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ABSTRACT

In this thesis, we examine properties of the variance of the sample variance, which we will denote

V (S2). We derive a formula for this variance and show that it only depends on the sample size,

variance, and kurtosis of the underlying distribution. We also derive the maximum likelihood

estimators for this parameter, V̂ (S2), under the normal, exponential, Bernoulli, and Poisson

distributions and end the thesis with simulations demonstrating the distributions of these

estimators.

viii



CHAPTER 1

INTRODUCTION

In statistics, the sampling distribution of the sample variance, S2, is known under the assumption

of sampling from a normal distribution. While there are many instances in which normality of the

underlying distribution is a reasonable assumption, this is not always the case. In this thesis we

examine the variance of the sampling distribution of S2 when the sample is not necessarily drawn

from a normal distribution.

The goal of this thesis is to provide a formula for V (S2) in terms of the moments of the

underlying distribution. The derivation of this formula for a general distribution is shown in

Chapter 2 and then the formula is used to find expressions for V (S2) under the assumptions of

normal, Bernoulli, exponential, and Poisson distributions. Although V (S2) for the normal

distribution is a known result, we have included the derivation to show we arrive at the same

conclusion.

In practice, population parameters may be unknown and collecting all samples of size n is not

likely to be feasible. In these cases, V (S2) cannot be observed and calculating a theoretical value

of V (S2) using the formula is not possible. These limitations necessitate a method of estimating

V (S2) based on sample data. In Chapter 3 we derive maximum likelihood estimators for V (S2)

and then discuss the asymptotic distributions of these MLEs.

To end, we use simulated samples from the normal, Bernoulli, exponential, and Poisson

distributions to demonstrate our results. Samples of varying sizes and population parameters are

used to determine how changes in each affect both the value of V (S2) and the distribution of the

estimators.

1



CHAPTER 2

VARIANCE FORMULA

2.1 STATEMENT OF FORMULA FOR V (S2)

In general, collecting all samples of size n from a population to compute V (S2) is not feasible. It

is useful to have a formula for V (S2) in terms of moments that are more easily observed or

calculated. It can be shown that V (S2) is dependent on the sample size, the 2nd central moment,

and the 4th standardized moment (known as the variance and kurtosis, respectively) of the

underlying distribution. For most common distributions, these moments can be easily derived.

Theorem 2.1.1. If X1, X2, ..., Xn is a random sample from a distribution with mean µX and

variance σ2
X, then the variance of the sampling distribution of S2, denoted V (S2), is given by

V (S2
X) = σ4

X

{
1

n
E

[(
X − µX
σX

)4
]

+
3− n

n(n− 1)

}
.

2.2 PROOF

Assume a random sample X1, X2, ..., Xn from a distribution with mean µX and variance σ2
X . To

simplify our calculations, we will work with the standardized random variables and note how the

linear transformation affects the variance. We begin by laying some groundwork concerning the

standardized random variables.

Let Yi be the standardization of Xi given by Yi = Xi−µX
σX

(or alternatively, Yi = 1
σX
Xi − µX

σX
). It

will be useful to know the moments of Yi. Since the Yis are identically distributed, the kth

moments of all Yis are equivalent. The first moment, E(Yi), is 0 since Yi is a standardization of

Xi. Similarly, since the variance of a standardization is 1 and V (Yi) = E(Y 2
i )− [E(Yi)]

2, we have

that E(Y 2
i ) = 1.

It can be shown that if Yi = aXi + b for i = 1, 2, ..., n then S2
Y = a2 · S2

X , so it is clear that

S2
Y = 1

σ2
X
S2
X . Furthermore, since sample variance is an unbiased estimator of population variance,

we have that E(S2
Y ) = 1

σ2
X
· σ2

X = 1. This can also be seen directly since the sample variance, S2
Y ,

2



is an unbiased estimator of population variance, and the variance of a standardized random

variable is always 1. Now, V (S2
Y ) = E[(S2

Y )2]− [E(S2
Y )]2. Since E(S2

Y ) = 1, we have that

V (S2
Y ) = E[(S2

Y )2]− 1. (2.1)

Of particular interest is the first term on the right-hand side. Using the computational formula

for sample variance, we have that

E[(S2
Y )2] = E

([∑n
i=1 Y

2
i −

(
∑n
i=1 Yi)

2

n

n− 1

]2
)
.

