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ABSTRACT 

Oxidative stress plays a key role in metabolic syndrome which includes obesity and 

cardiometabolic diseases. It is implicated that oxygen-derived free radicals generated during the 

mitochondrial electron transport chain alter the function of specific biological components, thus 

activating obesogenic pathways such as glucose and lipid signaling. Research on this topic is of 

vital importance as obesity is a high-risk factor in the development and progression of severe, 

debilitating, life-threatening maladies such as cardiometabolic diseases, chronic inflammatory 

pathologies, and cancer. Furthermore, there is no universal effective therapy to combat the rising 

rates of obesity with over 1.9 billion (39%) adults classified as obese worldwide. Catalase is an 

antioxidant enzyme that helps to catabolize hydrogen peroxide and has been shown in vivo 

and/or in vitro to decrease oxidative stress in vascular cells, skeletal muscle tissue, and adipose 

tissue which results in mitigating free radical damage in the heart, aging-effects in muscle tissue, 

insulin resistance as well as dysfunctional glucose signaling, and cancer progression. With redox 

stress being one of the major hallmarks of obesity, we hypothesized that overexpression of 

antioxidant catalase would suppress redox stress-mediated obesogenic pathways. In our studies, 

we first generated and investigated the effect of excess endogenous antioxidant by using a novel 

mouse model termed “Bob-Cat.” These mice are a cross between heterozygous, leptin-deficient 

mice (Ob/+) and [Tg(CAT)±] mice that ubiquitously express human catalase in addition to mouse 

catalase. We first showed sex specific changes in redox stress, phenotype, metabolic parameters, 

and adipose tissue function. These findings indicated this ‘stress-less’ model (overexpressing 

antioxidant) would be optimal to study in combination with frequently prescribed diet and 

exercise intervention strategies to alter key biomarkers related to obesogenic pathways. In an 8 

week feeding study, we showed ad libitum feeding of an enriched omega 3 diet, in contrast to a 
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high saturated fatty acid/ polyunsaturated fatty acid diet, promoted maintenance of body weight 

and fat mass, increased energy metabolism, normal circadian rhythm, and insulin sensitivity 

within the novel mice. These findings were evidenced to be a result of up-regulation of GPR120-

Nrf2 cross-talk (>30 fold, p<0.05), which to our knowledge, had not been previously evidenced 

in any other studies. We also showed the role of sexual dimorphism in response to OM3 rich 

diet. In relation to exercise, we showed evidence that antioxidant overexpression in addition to 

moderate treadmill exercise 30 min. a day, 5 days/week for 8 weeks resulted in maintenance or 

lowered body weight and fat mass, balanced energy metabolism, a normal feeding circadian 

rhythm, and improvement in the lipid profile. Most interestingly, we saw significant differences 

in skeletal muscle Type 1 / Type 2 fiber ratio and mRNA expression of key myokines which may 

have induced a change in adipose tissue-brain cross-talk. Additionally, this study provided 

evidence of an exercise and redox-induced shift in the taxa and predicted function of the gut 

microbiome which beneficially impacted energy metabolism in the mice overexpressing 

antioxidant catalase. Taken together, our studies suggest antioxidant overexpression is an 

efficient adjuvant to diet and exercise intervention to combat metabolic dysfunction. Therefore, 

the newly generated Bob-Cat mouse is an effective model to investigate redox stress in the 

context of energy metabolism, metabolic tissue dysfunction, and the gut microbiome to discover 

new preventative treatments and therapies to reduce the rising levels of obesity, cardiometabolic 

diseases, chronic inflammatory – related illnesses, and cancer. 
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CHAPTER I: INTRODUCTION 

1.1 OBESITY DEFINED AND PREVALENCE 

Obesity, now considered a world-wide epidemic (Sharma, Lee, Youssef, Salifu, & 

McFarlane, 2017), is a serious health concern as it increases the risk of morbidity of several 

pathologies including insulin resistance (IR), hypertension, dyslipidemia, type 2 diabetes (T2D), 

coronary heart disease, stroke, non-alcoholic fatty liver disease (NAFLD), osteoarthritis, sleep 

apnea, and numerous cancers (Savini, Catani, Evangelista, Gasperi, & Avigliano, 2013). Since 

1975, global obesity rates have tripled. As of 2016, more than 1.9 billion adults (39%) are 

overweight and more than 650 million are considered obese (13%) (Organization, 2018). Of 

even greater concern, childhood obesity is also on the rise with more than 41 million children 

less than 5 years old and 340 million children and adolescents between the ages of 5-19 years old 

categorized as overweight or obese (Organization, 2018). Specifically, at the conclusion of 2018 

in the United States, adult obesity rates exceeded 35% in 7 states, 30% in 29 states, and 25% in 

48 states. West Virginia currently has the highest obesity rate at 38.1%. Seven states have 

increased the number of obese residents in the past year, and all other states have maintained or 

increased the number of obese individuals (Foundation, 2018).  

Obesity is the result of a number of genetic, behavioral, and environmental factors that 

contribute to disequilibrium between energy intake and expenditure (Gonzalez-Muniesa et al., 

2017; Manna & Jain, 2015). This results in accumulation of visceral adipose tissue to the extent 

that both physical and psychosocial health and well-being are impaired (James, 2004). In the 

clinical setting, overweight is defined as a Body Mass Index (BMI: weight (kg) / height (m2)) of 

25.0 to 29.9 kg/m2 and obesity as a BMI of ≥ 30.0 kg/m 2 (Manna & Jain, 2015; Paniagua, 2016). 

BMI is a robust yet indirect measure of body fat that provides more reliable information than 
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“ideal weight” or other ratios involving weight and/or height. Nonetheless, exceptions to the 

accuracy of BMI include athletes (higher percentages of muscle mass), the elderly, and 

individuals who are extremely tall or short because it does not distinguish between lean or fat 

mass (James, 2004). Additionally, although BMI is easy to measure, it indicates an overall 

measure of  “fat,” and does not identify the distribution of adipose tissue which directly 

correlates with metabolic health (C. H. Jung, Lee, & Song, 2017). Increased visceral (central) fat 

contributes to higher levels of pro-oxidant and pro-inflammatory states in addition to alterations 

in both glucose and lipid metabolism in comparison to subcutaneous fat (directly under the skin). 

Numerous studies have shown increased visceral fat is a high risk factor in T2D, dyslipidemia, 

and cardiovascular diseases (CVD) (Figueroa et al., 2016; James, 2004; Luna-Luna et al., 2015). 

For this reason, some clinicians prefer to look at the waist to height ratio in addition to the BMI 

to measure the distribution of body fat. In general, higher levels of visceral adipose tissue 

(abdominal, omental, and mesenteric) is more prevalent in males than females (Karastergiou, 

Smith, Greenberg, & Fried, 2012). Females have higher levels of subcutaneous fat, and thus are 

at lower risk for cardiometabolic diseases (Karastergiou et al., 2012). Mechanisms have not been 

fully elucidated; however, higher levels of fat mass, especially within the visceral compartment, 

contribute to adipose tissue dysfunction- defined as impaired adipose tissue expandability, 

adipocyte hypertrophy, altered lipid metabolism, local inflammation, and dysregulation of 

adipokine production and secretion (Fietta & Delsante, 2013; Goossens, 2017).     

1.2 ADIPOSE TISSUE FUNCTION 

Adipose tissue is currently characterized as an important endocrine organ having 

autocrine, paracrine, and endocrine effects. Increases in adipose tissue deposition alter the 

production and secretion of a number of cytokines- bioactive signaling molecules known as 
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adipokines (Fietta & Delsante, 2013; Scherer, 2006). These alterations regulate signaling 

mechanisms that control food intake, energy expenditure, inflammation, and fat storage 

(Kershaw & Flier, 2004). (Figure 1) For example, leptin, a 42 kD protein, has been shown to 

have a direct influence on food intake through regulating hypothalamic appetite regulating genes 

(Ex. proopiomelanocortin - POMC and neuropeptide Y - NPY) (Frago & Chowen, 2015; Wilson 

& Enriori, 2015).  

Histology has allowed characterization of adipose tissue according to its morphology. 

Adipose tissue is classified as a type of connective tissue with specific properties (M. T. Sheehan 

& Jensen, 2000) and is composed of multiple types of cells including preadipocytes, adipocytes, 

immune cells (e.g. macrophages), fibroblasts, endothelial cells, and stem cells (Rosen & 

Spiegelman, 2014). Preadipocytes are committed, immature forms of adipocytes and when 

activated by specific transcription factors, will form mature adipocytes. Adipocytes primarily 

regulate the storage and release of lipids, but they also use specific lipids for intracellular 

signaling and numerous proteins (i.e. adipokines such as leptin and adiponectin) for intracellular 

 

Figure 1. Increased deposition of adipose tissue. Increases in fat mass cause 

alterations in adipocytokine levels secreted by adipocytes and macrophages within 

adipose tissue. These changes can result in insulin resistance, adipose tissue 

inflammation and redox stress.  
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signaling and communication with nearly every system of the organism (Scherer, 2006). Immune 

cells play a key role in the inflammatory response and help maintain adipose tissue integrity. 

Fibroblasts play a role in the integrity of the adipose tissue by secreting precursors of the 

extracellular matrix. They have also been shown to modulate the behavior and function of 

epithelial cells and stem cells, but mechanisms have yet to be elucidated (R. Zhang et al., 2018). 

The endothelial cells play a major role in growth and function of adipose tissue by interaction 

with leukocytes, nutrients, and oxygen between circulation and adipose tissue (Villaret et al., 

2010). Finally, stem cells are mesenchymal cells with the capability of self-renewal and 

multipotentiality allowing them to become adipocytes, chondrocytes, myocytes, osteoblasts, or 

neurocytes dependent upon environmental factors (i.e. transcription factors). (Miana & 

González, 2018) 

Classically, there are two main types of adipose tissue with different origins and 

functions relating to energy homeostasis. These are known as white adipose tissue (WAT) and 

brown adipose tissue (BAT) (Choe, Huh, Hwang, Kim, & Kim, 2016; A. Rodriguez, Ezquerro, 

Mendez-Gimenez, Becerril, & Fruhbeck, 2015; Tsoli et al., 2012). WAT is found in various 

regions of the body and is primarily responsible for storing excess energy inside of its cells as 

triacylglycerol which can be used during a caloric deficit (Kajimura, Spiegelman, & Seale, 

2015). As previously described, the location of WAT determines its influence on metabolic 

homeostasis with increased fat in the visceral region correlating with metabolic dysfunction 

(Kusminski, Bickel, & Scherer, 2016). On the other hand, BAT is found in very few depots 

compared to WAT. In rodents, it is found in the interscapular, axillary, and cervical regions. In 

humans, the largest depot is concentrated in the interscapular region (Cypess et al., 2009; 

Kajimura et al., 2015; Sacks & Symonds, 2013). The cellular structure of BAT also differs from 
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WAT in that it is highly vascularized and has a high density of mitochondria promoting non-

shivering thermogenesis through the induction of uncoupling protein 1 (UCP-1) (Kajimura et al., 

2015; A. Rodriguez et al., 2015; Sacks & Symonds, 2013). Additionally, research has shown 

within WAT, increased cold exposure, exercise, and/or adrenergic signaling promotes a 

browning effect resulting in the formation of beige (“brite”) adipose tissue (S. H. Kim & Plutzky, 

2016; J. Wu, Cohen, & Spiegelman, 2013; L. Ye et al., 2013). Beige tissue has characteristics of 

both WAT and BAT. However, in relevance to obesity, like BAT, beige fat cells display higher 

levels of mitochondria and increased energy-dissipating capacity by promoting triacylglycerol 

clearance, glucose disposal, and thermogenic properties (i.e. induction of UCP-1) that release 

energy as heat (A. Rodriguez et al., 2015).  

With differences in morphology and function, research has also discovered the type and 

production of cytokines differ within the various types of adipose tissue (Balistreri, Caruso, & 

Candore, 2010). Key adipokines and secreted factors that have been the concentration of 

numerous studies are discussed in the proceeding paragraphs: (leptin, adiponectin, tumor 

necrosis factor - alpha (TNF-α), interleukin – 6 (IL-6), resistin, monocyte chemotactic protein 1 

(MCP-1/JE), and UCP-1 (Abella et al., 2017; Bluher & Mantzoros, 2015).  

a)  Leptin 

Leptin is an adipokine (hormone) that functions in a negative feedback loop to maintain 

energy homeostasis through regulating adipose tissue storage (J. Friedman, 2016). When 

functioning properly, it decreases appetite and simultaneously increases energy expenditure by 

binding to the long form of the leptin receptor (LepR) located on the hypothalamic neurons of 

the brain. LepR is located on both neuropeptide Y (NPY) and proopiomelanocortin (POMC) 

neurons on the arcuate nucleus (ARC) of the hypothalamus. When leptin binds to its receptor, 
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NPY is inhibited while POMC is activated thus creating a satiety effect and increasing energy 

expenditure (Flak, 2017; Funahashi et al., 2003). Due to this function, leptin is referred to as the 

“satiety” hormone (Chowen & Argente, 2011). Mutations in leptin and/or its receptor promotes 

obesity in both rodent models and humans (Clement et al., 1998), but leptin administration can 

effectively counteract obesity (Chong, Lupsa, Cochran, & Gorden, 2010). Leptin acts on 

hypothalamic neurons (in addition to other locations), and mutations affecting this neuronal 

circuit elicit “Mendelian” forms of obesity (J. Friedman, 2016). When leptin levels fall, many 

physiological systems are affected causing a reduction in energy expenditure. This includes, but 

is not limited to, reduction or termination of menstrual cycles in females, decrease in insulin 

sensitivity, and compromised immune and neuroendocrine systems (Chong et al., 2010). These 

effects are all common in patients with lipodystrophy. Lipodystrophy is a condition associated 

with severe metabolic disease, but leptin administration is an approved treatment for the 

generalized form of this condition (Bluher & Mantzoros, 2015). Many patients characterized as 

obese have high endogenous levels of leptin, and some cases are related to mutations in the 

normal signaling pathway by which leptin acts. However, in the majority of patients, improper 

leptin signaling is characterized as a state of leptin resistance (Kuryszko, Slawuta, & Sapikowski, 

2016). Nonetheless, more research will be necessary to understand the function of this adipokine 

in the context of obesity and energy metabolism. 

b)  Adiponectin 

In addition to leptin, adiponectin is another fat-derived hormone that accounts for 0.01% 

of total serum protein, making it the most abundant adipokine in circulation (Achari & Jain, 

2017; Villarreal-Molina & Antuna-Puente, 2012). Adiponectin serves as a critical signaling 

molecule in the cross-talk between adipose tissue and other metabolic organs including liver, 
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heart, kidney, and skeletal muscle (Z. V. Wang & Scherer, 2016). Through binding to one of its 

two targeted receptors, AdipoR1 or AdipoR2, it promotes insulin sensitization, and therefore, 

improvement in whole body energy homeostasis (Balistreri et al., 2010; Fang & Judd, 2018). In 

skeletal muscle, adiponectin enhances fatty acid oxidation and nutrient utilization (Fang & Judd, 

2018; Yamauchi et al., 2001) and in liver, gluconeogenesis is significantly suppressed by the 

inhibition of genes involved in glucose production (Combs & Marliss, 2014). Most importantly, 

adiponectin serves as an anti-inflammatory factor by inhibiting pro-inflammatory cytokine 

signaling pathways such as tumor necrosis factor - alpha (TNF-α) – induced endothelial adhesion 

molecules, and macrophage-to-foam cell transformation (Villarreal-Molina & Antuna-Puente, 

2012). In addition, adiponectin also has both anti-apoptotic and anti-oxidant effects (Ebrahimi-

Mamaeghani, Mohammadi, Arefhosseini, Fallah, & Bazi, 2015; Ren et al., 2017). It is now well 

established that plasma levels of adiponectin are decreased in individuals characterized as obese, 

having T2D, or with a history of coronary artery disease (Villarreal-Molina & Antuna-Puente, 

2012). With these known roles, adiponectin serves as a means of preventing numerous 

pathological events, including but not limited to, obesity, T2D, atherosclerosis, and 

cardiometabolic diseases (Achari & Jain, 2017; Z. V. Wang & Scherer, 2016).   

III. TNF-alpha 

Contrary to the beneficial anti-inflammatory effects of the adipokine adiponectin, TNF-

alpha is a pro-inflammatory cytokine secreted by adipose tissue (Engin, 2017b). Within adipose 

tissue, TNF-α is produced by macrophages, adipocytes and stromal cells and is responsible for 

inducing IR by blocking receptors for adiponectin (J. Liu et al., 1998). Additionally, it also 

inhibits the adipose tissue’s ability to esterify fatty acids, prevents glucose transport to liver cells, 
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and blocks fatty acid oxidation (Kuryszko et al., 2016). TNF-alpha can also compromise insulin 

production in pancreatic beta cells thus inhibiting insulin secretion (Kuryszko et al., 2016).  

c)  IL-6 

Interleukin-6 (IL-6) is an adipokine, but is also expressed in other metabolic tissues such 

as skeletal muscle causing it to also be considered a myokine as well as an adipomyokine 

(Raschke & Eckel, 2013). In adipose tissue, it is a pro-inflammatory hormone. Approximately 

30% of circulating IL-6 is derived from adipose tissue with much higher concentrations secreted 

from visceral vs. subcutaneous adipose tissue depots (Kuryszko et al., 2016). Like TNF-alpha, 

excessive production of IL-6 causes IR. IL-6 decreases insulin receptor expression, adipogenesis, 

secretion of adiponectin, and induces liver gluconeogenesis (Kern, Ranganathan, Li, Wood, & 

Ranganathan, 2001).  

d)  Resistin 

Like TNF-alpha, Resistin, a 12 kD peptide produced by both macrophages and 

adipocytes, also exerts opposite effects compared to adiponectin (Banerjee & Lazar, 2003). 

Contrary to what is desired in promoting metabolic homeostasis in individuals characterized as 

obese or having one of its co-morbidities, resistin’s primary role is to maintain fasting glycaemia 

by forming an excess accumulation of WAT (Kuryszko et al., 2016). Resistin induces 

gluconeogenesis, increases glycogenolysis, and promotes IR. Additionally, as a pro-

inflammatory factor, it increases the production of TNF-α, Interleukin (IL) IL-1β, IL-6, and IL-

12 (Kuryszko et al., 2016).  

e)  MCP-1 

MCP-1, monocyte- chemotactic protein-1, has now been characterized as an adipokine 

due to its high abundance in adipose tissue although it is primarily expressed and secreted by 
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macrophages and endothelial cells (Kanda et al., 2006; Sartipy & Loskutoff, 2003). It functions 

as a potent chemotactic factor for monocytes. Increased levels of MCP-1 contribute to chronic 

low-grade inflammation in adipose tissue and IR by recruitment of macrophages that infiltrate 

and exacerbate the inflammatory state (Kanda et al., 2006). Another result of increased MCP-1 

and infiltration of macrophages is overproduction of reactive oxygen species (ROS) and other 

inflammatory cytokines (Surmi & Hasty, 2010).    

f)  UCP-1  

Adipose-derived UCP-1 is expressed primarily in BAT, but also in the beige cells of 

WAT (Leal, Lopes, & Batista, 2018). UCP-1 dissipates the proton gradient in the form of heat by 

uncoupling cellular respiration from mitochondrial ATP synthesis thus playing a key role in non-

shivering thermogenesis. (Kajimura et al., 2015). With the uncoupling protein’s ability to 

increase energy expenditure (S. H. Kim & Plutzky, 2016), it has been investigated as a potential 

candidate to treat obesity and its related co-morbidities.  

Depending on the type and level of adipokine produced, chronic low-grade inflammation 

may result thus impacting other metabolic tissues that contribute to overall energy homeostasis 

(skeletal muscle, brain, liver, gut-microbiome). Although the precise mechanisms are still 

unclear, dysregulated production or secretion of these adipokines caused by excess adipose tissue 

and/or adipose tissue dysfunction can contribute to the development of obesity-related metabolic 

diseases. 

1.3 THE REDOX STATE 

Redox stress is an imbalanced oxidative or reductive environment which leads to 

detrimental effects such as increased production of oxidative free radicals and ROS (Rani, Deep, 

Singh, Palle, & Yadav, 2016), alterations in metabolic signaling pathways, increased 
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inflammation, and eventually cell death. ROS are a normal product of cellular metabolism and at 

low or moderate concentrations, they function to control physiological cell processes (Birben, 

Sahiner, Sackesen, Erzurum, & Kalayci, 2012). However, excessive ROS (high levels of 

oxidants) can attack cellular proteins, lipids, and nucleic acids resulting in dysregulation of 

energy metabolism, altered cell signaling and cell cycle control, gene mutations, dysfunctional 

cellular transport, a hampered immune system, and increased inflammation (Rani et al., 2016). 

This shift in redox balance is termed “oxidative stress.” Nonetheless, a balance is required 

between oxidants and antioxidants. Therefore, not only are excessive levels of oxidants 

detrimental, significantly lower oxidants compared to reducing factors result in disorder when 

the body naturally attempts to compensate to resume redox homeostasis (Korge, Calmettes, & 

Weiss, 2015; Lloret, Fuchsberger, Giraldo, & Vina, 2016; Mentor & Fisher, 2017; L. J. Yan, 

2014). The excessive levels of reducing reagents/oxidants has been coined “reductive stress” 

(Lipinski, 2002). 

The major oxidants involved in normal cellular metabolism include the superoxide anion, 

hydroxyl radical, and hydrogen peroxide (H2O2). Xanthine oxidase, nicotinamide adenine 

dinucleotide phosphate (NADPH), and electron leakage in the electron transport chain all 

stimulate the formation of the superoxide anion as well as hydrogen peroxide through specific 

redox reactions. Additionally, when dismutated by superoxide dismutase (an endogenous 

antioxidant), H2O2 is generated as one of the products (Birben et al., 2012). H2O2 can then be 

broken down further into water and oxygen by endogenous antioxidants: catalase or glutathione 

peroxidase.  

In order to maintain redox homeostasis, such as when there are excessive levels of 

oxidants (as occurs in oxidative stress), the antioxidant response system is activated. Numerous 
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studies have investigated this system in the context of obesity, chronic pathologies, and 

metabolic dysfunction (Brewer, Mustafi, Murray, Rajasekaran, & Benjamin, 2013; J. Chen, 

Zhang, & Cai, 2014; Gao et al., 2007; Tarantini et al., 2018). The transcription factor, nuclear 

factor erythroid 2-related factor 2 (Nrf2), plays a key role in the antioxidant response system. In 

a quiescent environment, the transcription factor interacts with kelch like ECH associated protein 

1 (Keap1) in the cytoplasm, thus maintaining a low expression of Nrf2 target genes. 

Nevertheless, when stimulated by oxidative and electrophilic stress factors, Nrf2 disassociates 

from Keap1, translocates to the nucleus and induces the expression of several antioxidant genes 

(i.e. catalase) which are able to aid in regaining redox homeostasis (Kensler, Wakabayashi, & 

Biswal, 2007). 

Redox balance is commonly assessed by evaluating markers of antioxidant defense or 

oxidative stress. The most widely used biomarkers of the antioxidant environment are tissue 

levels or plasma concentrations of antioxidant enzymatic activity (Superoxide dismutase (SOD), 

glutathione peroxidase (GPX), and catalase), non-enzymatic antioxidants (vitamin E, vitamin C, 

glutathione, and retinol), and minerals (selenium, zinc, and manganese) (Savini et al., 2013). 

Other studies have also used the total antioxidant capacity (TAC) to study the integrated action 

of all plasma antioxidants (Pinchuk, Shoval, Dotan, & Lichtenberg, 2012). High levels of 

oxidants can be measured either directly or indirectly. Electron spin resonance (ESR) and 

immune spin trapping are two methods to directly measure oxidative stress (O.S.) (M. C. Lee, 

2013). Indirect methods such as oxidized protein carbonyl groups, 3-nitrotyrosine, advanced 

glycosylation end products, and advanced oxidation protein products, F2-isoprostanes, 

malondialdeyde, oxidized low-density lipoproteins (LDLs), thiobarbituric acid reactive 
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molecules, and 4-hydroxynonenal assays focus on measurement of the end-products of oxidative 

damage (Savini et al., 2013). 

1.4 ASSOCIATION OF THE REDOX STATE AND OBESITY 

Excessive fat accumulation, resulting from higher energy intake vs. expenditure, can 

occur due to a high calorie/low nutrient rich diet, low physical activity (sedentary lifestyle), 

nutritional/early- life hormonal status, as well as genetic, cultural, and economic factors 

(Gonzalez-Muniesa et al., 2017; Savini et al., 2013; Sies, Stahl, & Sevanian, 2005; Silventoinen 

et al., 2016). Numerous epidemiological, clinical, and animal studies have provided evidence 

that obesity is coupled with redox stress and increased risk for cardiometabolic diseases in both 

sexes and is independent of age (Carrier, 2017; Codoner-Franch et al., 2012; Hermsdorff et al., 

2014; Karaouzene et al., 2011; Krzystek-Korpacka et al., 2008; Rani et al., 2016; Tran, Oliver, 

Rosa, & Galassetti, 2012). Numerous studies conducted throughout the past decade have shown 

juvenile aged individuals who were obese or overweight have high levels of oxidative stress 

compared to lean individuals (Tran et al., 2012). Additionally, adult obese subjects show higher 

levels of oxidized lipids including oxidatively modified low density lipoproteins (oxLDLs), 

arachidonic acid oxidation products (AAOPs), and thiobarbituric acid reactive substances 

(TBARS) in comparison to control subjects (D'Archivio et al., 2012). Additionally, other studies 

have shown BMI, total body fat, and waist circumference were positively correlated with urinary 

F2-isoprostane levels (Keaney et al., 2003). Oxidative stress levels have also been evaluated in 

highly metabolic tissues and body systems. In DIO models, cerebrocortical O.S. was shown to be 

increased (Freeman et al., 2013), a positive correlation was observed between O.S. and 

mitochondrial dysfunction in both skeletal muscle and liver (Yuzefovych, Musiyenko, Wilson, & 

Rachek, 2013), and in a third study there were increased levels of lipid and protein oxidation as 
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well as markers indicative of apoptosis (S. Wang & Kaufman, 2012). Additionally, excess fat 

mass can increase the inflammatory state. This is important with the accumulating evidence of an 

association between oxidative stress and inflammatory markers, hyperlipidemia, and 

hyperglycemia in overweight and obese subjects (Codoner-Franch et al., 2012; Pou et al., 2007). 

