoulli distribution, parameter values were taken to be
p=0.1,0.3,0.7. Table 2 gives the true values of V(S?) for the chosen values of p and samples of
size 100, 1000, and 10000. It is worth noting that Bernoulli(p) and Bernoulli(1 — p) produce the
same value of V(S?). This can be seen in the columns of Table 2 corresponding to p = 0.3 and

p = 0.7. With sample sizes as small as n = 100, the value of V(S?) is already less than 0.001.
With sample sizes at n = 10000, the value of V' (5?) is within 107 of being equal to 0 meaning
the sampling standard deviation of S? is less than 0.001. This implies there will be little variation

in the observed values of S? for large values of n.
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Bernoulli | p=0.1 | p=03 | p=0.7
n=100 0.000578 | 0.000345 | 0.000345
n=1000 || 0.000058 | .000034 | 0.000034

n=10000 || 0.000006 | 0.000003 | 0.000003

Table 2: Selected Computations - Bernoulli
True values of V(S?) for given values of n and p.

Just as was the case for the normal distribution, the relative positions of the histograms in
Figure 2 match those of the true values of V(S?) in Table 2. Recall that in the histograms
corresponding to smaller sample sizes for the normal distribution, the distribution was right
skewed. For the Bernoulli distribution, however, the distributions appear to be left skewed. Even
sample sizes as large as n = 10000 do not appear to be large enough to overcome this skewness.
As mentioned earlier, the true values of V' (S?) are equal for the histograms in columns 2 and 3 for
each row. The histograms for p = 0.3 and p = 0.7 while do not fully resemble a normal

distribution when n = 100, but the shapes do resemble each other.

24



p=0.1and n =100

p=0.3and n =100

p=0.7 and n = 100

o o
S o
o ]
2 g 2 2
a [a o -
© I T 1 T 1 R T T T T 1 R T T T T 1
2e-04 4e-04 6e-04 0e+00 2e-04 4e-04 6e-04 0e+00 2e-04 4e-04 6e-04
MLE MLE MLE
p=0.1andn=1000 p =0.3and n =1000 p =0.7 and n = 1000
2 8 2 3 z2 3
o 8 o ¥ @
o o fs ) = )
[ o [ © [ ©
a - a a
o o
o ? =]
[ T 1 8 I T T 1 g 1 T T T 1
5.0e-05 5.5e-05 6.0e-05 2.5e-05 3.5e-05 4.5e-05 2.0e-05 3.0e-05 4.0e-05
MLE MLE MLE
p =0.1 and n = 10000 p =0.3 and n = 10000 p =0.7 and n = 10000
8
2 8 2 8 z g
7] + 7] (=} 7] S
fud ) fud o fud S
o ™ o Q o
a a B a
o
? o o
& T T T T 1 I T T T T 1 I T T T T 1
5.5e-06 5.7e-06 5.9e-06 2.8e-06 3.2e-06 3.6e-06 2.8e-06 3.2e-06 3.6e-06
MLE MLE MLE

Figure 2: Histogram of Estimators - Bernoulli

Histograms of maximum likelihood estimators for V' (S2) given varying sample sizes and true val-
ues of p. (Note: The histograms are labeled as binomial since each of the samples drawn from
Bernoulli(p) makes up a binomial sample with n trials.)

4.4 EXPONENTIAL

Samples for the exponential were taken from distributions with mean values 5 = 1,10, 100. Using
our derived formula, V' (S?) was calculated for these distributions. These values can be found in
Table 3. Moving across the rows of the table, V' (5?) increases by a factor of 10* as 3 increases by
a factor of 10. As n increases by a factor of 10 down the columns of the table, the value of V' (5?)
decreases by approximately the same factor.

Because of the exponential distribution’s applications in modelling the time before an event

occurs, it is possible to have large values of the mean. The column corresponding to § = 100
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Exponential g=1 8=10| g =100
n=100 0.080202 | 802.02 | 8020200
n=1000 0.008002 | 80.02 | 800200

n=10000 0.0008 | 8.0002 | 80002

Table 3: Selected Computations - Exponential

True values of V(S?) for samples of size n taken from Exponential(f).

shows that even with large values of n, V(52) is still quite large. When p is large, different

samples will have widely varying sample variances.

The histograms in Figure 3 correspond to the true values of V(S?) in the same relative position
in Table 3. The histograms of the MLEs when n = 100 are highly right skewed. As is expected,

the distributions become less skewed as n increases. At n = 10000, the histograms appear to be

approximately normal.
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Figure 3: Histogram of Estimators - Exponential
Histograms of maximum likelihood estimators for V' (S?) given varying sample sizes and true values

of (.
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4.5 POISSON

The three chosen parameter values for the Poisson distribution were A = 10,30, 100. The true
values of V(S?) are given in Table 4. As X increases, V(S?) appears to increase by approximately
the square of the same factor. For example, when A increases by a factor of 3 from A = 10 to

A = 30, V(S?) increases by approximately a factor of 9. On the other hand, just as we have seen
with each of the other distributions, the value of V' (S?) decreases by approximately the same
factor by which the sample size increases. It is expected that increasing the sample size will

decrease V' (S?) because S? should approach the population variance as n gets larger.

Poisson A=10 A=30 | A=100
n=100 2.1202 18.4818 | 203.02
n=1000 0.2102 1.8318 20.12

n=10000 || 0.021002 | 0.183018 | 2.0102

Table 4: Selected Computations - Poisson
True values of V(S?) for given sample sizes and values of .

The histograms in Figure 4 correspond to the values of V(5?) in the same relative positions in
Table 4. Of all the histograms produced in our simulation, those for the Poisson distributions
appear to be the least skewed. Interestingly, the histograms from samples sizes of n = 10000 are
very close to a normal curve, but each histogram has two or three observations that fall into one
of the tails giving it a slight skew. Each histogram does appear to be centered at the true value of

V(S?) regardless of parameter values or sample size.
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Figure 4: Histogram of Estimators - Poisson
Histograms of maximum likelihood estimators of for V(S?) given varying sample sizes and true

values of .
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CHAPTER 5

CONCLUSION

In this work it is shown that the variance of the sample variance can be calculated without the
assumption of sampling from the normal distribution. This value, V' (S?), is dependent only on
the sample size and the variance and kurtosis of the distribution from which the samples are
drawn. When maximum likelihood estimators of the parameters of the underlying distribution
can be derived, the invariance property of MLEs can be used to come up with MLEs for V(S52).
The asymptotic distributions of these MLEs are discussed as well.

Simulation from the normal, Bernoulli, exponential, and Poisson distributions was used to show
that the MLEs behaved in the way we expected. Each of the histograms shown in Figures 1, 2, 3,
and 4 is centered around the true value of V(S?) recorded in Table 1, 2, 3, or 4. The value of n
has a significant affect on the value of V(S2). It is well known that as n increases, the variance of
a sample approaches the population variance. Intuitively, this would lead V(5?) to decrease as

the sample size gets large.
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the Office of Research Integrity for review and a determination.

I appreciate your willingness to submit the abstract for determination. Please feel free to
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APPENDIX B
TABLE OF MOMENTS

B0 = | Bl -] =0 | B|(5)'] | B[ (52)]
Normal 7 o? 0 3
Bernoulli P pq % 1;1310(1
Exponential 15} o 2 9
Poisson A A % @

Table B.1: Moments of Common Distributions
Mean, variance, and 3rd and 4th standardized moments for common distributions. More informa-

tion regarding the moments of these and other distributions can be found in [4].
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