After some algebraic manipulation and using the properties of linear operators, we have

E[(S2
Y )2] =

1

(n− 1)2
E

[( n∑
i=1

Y 2
i −

(
∑n

i=1 Yi)
2

n

)2
]

=
1

(n− 1)2
E

[( n∑
i=1

Y 2
i

)2

− 2

n

( n∑
i=1

Y 2
i

)( n∑
i=1

Yi

)2

+
1

n2

( n∑
i=1

Yi

)4
]

=
1

(n− 1)2
E

∑
i

∑
j

(
Y 2
i Y

2
j

)
− 2

n

∑
i

∑
j

∑
k

(
Y 2
i YjYk

)
+

1

n2

∑
i

∑
j

∑
k

∑
l

(YiYjYkYl)


=

1

(n− 1)2

∑
i

∑
j

E
(
Y 2
i Y

2
j

)
− 2

n

∑
i

∑
j

∑
k

E
(
Y 2
i YjYk

)
+

1

n2

∑
i

∑
j

∑
k

∑
l

E (YiYjYkYl)

 .

We will refer to
∑

i

∑
j E(Y 2

i Y
2
j ), − 2

n

∑
i

∑
j

∑
k E(Y 2

i YjYk), and 1
n2

∑
i

∑
j

∑
k

∑
lE(YiYjYkYl)

as Term A, Term B, and Term C, respectively, and examine each term in turn.

2.2.1 TERM A

There are two possible cases to consider for Term A: either i = j or i 6= j. There are n ways that

i = j and n!
(n−2)! ways that i 6= j. If i = j, then E(Y 2

i Y
2
j ) = E(Y 4

i ), and if i 6= j then

E(Y 2
i Y

2
j ) = E(Y 2

i )E(Y 2
j ) = 1 because Yi and Yj are independent. Note that E(Y 4

i ) is the 4th

moment of Yi and E(Y 2
i ) is the 2nd moment of Yi. This gives us that

3



∑
i

∑
j

E(Y 2
i Y

2
j ) =

[
nE(Y 4

i ) +
n!

(n− 2)!

]
= n

[
E(Y 4

i ) + (n− 1)
]
.

2.2.2 TERM B

In the middle term there are five cases: either i,j, and k all have distinct values; the value of i = j

which is distinct from k; the value of i = k which is distinct from j; the value of k = j which is

distinct from i; or the value of i = j = k.

There are n(n− 1)(n− 2) ways to get three distinct values for i,j, and k. The contribution to

the sum from this case is

n(n− 1)(n− 2)E(Y 2
i )E(Yj)E(Yk) = n(n− 1)(n− 2)(1)(0)(0)

= 0.

There are n(n− 1) ways for i to equal j but be distinct from k. In this case the contribution to

the sum is

n(n− 1)E(Y 3
i )E(Yk) = n(n− 1)E(Y 3

i )(0)

= 0.

Similarly, if i is equal to k but distinct from j, there is no contribution to the sum.

There are n(n− 1) ways for k to equal j but be distinct from i. In this case the contribution to

4



the sum is

n(n− 1)E(Y 2
i )E(Y 2

j ) = n(n− 1)(1)(1)

= n(n− 1).

Finally, there are n ways for all 3 values to be equal, and in this case the contribution to the

sum is nE(Y 4
i ).

Since only the terms from the last two cases are nonzero, we have that

− 2

n

∑
i

∑
j

∑
k

E(Y 2
i YjYk) = − 2

n
[nE(Y 4

i ) + n(n− 1)]

= −2[E(Y 4
i ) + (n− 1)].

2.2.3 TERM C

For the last term in the equation for E[(S2
Y )2], we will again consider 5 cases in terms of

equivalence classes: either i, j, k, and l all fall into the same equivalence class; they all fall into

distinct equivalence classes; there are 3 equivalence classes of order 2, 1, and 1; there are 2

equivalence classes of order 2 and 2; or there are 2 equivalence classes of order 3 and 1. For any

case that contains an equivalence class of order 1, the independence of the random variables can

be used to split E(YiYjYkYl) into a product of expected values containing a factor of E(Yi),

E(Yj), E(Yk), or E(Yl). Since each of these expected values is 0, there is no contribution to the

sum from these cases.

There are two nonzero cases for Term C: either i, j, k, and l all fall into the same equivalence

class or there are 2 equivalence classes of order 2 and 2. There are n ways for i = j = k = l to

hold. In this case, E(YiYjYkYl) = E(Y 4
i ), so the contribution to the sum from this case is nE(Y 4

i ).

For the case of 2 equivalence classes both of order 2, E(YiYjYkYl) = E(Y 2
i )E(Y 2

j ) = 1. There are

3n(n− 1) ways for this case to occur, so the contribution to the sum from this case is 3n(n− 1).