Combined, these studies implicate the interaction between O.S. and obesity/fat mass in addition 

to the negative consequences on tissue function and energy metabolism.  

In contrast to assessing levels of oxidative stress by determining if there are increased 

levels of oxidants, there is also evidence showing that circulating antioxidant levels are lower 

and/or antioxidant defense mechanisms are compromised in obese individuals (Gutierrez-Lopez 

et al., 2012; Nikolaidis, Kerksick, Lamprecht, & McAnulty, 2012). Specific relationships 

between the BMI, body fat, and antioxidant defense signaling mechanisms are still being 

investigated due to variability in results. Differing outcomes in past research is likely a result of 

differences in availability of antioxidants and functionality of antioxidant defense systems in 

each individual (Savini et al., 2013). It is well-documented that antioxidant expression and 

enzymatic activity is progressively depleted as obesity worsens. Therefore, depending on the 

characteristics of the obese individual analyzed including the progression of obesity, 

inflammatory state, and dietary intake/ physical activity levels, antioxidant levels could 

dramatically differ. Nonetheless, despite variability between individuals in the aforementioned 

research, there are some consistencies in the data. In Attica, Greece an inverse relationship 

between visceral fat and TAC was shown independent of sex, age, physical activity level, and 

dietary habits. It was interesting that the correlation between the two variables was stronger for 

waist circumference than BMI (Chrysohoou et al., 2007). Then, another study showed the TAC, 

vitamin C, and vitamin E were lower while hydroperoxides and carbonylated proteins were 
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higher in obese patients compared to their lean controls (Karaouzene et al., 2011). Endogenous 

enzymatic antioxidants SOD, catalase, and GPx activity was also found to be inversely related to 

BMI regardless of age (Amirkhizi, Siassi, Djalali, & Shahraki, 2014; Mittal & Kant, 2009; 

Viroonudomphol et al., 2000). Additionally, specifically in obese women, serum GPx activity 

levels were significantly increased after a reduction in body weight (Bougoulia, Triantos, & 

Koliakos, 2006). Some studies have indicated a dietary effect on antioxidant content as well. In 

mice, when fed a high fat diet, there were increases in antioxidant activity within heart tissue, 

and specifically, a rapid induction of catalase. This is expected to have occurred to protect the 

mitochondria from being damaged due to high oxidants being produced (Rindler, Plafker, 

Szweda, & Kinter, 2013).   

Individuals who are overweight or obese tend to have diets low in minerals and vitamins 

that contribute to inadequate antioxidant defenses that aid in protection from oxidative stress 

(Strauss, 1999; Via, 2012). In obese children, it was reported that there were lower levels of 

selenium, especially when the individuals had higher levels of central adiposity (Ortega et al., 

2012). Furthermore, in morbidly obese patients, low levels of magnesium, selenium, iron, and 

zinc were observed (Kaidar-Person, Person, Szomstein, & Rosenthal, 2008b). In addition to 

metals, low levels of carotenoids have been inversely related to BMI and central fat distribution 

in a number of different studies in obese patients (Andersen et al., 2006; Canoy et al., 2005; 

Harnroongroj et al., 2002; Kaidar-Person et al., 2008b; Reitman, Friedrich, Ben-Amotz, & Levy, 

2002; Schleicher, Carroll, Ford, & Lacher, 2009; Strauss, 1999). 

1.5 CONDITIONS THAT GENERATE REDOX STRESS 

Free radicals, including reactive oxygen species (ROS) and reactive nitrogen species 

(RNS), are produced by several mechanisms in individuals with high levels of adiposity 
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including dyslipidemia (Furukawa et al., 2004), hyperglycemia (Grattagliano, Palmieri, 

Portincasa, Moschetta, & Palasciano, 2008), increased inflammation (Bondia-Pons, Ryan, & 

Martinez, 2012), dysfunction of metabolic tissues (Serra, Mera, Malandrino, Mir, & Herrero, 

2013), hyperleptinemia (Beltowski, 2012), and post ingestion of a high fat and/or high 

carbohydrate meal (Sies et al., 2005). When adipose tissue depots become full and adipocytes 

can no longer store triglycerides (TG), lipotoxicity occurs and ectopic fat accumulates in tissues 

including the heart, skeletal muscle, liver, and pancreas. As fat accumulates, organ dysfunction 

results and free radicals are formed. One mechanism by which this occurs is inhibition of the 

adenosine nucleotide translocator which results in adenosine triphosphate (ATP) accumulation in 

mitochondria, reducing the speed of oxidative phosphorylation, leading to mitochondrial 

uncoupling and free radical production. This was shown to occur in the skeletal muscle and liver 

of rodents provided a high fat diet  (Serra et al., 2013; Yuzefovych et al., 2013). Ectopic fat 

accumulation also blocks glucose and insulin signaling pathways (Coen & Goodpaster, 2012; 

Olivares-Corichi, Viquez, Gutierrez-Lopez, Ceballos-Reyes, & Garcia-Sanchez, 2011), and 

hyperglycemia enhances the glycolytic pathway/ tricarboxylic acid (TCA) cycle promoting 

nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FADH) 

overproduction (J. Wu, Jin, Zheng, & Yan, 2016). This leads to electron leakage and thus 

superoxide (ROS/free radical) production. Superoxide is then able to inhibit glyceraldehyde-3-

phosphate dehydrogenase which redirects metabolites of the normal TCA cycle to alternative 

pathways which induce further oxidative stress as well as nitrosative stress (J. Wu et al., 2016). 

Free radical production then progresses even further since hyperglycemia/oxidative 

stress/inflammation is an ongoing, vicious cycle. Many inflammatory mediators disrupt insulin 

signaling and exacerbate both ROS and glucose levels (Bondia-Pons et al., 2012). Another 
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mechanism by which free radicals are produced from increased adiposity is Endoplasmic 

Reticulum (ER) stress. In a homeostatic environment, the ER favors disulfide bond formation 

and proper protein folding. However, during ER stress, the unfolded protein response is 

activated. If prolonged, chronic oxidative protein folding machinery promotes ROS production 

in addition to release of free fatty acids and inflammatory mediators (S. Wang & Kaufman, 

2012). 

Metabolic tissue dysfunction increases oxidative stress as well as inflammation by 

exacerbating insulin resistance, hyperglycemia, and hypertriglyceridemia. In adipose tissue an 

increased expression of MCP-1, 2, and 4 recruits macrophages and leads to overproduction of 

ROS and additional inflammatory cytokines (Surmi & Hasty, 2010). Additionally, adipose 

dysfunction leads to deletion of redox sensitive, Nrf2, which weakens antioxidant defenses (Xue 

et al., 2013).  

As previously mentioned, leptin is an adipokine that regulates appetite and prevents 

lipotoxicity in non-adipose tissue (Paz-Filho, Mastronardi, Wong, & Licinio, 2012). 

Hyperlipidemia induces O.S. primarily by increased mitochondrial fatty acid oxidation (Ceci et 

al., 2007). It also promotes inflammation by recruitment of macrophages and induction of TNF-

alpha and IL-6 (Tilg & Moschen, 2006).  

Overweight and obese individuals generally consume diets higher in fat and 

carbohydrates which is another contributor to O.S. in obesity. In fact, obese subjects show 

evidence of having an exacerbated and prolonged oxidative and inflammatory response to a large 

high fat/high carbohydrate meal than lean individuals (C. Patel et al., 2007). Therefore, chronic 

intake of high fat and carbohydrate diet in obese individuals has an increased adverse effect in 

comparison to a normal weight individual consuming the same diet.  
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1.6 REDOX STRESS IS ASSOCIATED WITH OBESITY AND ITS COMORBIDITIES 

Current research provides evidence that oxidative stress may be the mechanistic link 

between obesity and its co-morbidities including metabolic syndrome, T2D, CVD, and cancer 

(Manna & Jain, 2015; Rani et al., 2016; Savini et al., 2013). A flow chart of this process is 

depicted in Figure 2. 

I. Metabolic Syndrome 

Metabolic syndrome (MetS) is characterized as a cluster of cardiometabolic risk factors 

associated with central adiposity and IR including hypertriglyceridemia, high levels of low-

density lipoproteins (LDL), low levels of high-density lipoproteins (HDL), IR, hyperglycemia, 

and hypertension (Bonomini, Rodella, & Rezzani, 2015). An individual with central adiposity 

and two or more of these conditions is characterized as having the metabolic syndrome (Carrier, 

2017; Savini et al., 2013). Location of adipose depots is a strong determinant in levels of O.S. 

 

Figure 2. Associations among obesity, oxidative stress, and other metabolic and chronic 

diseases. Current research provides evidence that redox stress may be the mechanistic link 

between obesity, its comorbidities, and other chronic diseases. Relationships linking the three 

are shown in the flow chart above.  

 



18 

and inflammation. Increased levels of visceral fat, having high levels of resident macrophages 

and cytokines in comparison to subcutaneous adipose tissue (Harman-Boehm et al., 2007), 

promotes higher levels of oxidative stress and inflammation, making it a high risk factor for 

MetS (Bonomini et al., 2015). A study investigating the relationship between visceral fat mass 

and MetS in patients with high central adiposity demonstrated visceral fat area was strongly 

correlated with O.S. and MetS when high levels of oxidants were observed in the urine (Fujita, 

Nishizawa, Funahashi, Shimomura, & Shimabukuro, 2006). Numerous additional studies have 

used in vivo and ex vivo models that have also demonstrated the role of oxidative stress in the 

development of MetS (Bryan, Baregzay, Spicer, Singal, & Khaper, 2013; Furukawa et al., 2004). 

High ROS also contributes to IR, a common disease of MetS, through several mechanisms 

involving activation of signaling kinases (Dokken, Saengsirisuwan, Kim, Teachey, & Henriksen, 

2008), chronic inflammation by induction of pro-inflammatory cytokines such as TNF-alpha and 

IL-6 (Styskal, Van Remmen, Richardson, & Salmon, 2012), as well as damage to insulin-

stimulated signals in its downstream signaling pathways (Bryan et al., 2013). 

Increased levels of ROS also induce hypertension in obese subjects. One key mechanism 

is through deregulation of insulin signaling by modifying the phosphatidylinositol 3-kinase 

(PI3K)/ protein kinase B (Akt) pathway in endothelial cells. This decreases Nitric Oxide 

(NO/NOX) synthesis and vasodilation while increasing blood pressure. Additionally, the renin-

angiotensin system is activated which further promotes hypertension (Whaley-Connell & 

Sowers, 2012).  

Liver dysfunction, promoted by redox stress and inflammation in obesity, contributes to 

other aspects of MetS such as dyslipidemia, hypertriglyceridemia, high cholesterolemia, and low 

HDL levels (Bryan et al., 2013). Additionally, low HDL levels can exacerbate O.S. by an 
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inability to bind to transition metals used to eradicate oxidative species when there are already 

high levels of oxidants (Bjelakovic, Nikolova, Gluud, Simonetti, & Gluud, 2012). This has the 

propensity to perpetuate a negative continuous cycle of increasing O.S. and complications of the 

MetS. 

II. Type 2 Diabetes 

T2D, non-insulin-dependent diabetes mellitus, develops as a result of hyperinsulinemia in 

individuals with excess adiposity levels. When insulin-resistance develops, the pancreatic β-cells 

undergo hyperplasia to compensate for low insulin sensitivity which can lead to exhaustion and 

β-cell death (Cerf, 2013). Additionally, over time, hyperglycemia ensues due to lack of insulin 

and β-cells which can promote ROS and RNS formation. At this point, β-cells begin to die due to 

a low scavenging capacity when in an environment of chronic oxidative stress and adipokine 

secretion (Chetboun et al., 2012; Dandona, Aljada, Chaudhuri, Mohanty, & Garg, 2005).  

III. Cardiovascular Disease 

In obesity, high levels of visceral fat, in addition to IR, oxidative stress, mitochondrial 

dysfunction, endothelial dysfunction, and altered NO release are key factors in the development 

of CVD (Figueroa et al., 2016; Luna-Luna et al., 2015; Parthasarathy & Santanam, 1994; Standl, 

2012). One manner O.S. promotes the development of atherosclerosis and thrombosis is by 

inhibiting the protective effects of NO in endothelial cells. Progression of vascular disease is 

then exacerbated by obesity and hypertension which cause an induction of NOX-derived ROS 

and release of cytokines which begins a continuous and vicious cycle (Carnevale et al., 2014; 

Furukawa et al., 2004; Savini et al., 2013). ROS also triggers oxidation of LDL and macrophage 

activation which promotes the formation of foam cells and atherosclerotic lesions (Ferretti, 

Bacchetti, Masciangelo, & Bicchiega, 2010; Santanam, Auge, Zhou, Keshava, & Parthasarathy, 
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1999; Shimasaki, Maeba, Tachibana, & Ueta, 1995; N. Wang et al., 1996). With regard to 

adipose tissue, altered adipokine levels (leptin, resistin, chemerin, vaspin, visfatin, and omentin) 

are correlated with cardiometabolic diseases (DeClercq, Enns, Yeganeh, Taylor, & Zahradka, 

2013; Guzik, Mangalat, & Korbut, 2006). Elevated levels of leptin directly damage endothelial 

and vascular smooth muscle cells which induce the secretion of lipoprotein lipase, retention of 

lipoproteins, and formation of foam cells (Beltowski, 2012). Evidence has also been shown for 

an age effect in obesity-associated vascular complications where elderly individuals are more 

vulnerable to obesity-associated vascular diseases in comparison to the younger population. This 

has been postulated to occur due to increased obesity-induced inflammation in perivascular 

adipose tissue which elevates O.S. and inflammation (Bailey-Downs et al., 2013).  

IV. Cancer 

Cancer can also be stimulated as a result of redox imbalances in obesity. Evidence has 

been provided from epidemiological studies that there is a positive correlation between BMI, fat 

distribution, obesity, and cancer oncogenesis (Calle, Rodriguez, Walker-Thurmond, & Thun, 

2003; Engin, 2017a; Martinez-Useros & Garcia-Foncillas, 2016). In fact, obesity was responsible 

for approximately 14% and 20% of cancer deaths in men and women respectively in the past two 

decades with obesity-associated mortality for primarily prostate and stomach cancer in men and 

breast, endometrium, cervical, uterine, and ovarian cancer in women (Calle et al., 2003). Even 

intermediate levels of O.S. cause DNA damage resulting in genomic instability and induction of 

oncogenes/ inhibition of genes involved in suppressing tumor growth (Crujeiras, Diaz-Lagares, 

Carreira, Amil, & Casanueva, 2013). For example, it was shown that oxidative metabolites of 

estrogens in breast cancer stimulated ROS generation causing DNA oxidative damage and 

promotion of cancer progression (Crujeiras et al., 2013). Evidence for O.S. with inflammation 
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promoting oncogenesis was shown when IR patients were at higher risk for several types of 

cancer through the activation of PI3K/Akt and rapamycin (mTOR) pathways (Vucenik & Stains, 

2012). 

1.7 THERAPIES TO COUNTERACT OBESITY AND ITS COMORBIDITIES BY 

MODIFYING THE REDOX STATE 

I.  Vitamins and Phytochemicals  

With the significant amount of evidence showing O.S. plays a key role in metabolic 

syndrome and its related pathologies, research has investigated the use of vitamins/dietary 

supplements effective in counteracting free radicals. A plethora of studies have established there 

is a strong correlation between redox balance/metabolic stability and diets rich in 

phytochemicals/antioxidants (Crujeiras, Parra, Rodriguez, Martinez de Morentin, & Martinez, 

2006; Gonzalez-Castejon & Rodriguez-Casado, 2011). Their mechanism of action primarily 

stems from scavenging or neutralization of free radicals, induced antioxidant enzymatic activity, 

and anti-inflammatory effects (Del Rio et al., 2011; O'Neil, Nicklas, Rampersaud, & Fulgoni, 

2012). A beneficial role of citrus fruits in obesity and its co-morbidities has been shown in 

numerous studies. The positive effects of citrus juices in relation to obesity have been shown in 

neutralizing O.S. and inflammation in individuals consuming high fat/high carbohydrate meals 

and obese children (Codoner-Franch et al., 2010; Ghanim et al., 2010). Additionally, broccoli 

and carrots, known to have high concentrations of phytochemicals, improve oxidative stress 

levels and increase serum antioxidant levels (Bahadoran et al., 2011; Potter, Foroudi, Stamatikos, 

Patil, & Deyhim, 2011). Direct antioxidant supplementation by intake of Vitamin E and C has 

been thought to be beneficial to obese individuals since there is a high rate of deficiency of these 

vitamins in individuals with high levels of adiposity and/or IR (Aasheim & Bohmer, 2008; 
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Kaidar-Person, Person, Szomstein, & Rosenthal, 2008a; Schleicher et al., 2009; Via, 2012). 

Additionally, most observational studies have shown these vitamins are inversely associated with 

cardiometabolic diseases and cancer. Nonetheless, results are controversial in supplementation 

with Vitamin E. Some short-term studies show lowering of oxidative stress and improved lipid 

profile while others show no effect, increased risk for CVD, or higher incidences of cancer 

(Bjelakovic et al., 2012; Chae, Albert, Moorthy, Lee, & Buring, 2012; Garelnabi et al., 2012). 

Vitamin C is non-toxic and has been shown to be beneficial in individuals with hypertension and 

lowering the risk of CVD and cancer (Boekholdt et al., 2006; Juraschek, Guallar, Appel, & 

Miller, 2012; Pfister, Sharp, Luben, Wareham, & Khaw, 2011). Therefore, it is recommended if 

individuals are deficient since there are little side effects (Savini et al., 2013). Incorporating 

polyphenols into the diet is another method of increasing antioxidant activity. Like Vitamin C 

and E, it has been reported that obese individuals have lower serum levels of some polyphenols 

(Suzuki et al., 2006). Therefore, dietary incorporation of foods high in polyphenols may prove to 

be beneficial. Furthermore, some short-term clinical trials have studied the impact of 

polyphenols on obesity and its comorbidities and observed a beneficial role in almost every study 

evaluating oxidative stress/inflammatory markers, glucose homeostasis, and risk factors of 

cardiometabolic diseases (Hokayem et al., 2013; Leiherer, Mundlein, & Drexel, 2013). 

II.  Dietary Intervention 

Dietary fatty acid composition has a profound effect on measures of oxidative stress and 

energy homeostasis (Calder et al., 2011; Sies et al., 2005). Therefore, incorporating dietary 

compounds evidenced to be effective in improving the redox state and energy metabolism may 

be beneficial to obese individuals and those at high risk for its comorbidities. Diets rich in 

saturated fatty acids (SFA) have been shown to increase fat deposition and body weight (Calder 
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et al., 2011; Yuzefovych et al., 2013). Diet Induced Obesity (DIO) rodent models (i.e. C57Bl6 

mice) are routinely used to investigate metabolic changes as a result of increased fat deposition 

among the various fat pads. Generally, diets comprised of > 40% high-fat lard, milk, and butter 

(primarily composed of SFA) fosters excess lipid storage in adipose tissue leading to adipocyte 

hyperplasia and hypertrophy, abnormal adipokine secretion, hypoxia, elevated circulating free 

fatty acids (FFA), endothelial dysfunction, and ectopic fat deposition in less than 8 weeks of 

SFA diet intervention (Choe et al., 2016; Heydemann, 2016; Snel et al., 2012). Additionally, 

adipose tissue inflammation is increased consequently to high levels of fat mass which induces a 

pro-inflammatory state further inducing IR and inflammation in other metabolic tissues (liver, 

skeletal muscle, and pancreas) (Z. Chen, Yu, Xiong, Du, & Zhu, 2017; Snel et al., 2012). The 

fatty acid composition, length, and degree of saturation determine the severity of consequences 

to a high-fat diet (HFD) (McArdle, Finucane, Connaughton, McMorrow, & Roche, 2013; Yeop 

Han et al., 2010). Opposing the negative effects of diets high in saturated fat, diets primarily 

comprised of unsaturated fatty acids have shown evidence toward being beneficial to metabolic 

function (Albracht-Schulte et al., 2018; Luo et al., 2016; Saini & Keum, 2018; Shahidi & 

Ambigaipalan, 2018). In humans, Mediterranean Diets (rich in fruits, vegetables, legumes, nuts, 

oily fish, low-fat dairy products, and olive oil as the primary source of fat) exert preventive 

effects in incidence or mortality from obesity, CVD, stroke, cancer, as well as neurodegenerative 

diseases (Agnoli et al., 2013; Buckland et al., 2013; Demarin, Lisak, & Morovic, 2011; 

Hadziabdic, Bozikov, Pavic, & Romic, 2012; Samieri, Okereke, E, & Grodstein, 2013; Sofi, 

Abbate, Gensini, & Casini, 2010; Visioli, Grande, Bogani, & Galli, 2004). This effect was shown 

in a study on abdominally overweight men and women where the Mediterranean Diet reduced 

O.S. and inflammation after eight weeks of diet intervention (van Dijk et al., 2012). Omega 6 
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polyunsaturated fatty acids (OM6 PUFA) include conjugated linoleic acids (CLA), which are 

prevalent in meat and dairy products. These fatty acids have been investigated for their anti-

obesity and anti-diabetic effects in specific animal models showing results of decreased energy 

intake, lipogenesis, increased energy expenditure, and increased lipid catabolism. Nonetheless, 

numerous other studies have shown no effect on loss of fat mass (Dilzer & Park, 2012). 

Additionally, no evidence has been provided on antioxidant defense systems after 

supplementation of CLA in human trials (J. Kim, Paik, Shin, & Park, 2012). Monounsaturated 

fatty acids (MUFA - major component of olive oil) and Omega 3 polyunsaturated fatty acids 

(OM3 PUFA - major component in oily fish) have shown evidence of a protective role against 

obesity, oxidative stress, and cardiometabolic diseases by in vitro and in vivo studies. In one 

study, when SFA was replaced by MUFA for eight weeks, metabolic stress was reduced through 

decreases in oxidative phosphorylation and apoB concentrations in men and women with high 

levels of central adiposity (van Dijk et al., 2012). Specifically, diets with high concentrations of 

fish oil (high OM3) have been mechanistically shown to lower systemic IR (Oliveira et al., 

2015), decrease fasting TG levels (Bargut, Silva-e-Silva, Souza-Mello, Mandarim-de-Lacerda, & 

Aguila, 2016) and cholesterol levels (Ide & Koshizaka, 2018; Tani, Matsuo, & Matsumoto, 

2018), and reduce inflammation (Oliveira et al., 2015). This directly opposes the effects that 

have been evidenced in diets comprised of high levels of SFA (lard based HFD) (Bargut et al., 

2016; Yeop Han et al., 2010). Mechanisms behind the effects of OM3 supplementation were 

better understood by Olefsky’s group when G-protein coupled receptor 120/Free fatty acid 

receptor 4 (GPR120/FFAR4) was discovered (D. Y. Oh et al., 2010). GPR120 is a receptor for 

long chain OM3 free fatty acids that is highly expressed in adipose tissue. Since its discovery, 

researchers have shown its proposed mechanistic role in improving adipose tissue function and 
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energy metabolism by its insulin sensitizing and anti-inflammatory effects (D. Y. Oh & Olefsky, 

2012; D. Y. Oh et al., 2010; D. Y. Oh et al., 2014). OM3 fatty acids alter the balance of reductive 

and oxidative species, and are additionally critical in glucose and lipid metabolism (McDonald, 

O'Kane, McConville, Devine, & McVeigh, 2013; D. Y. Oh et al., 2010). Furthermore, alterations 

in redox homeostasis through increased intake of OM3 fatty acids have been linked to activation 

of the Nrf2 pathway (Cipollina, 2015; Kusunoki et al., 2013). Nrf2 is a transcription factor, key 

in regulating redox homeostasis (Seo & Lee, 2013) by inducing the transcription of endogenous 

antioxidants including catalase, glutathione transferase, heme oxygenase (HO-1), and NAD(P)H: 

Quinone Oxidoreductase 1 (S. E. Lee et al., 2015; Yamamoto, Kensler, & Motohashi, 2018; Zhu 

et al., 2008). Therefore, overall, these studies have pointed to plausible mechanisms by which 

varying dietary fat composition (with particular emphasis on OM3 enriched diet) can influence 

metabolic homeostasis by regulating the redox state.  