Putting the two nonzero cases together, we have that

5



1

n2

∑
i

∑
j

∑
k

∑
l

E(YiYjYkYl) =
1

n2

[
nE(Y 4

i ) + 3n(n− 1)
]

=
1

n

[
E(Y 4

i ) + 3(n− 1)
]
.

2.2.4 FINAL DERIVATION

Combining the results from section 2.2.1, 2.2.2, and 2.2.3, we have that

E[(S2
Y )2] =

1

(n− 1)2

{
n
[
E(Y 4

i ) + (n− 1)
]
− 2[E(Y 4

i ) + (n− 1)] +
1

n
[E(Y 4

i ) + 3(n− 1)]

}
.

Using some algebra to simplify, we have

E[(S2
Y )2] =

1

(n− 1)2

[(
n− 2 +

1

n

)
E(Y 4

i ) +

(
n− 2 +

3

n

)
(n− 1)

]
=

1

n(n− 1)2

[
(n2 − 2n+ 1)E(Y 4

i ) + (n2 − 2n+ 3)(n− 1)
]

=
1

n(n− 1)2

[
(n− 1)2E(Y 4

i ) + (n2 − 2n+ 3)(n− 1)
]

=
1

n
E(Y 4

i ) +
n2 − 2n+ 3

n(n− 1)
.

Substituting into Equation 2.1, gives us

V (S2
Y ) =

1

n
E(Y 4

i ) +
n2 − 2n+ 3

n(n− 1)
− 1.

=
1

n
E(Y 4

i ) +
3− n

n(n− 1)

=
1

n
E

[(
Xi − µX
σX

)4
]

+
3− n

n(n− 1)

6



Recall that S2
Y = 1

σ2
X
S2
X , thus giving us that V (S2

Y ) = V ( 1
σ2
X
S2
X) = 1

σ4
X
V (S2

X). This implies

V (S2
X) = σ4

XV (S2
Y ). So we have

V (S2
X) = σ4

XV (S2
Y )

= σ4
X

{
1

n
E

[(
Xi − µX
σX

)4
]

+
3− n

n(n− 1)

}
(2.2)

Since this formula involves moments of X, only, we will henceforth drop the subscripts and

refer only to the moments of X.

2.3 DERIVING V (S2) FOR SOME COMMON DISTRIBUTIONS

Using the formula to calculate the value of V (S2) for any distribution whose variance and kurtosis

are known is straightforward. We have derived these formulas for the normal, Bernoulli,

exponential, and Poisson distributions.

2.3.1 NORMAL

Suppose that a random sample is collected from N(µ, σ2). The variance of the distribution is σ2

and the kurtosis is equal to 3 regardless of the values of µ and σ2. Substituting into Equation 2.2,

we have

V (S2) = σ4

[
1

n
· 3 +

3− n
n(n− 1)

]
= σ4

[
3(n− 1) + 3− n

n(n− 1)

]
= σ4

[
3n− 3 + 3− n

n(n− 1)

]
= σ4

[
2n

n(n− 1)

]
=

2σ4

n− 1
.

As stated previously, the distribution of S2 under normality is a known result. The ratio

(n−1)S2

σ2 follows a chi-square distribution with (n− 1) degrees of freedom. Thus

7



V
[

(n−1)S2

σ2

]
= 2(n− 1) which implies

(n− 1)2

σ4
V (S2) = 2(n− 1)

V (S2) = 2(n− 1) · σ4

(n− 1)2

V (S2) =
2σ4

n− 1
.

This is the same result given by our derived formula for V (S2).

2.3.2 BERNOULLI

For a random sample X1, X2, ..., Xn of Bernoulli random variables with success probability p, the

variance is pq and the kurtosis is 1−3pq
pq where q = 1− p. Substituting into Equation 2.2 gives

V (S2) = (pq)2

[
1

n
· 1− 3pq

pq
+

3− n
n(n− 1)

]
= (pq)2

[
1− 3pq

npq
+

3− n
n(n− 1)

]
= (pq)2

[
(1− 3pq)(n− 1) + (3− n)pq

npq(n− 1)

]
= (pq)2

[
n− 1− 3npq + 3pq + 3pq − npq

npq(n− 1)

]
= pq

[
n− 1− 4npq + 6pq

n(n− 1)

]
=
pq

n
+

(pq)2(6− 4n)

n(n− 1)
.
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2.3.3 EXPONENTIAL

If a random sample X1, X2, .., Xn is taken from Exp(β), then the variance is β2 and the kurtosis

is equal to 9. Substituting into Equation 2.2 gives us

V (S2) = β4

[
1

n
· 9 +

3− n
n(n− 1)

]
= β4

[
9(n− 1) + 3− n

n(n− 1)

]
= β4

[
9n− 9 + 3− n

n(n− 1)

]
= β4

[
8n− 6

n(n− 1)

]
.