III.  Exercise Intervention 

Physical activity is a highly effective, non-pharmacological approach to preventing 

dyslipidemia, hyperglycemia, hypertension, IR/T2D, atherosclerosis, CVD, osteoporosis, and 

even some cancers (Golbidi & Laher, 2014; Leal et al., 2018; Nunan, Mahtani, Roberts, & 

Heneghan, 2013; Savini et al., 2013). The mechanisms involved stem from an overall increase in 

energy expenditure that results in a reduction of fat mass and body weight (Fiuza-Luces, 

Garatachea, Berger, & Lucia, 2013; Golbidi, Mesdaghinia, & Laher, 2012; Leal et al., 2018). 

Additionally, physical activity improves the lipoprotein profile through decreasing TG and LDL 

and increasing HDL levels  (Fiuza-Luces et al., 2013; Sanchis-Gomar, Fiuza-Luces, & Lucia, 

2015; Warburton, Nicol, & Bredin, 2006). Exercise has also been shown to enhance glucose and 

insulin signaling (Garelnabi et al., 2012; Tan, Du, Zhao, Pang, & Wang, 2018), lower systemic 
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inflammation (Pedersen & Febbraio, 2012; Pil-Byung et al., 2011), improve cardiac function 

(Barauna et al., 2005; Laterza et al., 2007; Phillips, Mahmoud, Brown, & Haus, 2015), boost 

physical performance (Vina, Sanchis-Gomar, Martinez-Bello, & Gomez-Cabrera, 2012), and 

augment neurological function (Radak, Marton, Nagy, Koltai, & Goto, 2013). Many of these 

beneficial effects may be linked to the evidence that physical activity paradoxically increases 

redox stress and in turn signals antioxidant production which aids in facilitation of redox 

homeostasis (Done & Traustadottir, 2016; Mach & Fuster-Botella, 2017; Meilhac, 

Ramachandran, Chiang, Santanam, & Parthasarathy, 2001; Savini et al., 2013; Vina et al., 2012). 

The physical stress involved in physical activity modulates the structure and function of a 

number of metabolic tissues including liver, adipose tissue, and skeletal muscle (Guo, Liong, So, 

Fung, & Tipoe, 2015; Leal et al., 2018). During physical activity, skeletal muscle, the largest 

human endocrine organ, generates the energy necessary for movement primarily by carbohydrate 

and lipid oxidation, thus constituting it as a key player in energy metabolism (Iizuka, Machida, & 

Hirafuji, 2014; Pedersen, 2013). Skeletal muscle is composed of numerous types of cells 

including motor neurons, stem cells, fibroblasts, adipocytes, pericytes, connective tissue, and 

muscle fibers (Ex. Type 1 and 2). Not only are genes upregulated to maintain energy 

homeostasis by regulating glucose levels (i.e. glucose transporter 4 – GLUT 4) and producing 

adequate levels of ATP (Fryer et al., 2002; Holmes, Kurth-Kraczek, & Winder, 1999) upon 

increased skeletal muscle contraction in aerobic exercise, there are also shifts in the muscle fiber 

type ratio toward higher levels of Type 1 / Type 2 muscle fibers (Fry et al., 2017; Y. X. Wang et 

al., 2004). Additionally, there are alterations in the expression and secretion of bioactive 

secretory factors termed myokines (e.g. GLUT 4, PGC1-alpha, FGF-21) (Iizuka et al., 2014). 

Specifically, Fibroblast Growth Factors (FGFs) and Interleukins (Ex. IL-6 and IL-15) play an 
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important metabolic or  immunological role with autocrine and paracrine functions (S. M. 

Sheehan, Tatsumi, Temm-Grove, & Allen, 2000). Research to date concentrating on the 

autocrine, paracrine, and endocrine effects of myokines have contributed to our knowledge of the 

beneficial effects of exercise on the nervous, endocrine, and immune systems in addition to 

systemic energy homeostasis (Hoffmann & Weigert, 2017; Huh, 2018). 

Adding to the beneficial effects of decreasing adipose tissue mass, physical activity also 

plays a role in modulating adipose tissue function and contributing to systemic metabolic 

homeostasis (Leal et al., 2018). Recent studies have shown evidence that one of the key 

mechanisms is through the induction and secretion of “exercise-induced” myokines (Leal et al., 

2018; B. So, Kim, Kim, & Song, 2014). Furthermore, skeletal muscle cross-talk with adipose 

tissue has been a current topic of interest. As previously discussed, adipose tissue is more than a 

storage unit, it also is an important endocrine organ (Trayhurn, Bing, & Wood, 2006) allowing 

for an adipokine effect on skeletal muscle function and vice versa. Key myokines postulated to 

be involved in the “talk” between skeletal muscle and adipose tissues include, but are not limited 

to, IL-6, FGF-21, and Irisin (Leal et al., 2018; Raschke & Eckel, 2013). 

a) IL-6  

There are numerous isoforms of interleukins, but IL-6, in addition to being an adipokine 

as previously mentioned, is an exercise induced myokine that plays a key role in inflammatory 

signaling (Pratesi, Tarantini, & Di Bari, 2013). Higher levels of IL-6 have been reported after 

exercise intervention (Leal et al., 2018). With their upregulation, they have also been shown to 

directly contribute to increased expression of IL-1 receptor agonist and IL-10 thus constituting a 

role in the anti-inflammatory effects of exercise. Plasma concentrations of IL-6 have been shown 

to increase > 100 fold post-exercise. However, this effect does not occur in a linear pattern over 
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time (MacDonald, Wojtaszewski, Pedersen, Kiens, & Richter, 2003). In addition to inducing 

anti-inflammatory signaling pathways, it has also shown that IL-6 can inhibit inflammatory 

cytokines such as TNF-alpha (Petersen & Pedersen, 2005). Furthermore, various studies have 

shown a cross-talk between skeletal muscle interleukins and adipose tissue, which has shown to 

increase adiponectin expression in exercised conditions (Macpherson, Huber, Frendo-Cumbo, 

Simpson, & Wright, 2015; Quinn, Strait-Bodey, Anderson, Argiles, & Havel, 2005).  

b)  FGF-21 

Fibroblast growth factor 21 (FGF-21) is an exercised-induced myokine with pleotropic 

effects (Cuevas-Ramos et al., 2012; K. H. Kim et al., 2013). Studies show it plays an important 

role in energy metabolism by decreasing glucose levels and increasing lipolysis (Hojman et al., 

2009; Izumiya et al., 2008; Kharitonenkov et al., 2005; B. So et al., 2014; X. Zhang et al., 2008). 

Not only is it expressed in skeletal muscle, it is also expressed in liver, adipose tissue, and 

pancreas (Canto & Auwerx, 2012) where expression levels are dependent on factors such as 

nutritional status, dietary fat intake, hormone levels, transcription factors, oxidative stress, and 

physical activity (Gomez-Samano et al., 2017; Kharitonenkov et al., 2005). FGF-21 acts as an 

endocrine factor. Evidence has shown that it cross-talks with adipose tissue and that it can 

increase thermogenesis and WAT browning through induction of UCP-1 (Fisher et al., 2012). 

Additionally, there is evidence of an interaction with adiponectin in adipose tissue. A recent 

study showed that in adipocytes, both transcription and secretion of adiponectin are induced by 

FGF-21 which has now been termed the “FGF-21-adiponectin axis.” Furthermore, in adiponectin 

– null mice, the glucose-lowering, lipid clearance, and the anti-atherosclerotic benefits of FGF-

21 were diminished (Hui, Feng, Liu, Gao, & Xu, 2016). With these evidences, it is plausible that 
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FGF-21 is another muscle-derived bioactive molecule involved in skeletal muscle – adipose 

tissue cross-talk.   

c) PGC1-alpha/FNDC5/Irisin 

Irisin has been considered one of the most promising myokines for metabolic 

maintenance  (Leal et al., 2018) and thus a potential therapeutic method in diseases relating to 

metabolic dysfunction. When stimulated by exercise, peroxisome proliferator-activated receptor-

γ coactivator-1α (PGC1-alpha) stimulates the expression of fibronectin type III domain-

containing protein 5 (FNDC5) which encodes irisin, a type I membrane protein secreted into 

circulation. Since its discovery, by Bostrom et al. in 2012 (Bostrom et al., 2012), further research 

has shown irisin is secreted in an exercise-dependent manner by skeletal muscle and mediates 

WAT metabolism (Aydin et al., 2014). Reports have discussed its ability to convert WAT to 

BAT (browning of adipose tissue), resulting in increasing energy expenditure by inducing UCP-

1 expression (Bostrom et al., 2012; Mahgoub, D'Souza, Al Darmaki, Baniyas, & Adeghate, 

2018). Additionally, a study conducted in obese humans on 8 weeks of aerobic exercise and 

resistance exercise showed a positive correlation between irisin and changes of muscle mass, and 

a negative correlation between the circulating irisin level and changes of fat mass and body fat 

percentage (Huh et al., 2012). Mechanisms behind the effects of Irisin have been intensely 

investigated in a number of studies (Aydin et al., 2014; Daskalopoulou et al., 2014; Hecksteden 

et al., 2013; Huh, 2018; Huh et al., 2014; Huh et al., 2012; Huh, Siopi, Mougios, Park, & 

Mantzoros, 2015; H. J. Kim, So, Choi, Kang, & Song, 2015; Pekkala et al., 2013; Roca-Rivada 

et al., 2013; Tsuchiya et al., 2014). However, until a study was conducted by Huh et al., most 

irisin investigations concentrated on plasma levels of its precursor, FNDC5, and the cleaved 

protein -irisin (Leal et al., 2018). Huh et al. investigated the effect of physical activity 
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specifically on skeletal muscle irisin levels and found that there was an age dependent effect with 

higher serum levels in younger exercisers and that secretion rates were dependent on exercise 

intensity. In addition, Huh et al. also showed increased irisin levels directly regulates muscle 

metabolism through adenosine monophosphate-activated protein kinase (AMPK- activated 

protein kinase) activation (Huh et al., 2014). 

1.8 THE GUT MICROBIOME 

I. Composition and Development 

The human gastrointestinal tract is occupied by more than 1013-1014 microorganisms, 

termed the “gut microbiome.” Although only located within the intestinal tract, their genome 

consists of a gene set approximately 150 times larger than the human genome (J. Chen, Guo, 

Gui, & Xu, 2018; Gill et al., 2006; J. Qin et al., 2010). This microbiome is comprised of about 

1,000–1,150 bacterial species, primarily consisting of two phyla: the Bacteroidetes and 

Firmicutes (approximately 80-90%), followed by Actinobacteria and Proteobacteria (J. Chen et 

al., 2018; Kallus & Brandt, 2012; Monda et al., 2017), and Verrucomicrobia, Fusobacteria, and 

Euryarchaeota to a much lesser extent (Backhed et al., 2015). Among the phyla, Firmicutes 

chiefly include the Ruminococcus, Clostridium, Lactobacillus, Eubacterium, Faecalibacterium, 

and Roseburia. The Bacteroides phyla primarily consists of Prevotella and Xylanibacter (J. Chen 

et al., 2018). The number, type, and function of microorganisms found within the gut varies from 

the upper to lower ends of the intestine, but the majority are located in the large bowel where 

nondigestible food is fermented providing the host with essential nutrients (Backhed, Ley, 

Sonnenburg, Peterson, & Gordon, 2005; Conlon & Bird, 2014; Denou, Marcinko, Surette, 

Steinberg, & Schertzer, 2016). The development of the microbiome begins during fetal 

development when the intestine is sterile within the uterus of the mother (Mackie, Sghir, & 
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Gaskins, 1999). Post conception, the gut is surrounded by the maternal microflora which begin to 

colonize the intestine (Mackie et al., 1999; Mandar & Mikelsaar, 1996). However, numerous 

factors influence the bacterial development in the infant stage promoting colonization of 

different microorganisms. By the time the infant turns one year old, the microbiome presents an 

“adult” signature with a dense population of microbes (C. Palmer, Bik, DiGiulio, Relman, & 

Brown, 2007; Tannock, 2007). From this time point, numerous genetic, epigenetic, and 

environmental factors shift the microbial population and its activity promoting high inter-

individual variability (Adlerberth & Wold, 2009; Ley, Peterson, & Gordon, 2006; Nicholson et 

al., 2012). One key environmental factor is physical activity (type, duration, intensity, etc.), 

which plays a key role in the diversity and function of the microbiome (C. C. Evans et al., 2014; 

Matsumoto et al., 2008). Nonetheless, the gut microbiome continues to change throughout the 

lifespan as the body ages. For example, the elderly show significant decreases in Bacteroidetes 

and an increase in Firmicutes, but the cause has yet to be determined. 

II. Functions of the Gut Microbiome 

The gut microbiota play many important roles including maturation of the host’s immune 

system, regulation of intestinal barrier function, preventing colonization of pathogenic microbes 

(Heiss & Olofsson, 2018), release of gut hormones, and regulation of oxidative stress and 

inflammation (Savini et al., 2013). Microbiota also modulate host energy homeostasis through 

harvesting energy from the diet as well as secreting various factors that affect its host’s 

metabolic tissues responsible for energy metabolism (Monda et al., 2017). Thus, the role of the 

commensal microbes is vital to the health status of the host due to their potential commensal or 

symbiotic relationship.  

III. Association of Microbiome and Pathological Conditions 
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With more studies concentrating on the gut microbiome, evidence is surmounting 

showing the gut microbiota is essential to maintaining host gut and systemic homeostasis (G. 

Clarke et al., 2014; Grenham, Clarke, Cryan, & Dinan, 2011). Several pathologies/diseases have 

been associated with an altered composition of the gut microbiome, termed dysbiosis, which has 

independently been shown to increase fat mass and elevate body weight (Monda et al., 2017). 

Diseases associated with dysbiosis include (but are not limited to) obesity, cardiometabolic 

diseases, IR/T2D, cancer, and inflammatory bowel disease (IBD) (J. Chen et al., 2018; Heiss & 

Olofsson, 2018; Monda et al., 2017; Savini et al., 2013). Although all these pathologies have a 

well-known multifactorial origin, part of which has previously been discussed (genetic, 

epigenetic, diet, redox state, physical activity level, and environment), more recently, the 

contribution of the microbiota has been considered a highly influential environmental factor 

(Backhed et al., 2004; Bleau, Karelis, St-Pierre, & Lamontagne, 2015). This presents the gut 

microbiome as a potential way to work as an intervention to counteract obesity, cardiometabolic 

diseases, cancer, and other chronic inflammatory diseases (Small & Bloom, 2004). In 2005, Ley 

et al. showed the leptin deficient, obese Ob/Ob mice exhibit a significant reduction of 

Bacteroidetes and increase in Firmicutes (Ley et al., 2005; Savini et al., 2013) which was also 

shown in obese humans when compared with lean controls (Turnbaugh et al., 2009; Turnbaugh 

et al., 2006). Most interesting, this ratio has been shown to be reversed with an alteration in 

dietary intake (Ley et al., 2006) or exercise intervention (S. F. Clarke et al., 2014). Additionally, 

not only the composition, but the number of different bacterial taxa present (diversity) also 

impacts host physiology. For example, decreased diversity has been shown in organisms 

consuming HFD (Garcia-Mantrana, Selma-Royo, Alcantara, & Collado, 2018), those with 

obesity-associated inflammatory characteristics (Ley et al., 2005), and/or sedentary individuals 
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(Monda et al., 2017). Numerous studies have shown that a reduction in the phylogenetic 

diversity is characteristic of obese vs. lean subjects and correlates with key metabolic parameters 

including high serum insulin levels, Homeostasis Model Assessment for Insulin Resistance 

(HOMA-IR), and plasma TG levels (Le Chatelier et al., 2013). Recovery from decreased 

phylogenetic diversity has been observed in studies investigating the effect of exercise (Monda et 

al., 2017) on microbial function as well as dietary intervention studies where a diet is lowered in 

fat (lard) content (Garcia-Mantrana et al., 2018). 

IV. Microbial – Host Interaction  

The gut microbiome plays a key role in the metabolic signaling of its host by regulating 

tissue cross-talk with the brain, liver, adipose, and skeletal muscle (Grosicki, Fielding, & 

Lustgarten, 2018; Mach & Fuster-Botella, 2017; Monda et al., 2017). The microbiome releases a 

variety of factors dependent on the host diet as well as the permeability of the gut.  

a) Bile Acids 

Primary bile acids are synthesized from cholesterol, secreted in bile, and bio-transformed 

into secondary bile acids upon contact with the resident colonic microbiota. It is estimated that 

approximately 50% of secondary bile acids are reabsorbed in the intestine and return to the liver 

by the portal vein (Di Ciaula et al., 2017). Bile acids aid in the digestion and absorption of fat, 

cholesterol, and fat-soluble vitamins in addition to acting as signaling molecules with anti-

inflammatory functions (Di Ciaula et al., 2017). It is expected that physical activity may improve 

gastrointestinal motility and peristalsis, thus regulating the concentration of circulating bile acids 

and their pleiotropic functions. Previous animal studies found that moderate physical activity 

increased bile acid excretion (Bouchard et al., 1994; Watkins, Crawford, & Sanders, 1994; 

Yiamouyiannis, Martin, & Watkins, 1993). Bile acids also interact with a variety of receptors in 
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the adipose tissue, skeletal muscle, intestine, and liver (ie. G protein-coupled Bile Acid Receptor 

1 (GPBAR‐1) and Farnesoid X Receptor (FXR)) (Brighton et al., 2015; Di Ciaula et al., 2017). 

This results in the modification of metabolically relevant hormonal pathways (ie, release of 

peptide YY (PYY) and glucagon‐like peptides) thus modulating appetite as well as glucose and 

insulin metabolism (Molina-Molina et al., 2018).  

b) Short Chain Fatty Acids  

One of the most significant contributions made by the gut microbiota to host function is 

the supply of short chain fatty acids (SCFAs) (J. M. Evans, Morris, & Marchesi, 2013). Upon 

fermentation (anaerobic) of a variety of carbon sources from the host diet, specific classes of the 

microbiota produce SCFAs. The three most predominant are butyrate, acetate, and propionate 

(Cummings & Macfarlane, 1997; J. M. Evans et al., 2013) which provide a significant source of 

energy for the host (J. M. Evans et al., 2013). However, this is not the only function served by 

SCFAs. It has also been shown that SCFAs act as signaling molecules and play a key role in 

metabolic function by exerting effects on a variety of metabolic organs (Nicholson et al., 2012). 

For example, within the gut, they bind to free fatty acid receptors and stimulate the release of 

PYY and 5-hydroxytryptamine (5-HT) (Cherbut et al., 1998; Fukumoto et al., 2003) which 

contributes to decreased intestinal transit rate as well as downstream signaling that controls 

appetite regulation within the hypothalamic region of the brain (Heiss & Olofsson, 2018). 

Another important function of which all the SCFAs play is the stimulation of leptin production in 

adipose tissue (Xiong et al., 2004; Yonekura et al., 2003). This is of considerable relevance to 

host metabolism with leptin being involved in a wide range of physiological processes including 

appetite regulation, reproduction, and metabolic rate (J. M. Evans et al., 2013). The number of 

SCFAs produced is determined by the host diet, microbial composition, and interaction between 
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the microbes (Jumpertz et al., 2011). The production of acetate, propionate, and butyrate are all 

upregulated by physical activity, but butyrate has become a particular interest in many exercise 

studies. (J. Chen et al., 2018; J. M. Evans et al., 2013; Matsumoto et al., 2008; Monda et al., 

2017). The main microbes known to produce butyrate are Clostridia, Eubacteria, and Roseburia. 

Butyrate regulates neutrophil function and migration, increases expression of tight junction 

proteins (prevents “leaky gut”), lowers redox stress, and exhibits anti-inflammatory effects 

(Nicholson et al., 2012). Its anti-inflammatory effects include increasing IL-10 and IL-8, 

lowering IL-6, TNF-alpha, and IL-1B (S. F. Clarke et al., 2014; Molina-Molina et al., 2018), and 

inhibiting Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) (Lai et al., 

2018). Propionate and acetate are substrates for gluconeogenesis and lipogenesis in the liver, 

adipose tissue, and skeletal muscle (Samuel et al., 2008; Wong, de Souza, Kendall, Emam, & 

Jenkins, 2006). Furthermore, specifically in skeletal muscle, SCFA activates the AMPK pathway 

which controls cholesterol and glucose metabolism providing evidence of cross-talk between the 

gut and skeletal muscle (Monda et al., 2017). 

c) Other Microbial Products 

Along with bile acids and SCFAs, the gut microbiome impacts the host by producing 

microbial products that play a significant role in metabolic processes such as the production of 

lipopolysaccharides (LPS) /endotoxins, Caseinolytic Protease B (ClpB), and other endocrine 

molecules. Obesity and its comorbidities are characterized by low-grade inflammation and 

increased levels of circulating LPS (Cani et al., 2007). Chronically elevated LPS, as those 

observed after consistent intake of a HFD (lard), can result in weight gain, insulin resistance, 

higher expression of inflammatory mediators, and macrophage infiltration in WAT (Caesar, 

Tremaroli, Kovatcheva-Datchary, Cani, & Backhed, 2015; Cani et al., 2007). Evidence suggests 
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that the increased circulating LPS levels after HFD intervention could be the result of a more 

permeable intestinal barrier (leaky gut). Contrary to a HFD, interventions such as an OM3 diet or  

increased physical activity can cause a decrease in LPS production from the gut microbiome 

(Heiss & Olofsson, 2018; Lai et al., 2018). In addition to the previously mentioned indirect 

cross-talk between the microbiome and appetite regulation (Ex. through leptin), evidence has 

been shown the microbiome also modulates the neuronal function of POMC by the bacterial 

product ClpB (Breton et al., 2016). ClpB acts as a mimetic of α-melanocyte-stimulating 

hormone, thus inducing satiety (Breton et al., 2016). Recent evidence has also confirmed that in 

addition to the production of endocrine molecules produced by the host, there is a significant 

level of dopamine and norepinephrine production in the human gut due to the expression of β-

glucuronidases by commensal gut bacteria (Asano et al., 2012; Eisenhofer et al., 1997). Gut 

microbes can also produce non-noradrenergic, non-cholinergic transmitters such as NO, which 

play a pivotal role in the regulation of gastric emptying (Orihata, Sarna, Orihata, & Sarna, 1994) 

by the anaerobic reduction of nitrate to nitrogen (Cutruzzolà & Cutruzzolà, 2012; Sobko et al., 

2005) thus modulating the redox environment. This is evidence that specific microbes have the 

potential to directly regulate host appetite, energy metabolism, the redox environment, and even 

mood/behavior by directly signaling to the central nervous system (CNS).  

d)  Bacterial Transfer 

In an inflammatory or disease environment, the gut may increase permeability due to 

modification of tight junctions (leaky gut). When this occurs, fragments of bacteria can leak from 

the gut and activate immune responses in other tissues by activating receptors stimulated by 

foreign particles (Burcelin, 2016). It is also of significant interest that whole bacteria from the 

gut may be transferred from a leaky gut (inflammatory responses) and modulate what is now 
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known as the “tissue microbiome.” This is of particular interest in the transfer of pathogenic 

bacteria from the intestines that could cause havoc in other metabolic tissues by inducing tissue 

dysfunction, inflammation, and possibly cell death (Burcelin, 2016). 

With the metabolic function of the gut microbiome and its role as an endocrine organ 

impacting key metabolic tissues through cross-talk, it has become evident that modifying the 

species present and ensuring proper function could play a role in the incidence of obesity, its 

comorbidities, and other chronic diseases (Brown, DeCoffe, Molcan, & Gibson, 2012; Small & 

Bloom, 2004). 

1.9 THE POTENTIAL OF ANTIOXIDANT CATALASE 

As a natural response to alleviate oxidative stress, the body activates antioxidant defense 

systems to upregulate endogenous antioxidant production and reduce the negative consequences 

that result from oxidant insult. Antioxidants catabolize oxidative species and form products that 

are less reactive/harmful to the cellular environment. Numerous investigations have been 

undertaken to determine the impact of antioxidants inhibiting disease pathways facilitated by 

increased levels of free radicals (Haidara et al., 2011; Spychalowicz, Wilk, Sliwa, Ludew, & 

Guzik, 2012). A major antioxidant involved in detoxifying H2O2 (a ROS) to the neutral products 

water and oxygen is catalase (X. Chen, Liang, Van Remmen, Vijg, & Richardson, 2004). 

Catalase exists as a tetramer composed of four identical monomers, each of which contain a 

heme moiety at the active site with a molecular weight of 62kD (Birben et al., 2012; Glorieux & 

Calderon, 2017). It is able to catabolize H2O2 in a two-step process. First, catalase is oxidized to 

a hypervalent iron intermediate which is subsequently reduced back to a balanced redox state by 

a second H2O2 molecule forming water and oxygen (Glorieux & Calderon, 2017). Although the 

mechanisms involved in the production of catalase have yet to be fully elucidated, evidence has 
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been shown it is induced by oxidative insult (Glorieux & Calderon, 2017). When the level of 

oxidant species rises within a cell, the endogenous antioxidant response system (i.e. Keap1/Nrf2) 

is activated thus upregulating the transcription of second phase antioxidants including catalase 

(Dreger et al., 2009; Pall & Levine, 2015; Xue et al., 2013; Yamamoto et al., 2018). Antioxidant 

catalase’s beneficial effects have been shown by investigating its overexpression using both in 

vivo and in vitro analysis. Previous studies in our own laboratory showed evidence for 

prevention of oxidative damage to vascular cells (Meilhac, Zhou, Santanam, & Parthasarathy, 

2000; Santanam et al., 1999) and in vivo in diet induced atherosclerosis and exercise intervention 

in a LDL r−/− mouse model (Meilhac et al., 2001). We specifically observed that increased 

redox stress/inflammation, as a result of a controlled insult, led to increased antioxidant 

expression. In a majority of our analysis, the antioxidant upregulated was catalase (Meilhac et 

al., 2001; Meilhac et al., 2000). In skeletal muscle tissue, function in aged rodents was improved 

by overexpression of human catalase targeted to the mitochondria (Umanskaya et al., 2014). 

Cancer progression was delayed where catalase was targeted to the mitochondria and attenuated 

mitochondrial H2O2 signaling (Ge et al., 2015). A cardiac-targeted overexpression of catalase 

prevented O.S. and decelerated aging effects in mice (Yao et al., 2015). Directly relevant to 

obesity and increases in fat mass, overexpression of catalase specific to the mitochondria 

attenuated mitochondrial ROS emission, preserved insulin signaling, and prevented 

inflammation when mice were provided HFD (high saturated fat) (Paglialunga, Ludzki, Root-

McCaig, & Holloway, 2015). It is hypothesized this effect may have been the result of catalase’s 

ability to regulate the polarization of macrophages within adipose tissue which would result in 

decreased inflammation and insulin resistance. Contrary to overexpression, in a mouse model 
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devoid of catalase, an obese, prediabetic phenotype was displayed that was exacerbated with age 

(Heit et al., 2017).  

Although our knowledge is limited in the field of redox stress in the context of the 

microbiome, we are aware that oxidants are required for normal function of the microbiome, but 

as with the host, too high of levels is also damaging (Imlay, 2018). This was made clear by Yoon 

et al. when their laboratory showed the level of ROS inside the host intestine must be carefully 

regulated, yet, most interestingly, it can be controlled by a single-microbe gene product: catalase 

(M. Y. Yoon et al., 2016). Additionally, research has shown specific organisms such as 

Escherichia coli (E. coli), Salmonella, typhimurium, Bacillus subtilis, and Saccharomyces 

cerevisiae are sensitive and damaged by excessive oxidant levels in their environment (Imlay, 

2018). For example, E. coli. mutants that lack either SOD or catalase and peroxidase exhibit 

distinctive inhibition of growth showing the specific injuries that O2 and H2O2 can produce 

(Carlioz & Touati, 1986; Seaver & Imlay, 2001). Additionally, the Bacteroides thetaiotaomicron 

is an oxygen-sensitive bacterium. When fully aerated, growth ceases, and it resumes only when 

anoxia is restored. Within the gut, scavenging enzymes including catalase and NADH peroxidase 

are induced when the environment becomes too highly oxidized. They largely suppress damage 

of oxidants in air-tolerant bacteria, but sometimes the antioxidants are unable to counter the 

higher rate of ROS production in obligate anaerobes (Zheng et al., 2001). Recently, it was also 

shown that catalase-positive bacteria are vital to the establishment of certain Bifidobacteria in 

non-anaerobic human niches of the infant gastrointestinal tract. When absent, health of the gut 

and its host deteriorates (E. Rodriguez, Peiroten, Landete, Medina, & Arques, 2015). These 

investigations provide evidence from human and animal models that catalase is an ideal 
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antioxidant to study redox regulation in metabolic diseases (e.g. Obesity, cardiometabolic 

disease, IR/T2D) and other chronic diseases for which there is no current universal therapy.  

1.10 THESIS PROJECT 

With redox stress being a major hallmark of obesity and its co-morbidities (McMurray, 

Patten, & Harper, 2016), it was hypothesized that excess catalase (antioxidant) expression 

would suppress redox stress mediated obesogenic pathways. Based on the current literature, 

our laboratory generated the “Bob-Cat” stress-less mice model, a hybrid between catalase 

transgenic mice [Tg(CAT)±] (X. Chen et al., 2003) and the leptin-deficient, obese mice 

(heterozygous JAX 000632, B6.Cg-Lepob/J). Upon its generation, we developed three specific 

hypotheses. First, we predicted that modulating redox stress by altering endogenous antioxidant 

content (overexpression of catalase) alone would enhance adipose tissue function, glucose and 

lipid signaling, and overall energy metabolism. The second hypothesis we developed was that by 

modulating redox stress by antioxidant overexpression or dietary intervention with an enriched 

OM3 diet (45%) vs. a HFD (45% lard) would positively modulate fatty acid signaling, glucose 

and lipid homeostasis, energy metabolism, and overall metabolic function. Third, we 

hypothesized antioxidant overexpression in addition to exercise would both enhance skeletal 

muscle and adipose tissue function, alter appetite signaling, and shift the composition and 

function of the gut microbiome thus improving overall energy metabolism in the ‘stress-less’ 

mice.  

To better understand the interplay between redox regulation and dietary or exercise 

intervention in metabolic pathways, we addressed our first hypothesis and characterized male 

and female Bob-Cat mice where we showed the ubiquitous expression of human catalase in 

addition to mouse catalase altered body composition measurements, overall energy metabolism, 
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and adipose tissue function compared to WT controls. Details of the collected phenotyping data 

is discussed in Chapter II. After realizing the insight that could be gained from further 

analyzing this unique mouse model, we then tested our second hypothesis and compared the 

redox effects of a high-fat omega 3-enriched diet (OM3) and high-fat lard diet (HFD) in both 

male and female catalase-overexpressing ‘stress-less’ mice which can be found in Chapter III. 

Our study showed that an OM3 enriched diet, in contrast to a HFD intervention, activated cross-

talk between the free fatty acid receptor, GPR120, and redox-sensitive transcription factor, Nrf2, 

to maintain balanced energy metabolism, normal circadian rhythm, and insulin sensitivity in 

mice overexpressing catalase compared to their WT controls. Another prevention strategy and 

therapy to counteract obesity and its co-morbidities is regular, moderately intense physical 

activity. Therefore, with our novel mouse model, we tested our third hypothesis where we sought 

to determine the synergistic effect of antioxidant overexpression and exercise on metabolic 

signaling pathways and the “forgotten endocrine organ” - the gut microbiome. As with our diet 

study, the overexpression of antioxidant catalase and exercise moved the field forward. We 

showed evidence of crosstalk between key metabolic organs and that the microbiome is 

significantly altered by overexpression of catalase and/or exercise intervention which will be 

further discussed in Chapter IV. A timeline of the experiments involved in the investigation of 

the newly generated mouse model is depicted in Figure 3. The conclusions derived from the 

aforementioned investigations solidify our claim that overexpression of antioxidant catalase is a 

beneficial adjuvant to an enriched OM3 diet/exercise intervention to suppress redox stress-

mediated obesogenic pathways by altering metabolic tissue function, maintaining glucose and 

lipid homeostasis, and improving energy metabolism. Finally, we showed that antioxidant 

overexpression and/or exercise intervention causes significant shifts in the gut microbiome in a 
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manner that may be contributing to the observed improvement in obesogenic markers. Therefore, 

it is evident the Bob-Cat mouse is an excellent model to study the effect of an altered redox 

environment on pathways regulating energy metabolism. Future studies using this novel mouse 

model with an altered redox status have the potential to direct the pathway to discovering 

promising therapeutics involving alterations of diet, physical activity, and manipulation of the 

gut microbiome to decrease risk of obesity, its comorbidities, and other chronic/debilitating 

illnesses.  

 

 

 

 

Figure 3. Timeline of proposed investigations of the novel ‘stress-less’ mouse. In order to 

phenotype and investigate the effects of dietary and exercise interventions using the newly 

generated mouse model overexpressing endogenous antioxidant catalase, an array of 

experiments was conducted at specific timepoints. An outline of these investigations based on 

the age of the mouse is shown in the figure above.  
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CHAPTER II: CATALASE OVEREXPRESSION MODULATES METABOLIC 

PARAMETERS IN A NEW ‘STRESSLESS’ LEPTIN-DEFICIENT MOUSE MODEL 
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(2017). Catalase overexpression modulates metabolic parameters in a new ‘stress-less’ leptin-
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ABSTRACT 

Oxidative stress plays a key role in obesity by modifying the function of important 

biological molecules, thus altering obesogenic pathways such as glucose and lipid signaling. 

Catalase is an important endogenous antioxidant enzyme that catabolizes hydrogen peroxide 

produced by the dismutation of superoxide. Recent studies have shown knockdown of catalase 

exacerbates insulin resistance and leads to obesity. We hypothesized that overexpressing catalase 

in an obese mouse will modulate obesogenic pathways and protect against obesity. Therefore, we 

bred catalase transgenic [Tg(CAT)±] mice with Ob/Ob mice to generate the hybrid “Bob-Cat” 

mice. This newly generated “stress-less” mouse model had decreased oxidative stress (oxidized 

carbonylated proteins). ECHO-MRI showed lower fat mass but higher lean mass in “Bob-Cat” 

mice. Comprehensive Lab Animal Monitoring System (CLAMS) showed light and dark cycle 

increase in energy expenditure in Bob-Cat mice compared to wild type controls. Circulating 

levels of leptin and resistin showed no change. Catalase mRNA expression was increased in key 

metabolic tissues (adipose, liver, intestinal mucosa, and brain) of the Bob-Cat mice. Catalase 

activity, mRNA and protein expression was increased in adipose tissue. Expression of the major 

adipokines leptin and adiponectin was increased while pro-inflammatory genes, MCP-1/JE and 

IL-1β were lowered. Interestingly, sexual dimorphism was seen in body composition, energy 

expenditure, and metabolic parameters in the Bob-Cat mice. Overall, the characteristics of the 

newly generated “Bob-Cat” mice make it an ideal model for studying the effect of redox 

modulators (diet/exercise) in obesity. 
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2.1 INTRODUCTION 

Rates of cardiometabolic diseases including obesity and Type 2 diabetes (T2D), are rising 

in developed and developing nations (Arroyo-Johnson & Mincey, 2016; Smith & Smith, 2016). 

In the United States of America (U.S.A), obese individuals make up approximately 35% of the 

population and the levels will continue to rise without appropriate interventions (Arroyo-Johnson 

& Mincey, 2016; Lewis, Edwards-Hampton, & Ard, 2016). The obese phenotype is a 

consequence of a number of factors including genetics (Arroyo-Johnson & Mincey, 2016; 

Pigeyre, Yazdi, Kaur, & Meyre, 2016) as well as environmental influences (Silventoinen et al., 

2016; Smith & Smith, 2016). Both of these factors impact physiological processes and the 

function of biological molecules within an individual. When homeostasis is disrupted, body 

function is compromised. Redox stress is an imbalance between antioxidants and oxidants, 

leading to detrimental effects, such as increased production of oxidative species, alterations in 

signaling pathways, increased inflammation, and eventually cell death. Redox stress is known to 

play a role in various metabolic diseases including obesity (Santilli, Guagnano, Vazzana, La 

Barba, & Davi, 2015; Spahis, Borys, & Levy, 2017).  

Increased free radical generation (redox stress) leads to a progressive accumulation of 

oxidative damage leading to increased adiposity stemming from an imbalance between pro-

oxidants and antioxidants (Manna & Jain, 2015; McMurray et al., 2016; Santilli et al., 2015; 

Savini et al., 2013). Increases in fat mass, manifested as an increase in white adipose tissue 

(WAT), increases oxidative stress/oxidant production and results in an obese phenotype 

(Paglialunga et al., 2015) characterized by a BMI (Body Mass Index) ≥ 30kg/m2 (Krueger, 

Coleman-Minahan, & Rooks, 2014). The obese phenotype is accompanied by mitochondrial 

dysfunction and increased lipid peroxidation, further leading to the dysfunction of other 
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metabolic tissues such as liver, muscle, (Paglialunga et al., 2015; Shill et al., 2016) gut, and brain 

(Ma, Yuan, Yu, Xi, & Xiao, 2014).  

Strong evidence of the redox theory in obesity stems from research concentrated in 

models with high levels of adiposity and altered appetite regulation as a result of increased 

oxidative stress (Drougard, Fournel, Valet, & Knauf, 2015; Haas & Staels, 2016). Rodent body 

weight changes were shown to alter appetite regulation with alterations in oxidative stress 

markers (Diane et al., 2015). Redox stress has also been implicated in the process of 

adipogenesis (X. Wang & Hai, 2015). Adipose dysfunction results in abnormal levels of 

adipokines and cytokines secreted into circulation, such as leptin, adiponectin, resistin, monocyte 

chemotactic protein-1 (MCP-1/JE), and interleukin 1 beta (IL1β). These molecules play key roles 

in appetite and metabolic function, as well as inflammatory processes (Abella et al., 2017; 

Bluher & Mantzoros, 2015).  In turn, this can further impact superoxide release and promote 

oxidative stress (Camargos et al., 2016; Fernandez-Sanchez et al., 2011). These molecules also 

mediate their effects by acting on immune cells leading to local and generalized inflammation 

thus impacting obesity related disorders (hypertension, diabetes, atherosclerosis, and insulin 

resistance) (Trostchansky, Quijano, Yadav, Kelley, & Cassina, 2016).        

 The body activates defense systems such as the endogenous antioxidants in order to 

counteract and prevent the negative consequences of increased redox stress. Antioxidants are 

able to catabolize reactive oxidants and yield products that are less reactive/toxic. Numerous 

studies have focused on the role of antioxidants in inhibiting disease pathways caused by 

increased levels of free radical production (Haidara et al., 2011; Spychalowicz et al., 2012). 

Catalase is one of the major endogenous antioxidant enzymes that detoxify the reactive oxygen 

species (ROS) hydrogen peroxide (H2O2) to water and oxygen. Overexpression of catalase was 
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shown to be beneficial in numerous studies. Our earlier studies have shown a role for catalase 

overexpression in the prevention of oxidative damage in vascular cells (Meilhac et al., 2000; 

Santanam et al., 1999) and in vivo in diet-induced atherosclerosis and exercise intervention in 

LDL r-/- mice (Meilhac et al., 2001). Other evidence includes studies where mitochondria 

targeted catalase showed a delay of cancer progression by attenuation of mitochondria-generated 

H2O2 signaling (Ge et al., 2015). A cardiac-specific overexpression of catalase protected from 

oxidative stress and displayed evidence of delayed cardiac aging in mice (Yao et al., 2015). In 

regard to obesity, a mouse model expressing mitochondria specific catalase on a high fat diet 

displayed attenuated mitochondrial ROS emission, preserved insulin signaling, and no 

inflammatory response compared to wild type controls (Paglialunga et al., 2015). This may be 

because overexpression of endogenous catalase was shown to regulate the polarization of 

macrophages within adipose tissue and thereby inhibit inflammation and insulin resistance (Park 

et al., 2016). On the other hand, mice devoid of antioxidant catalase developed an obese, 

prediabetic phenotype that was exacerbated with age (Heit et al., 2017). All these evidences 

suggest catalase as an ideal candidate for modulating redox stress in obesity.  

Since high redox stress is one of the major hallmarks of obesity (McMurray et al., 2016), we 

hypothesized that excess catalase (antioxidant) expression would suppress redox stress mediated 

obesogenic pathways. In this study, catalase transgenic [Tg(CAT)±] mice (X. Chen et al., 2004; 

X. Chen et al., 2003) expressing 3-4 fold higher levels of catalase were bred with the 

heterozygous, leptin deficient, Ob/Ob mice to create a hybrid that expresses high levels of 

catalase in an obese background (“Bob-Cat” mice). This newly generated mouse model showed 

sex specific changes in redox stress and metabolic parameters. Our results suggest that this 
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“stress-less” mouse model can be used as a good model to study the effect of modulators of 

redox stress (diet or exercise) on obesogenic pathways.  
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2.2 MATERIALS AND METHODS 

2.2.1 Generation of “Bob-Cat” Mice 

 A successful breeding colony of the catalase transgenic [Tg(CAT)±] mice has been 

established in our laboratory (a generous gift of a breeding pair from Drs. Arlan Richardson and 

Holly Van Remmen at the University of Texas Health Sciences Center in San Antonio, TX). The 

transgenic model that overexpresses Catalase was originally generated in C57Bl6 mice using a 

33kb human CAT (hCAT) gene as well as the 41kb of 5’ and the 6 kb of 3’ flanking regions. 

This mouse model was the first transgenic model with increased catalase expression in all tissues 

(X. Chen et al., 2003).  

 Using the well-established colony at our facility, [Tg(CAT)±] mice and the heterozygous 

Ob/+ mice (homozygous Ob/Ob are a leptin deficient, sterile model which spontaneously 

develops obesity – Jackson Labs, B6.V-Lep/ob/J ) were bred to engineer a novel mouse model 

with the goal of further understanding the mechanistic effect of lowering redox stress (by 

increasing catalase) on obesogenic pathways. Through cross-breeding the two genotypes, we 

developed a mouse model expressing the hCAT gene with a genetically obese background called 

“Bob-Cat” mice. The “Bob-Cat” mouse model was generated by following the breeding plan as 

described in Figure 4A. Four breeding pairs of the catalase transgenic mice [Tg(CAT) ±] were 

crossbred with Ob/+ mice (purchased from Jackson Labs) (2-male [Tg(CAT)±] mice x 2-female 

Ob/+ mice or 2-male Ob/+ mice x 2-female [Tg(CAT)±] mice) allowing the generation of the 

novel hybrid “Bob-Cat” mice. Once the first generation was established, four breeding pairs 

were used to sufficiently generate hybrid F2 pups for creating the F3 generation. Both F2 and F3 

generation mice were used for further study purposes.  
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2.2.2 Characterization of “Bob-Cat” Mice 

The newly generated hybrid “Bob-Cat” mice were compared to: i) Catalase transgenic 

[Tg(CAT) ±] mice that over-express the hCAT gene by approximately 3-4 fold in comparison to 

C57Bl6  (X. Chen et al., 2004), ii) wild type/C57Bl/6J mice (Jackson Lab stock number 000664) 

and iii) Ob/Ob (Jackson Lab stock number 000632), leptin deficient obese mice purchased from 

Jackson Laboratories (Bar Harbor, MA). Ob/Ob mice are homozygous for the mutant ob gene. 

 

Figure 4. Generation of the Bob-Cat mouse. Four breeding pairs were mated (2-male 

[Tg(CAT)±] mice x 2-female ob/+ mice) or (2-male ob/+ x 2-female [Tg(CAT)±] mice) to 

create the F1 generation. F1 generation offspring were then bred to generate the F2 

generation. F3 generations were produced by mating breeding pairs of the F2 generation. F2 

and F3 generations were used in characterizing the novel “Bob-Cat” mouse. Pie charts 

represent the percent of the males and females generated in the (B) F1 generation, F2 

generation, and F3 generation of each genotype. The key denotes each genotype generated 

from the breeding pairs. The figure provided displays each genotype generated from two 

breeding pairs. However, multiple breeding pairs were used in the generation of the Bob-Cat 

mice.  
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They increase in weight rapidly after 4 weeks of age, and can become up to three times the size 

of their parent strain C57Bl6 (Ioffe, Moon, Connolly, & Friedman, 1998). Along with 

accumulation of fat, Ob/Ob mice express hyperphagia, hyperglycemia, glucose intolerance, 

elevated plasma insulin (Ioffe et al., 1998), and increased hormone production from both 

pituitary and adrenal glands. The mice are hypometabolic, hypothermic, (Jackson Laboratory) 

and immunosuppressed (Lord et al., 1998). Due to the subfertility of Ob/Ob mice (Ingalls, 

Dickie, & Snell, 1950), the heterozygous Ob/+ mice are generally used for breeding. All mice 

were maintained on “standard chow” (Lab Diet Rodent Chow 5001) consisting of 30% protein, 

13% fat, and 57% carbohydrate ad libitum. In the present study, the care and use of animals was 

conducted according to protocols approved by Marshall University IACUC.  

2.2.3 Genotyping 

Four weeks post-birth, animals were ear marked for identification and genotyped by 

collecting approximately 3-4 mm of the tail and isolating DNA. Tails were lysed in 300 µL of 

tail lysis buffer and 15 µL of proteinase K then placed overnight in a 55˚C water bath followed 

by centrifugation for 10 min. at 12,000g at room temperature. The supernatant was placed in 

another eppendorf tube with 300 µL of 100% isopropanol. The tube was centrifuged again at 

12,000g for 5 min at room temperature to pellet the DNA. Pellets were dried and subsequently 

washed with 500 µL of 95% ethanol (EtOH) and centrifuged 5 min. at 12,000g. EtOH was 

discarded and the DNA pellets were air dried. 10 µL of Tris-EDTA (TE) Buffer was added to 

each tube and then all samples were placed into a 37˚C water bath 5-10 min. until the DNA was 

completely suspended. DNA was quantified by NanoDrop (Nanodrop Technologies Inc., 

Thermo Scientific, Wilmington, DE, USA). For genotyping, 0.25 µg (1 µL) of each DNA sample 

was added to a reaction mix of 18.125 µL RNase free H2O, 2.5 µL of 10X i Taq Buffer, 0.75 µL 
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of MgCl2 50 mM, 0.5 µL dNTP mix 10 mM, 1 µL forward primer, 1 µL reverse primer, 0.125 

µL i Taq DNA polymerase to prepare for amplification of DNA in the BioRad MyiQ (BioRad, 

Hercules, CA). PCR protocol was conducted as described in previous publications (X. Chen et 

al., 2003; Ellett, Evans, Zhang, Chavin, & Spyropoulos, 2009). Catalase primers: E12F: 5’-

GAGGTCCACCCTGACTACGGG-3’ and E13R: 5’-GCCTCCTCCCTTGCCGCCAAG-3’ (X. 

Chen et al., 2003). Primers for Ob gene characterization: RFLP-F: 5’-

TGAGTTTGTCCAAGATGGACC-3’; RFLP-R: 5’-GCCATCCAGGCTCTCTGG-3’; WtLep-F: 

5’-AATGACCTGGAGAATCTCC-3’; and Lepob-R: 5’-GCAGATGGAGGAGGTCTCA-3’ 

(Ellett et al., 2009). After amplification by PCR, agarose gel electrophoresis was used to 

determine the presence of the hCAT gene (450bp), and the Lep Ob genes (heterozygous Ob with 

WT-specific primer bands at 191 and 104bp and bands at 191 and 123bp for ob-specific primers; 

homozygous Ob if band at 191bp for Wt-specific primer and bands at 191 and 123bp for the Ob-

specific primer). Catalase bands were detected on a 1.2% agarose gel and Ob related bands were 

detected by use of a 3% agarose gel that also contained Ethidium Bromide (EtBr) that had been 

electrophoresed at 100V for approximately one hour. Bands were detected using the ChemiDoc 

and Image Lab Software (BioRad, Hercules, CA) (Figure 5). 



53 

2.2.4 Body Weight and Body Composition (fat and lean mass) 

[Tg(CAT)± ] and Bob-Cat mice were weighed weekly from weaning until 20 weeks of 

age to determine differences in growth rate prior to full development. Growth rates of C57Bl6 

and Ob/Ob mice were derived from studies conducted at Jackson Laboratory (where animals 

were purchased). Body composition (fat and lean mass) was determined using magnetic 

resonance imaging, ECHO-MRI (Magnetic Resonance Imaging) (Houston, TX). Mice were 

singly entered in the MRI machine and five measurements were performed on each mouse. The 

median values of fat and lean mass were computed per mouse, averaged per genotype, and 

subsequently compared to one another by one-way ANOVA.   

 
Figure 5. Genotyping [Tg(CAT)±] and Bob-Cat mice. Images show the ethidium bromide-

stained agarose gels of the PCR product during genotyping of: (A) Ob, WT, and (B) human 

catalase (hCAT) genes. Molecular weight markers are shown in lane 1 (100bp ladder 

Invitrogen) of images A and B. The sizes of the PCR markers are indicated on the side of each 

panel. Image A displays the three-primer PCR products representing control and Wt Lep-F 

primers which produce the control 191 bp product in all tail samples, but only produce the 

wild-type-specific 104 bp product when a wild-type allele is present (+/+ and ob/+) indicated 

in lanes 2-4. Lane 5 is no sample control. Three-primer PCR involving control and Lepob-R 

primers produce the control 191 bp fragment in all tail samples, but only produce the Lepob-

specific 123 bp product when a Lepob allele is present (Ob/+ and Ob/Ob) as seen in lanes 2-4. 

Image B represents samples in lanes 2-11 that have the hCAT gene, while lane 12 is a wild 

type (WT).   
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2.2.5 Metabolic Parameters Using Comprehensive Lab Animal Monitoring System 

(CLAMS) 

Metabolic parameters were measured indirectly by determining Volume O2 consumption 

(VO2) and Volume CO2 production (VCO2), respiratory exchange ratio (RER) as well as X-

Ambulatory counts (XAMB) using the CLAMS system (Columbus Instruments, Columbus, OH, 

USA). Mice were supplied with a sufficient amount of ground standard chow (Lab Diet Rodent 

Chow 5001) for the duration of the analysis (three days). Computations were made on the middle 

48 hours of the three day CLAMS procedure that the mice were subjected to, from 

approximately 0600 hours of the first day to 0600 hours of the third day. Heat production/energy 

expenditure (EE), RER average, average food intake (FI) per day, as well as X-Ambulatory 

locomotor activity per day (counts of movement made across the cage) were determined for each 

mouse in all groups. Group averages were compared by using a one-way ANOVA.  