2.3.4 POISSON

A random sample of size n with Xi ∼ Poisson(λ) will have variance λ and kurtosis 1+3λ
λ .

Substituting into Equation 2.2 yields

V (S2) = λ2

[
1

n
· 1 + 3λ

λ
+

3− n
n(n− 1)

]
= λ2

[
(1 + 3λ)(n− 1) + (3− n)λ

λn(n− 1)

]
= λ2

[
n− 1 + 3λn− 3λ+ 3λ− λn

λn(n− 1)

]
= λ2

[
n− 1 + 2λn

λn(n− 1)

]
= λ

[
n− 1 + 2λn

n(n− 1)

]
= λ

[
1

n
+

2λ

(n− 1)

]
=
λ

n
+

2λ2

n− 1
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CHAPTER 3

ESTIMATION

3.1 MAXIMUM LIKELIHOOD ESTIMATION

In practice, the true values of the parameters of the underlying distribution will be unknown

which renders our equation for V (S2) impractical. Instead, we will need a method of estimating

the value of V (S2) from a collected sample. In practice the invariance property of maximum

likelihood estimators can be used to find the MLE of V (S2) [1].

Lemma 3.1.1 (Invariance Property of MLEs). If θ̂ is the maximum likelihood estimator of θ and

t(θ) is any function of θ, then the maximum likelihood estimator of t(θ) is given by t(θ̂).

We have used Lemma 3.1.1 to derive the MLEs for V (S2) under the assumption of sampling

from the normal, Bernoulli, exponential, and Poisson distributions.

3.1.1 NORMAL

Recall that for a random sample of size n from N(µ, σ2),

V (S2) =
2σ4

n− 1
.

Since the MLE for σ2 is known to be the biased estimator of variance,
∑

(Xi−X̄)2

n , we have that

the MLE of V (S2) is given by

V̂ (S2) =
2

n− 1
·
[∑

(Xi − X̄)2

n

]2

.

Equivalently, we can write that

V̂ (S2) =
2(n− 1)

n2

(
S2
)2
.
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3.1.2 BERNOULLI

For a random sample of size n from Bernoulli(p),

V (S2) =
p(1− p)

n
+
p2(1− p)2(6− 4n)

n(n− 1)
.

Using the fact that the MLE of p is the sample proportion, p̂ , we have

V̂ (S2) =
p̂(1− p̂)

n
+
p̂2(1− p̂)2(6− 4n)

n(n− 1)
.

3.1.3 EXPONENTIAL

If our random sample of size n is from Exp(β), we have

V (S2) = β4

[
8n− 6

n(n− 1)

]
.

Substituting the MLE of β, X̄, gives us

V̂ (S2) = X̄4

[
8n− 6

n(n− 1)

]
.

3.1.4 POISSON

If our random sample of size n comes from Poisson(λ), then

V (S2) =
λ

n
+

2λ2

n− 1
.

Substituting in the MLE, X̄, gives

V̂ (S2) =
X̄

n
+

2X̄2

n− 1
.

11



3.2 DISTRIBUTION OF THE MLES

The asymptotic distribution of the MLEs is worth noting. Let θ̂ be the MLE of θ and let t(θ) be

a differentiable function of θ. For sufficiently large n,

Z =
t(θ̂)− t(θ)√[

∂t(θ)
∂θ

]2
/
nE
[
−∂2lnf(X|θ)

∂θ2

] (3.1)

converges to a standard normal distribution under some conditions of regularity [2]. So for

sufficiently large n, t(θ̂) is approximately normal with mean t(θ) and variance

[
∂t(θ)

∂θ

]2/
nE

[
−∂

2lnf(X|θ)
∂θ2

]
.

In our case, we will take θ to be the population parameter of the underlying distribution and

t(θ) to be the formula for V (S2). Also, f(X|θ) will be the density function of the underlying

distribution. A similar result holds utilizing the probability mass function for discrete

distributions. We will calculate Z for the Bernoulli, exponential, and Poisson distributions, first,

then look at the normal distribution last.
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3.2.1 BERNOULLI

Assuming we take a random sample of size n from Bernoulli(p),

[
∂t(θ)

∂θ

]2

=

{
∂

∂p

[
p− p2

n
− (p2 − 2p3 + p4)(6− 4n)

n(n− 1)

]}2

=

{[
1− 2p

n
− (2p− 6p2 + 4p3)(6− 4n)

n(n− 1)

]}2

=

{[
1− 2p

n
− 2p(1− 3p+ 2p2)(6− 4n)

n(n− 1)

]}2

=

{[
1− 2p

n
− 2p(1− 2p)(1− p)(6− 4n)

n(n− 1)

]}2

=

{
(1− 2p)

[
1

n
+

2p(1− p)(6− 4n)

n(n− 1)

]}2

= (1− 2p)2

[
1

n
+

2p(1− p)(6− 4n)

n(n− 1)

]2

.

Furthermore, the pmf is given by f(x|p) = px(1− p)1−x so that

lnf(x|p) = lnpx + ln(1− p)1−x

= xlnp+ (1− x)ln(1− p).

The first partial derivative with respect to p is

∂lnf(x|p)
∂p

=
x

p
− 1− x

1− p

leaving the second partial derivative with respect to p to be

∂2lnf(x|p)
∂p2

= − x

p2
− 1− x

(1− p)2
.
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Negating and taking the expected value gives us

E

[
−∂

2lnf(X|p)
∂p2

]
=
E(X)

p2
+

1− E(X)

(1− p)2

=
p

p2
+

1− p
(1− p)2

=
1

p
+

1

1− p

=
1− p+ p

p(1− p)

=
1

p(1− p)
.

When substituted into (3.1) we have that

Z =

[
p̂(1−p̂)
n + p̂2(1−p̂)2(6−4n)

n(n−1)

]
−
[
p(1−p)
n + p2(1−p)2(6−4n)

n(n−1)

]
√{

(1− 2p)
[

1
n + 2p(1−p)(6−4n)

n(n−1)

]}2
/

n
p(1−p)

and after simplification we find that

Z =

[
p̂(1−p̂)
n + p̂2(1−p̂)2(6−4n)

n(n−1)

]
−
[
p(1−p)
n + p2(1−p)2(6−4n)

n(n−1)

]
∣∣∣(1− 2p)

[
1
n + 2p(1−p)(6−4n)

n(n−1)

]∣∣∣√p(1−p)
n

follows an approximate standard normal distribution for sufficiently large n.
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3.2.2 EXPONENTIAL

Under the assumption of a random sample from Exp(β),
[
∂t(θ)
∂θ

]2
=
{

4β3
[

8n−6
n(n−1)

]}2
which gives

us
[
∂t(θ)
∂θ

]2
= 16β6

[
8n−6
n(n−1)

]2
. The pdf for Exp(β) is f(x|β) = 1

β e
− x
β . So then,

lnf(x|β) = ln

(
1

β
e
− x
β

)
= ln

(
1

β

)
+ lne

x
β

= −lnβ − xβ−1

∂lnf(x|β)

∂β
= −β−1 + xβ−2

∂2lnf(x|β)

∂β2
= β−2 − 2xβ−3.

Negating and taking the expected value on both sides yields

E

[
−∂

2lnf(X|β)

∂β2

]
= −β−2 + 2β−3E(X)

= −β−2 + 2β−3(β)

= − 1

β2
+

2

β2

=
1

β2
.

So for an Exponential(β) distribution,

Z =

[
8n−6
n(n−1)

]
(X̄4 − β4)√

16β6
[

8n−6
n(n−1)

]2
/

n
β2

=
X̄4 − β4√

16β8

n

=

√
n
(
X̄4 − β4

)
4β4

15



follows an approximate standard normal distribution when n is sufficiently large.

3.2.3 POISSON

Assuming our sample is composed of iid random variables that follow Poisson(λ),

[
∂t(θ)

∂θ

]2

=

{
∂

∂λ

[
λ

n
+

2λ2

n− 1

]}2

=

[
1

n
+

4λ

n− 1

]2

.

The mass function for a Poisson distribution is given by f(x|λ) = λx

x! e
−λ, so

lnf(x|λ) = ln
λx

x!
e−λ

= lne−λ + ln

(
λx

x!

)
= −λ+ lnλx − lnx!

= −λ+ xlnλ− lnx!

∂lnf(x|λ)

∂λ
= −1 +

x

λ
∂2lnf(x|λ)

∂λ2
= − x

λ2
.