2.2.6 Tissue Collection 

Animals were anesthetized using isoflurane after overnight fasting. Blood was taken by 

cardiac puncture, centrifuged, separated into red blood cells (RBCs) and plasma. Tissues 

(kidney, lung, skeletal muscle, heart, adipose, liver, intestinal mucosa (IM), and brain) were 

removed, weighed, and flash frozen in liquid nitrogen, followed by storage at -80˚C.  

2.2.7 Blood Analysis 

Whole blood was used to measure fasting glucose levels by a Precision Xtra Glucometer. 

Blood was then centrifuged for 10 min. to separate the plasma and RBCs. 35 µL of plasma was 

placed on a Cholestech cassette and read on a LDX Cholestech Machine (Cholestech 

Corporation, Hayward, CA) to determine Glucose, HDL, LDL, Total Cholesterol (TC), and TG 

levels. The remaining plasma was frozen at -80˚C. 
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Circulating levels of IL-6, TNF α, MCP-1/JE, Insulin, Leptin, and Resistin were 

measured in the plasma of C57Bl6, [Tg(CAT)±], and Bob-Cat mice by the use of a Milliplex 

Mouse Adipokine Array (Millipore) by a Luminex 200 system (Millipore, Austin, TX).  

2.2.8 Catalase RNA Expression 

 Catalase gene expression in various tissues (kidney, lung, muscle, heart, adipose, liver, 

intestinal mucosa (IM), and brain) of C57Bl6 (C), [Tg(CAT)± ] (T), and Bob-Cat (B) mice (male 

and female) was evaluated by PCR and gel electrophoresis. Total RNA was isolated using Tri-

Reagent (Sigma). RNA concentration was measured by the use of the NanoDrop 1000 

(NanoDrop Technologies Inc., Thermo Scientific, Wilmington, DE, USA) followed by RT-PCR 

for amplification (BioRad, Hercules, CA). Samples were evaluated for both Human (hCAT) and 

Mouse (mCAT) Catalase using gel electrophoresis in comparison to the housekeeping gene β-

Actin. Primers used were as follows: Human Catalase (hCAT) (Accession Number: NM-001752) 

Forward: 5’- acatggtctgggacttctgg -3’ and Reverse: 5’- tttgcaataaactgcctccc -3’; Mouse Catalase 

(mCAT) (Accession Number: NM-009804) Forward: 5’- agtcttcgtcccgagtctctc -3’ and Reverse: 

5’- ctggtcggtcttgtaatggaa -3.’ β-Actin (Accession Number NM-007393) Forward: 5’- 

ctacctcatgaagatcctcaccga -3’ and Reverse: 5’- ttctccttaatgtcacgcacgatt -3.’ Bands were detected 

using the ChemiDoc and Image Lab Software (BioRad, Hercules, CA). 

2.2.9 Abdominal Adipose Tissue mRNA Expression 

RNA was isolated from 100 mg of abdominal adipose tissue using TRI Reagent 

according to the manufacturer’s recommended protocol (Sigma). Concentrations of RNA were 

measured by use of the NanoDrop 1000 (NanoDrop Technologies Inc., Thermo Scientific, 

Wilmington, DE, USA).  Reverse transcription of total RNA (1 µg) was performed using 

iScript™ cDNA Synthesis Kit (Bio-Rad Hercules, CA, USA). RT-qPCR was conducted using iQ 
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SYBR™ Green Supermix (Bio-Rad). The mouse primers for catalase, leptin, adiponectin, MCP-

1/JE, IL1β, and β-Actin include: Catalase (Accession Number: NM-009804) Forward: 5’- 

agtcttcgtcccgagtctctc -3’ and Reverse: 5’- ctggtcggtcttgtaatggaa -3.’ Leptin (Accession Number: 

NM-008493) Forward: 5’- ctcatgccagcactcaaaaa -3’ and Reverse: 5’- agcaccacaaaacctgatcc -3.’ 

Adiponectin (Accession Number NM-009605) Forward: 5’- gcagagatggcactcctgga -3’ and 

Reverse 5’- cccttcagctcctgtcattcc -3.’ MCP-1JE (Accession Number: NM-011333.3) Forward: 

5’- ttccttcttggggtcagcacagac -3’ and Reverse 5’- actgaagccagctctctcttcctc -3.’ IL1β (Accession 

Number: NM-008361.3) Forward: 5’- aggagaaccaagcaacgaca -3 and Reverse 5’- 

tgggtgtgccgtctttcatt -3.’  β-Actin (Accession Number NM-007393) Forward: 5’- 

ctacctcatgaagatcctcaccga -3’ and Reverse: 5’- ttctccttaatgtcacgcacgatt -3.’ RT-qPCR was 

performed in the Bio-Rad MyiQ or Bio-Rad CFX ConnectTM instrument. All samples were run 

in duplicates or triplicates. Results were calculated using the Pfaffl Equation (2−ddCt) (Pfaffl, 

2001), and expressed as fold change compared to the control wild type/C57Bl6 mice.  

2.2.10 Western Blot 

Approximately 50 mg of abdominal adipose tissue was homogenized in 100 µL 

Radioimmunoprecipitation assay buffer (RIPA buffer) supplemented with protease inhibitor 

cocktail. Protein concentrations were determined by the Lowry Method (Lowry, Rosebrough, 

Farr, & Randall, 1951). Based on these concentrations, predetermined amounts of protein (40-50 

µg) per sample were prepared in loading buffer (90% Laemmli and 10% 2-mercaptoethanol) and 

boiled for 5 min. Samples were run on a SDS-PAGE and separated on 12% or 12.5% EZ Run 

Protein Gel Solution (Fisher), at 120V for 60-90 minutes. Electrophoretic transfer of the proteins 

onto a nitrocellulose membrane was performed at 100V for 60 min. on ice. Thermo Scientific 

Memcode Stain: Pierce MemCodeTM Reversible Protein Stain Kit was then used as a loading 



57 

control. Membranes were blocked with 1X Tris Buffered Saline (1X TBST), 0.05% Tween 20, 

pH 7.6, and 5% dry milk for one hour at room temperature. Blots were then incubated overnight 

at 4˚C with rabbit anti-bovine catalase antibody (1:3000 in 1X TBST and 5% dry milk) (VWR 

Rockland) which cross-reacts with both mouse and human catalase. After washing with 1X 

TBST, membranes were incubated with secondary anti-rabbit IgG (1:1000) in 1X TBST and 5% 

dry milk for 60 min. at room temperature. The immunocomplex was detected with LuminataTM 

Forte Western HRP (Millipore, Billerica MA). Densitometry of the bands was quantified using 

BioRad Image Lab Software (BioRad, Hercules, CA) and normalized to MemCode Stain of total 

protein in each lane.  

2.2.11 Catalase Enzymatic Activity 

Catalase enzymatic activity was measured according to the method of Aebi (Aebi, 1984). 

A standard curve was first generated using 1-5 units of bovine catalase (Sigma, 9001-9502). 

Approximately 50 mg of abdominal adipose tissue from each mouse was homogenized in 100 

µL of 50 mM KH2PO4, 5 ug/µL Aprotinin, and 2 µL of 0.1 M PMSF. Appropriate dilutions were 

made and 8 µL of each homogenate was added to 1 mL of 25 mM Hydrogen Peroxide (H2O2) 

solution (Sigma) and analyzed on a Shimadzu Spectrophotometer for one minute. Initial rate of 

disappearance of H2O2 was recorded at a wavelength of 240 nm during the 1 minute (∆A240 

nm/min). Each sample was analyzed in duplicate or triplicate. Change in absorbance was 

recorded for each tissue sample and specific activity was calculated based on protein estimation 

of the homogenate by the Lowry Method.  
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2.2.12 Protein Carbonylation Using OxyBlot 

  Approximately 50 mg of abdominal adipose tissue per sample was prepared by 

denaturing and derivatizing the proteins with a solution of 12% Sodium Dodecyl Sulfate (SDS) 

and Dinitrophenylhydrazine (DNPH) according to OxyBlot (Millipore) protocol. Neutralization 

solution was used to terminate the derivatization reaction after 15 min. The separation of proteins 

was achieved using a 12.5% EZ Run Protein Gel Solution (Fisher) or 12% mini PROTEAN TGX 

12% (BioRad) at 100V for 50-60 minutes followed by transfer to a nitrocellulose membrane at 

100V for 90 minutes. To determine equal loading and transfer efficiency, Pierce MemCodeTM 

Reversible Protein Stain was used to visualize proteins in a BioRad ChemiDoc and analyzed 

using BioRad Image Lab (BioRad, Hercules, CA). Non-specific binding sites were blocked with 

1X Phosphate Buffered Saline and Tween 20 (1X PBST) and 10% Bovine Serum Albumin 

(BSA) rocking for one hour. A 1:500 dilution of primary antibody, Rabbit-Anti-DNP (Millipore 

OxyBlot Kit) was added and rocked overnight at 4˚C, followed by washes with 1X PBST. Blots 

were conjugated with a 1:300 dilution of goat anti-rabbit IgG (Horseradish Peroxidase 

conjugated) for one hour at room temperature with rocking. Bands were visualized with 

LuminataTM Forte Western HRP (Millipore, Millerica, MA) using BioRad Chemidoc and Image 

Lab (BioRad, Hercules, CA). OxyBlot data of oxidized proteins were expressed as the 

densitometric ratio of the dinitrophenylhydrazone (DNP) bands to total protein in each lane 

obtained by the Memcode stain.  

2.2.13 Statistical Analysis 

Results for body composition and enzymatic activity are presented as mean ± standard 

error of the mean (S.E.M.) and plotted using GraphPad Prism. One-way ANOVA and Multiple 

Comparisons were used to evaluate the differences between the genotypes with Bonferonni post 
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hoc analysis. p<0.05 was considered statistically significant. For RT-qPCR analysis, expression 

was determined by use of the Pfaffl equation 2^−ddCT (Pfaffl, 2001) and represented as fold 

change with significance denoted as differences in delta CT/genotype.  
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2.3 RESULTS 

2.3.1 Breeding Outcomes for the Bob-Cat Mouse Model 

 The breeding scheme depicted in Figure 4A was used to generate Bob-Cat mice for three 

generations. Ratios of genotype of each generation of breeding pairs is depicted in Figure 4B. 

Approximately 50:50 ratios of males to females were observed in each of the F1-F3 generations. 

The first and second generations of pups were approximately 60% Bob-Cat while the third 

generation, F3, consisted of 100% Bob-Cat. In addition to “Bob-Cat” which is heterozygous for 

the ob gene, there was also the generation of mice that were homozygous for the ob gene that 

overexpressed catalase (Big-Bob). However, this genotype was rare in occurrence and was more 

skewed towards females than males (7% F1 and 2% F2 generations). In an effort to elucidate 

high antioxidant (catalase) effect in a leptin-resistant model, we are continuing to cross-breed, to 

generate more homozygous ob mutant mice overexpressing catalase.  

3.2 Mouse and Human Catalase Gene Expression in Various Tissues 

 Bob-Cat (B) male and female mice were evaluated for the expression levels of human 

and mouse catalase in various tissues and compared to C57Bl6 (C) and [Tg(CAT)±] (T) mice. 

Mouse catalase (mCAT) as well as human catalase (hCAT) mRNA levels were analyzed and 

compared by densitometry ratios to β-Actin using BioRad Image Lab (BioRad, Hercules, CA). 

Male Bob-Cat mice generally had higher levels of hCAT in comparison to the other genotypes of 

mice. However, levels of mCAT trended to be lower in comparison to the other two genotypes 

(Figure 6A-F). In general, female Bob-Cat mice showed no statistical difference in hCAT across 

most tissues, but there was a trend for increase in the brain, significant increase in the liver, and a 

decrease in muscle compared to C57Bl6. Additionally, there was a decrease in intestinal mucosa 

(IM) compared to [Tg(CAT)±] (Figure 6 G-L). With regard to mCAT in female Bob-Cat mice, 
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levels trended to be lower except in the IM and brain where there was a significant increase in 

comparison to both the other genotypes analyzed.  

 

 

 

Figure 6. Mouse and human catalase gene expression in various tissues. (A) 

Densitometric images of β-Actin, Human Catalase (hCAT) and Mouse Catalase (mCAT) 

PCR products of kidney, lung, muscle, and heart. (B) and (C) show densitometry ratios of 

hCAT and mCAT to β-Actin respectively from male mice. (D) Densitometric images of β-

Actin, hCAT and mCAT PCR products of adipose, liver, intestinal mucosa (IM), and brain. 

(E-F) show densitometry ratios of hCAT and mCAT to β-Actin respectively from female 

mice. (G-L) The representative images from female mice are displayed. The genotype of the 

mice groups are depicted as C for C57Bl6, T for [Tg(CAT)±], and B for Bob-Cat mice. 

Densitometric ratios of catalase to β-Actin were determined using BioRad Image Lab. Data 

are expressed as mean densitometric ratio of each group +/- SEM from n≥3 mice. Data were 

analyzed by One-way ANOVA and differences between genotypes were significant at 

p<0.05a*, p<0.01b*, p<0.001c*, p<0.0001d* to C57Bl6; p<0.05a#, p<0.01b#, p<0.001c#, 

p<0.0001d# to [Tg(CAT)±].      
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2.3.2 Body Composition and Tissue Weight  

 As seen in Table 1A and 1B, both male and female mice that overexpress antioxidant 

catalase have significantly lower body weight in comparison to the Ob/Ob mice (background of 

Bob-Cat mice) as do the control C57Bl6 mice. However, body weights of the novel Bob-Cat 

mouse were not significantly different from the C57Bl6 or [Tg(CAT)±] mouse. The male 

[Tg(CAT)±] mice on the other hand are slightly heavier than the C57Bl6 mice at adulthood as 

seen in Table 1A. No significant differences were seen between Bob-Cat mice and C57Bl6 or 

[Tg(CAT)±] with regard to liver and adipose weight, but as expected, Ob/Ob adipose and liver 

weights were significantly heavier than all other groups (p<0.0001). This effect was the same in 

both genders (Table 1A and 1B).  

A. 

Male Body Weight (g) Abdominal Adipose (g) Liver Weight (g) 

C57Bl6/WT  27.09 ± 0.79 0.77 ± 0.02 1.04 ± 0.07 

[Tg(CAT)±] 33.32 ± 0.46a* 1.28 ± 0.11 1.55 ± 0.06 

Bob-Cat 31.00 ± 1.02 1.73 ± 0.17 1.43 ± 0.05 

Ob/Ob 54.45 ± 2.21d*#$ 8.13 ± 0.71d*#$ 4.35 ± 0.24d*#$ 

B. 

Female Body Weight (g) Abdominal Adipose (g) Liver Weight (g) 

C57Bl6/WT 22.74 ± 0.37 0.91 ± 0.12 1.05 ± 0.05 

[Tg(CAT) ±] 21.18 ± 0.74 0.53 ± 0.06 1.05 ± 0.06 

Bob-Cat 24.21 ± 0.24 1.12 ± 0.13  1.18 ± 0.06 

Ob/Ob 51.71 ± 1.50d*#$ 7.76 ± 0.21d*#$ 2.61 ± 0.07d*#$ 

 

Table 1: Body weight and tissue weights. (A) Adult male (n≥4) body weight, adipose and 

liver weights of C57Bl6, [Tg(CAT)±], Bob-Cat, and Ob/Ob (n≥4) mice. (B) Adult female 

(n≥6) body weight, adipose weight, and liver weight of C57Bl6, [Tg(CAT)±], Bob-Cat, and 

Ob/Ob (n≥6) mice. One-way ANOVA was performed on GraphPad Prism 7. Data reported as 

mean ± S.E.M. and significant differences are displayed with letters indicating p values: 

a=p<0.05, b= p<0.01, c=p<0.001, d=p<0.0001; symbols represent significant differences 

between genotypes, *= to C57Bl6, #= to [Tg(CAT)±], $= to Bob-Cat.    
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From 4 to 20 weeks of age, mice considerably gained weight. However, statistical 

significance within the four genotypes of males is noted at 5 weeks of age between the Ob/Ob 

mice and the other three genotypes (p<0.05) (Figure 7A).  Female mice, shown in Figure 7B, on 

the other hand, showed a significant difference in body weight beginning at 4 weeks between the 

Ob/Ob mice and every other genotype (p<0.0001). C57Bl6 and Ob/Ob body weights were 

obtained from Jackson Labs: (C57BL/6J https://www.jax.org/jax-mice-and-services/straindata-

sheet-pages/body-weight-chart-000664; B6 Cg-Lepob/J https://www.jax.org/jax-mice-and-

serviceccs/strain-data-sheet-pages/body-weight-chart-000632).  

2.3.3 Body Composition (ECHO-MRI) 

ECHO-MRI was used to determine the lean and fat mass of all genotypes. A significant 

difference was observed in the fat mass of the Ob/Ob mouse group compared to both genders of 

the other genotypes. The lean mass was observed to be greater (p<0.04) for each male genotype 

that overexpresses antioxidant catalase in comparison to both C57Bl6 and Ob/Ob mice (Figure 

8A1 and A2), revealing a difference in body composition that should be further investigated. In 

 

Figure 7. Weekly body weights. (A) Male and (B) Female weekly body weight of 

(n≥7/group) C57Bl6, [Tg(CAT)±], Bob-Cat, and Ob/Ob mice. C57Bl6 and Ob/Ob measured 

by Jackson Laboratories. One-way ANOVA was performed on GraphPad Prism 7. Data 

represented as mean ± S.EM. and considered significant at p<0.01a*, p<0.0001d* to C57Bl6.  

 

https://www.jax.org/jax-mice-and-services/straindata-sheet-pages/body-weight-chart-000664
https://www.jax.org/jax-mice-and-services/straindata-sheet-pages/body-weight-chart-000664
https://www.jax.org/jax-mice-and-serviceccs/strain-data-sheet-pages/body-weight-chart-000632
https://www.jax.org/jax-mice-and-serviceccs/strain-data-sheet-pages/body-weight-chart-000632
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the female groups, Bob-Cat mice have a significantly higher fat mass compared to [Tg(CAT)±], 

and lean mass compared to C57Bl6 and [Tg(CAT)±] genotypes (p<0.02) (Figure 8B1 and B2). 

The sex differences in body composition are intriguing and worth investigating in the future. 

2.3.4 Metabolic Parameters Analyzed by CLAMS  

Although body weight and fat mass did not significantly differ between C57Bl6 and mice 

overexpressing antioxidant catalase, significant changes were seen in metabolic parameters as 

determined by CLAMS within the adult genotypes (Figure 9). Overall (combination of both 

light/dark cycles) analysis of CLAMS data showed that neither male nor female mice 

 

Figure 8. Body composition: fat and lean mass. Male (A1) Fat Mass and (A2) Lean 

Mass (g) of each genotype (n≥4/group). Female (B1) Fat Mass and (B2) Lean Mass (g) of 

each genotype (n≥4/group). Data represented as mean +/- SEM and considered significant 

at p<0.05a* to C57Bl6, p<0.05a# to [Tg(CAT)±].  
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significantly differed with regard to FI per day. Significant differences were observed in the 

energy expenditure levels and XAMB counts in male Ob/Ob mice compared to the other 

genotypes. RER was not significantly different in either gender.  

 Independent analysis of CLAMS data collected during the light and dark cycle (Table 2 

and Figure 10), showed that the FI and RER did not significantly differ among genotypes of 

either gender. However, significant differences in EE were seen among the male groups in both 

light and dark cycles. Bob-Cats showed a trend towards higher levels and [Tg(CAT)±] showed 

significantly higher levels of EE (p<0.008) compared to C57Bl6 males. The same effect was 

noted for the dark cycle where, Bob-Cats and [Tg(CAT)±] did have statistically higher levels of 

energy expenditure in comparison to C57Bl6 mice (p=0.021). In assessment of physical activity, 

 

Figure 9. Metabolic parameters. Male- (A1) Food Intake of C57Bl6, [Tg(CAT)±], Bob-Cat, 

and Ob/Ob averaged per day; (A2) Metabolic Energy Expenditure of each genotype averaged 

kcal/h over the middle 48h; (A3) XAMB Counts of each genotype over 48h; (A4) 

Respiratory Exchange Ratio (RER) average over 48h; Female- (B1) Food Intake of each 

genotype averaged grams (g) per day; (B2) Metabolic Energy Expenditure of each genotype 

averaged kcal/h over the middle 48h; (B3) X-AMB Counts of each genotype over 48h; (B4) 

RER average over 48h. Data represented as mean ± S.E.M. p<0.05a*, p<0.01b*, p<0.0001d* 

to C57Bl6; p<0.01b# to [Tg(CAT)±]; p<0.001c$ to Bob-Cat.  
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there was also a trend for higher levels of activity (XAMB) in Bob-Cat males in comparison to 

the Ob/Ob mouse group; most notably in the light cycle (Figure 10A1-A4). Ob/Ob male mice 

also had significantly lower activity levels (XAMB) in both the light and dark cycles compared 

to [Tg(CAT)±] and C57Bl6 mice (p<0.01) yet higher levels of energy expenditure compared to 

all other groups (p<0.01). Within females, all measured parameters with the CLAMS did not 

significantly differ between the groups except that XAMB counts were much higher in the Bob-

Group LIGHT DARK 

Male FI (g) EE 
(kcal/h) 

XAMB RER  
(VCO2/

VO2) 

FI (g) EE 
(kcal/h) 

XAMB RER  
(VCO2/

VO2) 

C57Bl6/WT 1.43 ± 
0.196 

0.366 ± 
0.010 

7398 ± 
963 

0.886 ± 
0.005 

3.07 ± 
0.271 

0.445 ± 
0.009 

24858 
± 3432 

0.942 ± 
0.009 

[Tg(CAT) ±] 1.34 ± 
0.042 

0.442 ± 
0.008 b# 

9581 ± 
2770 

0.871 ± 
0.006 

2.64 ± 
0.208 

0.509 ± 
0.009 a* 

24392 
± 4911 

0.920 ± 
0.009 

Bob-Cat 1.35 ± 
0.042 

0.422 ± 
0.010 

5088 ± 
1209 

0.899 ± 
0.010 

2.98 ± 
0.247 

0.508 ± 
0.008 a* 

17000 
± 3340 

0.952 ± 
0.009 

Ob/Ob 1.04 ± 
0.146 

0.503 ± 
0.013 b$ 

d*# 

874.4 ± 
112.4 

a*#  

0.867 ± 
0.014 

3.10 ± 
0.444 

0.589 ± 
0.015 

a*b#$  

2421 ± 
243.7 
a$b#c* 

0.913 ± 
0.016 

Female 
        

C57Bl6/WT 1.78 ± 
0.137 

0.398 ± 
0.019 

4791 ± 
405 

0.924 ± 
0.015 

2.82 ± 
0.109 

0.453 ± 
0.017 

17357 
± 1136 

0.939 ± 
0.024 

[Tg(CAT) ±] 1.67 ± 
0.140 

0.362 ± 
0.020 

4502 ± 
910 

0.932 ± 
0.022 

2.97 ± 
0.137 

0.421 ± 
0.022 

14556 
± 3845 

0.973 ± 
0.017 

Bob-Cat 1.74 ± 
0.218 

0.387 ± 
0.017 

11206 
± 2440 

0.891 ± 
0.010 

2.80 ± 
0.323 

0.477 ± 
0.021 

40300 
± 8352 

a*# 

0.910 ± 
0.008 

 

Table 2. Light and dark cycles of metabolic parameters. Male and female averaged light 

and dark cycles of food intake (FI) as average grams (g) of chow consumed per cycle, 

metabolic energy expenditure kcal/h of each mouse group, counts of physical movement as 

XAMB / cycle, and average Respiratory Exchange Ratio (RER) as VCO2/VO2 per cycle. 

One-way ANOVA was performed using Graph-Pad Prism 7. Data are represented as mean ± 

S.E.M. and significant differences are displayed with letters indicating p values: a=p<0.05, 

b= p<0.01, c=p<0.001, d=p<0.0001; symbols represent significant differences between 

genotypes, *= to C57Bl6/WT, #= to [Tg(CAT)±], $= to Bob-Cat. 
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Cat female group  (p<0.04) compared to both female C57Bl6 and [Tg(CAT)±] in both light and 

 

Figure 10. Two hour time interval analysis of metabolic parameters. (A1) Food Intake 

grams/day (A2) Metabolic Energy Expenditure averaged kcal/h over the middle 48h (A3) X-

AMB Counts over 48h (A4) Respiratory Exchange Ratio (RER) average over 48h of male 

C57Bl6, [Tg(CAT)±], Bob-Cat, and Ob/Ob. (B1) Food Intake averaged g/day (B2) Metabolic 

Energy Expenditure averaged kcal/h over the middle 48h (B3) X-AMB Counts of each 

genotype over 48h (B4) RER average over 48h of female mice of each genotype. Data 

represented as mean ± S.E.M. 
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dark cycles (Figure 10B1-B4).  

Data comparing the Bob-Cat (het Ob/+) to Big Bob (homozygous Ob/Ob) genotypes 

mice overexpressing catalase is displayed in Table 3. Big Bob mice have significantly higher 

body weight and fat mass. CLAMS data showed a trend toward an overall increase in FI and 

decrease in XAMB (combined light and dark cycles) as well as significantly higher levels of EE 

compared to the Bob-Cat mice.  

2.3.5 Circulating Metabolic Profile 

Blood glucose levels did not significantly differ between the Bob-Cat mice of either sex 

compared to C57Bl6 or [Tg(CAT)±] (Table 4A-4B). However, the Ob/Ob mouse group had 

Genotype Bob-Cat (n≥4) Big Bob (n≥3) 

Adult Images 

  
Body Weight (g) 31.0 ± 1.02 49.7 ± 2.4d$ 

Fat Mass (g) 3.28 ± 0.33 22.6 ± 1.11d$ 

Lean Mass (g) 27.8 ± 0.86 24.5 ± 1.69 

24h RER  VCO2/VO2 0.927 ± 0.01 0.934 ± 0.01 

24h EE (Kcal/h) 0.46 ± 0.01 0.55 ± 0.03a$ 

24h FI (g/24h) 4.28 ± 0.26 4.953 ± 0.60 

24h XAMB (counts/24h) 22238 ± 4686 12408 ± 9760 

 

Table 3. Characteristics of Bob-Cat and Big Bob mouse models. Data are reported as 

average ± S.E.M. An unpaired t test was performed for each parameter on GraphPad Prism 7. 

Data reported as mean ± S.E.M. and significant differences are displayed with letters indicating 

p values: a=p<0.05 and d=p<0.0001; symbols represent significant differences between 

genotypes: $= to Bob-Cat.    
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significantly higher levels of plasma glucose compared to all other genotypes. HDL and TC 

levels were significantly elevated in both sexes of the Ob/Ob mouse strain compared to all other 

genotypes. Interestingly, male [Tg(CAT)±] mice had significantly higher levels of plasma TG 

(Table 4A) compared to the other male groups, while Bob-Cat mice were highly similar to the 

C57Bl6 control mice.   

Milliplex Mouse Adipokine Array was used to measure circulating levels of IL-6, TNF α, 

MCP-1/JE, insulin, leptin, and resistin in blood plasma. Results shown in Figure 11A revealed 

that [Tg(CAT)±] and Bob-Cat mice trended to have similar levels of insulin. There were no 

statistically significant differences for plasma levels of leptin or resistin which are two major 

A.  

Male Total Cholesterol  

(mg/dL) 

HDL 

(mg/dL) 

TG (mg/dL) Glucose 

(mg/dL) 

C57Bl6/WT <100 61.8 ± 9.68 46.3 ± 1.08 188.4 ± 9.1 

[Tg(CAT) ±] <100 64.8  ± 2.38 95.3 ± 15.9 a* 220.1 ± 14.1 

Bob-Cat <100 65.8  ± 4.56 47.5 ± 0.9 b# 203.4 ± 7.3 

Ob/Ob 150 ± 7.49 d*#$ ≥ 98.8  ± 1.08 

a#$b*  

67.5 ± 8.5 319.8 ± 27.1 
a#b*$  

 

B.  

Female Total Cholesterol  

(mg/dL) 

HDL 

(mg/dL) 

TG (mg/dL) Glucose 

(mg/dL) 

C57Bl6/WT <100 48.63 ± 3.45 47.4 ± 2.22 192.9 ± 13.0 

[Tg(CAT) ±] <100 51.42 ± 3.2 50.2 ± 2.72 225 ± 9.0 

Bob-Cat <100 47.45 ± 2.93 54.8 ± 3.27 176.3 ± 12.4 

Ob/Ob 119.4 ± 3.8 d*#$ ≥93.43 ± 3.87 

d*#$ 

80.3 ± 9.23 c*# 367.8 ± 44.6 
d*#$ 

Table 4. Blood lipid profile and glucose level. A) Total Cholesterol, High Density 

Lipoprotein (HDL), Triglyceride (TG), and Glucose levels in C57Bl6/WT, [Tg(CAT)±], Bob-

Cat, and Ob/Ob mice (n≥4/group) (B) Total Cholesterol, High Density Lipoprotein (HDL), 

Triglyceride (TG), and Glucose levels in C57Bl6/WT, [Tg(CAT)±], Bob-Cat, and Ob/Ob 

female mice (n≥6/group). Data reported as mean ± S.E.M. and significant differences are 

displayed with letters indicating p values: a=p<0.05, b= p<0.01, c=p<0.001, d=p<0.0001; 

symbols represent significant differences between genotypes, *= to C57Bl6/WT, #= to 

[Tg(CAT)±], $= to Bob-Cat.    



70 

adipokines released from adipose tissue, between the control C57Bl6 parent group and mouse 

groups that over express catalase. The trend was similar in females (Figure 11B); however, it is 

intriguing to note, the levels were higher compared to male groups. Ob/Ob had significantly 

higher levels of insulin and resistin and very minimal leptin compared to all other groups. IL-6, 

TNF α, and MCP-1/JE were undetected or no trends were seen between mouse groups.  

 

2.3.6 Catalase mRNA, Protein Expression, and Enzyme Activity in Adipose Tissue 

Being a key metabolic tissue that plays a role in obesity, catalase mRNA expression was 

determined in visceral adipose tissue (WAT) obtained from both male and female mice of all 

genotypes using RT-qPCR on a Bio-Rad MyiQ. In male mice, catalase mRNA expression was 

upregulated by about 35 fold in Bob-Cat mice and was about 5 fold higher in the Ob/Ob mice 

compared to C57Bl6 (Figure 12A1). Western blot showed increase in catalase protein in 

[Tg(CAT)±] and Bob-cat mice but lower levels in the Ob/Ob mice (Figure 12B). Catalase 

 

Figure 11. Circulating levels of metabolic parameters. Circulating levels of insulin, leptin, 

and resistin were measured using an adipokine array on a Luminex system: (A) C57Bl6, Bob-

Cat, [Tg(CAT)±], and Ob/Ob male mice; (B) C57Bl6, Bob-Cat, [Tg(CAT)±], and Ob/Ob 

female mice. Data displayed as mean ± S.E.M. p<0.05a*, p<0.01b*, p<0.0001d* to C57Bl6, 

Bob-Cat, and [Tg(CAT)±].  
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enzyme activity, as determined by measuring the decomposition of H2O2, showed varying 

activities in the adipose tissue (Figure 12C1). No significant differences were detected, but Bob-

Cat mice trended to have higher activity levels compared to C57Bl6 mice. In contrast, females 

displayed no significant difference in catalase mRNA and protein expression in adipose tissue 

(Figure 12A2 and B). However, mice overexpressing catalase trended to have higher levels 

 
Figure 12. Catalase mRNA expression, protein, and enzyme activity in adipose tissue. 

(A1) Male and (A2) Female Catalase mRNA expression measured by RT-qPCR of the 

adipose tissue in [Tg(CAT)+/-], Bob-Cat, and Ob/Ob mice and depicted as fold change 

compared to C57Bl6 mice (n≥4/genotype) by ddCT Method. (B) Western Blot of catalase 

protein as shown by densitometric ratio of anti-Catalase and memcode stain of each genotype 

(n=3/group). Catalase enzyme activity as measured by Aebi method (C1) Male and (C2) 

Female specific activity of catalase (n≥7/group). Data reported as mean +/- SEM. p<0.05a* 

p<0.01b*, p<0.001c* considered significant to C57Bl6; p<0.01b$ to Bob-Cat.  
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within adipose tissue in comparison to C57Bl6 and Ob/Ob mice. With regard to enzyme activity, 

catalase activity in females was highest in the Ob/Ob mice, but all genotypes trended to have 

higher levels than the C57Bl6 mice (Figure 12C2). 
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2.3.7 Oxyblot Detection of Oxidized Proteins in Adipose Tissue 

Oxidized carbonyl groups are a commonly used marker of oxidative stress. Carbonylation 

of proteins in the adipose tissue was detected using oxyblot and evaluated based on densitometry 

ratios for each genotype. Male [Tg(CAT)±] had significantly lower (p<0.05) and Bob-Cat mice 

trended to have lower levels of carbonylated proteins within adipose tissue compared to the 

C57Bl6 control group (Figure 13A1-3). However, Ob/Ob mice had significantly higher levels of 

oxidized carbonyl groups than the Bob-Cat mice as well as the other two genotypes within the 

males (p<0.001). Female Bob-Cat mice showed no significant differences in oxidized proteins 

(Figure 13B1-3). 
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Figure 13. Oxyblot of oxidized proteins. (A1) Oxyblot of oxidized carbonyl groups; (A2) 

Memcode stain of total proteins; (A3) Densitometric ratios of oxidized proteins to total 

proteins (memcode) in adipose tissue of C57Bl6, [Tg(CAT)+/-], Bob-Cat, and Ob/Ob male 

mice; (B1) Female memcode stain of each genotype followed by (B2) blot of oxidized 

carbonyl groups and the (B3) Respective densitometric ratios per group. Error reported as 

mean +/- SEM. p<0.05 a* considered significant to C57Bl6; p<0.0001 d# to [Tg(CAT)+/-]. 

 



75 

2.3.8 mRNA Expression of Metabolic Genes in Adipose Tissue  

The mRNA expression of genes involved in adipose function: leptin, adiponectin, MCP-

1/JE, and IL1β was evaluated by RT-qPCR. In males, leptin, a key regulator of fat mass, was 

increased by about 4 fold in [Tg(CAT)±], approximately 188-fold in the Bob-Cat mice, and 88 

fold in the Ob/Ob genotype compared to the C57Bl6 controls (Figure 14A1). In female mice, 

there was a significant increase in leptin in both the Bob-Cat and Ob/Ob mice; approximately 69 

and 169-fold respectively (Figure 14B1).  

Adiponectin, an anti-inflammatory adipokine which plays a key role in glucose and lipid 

signaling was also increased in the male Bob-Cat mice compared to C57Bl6 and [Tg(CAT)±] 

mice (Figure 14A2). A similar trend was also noted in female mice (p<0.05). Female Bob-Cat 

mice had significantly higher adiponectin levels than C57Bl6 mice (p<0.01) followed by the 

Ob/Ob female mice (p<0.01) (Figure 14B2). Both IL1β and MCP-1/JE, key pro-inflammatory 

adipokines, showed no significant differences between any of the lean genotypes in either sex; 

however, increased levels were seen in Ob/Ob mice (Figure 14A3-4, B3-4).  
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Figure 14. Adipocytokine mRNA expression levels in adipose tissue. Gene expression 

levels of (A1 and B1) leptin, (A2 and B2) adiponectin, (A3 and B3) IL1B, and (A4 and B4) 

MCP-1 levels in C57Bl6, [Tg(CAT)+/-], Bob-Cat, and Ob/Ob male (A) and female (B) mice, 

n≥3 /genotype and gender. Data reported as mean +/- SEM. Results considered significant at 

p<0.05a*, p<0.001c*, p<0.0001d* to C57Bl6, p<0.01b#, p<0.001c# to [Tg(CAT)+/-], 

p<0.05$ to Bob-Cat. 
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2.4 DISCUSSION 

Obesity, which is at its all-time peak worldwide, increases the risk to other metabolic 

diseases such as T2D, dyslipidemia, hypertension and atherosclerosis (Lewis et al., 2016; Manna 

& Jain, 2015). Adipose tissue expansion and dysfunction is a hallmark of obesity. Over the 

years, researchers have attempted to understand the pathophysiology of obesity and how it leads 

to increased cardiometabolic diseases with the hope of finding preventive or treatment strategies 

(Lewis et al., 2016; R. L. Martin, Perez, He, Dawson, & Millard, 2000; Santilli et al., 2015). 

Redox stress is one such common phenomenon that has been associated with obesity and its co-

morbidities and is attributed to excess adipose mass and meta-inflammation (Fernandez-Sanchez 

et al., 2011).   

Mitochondrial generation of superoxide or hydrogen peroxide is a major intermediate 

between intracellular metabolism and insulin signaling (Hoehn et al., 2009). Modulating 

mitochondrial energetics by using mito-targeted antioxidants or excess catalase lowered 

metabolic and energy imbalance and improved insulin sensitivity (Anderson et al., 2009). 

Overexpression of Superoxide Dismutase (SOD) in mice prevented insulin resistance but had 

very little impact on mitochondrial function (Y. Liu, Qi, et al., 2013). Except for studies that 

showed that overexpression of catalase in a leptin resistant diabetic mouse model (db/db mice) 

prevented diabetic nephropathy (Brezniceanu et al., 2008; Godin et al., 2010; Lau et al., 2012) 

and that a catalase knockout mice developed obesity and prediabetic phenotype (Heit et al., 

2017), the effects of increased endogenous catalase expression in obesity models are 

understudied.  

In this study, we successfully generated a new mouse model with an obese parent 

(Ob/Ob) background that expresses the hCAT gene, named Bob-Cat. Due to its increased 
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catalase activity, it has lower “redox stress,” hence remains “stress-less.”  As depicted in Figure 

4 and the representative pie charts, Bob-Cat mice (heterozygous to Ob and expressing hCat) 

dominated the F2 and F3 generations. It was interesting to note that extremely low numbers of 

mice homozygous for the Ob gene and carrying the catalase gene were obtained during breeding. 

It is presumptive to assume that this skewness towards heterozygous mice might be due to higher 

catalase expression.  

Confirmation of increased catalase expression in key metabolic tissues (liver, IM, 

adipose, and brain) of Bob-Cat mice makes this an excellent model to study obesogenic 

pathways. Phenotyping showed no obvious differences in body weights between the genotypes at 

weaning ages but ECHO-MRI showed obvious differences in body composition. There were sex 

differences in overall fat and lean mass. Male Bob-Cat mice had a similar fat mass compared to 

C57Bl6 mice but lower compared to the Ob/Ob mice. In contrast, female Bob-Cats had a higher 

fat mass compared to [Tg(CAT)±]. The higher lean mass in male Bob-Cat compared to C57Bl6 

mice and in female mice compared to both C57Bl6 and [Tg(CAT)±] was intriguing. As expected, 

only Ob/Ob mice had a significantly higher body weight and fat mass beginning at 4 weeks of 

age in comparison to C57Bl6. 

It has been shown that even though body weights may not be different, the metabolic 

parameters may be functioning more efficiently in an individual with increased BMI. In contrast, 

individuals whose BMI falls within a “normal range” may still be metabolically unhealthy 

(Denis & Hamilton, 2013). Therefore, we measured the metabolic parameters using CLAMS 

technology, and determined the VO2 intake, CO2 output, RER (VCO2/VO2), EE (kcal/h), average 

FI per day, and the XAMB (physical activity) within each genotype. Catalase overexpression, by 

virtue of lowering redox stress levels, altering adipocyte secretion of key adipokines, and 
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modulating appetite regulation, was expected to increase EE and lower levels of FI. FI did not 

differ significantly between any genotypes, however, the antioxidant overexpressing mice 

trended towards decreased FI. Both groups of male mice that overexpressed catalase, 

[Tg(CAT)±] and Bob-Cat, significantly used more energy in heat production. The [Tg(CAT)±] 

genotype trended to have a higher activity level (though not statistically significant) in 

comparison to the other two genotypes. This may be due to the body’s response to the trend in 

higher body weight observed in adult [Tg(CAT)±] mice. The same could be noted for the Ob/Ob 

genotype. Heterozygosity of Lepob mice has been shown to display increased FI and altered 

glucose homeostasis, although mice did not differ in body weights compared to wild type (Flatt 

& Bailey, 1981). The adult Ob/+ mice had increased fat mass compared to wild types which 

might be attributed to lower leptin protein production in these mice (Chung et al., 1998). Bob-

Cat mice, in spite of its heterozygous Ob/+ genotype, did not significantly differ from the control 

mouse in respect to RER. Less differences in RER and EE were seen in female Bob-Cats. 

Cumulatively, CLAMS showed that catalase overexpression has a positive influence on energy 

metabolism.  

Bob-Cat mice also did not significantly differ in blood glucose, HDL cholesterol, or TC 

levels in comparison to C57Bl6 mice or [Tg(CAT)±]. However, Ob/Ob mice had higher levels 

indicative of a healthier phenotype, the overall ratio of HDL cholesterol and TC is more 

important, explaining why the Ob/Ob mice do not have a healthier lipid profile in comparison to 

antioxidant-excess or control mice. It was interesting to note that [Tg(CAT)±] mice had 

significantly higher levels of TG in comparison to C57Bl6, Bob-Cat, and even Ob/Ob mice. 

Insulin, leptin, and resistin levels did not differ significantly between mice overexpressing 
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catalase (Bob-Cat and [Tg(CAT)±]) compared to C57Bl6. However, females seemed to have a 

trend towards slightly lower levels of circulating insulin and leptin.  

Catalase expression and activity in the adipose tissue, which is one of the key metabolic 

tissues in obesity, showed differences between the genotypes. The mice overexpressing catalase 

had higher catalase expression compared to the parent strains. Males had increased expression 

compared to female mice. Catalase expression was almost 35 fold higher in the adipose tissue of 

Bob-Cat compared to C57Bl6 mice. The 5 fold increased expression observed in Ob/Ob mice 

may be the result of a compensatory response to higher levels of oxidative stress in these mice 

due to increased fat mass and production of pro-inflammatory cytokines (Espinosa-Diez et al., 

2015). Catalase activity was increased in Bob-Cat mice compared to C57Bl6 mice in male and 

females. This increase in activity validated the genetic overexpression of endogenous catalase. 

The increases in catalase activity and lowered oxidative stress, as shown by decreased 

oxidatively modified proteins in the Bob-Cat mice (Figure 13), make this a novel “stress-less” 

mouse model.  

Leptin and adiponectin are two adipokines that play a key role in adipose function. Leptin 

is a fundamental regulatory hormone that is primarily produced by adipocytes within WAT of 

both humans and rodents (Birsoy et al., 2011). The concentration of circulating leptin is directly 

proportional to total body fat (J. M. Friedman & Mantzoros, 2015). The hormone’s main 

function is demonstrated within the arcuate nucleus of the hypothalamic region of the brain 

where it is able to decrease appetite and increase energy expenditure (Spiegelman & Flier, 2001) 

through signaling systems involved in the orexigenic and anorexigenic pathways (Frago & 

Chowen, 2015). Oxidative stress modulates leptin’s action leading to changes in fat mass, 

metabolic parameters, and inflammatory status (Drougard et al., 2015). Like leptin, adiponectin 
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is most abundantly expressed in WAT, yet is downregulated during obesity (Nigro et al., 2014). 

Adiponectin protects against diseases such as diabetes and atherosclerosis (Z. V. Wang & 

Scherer, 2016). Specifically, administration of adiponectin has been shown to both elicit glucose 

lowering effects and ameliorate insulin resistance (Y. Liu, Turdi, et al., 2013). In other studies, 

suppression of adiponectin signaling pathway resulted in decreased oxidative stress detoxifying 

enzymes such as catalase (Iwabu et al., 2010). Leptin and adiponectin expression in the WAT 

were elevated in both sexes of Bob-Cat mice (p<0.0001) in comparison to the control C57Bl6 

mice. There was a significant increase in adiponectin in the Bob-Cat genotype in comparison to 

C57Bl6 mice (p<0.05). Due to elevated leptin and adiponectin expression in Bob-Cat adipose 

tissue and an increase in catalase expression in other metabolic tissues such as brain, this mouse 

model can be used to study appetite regulation through the adipose-brain axis. With lower levels 

of the pro-inflammatory genes, IL1β and MCP-1/JE levels, the Bob-Cat mouse is also ideal for 

studying metabolic changes resulting from dietary interventions or exercise. Table 5 provides a 

summary of the metabolic characteristics of the novel “stress-less” mouse model. The 
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differences in phenotype observed between the two sexes are intriguing and require further 

explanation.   

Caution should be placed on the knowledge that excess oxidative stress induces 

antioxidant defense which in turn tilts the balance towards excess reductive stress (Margaritelis 

et al., 2014). Reductive stress in turn then leads to increased oxidative stress and has been 

implicated in various diseases (Korge et al., 2015). This vicious cycle might have been at play in 

some of the previous studies using antioxidant overexpressing mouse models such as the study 

where excess glutathione peroxidase-1 showed increased body weight and insulin resistance 

(McClung et al., 2004). Increased quenching of ROS in these mouse models interfered with 

insulin signaling pathways (Lei & Cheng, 2005). Therefore, the Bob-Cat mouse model can also 

be used as a good model to study the role of reductive stress in metabolic diseases.  

 

 

 

Male Characteristics  
Bob-Cat 

Female Characteristics 

- Lean mass + 

- Metabolic energy expenditure + 

- Catalase mRNA in adipose 

tissue + 

- Catalase enzymatic activity 

trend + 

- Oxidative stress in adipose tissue 

trend - 

- Leptin mRNA in adipose tissue 

++++ 

- Adiponectin mRNA in adipose 

tissue + 
 

- Adipose weight + 

- Lean mass + 

- Physical activity trend + 

- Catalase protein expression 

trend + 

- Enzymatic activity in adipose 

tissue trend + 

- Leptin mRNA in adipose tissue 

+ 

- Adiponectin mRNA in adipose 

tissue + 

 

Table 5. Key characteristics of the novel ‘stress-less’ Bob-Cat mouse. Bob-Cat genotype 

compared to C57Bl6 mice increase depicted as (+). Significance represented as p<0.05 +, 

p<0.0001 ++++. 
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2.5 CONCLUSION 

Overall, based on the phenotypic results obtained in the Bob-Cat mice, it is apparent that 

the overexpression of catalase in an obese genotype modulated body composition while retaining 

a similar body weight in relation to the C57Bl6 and [Tg(CAT)±] mice. Significant changes in 

energy expenditure and activity levels of Bob-Cat mice compared to other genotypes suggest 

catalase is playing a role in appetite regulation of this novel “stress-less” mouse model. 

Significant differences in metabolic profile and oxidative stress make it a good model to study 

dietary and exercise interventions. 
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CHAPTER III: OMEGA 3 RICH DIET MODULATES ENERGY METABOLISM VIA 

GPR120-NRF2 CROSSTALK IN A NOVEL ANTIOXIDANT MOUSE MODEL 
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ABSTRACT 

With obesity rates reaching epidemic proportions, more studies concentrated on reducing 

the risk and treating this epidemic are vital. Redox stress is an important metabolic regulator 

involved in the pathophysiology of cardiovascular disease, Type 2 diabetes, and obesity. Oxygen 

and nitrogen-derived free radicals alter glucose and lipid homeostasis in key metabolic tissues, 

leading to increases in risk of developing metabolic syndrome. Oxidants derived from dietary fat 

differ in their metabolic regulation, with numerous studies showing benefits from a high omega 3 

rich diet compared to the frequently consumed “western diet” rich in saturated fat. Omega 3 

(OM3) fatty acids improve lipid profile, lower inflammation, and ameliorate insulin resistance, 

possibly through maintaining redox homeostasis. This study is based on the hypothesis that 

altering endogenous antioxidant production and/or increasing OM3 rich diet consumption will 

improve energy metabolism and maintain insulin sensitivity. We tested the comparative 

metabolic effects of a diet rich in saturated fat (HFD) and an omega 3-enriched diet (OM3) in the 

newly developed ‘stress-less’ mouse model that overexpresses the endogenous antioxidant 

catalase. Eight weeks of dietary intervention showed that mice overexpressing endogenous 

catalase compared to their wild-type controls when fed an OM3 enriched diet, in contrast to 

HFD, activated GPR120-Nrf2 cross-talk to maintain balanced energy metabolism, normal 

circadian rhythm, and insulin sensitivity. These findings suggest that redox regulation of 

GPR120/FFAR4 might be an important target in reducing risk of metabolic syndrome and 

associated diseases. 

 

 



86 

 

 

Figure 15. Redox regulation of GPR120-Nrf2 cross-talk in an OM3 fed catalase 

overexpressing mice. Overexpression of catalase in the Bob-Cat mouse model coupled with 

an enriched diet of OM3 fatty acids was shown to be metabolically beneficial. Energy 

homeostasis seen in this model was the result of induction of the GPR120/FFAR4, which by 

interacting with Nrf2 pathway (redox-sensitive) in adipose tissue resulted in redox balance, 

improved insulin sensitivity, anti-inflammation, enhanced circadian rhythm, decreased body 

weight and healthy fat mass.  
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3.1 INTRODUCTION 

The overwhelming prevalence of diet-induced obesity (DIO) and insulin resistance (IR) 

is strongly associated with the increased morbidity and mortality related to metabolic syndrome 

(Smith & Smith, 2016). This is of great concern in the United States of America where the 

obesity rates are rising and is currently approximately 39.8%, with over 93.3 million adults 

affected, and there is still a lack of understanding of its etiology (Division of Nutrition, 2018). 

Redox regulation is key for systemic metabolic homeostasis. Furthermore, redox stress is an 

important mediator of metabolic changes seen in obesity and its comorbidities which comprise 

the metabolic syndrome (Carrier, 2017). Oxygen and nitrogen-derived free radicals alter glucose 

and lipid homeostasis in key metabolic tissues such as adipose, liver, brain, and skeletal muscle. 

During conditions of high redox stress, the body naturally attempts to compensate by increasing 

the production of endogenous antioxidants (including superoxide dismutase-SOD, catalase etc.) 

to counteract the excess free radicals that could damage signaling pathways necessary for energy 

production. It is believed that an increased level of reactive oxygen species (ROS) plays a key 

role in IR, since human and rodent models of IR are typically characterized by an imbalance in 

ROS compared to antioxidants/reducing agents (Rochette, Zeller, Cottin, & Vergely, 2014; 

Teodoro, Rolo, & Palmeira, 2013). However, recent studies have also shown the importance of 

maintaining adequate ROS production for intracellular signaling (McMurray et al., 2016). 