Negating and taking the expected value on both sides yields

E

[
−∂

2lnf(X|λ)

∂λ2

]
= E

[
X

λ2

]
=

1

λ2
E[X]

=
1

λ2
· λ

=
1

λ
.
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The Z value is then given by

Z =

x̄
n + 2(x̄)2

n−1 −
[
λ
n + 2λ2

n−1

]
√[

1
n + 4λ

n−1

]2
/

n
λ

=

x̄
n + 2(x̄)2

n−1 −
[
λ
n + 2λ2

n−1

]
√

λ
n

[
1
n + 4λ

n−1

]2

=

x̄
n + 2(x̄)2

n−1 −
[
λ
n + 2λ2

n−1

]
[

1
n + 4λ

n−1

]√
λ
n

where Z follows an approximate standard normal distribution for n sufficiently large.

3.2.4 NORMAL

Because the normal distribution has two parameters, the asymptotic distribution of the MLE will

be an extension of the property described in Section 3.2 to the multiparameter case [3]. Under the

assumption of normality, θ is the vector

θ =

 µ
σ2


and although the formula for V (S2) under normality is not dependent on µ, this parameter must

be considered in the calculation of Z. To standardize the MLE V̂ (S2) we must know the

(asymptotic) mean and variance. We know V̂ (S2) is a consistent estimator, so the asymptotic

mean is the true value of V (S2). The asymptotic variance in the multivariate case is given by the
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quadratic form 1
n

[
∂t(θ)
∂θ

]T
E
[
−∂2lnf(X|θ)

∂θ

]−1 [
∂t(θ)
∂θ

]
. The vector in this expression is

[
∂t(θ)

∂θ

]
=

 ∂
∂µ

(
2σ4

n−1

)
∂
∂σ2

(
2σ4

n−1

)


=

 0

4σ2

n−1


and the matrix E

[
−∂2lnf(X|θ)

∂θ

]
will be a 2x2 symmetric Fisher information. For the normal

distribution,

lnf(x|θ) = lnf(x|µ, σ2)

= −1

2
lnσ2 − ln

√
2π − (x− µ)2

2σ2

and the first partial derivatives are given by

∂lnf(x|µ, σ2)

∂µ
=

1

σ2
(x− µ) (3.2)

∂lnf(x|µ, σ2)

∂σ2
= − 1

2σ2
+

(x− µ)2

2(σ2)2
. (3.3)

The partial derivative of (3.2) with respect to µ

∂2lnf(x|µ, σ2)

∂µ2
= − 1

σ2

and the partial derivative of (3.3) with respect to σ2

∂2lnf(x|µ, σ2)

∂(σ2)2
=

1

2(σ2)2
− (x− µ)2

(σ2)3

form the diagonal elements of the matrix
[
∂2lnf(x|θ)

∂θ

]
. The off-diagonal elements are equal and are

given by
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∂2lnf(x|µ, σ2)

∂σ2∂µ
=
∂2lnf(x|µ, σ2)

∂µ∂σ2
= −(x− µ)

(σ2)2
.

We must negate this matrix and take its expected value to arrive at the Fisher information. Since

E(X − µ) = 0 and E[(X − µ)2] = σ2, we have

E

[
−∂

2lnf(X|θ)
∂θ

]
= E

 1
σ2

(X−µ)
(σ2)2

(X−µ)
(σ2)2

(X−µ)2

(σ2)3
− 1

2(σ2)2


=

 1
σ2 0

0 σ2

(σ2)3
− 1

2(σ2)2


=

 1
σ2 0

0 1
σ4 − 1

2σ4


=

 1
σ2 0

0 1
2σ4



and the inverse of this matrix is easily shown to be

E

[
−∂

2lnf(X|θ)
∂θ

]−1

=

σ2 0

0 2σ4

 .
Note that none of the elements of the vectors or matrices contain µ. This implies that, as is

expected, the asymptotic variance will not depend on µ. In fact,

1

n

[
∂t(θ)

∂θ

]T
E

[
−∂

2lnf(x|θ)
∂θ

]−1 [
∂t(θ)

∂θ

]
=

1

n

[
0 4σ2

n−1

]σ2 0

0 2σ4


 0

4σ2

n−1


=

1

n
· 32σ8

(n− 1)2

=
32σ8

n(n− 1)2
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so that in our final derivation,

Z =

2
n−1 ·

[∑
(Xi−X̄)2

n

]2
− 2σ4

n−1√
32σ8

n(n−1)2

=

2
n−1

{[∑
(Xi−X̄)2

n

]2
− σ4

}
4σ4

n−1

√
2
n

=

[∑
(Xi−X̄)2

n

]2
− σ4

2σ4
√

2
n

does not depend on µ. Again, Z follows an approximate standard normal distribution for n

sufficiently large.
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CHAPTER 4

SIMULATION

Our goal with this simulation was to see how closely simulated results lined up with our

theoretical findings as well as examine how varying values of the sample size and parameters from

the underlying distribution affect V (S2).