Furthermore, the concept of reductive stress, an imbalance in the oxidative state where the ratio 

of oxidized to reduced molecules is too low (Brewer et al., 2013; Korge et al., 2015; Lipinski, 

2002), is also shown to be associated with an altered metabolic state such as hyperglycemia (L. J. 

Yan, 2014) or IR (Williamson, Kilo, & Ido, 1999). Therefore, a balance between free radicals 

and antioxidants is key in maintenance of tissue function and systemic metabolic homeostasis.  
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In addition to redox stress, nutritional intake plays a key role in modulating energy 

metabolism. DIO animal models are commonly used to study altered metabolic changes 

consequential to fat storage within various fat pads. In general, diets containing > 40% high-fat 

lard, milk, and butter promote excess lipid accumulation in adipose tissue leading to adipocyte 

hyperplasia and hypertrophy, alterations in adipokine secretion, hypoxia, and elevated circulating 

free fatty acids (FFA) in less than 8 weeks of ad libitum diet intervention (Choe et al., 2016; 

Heydemann, 2016). Furthermore, inflammatory pathways within the adipose tissue are activated 

as a consequence of excess lipid accumulation, which in turn drives a pro-inflammatory state 

provoking IR and inflammation in other metabolic tissues including liver, skeletal muscle, and 

pancreatic β-cells (Z. Chen et al., 2017; Snel et al., 2012). The severity of the consequences to a 

high-fat diet is dependent on the composition, length, and degree of fatty acid saturation 

(McArdle et al., 2013; Yeop Han et al., 2010). Contrary to the negative effects seen in diets with 

high levels of saturated fat (lard, milk fat, and butter), high-fat diets predominately composed of 

omega 3 (OM3) polyunsaturated fatty acids (PUFA) have been shown to have beneficial effects 

on metabolic function (Albracht-Schulte et al., 2018; Luo et al., 2016; Saini & Keum, 2018; 

Shahidi & Ambigaipalan, 2018). In general, diets comprised of fish oil, which is high in OM3, 

lower systemic IR (Oliveira et al., 2015), decrease fasting TG (Bargut et al., 2016) and 

cholesterol levels (Ide & Koshizaka, 2018; Tani et al., 2018), and reduce inflammation (Oliveira 

et al., 2015). These beneficial outcomes are in contrast to diets with high levels of saturated fats 

(Bargut et al., 2016; Yeop Han et al., 2010). Further understanding of the possible mechanisms 

by which OM3 fatty acids promote metabolic health came when Olefsky’s group discovered that 

GPR120/FFAR4, a free fatty acid receptor (highly expressed in adipose tissue) for which long 

chain omega 3 fatty acids are ligands, improved adipose tissue function and energy metabolism 
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by its insulin sensitizing and anti-inflammatory effects (D. Y. Oh & Olefsky, 2012; D. Y. Oh et 

al., 2010; D. Y. Oh et al., 2014). OM3 fatty acids also alter the balance of reductive and 

oxidative species, and are additionally critical in glucose and lipid metabolism (D. Y. Oh et al., 

2010). Furthermore, alterations in redox homeostasis through increased intake of OM3 fatty 

acids have been linked to activation of the nuclear factor E2-related factor 2 (Nrf2) pathway 

(Cipollina, 2015). Nrf2 is a transcription factor, key in regulating redox homeostasis (Seo & Lee, 

2013) by inducing the transcription of endogenous antioxidants including catalase, glutathione 

transferase, HO-1, and NAD(P)H: Quinone Oxidoreductase 1 (S. E. Lee et al., 2015; Yamamoto 

et al., 2018; Zhu et al., 2008). These studies pointed to the plausible mechanisms by which 

varying dietary fat composition can influence metabolic homeostasis by modulating redox stress.  

In our previous studies investigating dietary or exercise interventions in atherosclerotic 

mice models, we observed that increased redox stress or inflammation led to an increased 

antioxidant response by the tissues affected by the insult (for example vasculature). Our results 

showed that in most instances, the major endogenous antioxidant upregulated in response to the 

insults was catalase (Meilhac et al., 2001; Meilhac et al., 2000). Catalase is a major antioxidant, 

endogenously produced by various tissues, to neutralize excess H2O2 produced by dismutation of 

superoxide, yielding water and oxygen (X. Chen et al., 2004). In addition to our studies, 

numerous other studies have shown that catalase (mouse) overexpression for example, targeted 

to mitochondria (mCAT) in mice provided evidence of being an anti-cancer agent by delaying 

the progression of transgenic oncogene and syngeneic tumors (Ge et al., 2015), while 

overexpression of catalase (human) in mitochondria showed improvements in skeletal muscle 

function in aged rodents vs their WT littermates (Umanskaya et al., 2014). In the context of 

cardiovascular disease, restoration of catalase activity in the vascular aortic wall profoundly 
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reduced inflammatory markers and prevented abdominal aortic aneurisms through modulation of 

matrix metalloproteinase activity (Parastatidis, Weiss, Joseph, & Taylor, 2013). On the other 

hand, negative metabolic consequences occur in systems devoid of catalase. Within the context 

of DIO, a catalase knockout rodent model had exacerbated IR, amplified oxidative stress, and 

accelerated macrophage infiltration in epididymal white adipose tissue (Park et al., 2016) 

indicating catalase is a key antioxidant vital for glucose homeostasis and adipose tissue function. 

More recently, Heit et al. showed mice devoid of catalase developed an obese, pre-diabetic 

phenotype, further showing the importance of antioxidant catalase in metabolic regulation (Heit 

et al., 2017).  These evidences support catalase as an ideal antioxidant for investigating the 

effects of redox balance in obesity and its associated comorbidities due to its vital role in 

metabolic homeostasis in both humans and rodent models. The findings discussed in these 

studies led us to generate a mouse overexpressing catalase which will serve as a good model to 

study redox regulation of metabolic diseases. We hence generated the “Bob-Cat” ‘stress-less’ 

mouse model: a hybrid between catalase transgenic mice [Tg(CAT)±] (X. Chen et al., 2003) and 

leptin-deficient, Ob/+ mice (heterozygous JAX 000632, B6.Cg-Lepob/J). We have earlier shown 

that this novel mouse model had lower redox stress and improved adipose function compared to 

the Ob/Ob phenotype (JAX 000632, B6.Cg-Lepob/J) and expressed both human and mouse 

catalase (D. L. Amos et al., 2017).  

We hypothesized that modulating redox stress by altering endogenous antioxidant content 

(overexpression of catalase) and/or via dietary intervention will improve energy metabolism, 

adipose tissue function, and overall glucose and lipid homeostasis. To better understand the 

interplay between redox regulation and dietary intervention in improving energy balance and 

maintaining insulin sensitivity, we compared the redox effects of a high-fat lard diet (HFD) and a 
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high-fat omega 3-enriched diet (OM3) in a catalase-overexpressing ‘stress-less’ mouse model 

(D. L. Amos et al., 2017). In this model, we previously showed the ubiquitous overexpression of 

catalase altered body composition parameters, overall energy metabolism, as well as adipose 

tissue function in both male and female mice compared to WT controls (D. L. Amos et al., 

2017). These characteristics make this mouse model an excellent method for studying dietary 

effects of high fat lard and fish oil diets on metabolic homeostasis of both male and females, now 

critical for all clinical trials. Our study showed that OM3 enriched diet, in contrast to the HFD 

intervention, activated the GPR120-Nrf2 cross-talk to maintain balanced energy metabolism, 

normal circadian rhythm and insulin sensitivity in mice overexpressing catalase compared to the 

WT controls. Therefore, increasing endogenous antioxidant production in combination with an 

OM3 rich diet will maintain energy balance, improve adipose tissue function, and lower risk of 

obesity and its comorbidities.  
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3.2 MATERIALS AND METHODS 

3.2.1 Mouse Model and Diets 

A successful breeding colony of both catalase transgenic [Tg(CAT)±] and the ‘stress-less’ 

Bob-Cat mice, which ubiquitously express both human and mouse catalase, has been established 

in our facility (D. L. Amos et al., 2017). The care and use of animals was performed according to 

protocols approved by Marshall University IACUC. To ensure relevance to human clinical 

studies conducted on obese adults, it was necessary to use fully developed mice (thus being 

between 12-24 weeks of age which correlates with a 20-30 year old human (Jackson et al., 

2017)) and a 45% high fat diet. According to the Center for Disease Control (CDC database 

derived from NHANES studies), obese individuals typically consume a 45% fat diet (the 

“Western Diet”) (Eicher-Miller & Boushey, 2017). Therefore, sixteen week old [Tg(CAT)±], 

Bob-Cat, and their control C57Bl6/WT mice (n≥8/group/sex) were maintained on a 12h 

light/dark cycle and fed ad libitum either normal chow-NC (Lab Diet-5001, St. Louis, MO), 

High-Fat Lard-HFD diet (Envigo TD06415, Somerset, NJ) containing 45 kcal% Lard, or Omega-

3 rich-OM3 diet (Envigo TD130700, Somerset, NJ) containing 45 kcal% of Menhaden Fish Oil, 

for 8 weeks (Table 6). Both male and females were used due to the differences in overall 

regulation of energy homeostasis and metabolism of essential fatty acids (such as OM3) between 

the two sexes (B. F. Palmer & Clegg, 2015; M. Yoon et al., 2002). In order to investigate chronic 

effect of the dietary intervention, we conducted an 8 week feeding study. Animal body weights 

and food consumption were recorded weekly. Energy consumed per diet group was determined 

by dividing the grams of chow consumed by kcal per grams (g) of chow.  
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Calories Provided By: NC (5001) HFD (TD:06415) OM3 (TD:130700) 

 kcal% kcal% kcal% 

Protein 29.8 19.0 19.0 

Carbohydrate 56.74 36.2 36.2 

Fat 13.4 44.8 44.8 

    

Total Kcal/gm 4.09 4.6 4.6 

 
Diet Formulas HFD (TD:06415)- g/Kg OM3 (TD: 130700)- g/Kg 

Casein 245 245 

L-Cystein 3.5 3.5 

Corn Starch 85 85 

Maltodextrin 115 115 

Sucrose 200 200 

Lard  195 0 

Fish Oil 0 195 

Soybean Oil 30 30 

Cellulose 58 58 

Mineral Mix, AIN-93G-MX 

(94046) 

43 43 

Calcium Phosphate, dibasic 3.4 3.4 

Vitamin Mix, AIN-93-VX 

(94047) 

19 19 

Choline Bitartrate 3 3 

Red Food Color 0.1 0 

Green Food Color 0 0.1 

 

Cholesterol, ppm 234 1064.9 

SFA, g/Kg 80 59.2 

MUFA, g/Kg 103.5 51.2 

PUFA, g/Kg 40.8 100.0 

n-3, g/Kg 4.35 65.7 

n-6, g/Kg 36.2 23.9 

Linoleic Acid, g/kg 35.4 19.4 

Linolenic Acid, g/kg 4.3 5.9 

Arachidonic Acid, g/kg 0.78 4.4 

Eicosapentaeoic Acid, g/kg 0 31.2 

Docosahexaenoic Acid, g/kg 0 21.06 

*HFD and OM3 diets obtained from Harlan Laboratories and NC diet obtained from LabDiet  

 

Table 6. Diet composition. High-fat lard diet (Envigo TD06415-HFD), high-fat Omega-3 

rich diet (Envigo TD130700 -OM3), and standard chow diet (LabDiet 5001-NC). 
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3.2.2 Fat and Lean Body Mass-ECHO-MRI 

Body composition (fat and lean mass) was determined using magnetic resonance 

imaging, ECHO-MRI (Houston, TX) according to manufacturers’ recommendations. Each 

mouse was individually placed within the MRI machine and three or more measurements were 

taken. Median values of fat and lean mass readings were calculated per mouse and subsequently 

averaged per genotype and diet. Comparisons between groups were made by one or two-way 

ANOVA.   

3.2.3 Metabolic Parameters (Comprehensive Laboratory Animal Monitoring System- 

CLAMS) 

Changes in metabolic parameters in response to the dietary interventions were 

determined during the final week of the study using indirect calorimetry by measuring O2 

consumption (VO2) and CO2 production (VCO2), respiratory exchange rate (RER), Food Intake 

(FI), Energy Expenditure (EE), as well as X-Ambulatory counts (XAMB, physical activity) 

using the CLAMS system (Columbus Instruments, Columbus, OH, USA). As recommended in 

the instruction manual, each mouse was placed individually in the metabolic cages and was 

supplied with a sufficient amount of their respective diet for the duration of the data collection 

(three consecutive days). Analyses were made using the data collected during the middle 48 

hours of the 72-hour procedure, which is from approximately 0600 hours of the first day to 0600 

hours of the third day. These time points allowed for both adequate time to acclimate to the 

CLAMS environment and provide accurate data for assessment of all measured parameters. Food 

intake (FI) was measured by CLAMS and energy intake was calculated by dividing the grams of 

food consumed by the kcal of energy per gram of each laboratory diet. RER is calculated as the 

ratio of carbon dioxide production and oxygen consumption. Carbohydrate (CHO) oxidation was 
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calculated using the formula ((4.585*VCO2) − (3.226*VO2))*4, and similarly, fat oxidation was 

calculated using the formula ((1.695*VO2) − (1.701*VCO2))*9 as described by Peronnet & 

Massicotte (Peronnet & Massicotte, 1991). EE (heat production) was calculated as the Cal/h/lean 

mass (g) to account for the lean body weight. Average values of EE, RER, FI per day, as well as 

XAMB locomotor activity per day (counts movement made across the cage measured with 

infrared sensors) were determined for each mouse in all groups. Results were further broken 

down into light and dark cycles at 2 h time intervals for a total of 48 hours per mouse. One and 

two-way ANOVA was used to determine comparative changes between the various genotypes 

fed NC, HFD or OM3 diets.   

3.2.4 Blood and Tissue Collection 

At the end of 8 weeks, animals were fasted overnight and anesthetized using isoflurane 

immediately prior to cardiac puncture. Blood was collected in heparinized tubes, centrifuged, 

plasma separated, and stored. Tissues including adipose and liver were removed, weighed, and 

flash frozen in liquid nitrogen, followed by long-term storage at -80˚C.  

3.2.5 Circulating Metabolic Parameters 

Whole blood was used to measure fasting glucose and ketone levels (Precision Xtra 

Glucometer) then centrifuged for 10 min. to separate the plasma and red blood cells. Thirty-five 

µL of plasma was placed on a Cholestech cassette and read on a LDX Cholestech system 

(Cholestech Corporation Hayward, CA) to determine Glucose, High Density Lipoprotein (HDL), 

Low Density Lipoprotein (LDL), and Total Cholesterol (TC) levels. If data collected fell outside 

the range (sensitivity of the assay), the less than (“<”) or (“>”) was used to best represent the 

results. The remaining plasma was frozen at -80˚C for further analysis of circulating markers. 
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Triglyceride (TG) levels were assessed in plasma using a Triglyceride Colorimetric 

Assay Kit (Cayman Chemicals, Ann Arbor, MI). Plasma insulin was analyzed using an 

ultrasensitive mouse Insulin ELISA kit (Crystal Chem, Downers Grove, IL). The end point 

colorimetric assays were performed using a BioRad Benchmark Plus microplate reader 

according to manufacturer’s instructions.  

HOMA-IR is a surrogate measure of insulin resistance routinely used in research studies 

(Antunes, Elkfury, Jornada, Foletto, & Bertoluci, 2016; Cacho, Sevillano, de Castro, Herrera, & 

Ramos, 2008; M. Y. Lee et al., 2008). HOMA-IR was calculated using the formula: fasting 

insulin [μlU/ml] x fasting glucose [mmol/L])/22.5.  

Circulating FGF-21 was assessed using Mouse and Rat FGF-21 ELISA (Biovendor, 

Modrice, Czech Republic) according to manufacturer’s protocol. Absorbance was read using a 

BioRad Benchmark Plus microplate reader. Calculations were conducted in accordance with the 

best-fit line created from the standard curve of plotted absorbance values against the known 

concentrations of standards.  

3.2.6 Adipose mRNA Expression  

RNA was isolated from 100 mg of perigonadal adipose tissue using TRI Reagent 

according to the manufacturer’s recommended protocol (Sigma, Saint Louis, MO). RNA 

concentration was determined using the NanoDrop 1000 (NanoDrop Technologies Inc., Thermo 

Scientific, Wilmington, DE, USA). Reverse transcription of total RNA (1 µg) was performed 

using iScript™ cDNA Synthesis Kit (Bio-Rad, Hercules, CA). RT-qPCR was conducted using 

iQ SYBR™ Green Supermix (Bio-Rad, Hercules, CA). The mouse primers used in this study are 

provided in Table 7. 18S and β-Actin primers were used as the housekeeping reference genes. 

All samples were analyzed in duplicate or triplicate in the Bio-Rad MyiQ or Bio-Rad CFX 
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ConnectTM (Bio-Rad, Hercules, CA) instrument and a transcript was considered non-detectable 

when the CT value was ≥ 40. The mRNA level of the gene of interest for each group was 

normalized to that of the referenced control using the comparative Pfaffl Equation (2^-ddCT) 

(Pfaffl, 2001) and expressed as fold change compared to the control C57Bl6/WT mice fed 

normal chow (WT NC) or C57Bl6/WT within each dietary group. 

 

3.2.7 Western Blot 

Approximately 50 mg of perigonadal adipose tissue was homogenized in 100 µL of 

Radio-immunoprecipitation assay buffer (RIPA buffer) supplemented with protease inhibitor 

cocktail. Protein concentrations were determined by the Lowry Method (Lowry et al., 1951). For 

each sample, 50-60 µg protein, were prepared in loading buffer (90% Laemmli and 10% 2-

mercaptoethanol) and boiled for 5 min. at 100˚ C. Samples were run using SDS-PAGE and 

separated on 12% Precast Gel (BioRad, Hercules, CA), at 100 V for 60-70 min. Electrophoretic 

transfer of the proteins onto a nitrocellulose membrane was performed at 100V for 60 min. on 

Primer 

Name 

Accession 

Number 

Forward Reverse 

Mu-

Adiponec

tin 

NM-

009605 

5’- gcagagatggcactcctgga -3 5’- cccttcagctcctgtcattcc -3’ 

Mu-

GPR120 

NC_0011

95755.1 

5’- tgtgtgctctagtgctggtg -3’ 5’- gcgctggtgaagagcaaatc -3’ 

Mu-NrF2 NM_0109

02 

5’- ccagaagccacactgacaga -3’ 5’- ggagaggatgctgctgaaag -3’ 

Mu-HO-1 NC_0000

22.11 

5’- cacgcatatacccgctacct -3’ 5’- ccagagtgttcattcgagcac -3’ 

Mu-FGF-

21 

NC_0000

19.10 

5’- cgtctgcctcagaaggactc -3’ 5’- aatcctgcttggtcttgggg -3’ 

Mu-B-

Actin 

NM-

007393 

5’- ctacctcatgaagatcctcaccga -

3’ 

5’- ttctccttaatgtcacgcacgatt -

3’ 

Hu-18S NR_0032

86.2 

5’- gcaattattccccatgaacg -3’ 5’- ggcctcactaaaccatccaa -3’ 

Table 7. Primer sequences for quantitative RT-PCR.   
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ice. Thermo Scientific Memcode Stain: Pierce MemCodeTM Reversible Protein Stain Kit 

(Thermo Fisher Scientific, Rockford, IL) was used as a loading control. Membranes were 

blocked with 1X Tris Buffered Saline (1X TBST), 0.05% Tween 20, pH 7.6, and 5% dry milk 

for one hour at room temperature. Blots were incubated overnight with mouse GPR120 antibody 

(1:250 in 1X TBST and 5% dry milk) (Santa Cruz, Dallas, TX). After washing with 1X TBST, 

membranes were incubated with secondary anti-mouse IgG (1:3000 in 1X TBST and 5% dry 

milk) for 60 min. at room temperature. Membranes were washed and the immunocomplex was 

detected with LuminataTM Forte Western HRP (Millipore, Billerica MA). Densitometry of the 

bands was quantified using BioRad Image Lab Software (BioRad, Hercules, CA) and normalized 

to MemCode Stain of total protein.  

3.2.8 Catalase Enzymatic Activity 

Catalase activity was measured in perigonadal adipose tissue protein lysates using the 

method of Aebi (Aebi, 1984). Approximately 50 mg of adipose tissue was homogenized in 100 

µL of 50 mM KH2PO4, 5 ug/µL Aprotinin, and 2 µL of 0.1 M PMSF. Eight microliters of each 

homogenate was added to 1 mL of 25 mM of Hydrogen Peroxide (H2O2) and analyzed on a 

Shimadzu Spectrophotometer for one minute. The initial rate of disappearance of H2O2 was 

recorded for 1 min. at a wavelength of 240 nM. Each sample was measured in duplicate or 

triplicate. A standard curve was generated using 1-5 units of bovine catalase (Sigma, Saint Louis, 

MO). Specific activity of catalase was calculated based on the standard curve and total protein 

used based on  the Lowry’s Method (Lowry et al., 1951). 

3.2.9 Quantification of Oxidized Proteins  

Carbonylated proteins are a hallmark of redox stress (Fedorova, Bollineni, & Hoffmann, 

2014). Oxidized proteins were measured in lysates of perigonadal adipose tissue by determining 
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the presence of carbonylated proteins using the Protein Oxidation Detection OxyBlot kit 

(Millipore, Billerica, MA) in accordance with the manufacturer’s instructions. The method is 

based on the principle that proteins modified by oxidative stress result in an addition of carbonyl 

groups to their side-chains. The carbonyl groups are detected after derivatization to 2,4-

dinitrophenylhydrazone (DNP) by treating with 2,4-dinitrophenylhydrazine (DNPH). An 

antibody specific to DNP is then used to determine carbonylated proteins (relative oxidative 

stress levels) in each sample. Briefly, each lane was loaded with 20 µg of the derivatized protein 

and ran on a 12% BioRad Precast Gel. After gel electrophoresis, proteins were transferred to a 

nitrocellulose membrane at 100 V for 60 min. Equal loading and transfer efficiency was 

evaluated by use of the Pierce MemCodeTM Reversible Protein Stain Kit (Thermo Fisher 

Scientific, Rockford, IL). Non-specific binding sites were then blocked for one hour with 1X 

Phosphate Buffered Saline (1X PBST) and Tween 20 and 10% Bovine Serum Albumin (BSA). 

A 1:500 dilution of primary antibody, Rabbit-Anti-DNP (Millipore OxyBlot Kit, Billerica, MA) 

was added and rocked overnight at 4˚C, followed by washes with 1X PBST. Blots were 

conjugated with a 1:300 dilution of goat anti-rabbit IgG (Horseradish Peroxidase conjugated) for 

1 h rocking at room temperature. Membranes were washed and the immunocomplex was 

detected with LuminataTM Forte Western HRP (Millipore, Burlington, MA). All images were 

acquired and analyzed by a BioRad ChemiDoc and Image Lab Software (BioRad, Hercules, 

CA). Oxidized proteins were expressed as the ratio of the optical density of 

dinitrophenylhydrazone (DNP) to total protein as determined by the Memcode stain.  

3.2.10 Statistical Analysis 

Data were statistically analyzed using one and two-way ANOVA followed by 

Bonferroni’s multiple comparison tests using Version 7 of GraphPad Prism among all mouse 
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groups. Data are presented as mean ± standard error of the mean (S.E.M.) unless fold change or 

percent of WT was provided. p<0.05 was considered statistically significant. RT-qPCR gene 

expression was determined by use of the Pfaffl equation (Pfaffl, 2001) and represented as fold 

change with significance denoted as differences in delta CT/genotype and diet. GPR120 protein 

and oxidized carbonyl protein analysis was represented as percentage of the WT control mouse 

group normalized by total protein quantified by memcode stain.  
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3.3 RESULTS 

3.3.1 Body Weight and Body Composition 

Sixteen week old male mice overexpressing (human and mouse) antioxidant catalase 

([Tg(CAT)±] and Bob-Cat) (D. L. Amos et al., 2017) were fed either normal chow (NC), high-fat 

lard (45% kcal, HFD), or high-fat omega 3 enriched (45% kcal, OM3) diet, ad libitum for a 

period of 8 weeks. Changes in body weight and body composition (fat and lean mass ratio) in the 

catalase overexpressing mice were compared to the control wild type (WT) mice fed similar diets 

over the 8 week intervention. Body weight was recorded each week and averaged per 

intervention group. As shown in Figure 16, all three genotypes maintained their body weights 

when fed NC over the 8 week period. However,  WT and [Tg(CAT)±] mice consuming a high-fat 

lard diet (HFD) gained significantly more weight (8 and 10 fold, p<0.0001) compared to their 

NC fed littermates (Figure 16A and 16B), but interestingly, Bob-Cat mice on HFD only gained 

approximately 5 fold increase in body weight (not significant) compared to their NC fed 

littermates. In contrast, when mice were fed OM3 (45% kcal menhaden fish oil), an increase in 

body weight was only observed in the WT mice group. In fact, there was a loss in body weight in 

both [Tg(CAT)±] (5 fold lower) and Bob-Cat (>1 fold lower) mice fed OM3 diet compared to 

their NC fed littermates. Even more interesting was the significant decrease in body weight 

observed in the [Tg(CAT)±] (>5 fold, p<0.0001) and Bob-Cat (>2 fold, p<0.01) mice fed OM3 

diet compared to the WT mice fed the same diet. These dietary influences were observed in both 

the overall change in body weights (Figure 16A) as well as the average weekly changes in body 

weight measured throughout the study (Figure 16B), showing a general trend of increased body 

weight per week in the HFD and steady or decreased body weight in the OM3 fed groups among 

the mice overexpressing catalase. Two-way ANOVA showed a significant difference in body 
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weight between genotype (p<0.05) and diet (p<0.0001) groups in addition to the observed 

interaction between the two (p<0.0001) factors. 