4.1 PROCEDURE

For each of the common distributions considered, the following procedure was followed:

1. Simulate 1,000 samples of size 100 each from the distribution with given values of

population parameters.

2. Using our derived formula, calculate the true value of V (S2) with given parameters of the

underlying distribution.

3. Calculate the 1,000 MLEs of the population parameters and use these MLEs to calculate

the MLEs for V (S2).

4. Create a histogram of the MLEs of V (S2).

5. Repeat steps 1-4 two more times changing the population parameter values each time.

Once this process is completed with three different population parameter values and samples of

size 100, repeat the entire process using samples of size 1,000 and then 10,000. Use the same three

values of the population parameters for each value of the sample size. In total, each distribution

should have 9 sets of 1,000 samples each.
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4.2 NORMAL

For the normal distribution, we used the values σ = 1, 10, 100 and held µ = 0 as the mean did not

affect V (S2). Table 1 gives the true values of V (S2) produced when the formula derived in

Chapter 2 is applied to the listed values of n and σ.

Normal σ = 1 σ = 10 σ = 100

n=100 0.020202 202.02 2.0202e+06

n=1000 0.002002 20.02 200200

n=10000 0.00020002 2.0002 20002

Table 1: Selected Computations - Normal
True values of V (S2) with varying sample sizes and values of σ. Mean parameter, µ, assumed to
be 0.

Notice that as you move across the rows of the table from left to right, the value of V (S2)

increases by a factor of 104 which is expected since the value of σ increases by a factor of 10 and

the formula for V (S2) contains a factor of σ4. Similarly, moving down the rows of the table, the

value of V (S2) decreases by a factor of 10, approximately, as n increases by a factor of 10. This

comes from the division by n− 1 in the formula.

The histograms in Figure 1 correspond to the values of V (S2) in the same relative locations in

Table 1. That is, the top leftmost histogram represents the distribution of the MLEs from

samples of size 100 taken from N(0, 1) and the bottom rightmost histogram represents the

distribution of the MLEs from samples of size 10,000 taken from N(0, 100, 000). The histograms

corresponding to samples of size 100 are centered around the true value of V (S2) but are highly

right skewed. Increasing the sample size to 1,000 significantly reduces the skewness apparent in

the histograms, but there is still an obvious right skew. At sample sizes of 10,000 the histograms

very nearly resemble a normal distribution.
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Figure 1: Histogram of Estimators - Normal
Histograms of maximum likelihood estimators for V (S2) given varying sample sizes and true values
of σ while holding µ = 0.

4.3 BERNOULLI

When sampling from the Bernoulli distribution, parameter values were taken to be

p = 0.1, 0.3, 0.7. Table 2 gives the true values of V (S2) for the chosen values of p and samples of

size 100, 1000, and 10000. It is worth noting that Bernoulli(p) and Bernoulli(1− p) produce the

same value of V (S2). This can be seen in the columns of Table 2 corresponding to p = 0.3 and

p = 0.7. With sample sizes as small as n = 100, the value of V (S2) is already less than 0.001.

With sample sizes at n = 10000, the value of V (S2) is within 10−6 of being equal to 0 meaning

the sampling standard deviation of S2 is less than 0.001. This implies there will be little variation

in the observed values of S2 for large values of n.
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Bernoulli p = 0.1 p = 0.3 p = 0.7

n=100 0.000578 0.000345 0.000345

n=1000 0.000058 .000034 0.000034

n=10000 0.000006 0.000003 0.000003

Table 2: Selected Computations - Bernoulli
True values of V (S2) for given values of n and p.

Just as was the case for the normal distribution, the relative positions of the histograms in

Figure 2 match those of the true values of V (S2) in Table 2. Recall that in the histograms

corresponding to smaller sample sizes for the normal distribution, the distribution was right

skewed. For the Bernoulli distribution, however, the distributions appear to be left skewed. Even

sample sizes as large as n = 10000 do not appear to be large enough to overcome this skewness.

As mentioned earlier, the true values of V (S2) are equal for the histograms in columns 2 and 3 for

each row. The histograms for p = 0.3 and p = 0.7 while do not fully resemble a normal

distribution when n = 100, but the shapes do resemble each other.
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Figure 2: Histogram of Estimators - Bernoulli
Histograms of maximum likelihood estimators for V (S2) given varying sample sizes and true val-
ues of p. (Note: The histograms are labeled as binomial since each of the samples drawn from
Bernoulli(p) makes up a binomial sample with n trials.)

4.4 EXPONENTIAL

Samples for the exponential were taken from distributions with mean values β = 1, 10, 100. Using

our derived formula, V (S2) was calculated for these distributions. These values can be found in

Table 3. Moving across the rows of the table, V (S2) increases by a factor of 104 as β increases by

a factor of 10. As n increases by a factor of 10 down the columns of the table, the value of V (S2)

decreases by approximately the same factor.

Because of the exponential distribution’s applications in modelling the time before an event

occurs, it is possible to have large values of the mean. The column corresponding to β = 100
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Exponential β = 1 β = 10 β = 100

n=100 0.080202 802.02 8020200

n=1000 0.008002 80.02 800200

n=10000 0.0008 8.0002 80002

Table 3: Selected Computations - Exponential
True values of V (S2) for samples of size n taken from Exponential(β).

shows that even with large values of n, V (S2) is still quite large. When µ is large, different

samples will have widely varying sample variances.

The histograms in Figure 3 correspond to the true values of V (S2) in the same relative position

in Table 3. The histograms of the MLEs when n = 100 are highly right skewed. As is expected,

the distributions become less skewed as n increases. At n = 10000, the histograms appear to be

approximately normal.
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Figure 3: Histogram of Estimators - Exponential
Histograms of maximum likelihood estimators for V (S2) given varying sample sizes and true values
of β.
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4.5 POISSON

The three chosen parameter values for the Poisson distribution were λ = 10, 30, 100. The true

values of V (S2) are given in Table 4. As λ increases, V (S2) appears to increase by approximately

the square of the same factor. For example, when λ increases by a factor of 3 from λ = 10 to

λ = 30, V (S2) increases by approximately a factor of 9. On the other hand, just as we have seen

with each of the other distributions, the value of V (S2) decreases by approximately the same

factor by which the sample size increases. It is expected that increasing the sample size will

decrease V (S2) because S2 should approach the population variance as n gets larger.

Poisson λ = 10 λ = 30 λ = 100

n=100 2.1202 18.4818 203.02

n=1000 0.2102 1.8318 20.12

n=10000 0.021002 0.183018 2.0102

Table 4: Selected Computations - Poisson
True values of V (S2) for given sample sizes and values of λ.

The histograms in Figure 4 correspond to the values of V (S2) in the same relative positions in

Table 4. Of all the histograms produced in our simulation, those for the Poisson distributions

appear to be the least skewed. Interestingly, the histograms from samples sizes of n = 10000 are

very close to a normal curve, but each histogram has two or three observations that fall into one

of the tails giving it a slight skew. Each histogram does appear to be centered at the true value of

V (S2) regardless of parameter values or sample size.
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Figure 4: Histogram of Estimators - Poisson
Histograms of maximum likelihood estimators of for V (S2) given varying sample sizes and true
values of λ.
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CHAPTER 5

CONCLUSION

In this work it is shown that the variance of the sample variance can be calculated without the

assumption of sampling from the normal distribution. This value, V (S2), is dependent only on

the sample size and the variance and kurtosis of the distribution from which the samples are

drawn. When maximum likelihood estimators of the parameters of the underlying distribution

can be derived, the invariance property of MLEs can be used to come up with MLEs for V (S2).

The asymptotic distributions of these MLEs are discussed as well.

Simulation from the normal, Bernoulli, exponential, and Poisson distributions was used to show

that the MLEs behaved in the way we expected. Each of the histograms shown in Figures 1, 2, 3,

and 4 is centered around the true value of V (S2) recorded in Table 1, 2, 3, or 4. The value of n

has a significant affect on the value of V (S2). It is well known that as n increases, the variance of

a sample approaches the population variance. Intuitively, this would lead V (S2) to decrease as

the sample size gets large.
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APPENDIX A

LETTER FROM INSTITUTIONAL RESEARCH BOARD

32



APPENDIX B

TABLE OF MOMENTS

E(X) = µ E
[
(X − µ)2

]
= σ2 E

[(
X−µ
σ

)3
]

E

[(
X−µ
σ

)4
]

Normal µ σ2 0 3

Bernoulli p pq 1−2p√
pq

1−3pq
pq

Exponential β β2 2 9

Poisson λ λ 1√
λ

1+3λ
λ

Table B.1: Moments of Common Distributions
Mean, variance, and 3rd and 4th standardized moments for common distributions. More informa-
tion regarding the moments of these and other distributions can be found in [4].
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