 

Figure 16. Body weight and body composition (fat/lean mass) in male mice 

overexpressing catalase.  Body weight change (initial and final body weight) and body 

composition (fat/lean mass) determined by ECHO-MRI: A. Changes in whole body weight 

over 8 weeks; B. Overall weekly body weight measurements; C. Fat Mass (g) and; D. Lean 

Mass (g) of WT, [Tg(CAT)±], and Bob-Cat male mice fed NC, HFD, and OM3 diets 

(n≥6/group). Mice overexpressing catalase on an OM3 diet in contrast to the HFD fed 

animals either had no change or lost body weight and fat mass compared to NC fed mouse 

groups. One-way and two-way ANOVA was performed on GraphPad Prism 7. Data is 

represented as mean ± S.E.M. Letters indicate significant p values, a=p<0.05, b=p<0.01, 

c=p<0.001, d=p<0.0001; symbols represent significant differences between genotypes * = 

compared to WT; an additional ‘h’ represents comparison to HFD fed WT. 
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Body composition (total fat and lean mass) were determined for each mouse group by 

ECHO-MRI at baseline, 4 week, and 8 week time points (Figure 16C and 16D). Within the 

male mouse groups, there was a significant difference among the diet groups in fat mass by the 8 

week time point (p<0.0001). When provided a HFD, mice gained a significant amount of fat 

mass compared to the same genotypes provided NC (p< 0.05), but overall there was a trend for 

the WT mice to accumulate more fat mass at a faster rate than mice overexpressing catalase 

(Figure 16C). However, when provided an OM3 rich diet, the WT group gained only a 3 fold 

increase in fat mass (p<0.05) compared to the 8-10 fold increase when fed HFD. This gain in fat 

mass was even lower and not significantly different in [Tg(CAT)±] and Bob-Cat mice compared 

to NC fed littermates (1-2 g) when fed OM3 rich diet. Lean mass measurements revealed NC fed 

WT mice trended to gain the largest amount of lean mass. HFD did not significantly alter the 

lean mass of any genotype, however, all male mice provided an OM3 diet gained lean mass from 

baseline to the 8 week time point (≥ 0.5 g) with the exception of the [Tg(CAT)±] group (Figure 

16D) which lost 2.2 g of lean mass. This loss in lean mass in the [Tg(CAT)±] was reflective of 

their loss in total body weight when fed OM3 diet. Bob-Cat mice on OM3 rich diet gained 1.67 g 

of lean mass at 4 weeks and then decreased almost back to baseline by the 8 week time point. 
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Similar to what was seen in males, the female WT, [Tg(CAT)±], and Bob-Cat mice of 

each diet group also showed an overall significant difference in body mass with regard to diet 

(p<0.0001) (Figure 17). The NC fed mice had minimal changes in body weight over the 8 week 

period, while all genotypes provided HFD gained between 2.5 - 3.5 g of body weight (not 

significant). Additionally, similar to males, female Bob-Cat mice provided an OM3 diet lost a 

 
Figure 17. Body weight and body composition (fat/lean mass) in female mice 

overexpressing catalase. A. Changes in whole body weight over 8 weeks; B. Overall 

weekly body weight measurements; C. Fat Mass (g) and; D. Lean Mass (g) of WT, 

[Tg(CAT)±], and Bob-Cat female mice fed NC, HFD, and OM3 diets (n≥4/group). Mice 

overexpressing catalase on an OM3 diet in contrast to the HFD fed animals either had no 

change or lost body weight and fat mass compared to NC fed mice groups. One-way and 

two-way ANOVA was performed on GraphPad Prism 7. Data is represented as mean ± 

S.E.M. Letters indicate significant p values, a=p<0.05, c=p<0.001; symbols represent 

significant differences between genotypes * = compared to WT; an additional ‘o’ represents 

comparison to OM3 fed WT. 
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significant amount of weight compared to every other genotype provided HFD (Figure 17A). 

Weekly body weight changes (Figure 17B) showed that all mice fed an OM3 diet did not gain 

more than one gram of weight over the entire 8 week period. 

Similar to males, ECHO-MRI showed that females on HFD, regardless of genotype, 

increased fat mass at a much faster rate and doubled the amount of fat gained in comparison to 

both their NC and OM3 fed littermates (Figure 17C). Mice provided an OM3 diet did not gain 

significant amounts of fat mass in comparison to the NC or OM3 fed WT groups.  Interestingly, 

Bob-Cat females on OM3 diet had a >9% increase in lean mass in comparison to NC fed Bob-

Cats and WT controls (p<0.05; Figure 17D) in spite of them losing the most body weight 

(Figure 17A). 

3.3.2 Liver and Adipose Tissue Weights 

In addition to a gain in visceral adiposity, another hallmark of the metabolic syndrome is 

the redistribution of ectopic fat in other metabolic tissues such as the liver. Therefore, visceral 

adipose tissue and liver weights were measured during tissue collection from all groups. In 

males, analysis by two-way ANOVA revealed a significant difference in visceral adipose tissue 

weight among diet groups (p<0.0001). A threefold increase in visceral adipose tissue was 

observed in all groups fed HFD in comparison to the NC fed WT group as displayed in Table 8. 

In contrast, mice provided OM3 diet did not have significantly larger visceral fat depots than NC 

fed mice groups. However, the [Tg(CAT)±]  and Bob-Cat mice fed OM3 diet had much lower 

levels of visceral fat in comparison to their respective HFD fed groups in addition to a twofold  
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lesser weight compared to the OM3 fed WT group. This data correlated with the observed body 

weight and fat mass (ECHO-MRI analysis) changes seen in these mouse groups. In regard to the 

liver weight, analysis by two-way ANOVA showed a significant effect among the genotypes of 

male mice (p<0.0001). It was intriguing that the NC and HFD fed [Tg(CAT)±]  groups had much 

larger livers (>17% increase, p< 0.001) compared to NC WT group. However, Bob-Cats and all 

mouse groups provided OM3 diet did not show significant differences in liver weight. 

Female mice showed similar trends with the highest visceral adiposity seen among the 

HFD fed mice (Table 8). Significant increases in visceral adipose tissue was observed between 

[Tg(CAT)±] on HFD and WT mice on NC diet (p<0.0001). OM3 fed female groups also did not 

Male 

 
NC HFD OM3 

Tissue  
WT 

[Tg 

(CAT)±] 

Bob-

Cat 
WT 

[Tg 

(CAT)±] 

Bob-

Cat 
WT 

[Tg 

(CAT)±] 

Bob-

Cat 

Visceral 

Adipose 

Tissue 

(g)  

0.93 

± 

0.06 

1.28 ± 0.02 

0.83 

± 

0.14 

2.91 

± 

0.47 
d* 

3.78 ± 0.37 
d* 

2.8 ± 

0.58 
b* 

2.03 

± 

0.21 

1.22 ± 0.20 

1.11 

± 

0.19 

 Liver 

(g) 

1.18 

± 

0.06 

1.41 ± 0.11 
c* 

1.21 

± 

0.04 

1.11 

± 

0.07 

1.56 ± 0.14 
b*;c*h 

1.25 

± 

0.08 

1.32 

± 

0.07 

1.39 ± 0.08 

1.34 

± 

0.05 

Female 

Visceral 

Adipose 

Tissue 

(g) 

0.72 

± 

0.06 

0.70 ± 0.04 

0.60 

± 

0.06 

1.69 

± 

0.16 

2.12 ± 0.39 

1.36 

± 

0.22 

0.79 

± 

0.08 

0.76 ± 0.07 

0.90 

± 

0.11 

 Liver 

(g) 

1.20 

± 

0.08 

1.21 ± 0.05 

1.23 

± 

0.16 

0.98 

± 

0.04 

1.13 ± 0.07 

1.00 

± 

0.04 

1.36 

± 

0.08 

1.38 ± 0.05 

1.38 

± 

0.04 

 

Table 8. Adipose tissue and liver weights of each mouse group. Visceral adipose tissue and 

liver weights (g) were measured during tissue collection, at the end of 8 weeks of dietary 

intervention, from all male (n≥6/group) and female (n≥4/group) mouse groups. Data are 

represented as mean ± S.E.M. Letters indicate significant p values, a=p<0.05, b=p<0.01, 

c=p<0.001, d=p<0.0001; symbols represent significant differences between genotypes * = 

compared to WT; an additional ‘h’ represents comparison to HFD fed WT. 
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significantly differ in adipose tissue weight compared to their NC fed littermates. Interestingly, 

and contrary to male mice, females provided HFD had lower liver weights (no significance) and 

mice provided an OM3 diet showed a trend towards higher liver weight compared to all other 

diet groups. 

3.3.3 Weekly Food and Energy Consumption 

Weekly food and energy consumption for each mouse group were measured to determine 

if caloric intake was responsible for the observed differences seen in body weight or fat/lean 

mass. Two-way ANOVA showed an overall significant association between diet and genotype 

(p<0.0001) in addition to a significant difference observed within the genotypes (p<0.0001) and 

the various dietary interventions (p<0.0001). As depicted in Figure 18A, a significant increase in 

average food intake was seen for NC fed [Tg(CAT)±] and Bob-Cat mice (p<0.0001 and p<0.01 

respectively) compared to the NC fed WT group. Additionally, when provided a HFD or OM3 

diet, all groups ate significantly less (p<0.01) grams (g) of food in comparison to NC fed 

[Tg(CAT)±] and Bob-Cat mice. Figure 18B showed that as the study progressed, mice provided 

HFD or OM3 diet ate less chow per week. Due to differences in the total calories between the 

three diets (NC = 4.09 kcal/g compared to 4.6 kcal/g (HFD and OM3) shown in Table 6), the 

average kcal/g consumed was also calculated for each mouse group to determine total energy 

intake. Two-way ANOVA showed a significant difference with regard to male mouse genotype 

(p<0.0001) and diet group (p<0.0001). As shown in Figure 18C, there was a general trend of 

lower energy intake when mice were fed HFD or OM3 diet in comparison to NC. A significant 

trend was observed when mice overexpressing catalase fed NC consumed more energy than all 

groups fed HFD or OM3 diet. 
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Weekly food intake among the female mouse groups (Figure 18 D-F) showed similar 

eating patterns to those observed in the male mouse groups. There was a significant interaction 

between diet and genotype (p=0.0013), genotype alone (p<0.001), and diet alone (p<0.0001). 

The largest quantity of chow consumed was by the groups provided NC regardless of the 

genotype (Figure 18 D). A significant reduction in food intake was seen in all mice provided a 

HFD or OM3 diet (p<0.0001) in comparison to the NC fed WT group. This trend was similar 

between males and females. Regarding energy intake, there was a significant interaction between 

 

Figure 18: Weekly food and energy consumption in male and female mice 

overexpressing catalase. Weekly food and energy consumption measured in wildtype and 

catalase overexpressing mice for 8 weeks: Male, A. average weekly food consumption for 8 

weeks; B. weekly food consumption for 8 weeks, and C. calculated average energy 

consumption per mouse (n≥6/group). Female, D. average of overall food consumption for 8 

weeks; E. weekly food consumption for 8 weeks, and; F. calculated average energy 

consumption per mouse (n≥4/group). WT, [Tg(CAT)±], and Bob-Cat mice fed NC, HFD, and 

OM3 diet were analyzed for each gender. One-way and two-way ANOVA was performed on 

GraphPad Prism 7. Data is represented as mean ± S.E.M. Letters indicate significant p values: 

a=p<0.05, b=p<0.01, c=p<0.001, d=p<0.0001; symbols represent significant differences 

between genotypes * = compared to WT; an additional ‘h’ represents comparison to HFD fed 

WT. 
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the genotype and diet group (p=0.0017), as well as between genotype alone (p<0.001), and 

between diet groups (p<0.0001) (Figure 18F). Female mice provided HFD or OM3 diet 
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consumed less energy compared to NC fed littermates. However, the decrease in food and energy 

Male 

 NC HFD OM3 

Parame

ter 

WT [Tg(

CA

T)±] 

Bob-

Cat 

WT [Tg(CA

T)±] 

Bob-

Cat 

WT [Tg(C

AT)±] 

Bob-

Cat 

TC 

(mg/dL) 

<100 <100 <100 134.6 

± 7.98 

162.3 ± 

9.16 
d*;d*h 

144 ± 

10.8 b* 

<100 <100 <100 

HDL 

(mg/dL) 

55.3 

± 

4.30 

65.2 

± 

1.62 

55.83 

± 2.15 

>82.9 

± 

6.51d* 

>93.3 ± 

6.36 d* 

>91.2 

± 3.61 
c* 

66.6 ± 

3.50 

61.5 ± 

3.35 

>77.89 

± 4.78 

TG 

(mg/dL) 

60.7 

± 

5.48 

81.7 

± 

5.68 

225.7 

± 25.0 
d* 

73.2 ± 

4.87 

79.5 ± 

3.66 

353.4 

± 

24.87 
d*;d*h 

61.2 ± 

2.85 

41.5 ± 

3.36 

223.2 

± 9.40 
d*; d*o 

Ketone 

(mmol/

L) 

0.55 

± 

0.28 

0.38 

± 

0.08 

1.18 ± 

0.07 b* 

1.25 ± 

0.14 

0.56 ± 

0.08 

0.35 ± 

0.43 

a*h 

1.6 ± 

0.23 b* 

1.01 ± 

0.13 

2.1 ± 

0.11 
d*a*o 

Female 

TC 

(mg/dL) 

<100 <100 <100 125 ± 

0.38 

<100 117.5 

± 4.79 

<100 101 <100 

HDL 

(mg/dL) 

48.3 

± 

5.48 

55.8

3 ± 

2.15 

40.7 ± 

3.98 

>61.9 

± 5.67 

>81.0 ± 

5.41 

>69.4 

± 7.84 

>64.3 

± 4.29 

62.1 ± 

3.71 

>75.2 

± 4.45 

TG 

(mg/dL) 

234.

1 ± 

34.3 

197.

7 ± 

10.3 

164.8 

± 10.9 

220.6 

± 21.2 

195.5 ± 

7.8 

254.4 

± 15.5 

134.9 

± 9.29 

190.4 

± 17.3 

194.1 

± 3.0 

Ketone 

(mmol/

L) 

1.35 

± 

0.39 

0.98 

± 

0.12 

1.48 ± 

0.14 

1.67 ± 

0.30 

1.0 ± 

0.08 

0.65 ± 

0.56 

0.9 1.2 ± 

0.23 

1.93 ± 

0.10 

 

Table 9. Circulating levels of metabolic parameters. Lipid Profile of Total Cholesterol 

(TC) and High Density Lipoprotein (HDL) determined using the Cholestech kit, Triglyceride 

levels (TG) using the Triglyceride Colorimetric Assay Kit in plasma of Male (n≥6/group) 

and Female (n≥4/group) mice. Ketone levels using a glucometer in plasma of Male 

(n≥4/group) and Female (n=2-9/group) mice. Measurements were performed in WT, 

[Tg(CAT)±], and Bob-Cat mice fed NC, HFD, and OM3 diets for 8 weeks. One-way and 

two-way ANOVA was performed on GraphPad Prism 7. Data is represented as mean ± 

S.E.M. Letters indicate significant p values, a= p<0.05, b= p<0.01, c= p<0.001, d= 

p<0.0001; symbols represent significant differences between genotypes * = compared to 

WT; an additional ‘h’ or ‘o’ represents significant differences between HFD and OM3 fed 

WT mice respectively. 

 



111 

intake did not correlate with the increase in body weight and adiposity seen in HFD fed animals 

compared to NC and OM3 diet fed littermates. 

3.3.4 Blood Lipid Profile and Ketones 

Post-surgery, the lipid profile was measured on plasma samples collected from each 

mouse fasted at least 12 h prior to the surgery using an LDX Cholestech kit. As shown in Table 

9, all mouse groups fed HFD (p<0.001) had significantly higher Total Cholesterol (TC) levels in 

comparison to the NC fed WT mice and all mouse groups on OM3 rich diet. In the groups fed 

HFD or OM3, the Bob-Cat mice had the highest levels of HDL followed by the HFD fed 

[Tg(CAT)±]. This is also true when comparing the OM3 Bob-Cat group to every group provided 

NC. Two-way ANOVA analysis of plasma triglyceride (TG) levels showed there was a 

significant genotype (p<0.0001) and diet (p<0.01) interaction among the groups. Interestingly, 

male Bob-Cat mice, regardless of diet, had the highest levels of plasma TG. In fact, within each 

diet group, Bob-Cat male mice had 3 fold higher TG levels compared to the other two genotypes. 

As shown in Table 9, female TC level was < 100 mg/dL for all mouse groups except the 

HFD fed WT and Bob-Cat groups. The female HFD fed [Tg(CAT)±] mice displayed much lower 

TC (<100 mg/dL) compared to the male mice (162.3 ± 9.16 mg/dL) fed the same diet. (It is to be 

noted, when individual mice readings fell outside the assay’s range of sensitivity, the less than 

(“<”) or (“>”) was used to best represent the average results from each mouse group.) 

Assessment of HDL revealed a significant diet interaction (p<0.003). Female mice trended to 

have a little lower HDL levels in comparison to males. However, consistent with males, highest 

levels of HDL was found in the [Tg(CAT)±] HFD fed females. Another interesting trend 

observed was that within the OM3 diet fed groups, the Bob-Cat male and female groups had the 

highest levels of HDL. Data analysis of TG levels revealed a significant interaction between diet 
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and genotype (p=0.01) within the female mouse groups. There was an overall trend for HFD 

mice to have equal or increased levels of plasma TG in comparison to their respective genotypes 

on NC or OM3 diet. However, it was interesting that OM3 diet only showed a trend towards 

lower TG levels compared to NC and HFD in the WT group. There was also a gender effect 

where female WT and [Tg(CAT)±] mice, regardless of diet, expressed higher levels of TG in 

comparison to the males. However, Bob-Cat females had lower levels of circulating TG in 

comparison to male Bob-Cats. 

Ketone levels of NC fed [Tg(CAT)±] mice were lower (not significant), but the Bob-cat 

group (p<0.05) were significantly higher than the NC fed WT male group. When mice were 

provided HFD, each genotype doubled its ketone level compared to their NC littermates with the 

exception of the HFD fed Bob-Cat mice, which showed the lowest levels within the HFD groups 

(3 fold decrease, p<0.05). OM3 diet feeding also increased plasma ketone levels (2 fold increase) 

in comparison to littermates provided NC. Specifically, the OM3 fed WT group (p<0.01) had 

significantly higher levels than the NC fed WT, and the OM3 Bob-Cat males having the highest 

levels of all groups [> 3 fold compared to the NC fed WT (p<0.0001) and ≈ 2 fold compared to 

the NC fed Bob-Cat group (p<0.05)]. 

A significant interaction between diet and genotype was seen in fasting ketone levels 

(p<0.01). Within females, the ketone levels showed a trend to be higher than males within each 

respective mouse group with the exception of mice provided the OM3 diet. 

3.3.5 Metabolic Parameters Using CLAMS 

Metabolic parameters were determined at the end of the 8 week study using indirect 

calorimetry by measuring O2 consumption (VO2) and CO2 production (VCO2), Respiratory 

Exchange Rate (RER), Food Intake (FI), Energy Expenditure (EE), as well as X-Ambulatory 
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counts (XAMB - physical activity) using the Comprehensive Laboratory Animal Monitoring 

System (CLAMS) (Columbus Instruments, Columbus, OH, USA). 

3.3.5.1 Food Intake (CLAMS) 

A three-day assessment of Food Intake (FI) (Figure 19A-B) was conducted using 

CLAMS, which allowed analysis of eating patterns and insight on circadian rhythm. All male 

mice on HFD in the WT and [Tg(CAT)±] mouse groups ate at a more constant rate throughout 

the 48 hour time period compared to mice provided NC and mice overexpressing catalase (fed 

OM3 diet) which ate more frequently through the dark cycle and less during the light cycle. Most 

intriguing, was the evidence that male Bob-Cat mice followed a similar eating pattern to the NC 

fed group (decreased food intake during light cycle and increased during the dark cycle) 

indicating that diet (NC or OM3) had not altered their circadian rhythm to the degree that was 

observed in other two genotypes fed HFD and the WT mice fed OM3. 
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As shown in Figure 19B, CLAMS analysis on female mice provided NC showed a 

normal eating pattern (higher consumption in the dark vs light cycle). Similar to what was seen 

in the male mouse groups, the female Bob-Cats on HFD showed a normal eating pattern in 

contrast to the other two genotypes fed the same diet. However, when fed OM3 diet, the 

differences in the eating pattern were lost. In general, a more stable pattern of energy 

consumption occurred in mice with lower fat mass as shown previously in Figure 16 and 17. 

3.3.5.2 Energy Expenditure and Physical Activity (CLAMS) 

In addition to FI, Energy Expenditure (EE) and physical activity (XAMB) were also 

analyzed using the CLAMS technology. As seen in Figure 20A, EE, calculated indirectly as 

Cal/h/g of lean body mass in each male mouse group, did not significantly differ between 

genotypes when provided NC diet. The HFD fed groups had significantly higher levels of EE in 

 

Figure 19: CLAMS analysis of food intake over a 48 hour period in male and female 

mice overexpressing catalase. Light and dark cycle analysis of CLAMS measurements for 

48 hours are provided: Male, A. and Female, B. Food Intake as average grams/2h for 48 

hours by WT, [Tg(CAT)±], and Bob-Cat mice fed NC, HFD, and OM3 diet (n≥3/group). 

One-way and two-way ANOVA was performed on GraphPad Prism 7. Data is represented as 

mean ± S.E.M. Letters indicate significant p values: a=p<0.05, b=p<0.01, c=p<0.001, 

d=p<0.0001; symbols represent significant differences between genotypes * = compared to 

WT; an additional ‘o’ represents comparison to OM3 fed WT. 
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the dark cycle (p<0.01) compared to NC fed WT mice. However, during the light cycle, HFD 

[Tg(CAT)±] mice had much lower levels than both groups overexpressing catalase provided 

HFD. EE in all groups provided OM3 diet remained at intermediate levels to that seen in the NC 

and HFD fed groups, yet levels were significantly higher than the NC WT group (p<0.05). 

Overall, differences between groups were much greater during the dark vs. light cycle. Analysis 

of the X-Ambulatory (XAMB) activity, depicted in Figure 20B, showed there was higher 

activity in the [Tg(CAT)±] and Bob-Cat mice compared to NC WT mice (p<0.05). Interestingly, 

these were also the two groups where the greatest weekly food intake and energy intake (Figure 

18A & C) was also observed. Likewise, when all genotypes were provided HFD or OM3 diet, 

the WT mice had the lowest activity levels, not reaching above 3000 counts per 2 hours, 
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suggesting that the overexpression of catalase might have some influence on the activity levels 

observed in the male groups. 

Overall, within female groups the analysis of EE showed less variation in circadian 

rhythm (Figure 20C) in comparison to that observed within male groups. Similar to males, 

females on HFD had higher levels of EE in comparison to the mice fed NC or OM3, with the 

WT mice fed HFD showing the highest levels during both the light and dark cycles (p<0.05) and 

 

Figure 20: CLAMS analysis of energy expenditure and total activity over a 48 hour 

period in male and female mice overexpressing catalase. Light and dark cycle CLAMS 

analysis of Energy Expenditure (EE) and X-Ambulatory Movement (XAMB) per 2h over a 

48 hour time period are provided: Male, A. Metabolic EE averaged as Cal/h/Lean(g) body 

mass and; B. XAMB Counts per 2h for 48 hours for WT, [Tg(CAT)±], and Bob-Cat mice fed 

NC, HFD, and OM3 diet (n≥4/group). C&D. represent data of female mice of each genotype 

and diet group (n≥3/group). One-way and two-way ANOVA were performed on GraphPad 

Prism 7. Data is represented as mean ± S.E.M. Letters indicate significant p values: 

a=p<0.05, b=p<0.01, c=p<0.001, d=p<0.0001; symbols represent significant differences 

between genotypes * = compared to WT; an additional ‘h’ represents comparison to HFD fed 

WT. 
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the [Tg(CAT)±] mice mostly during the dark cycle (p<0.01). XAMB analysis among female 

groups on NC and OM3 diet showed a trend for Bob-Cat mice to have higher activity levels than 

WT or [Tg(CAT)±] mice. This may have accounted for the observed lower body weight in the 

Bob-Cat mice shown earlier (Figure 17). Animals fed HFD had either similar or lower activity 

levels compared to NC fed WT mice with the exception of the female HFD fed [Tg(CAT)±] mice 

which displayed significantly higher activity during the dark cycle (3 fold, p<0.01).  
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3.3.5.3 Respiratory Exchange Ratio (CLAMS) 

Using CLAMS, we also determined the Respiratory Exchange Ratio (RER) for each 

mouse group at the end of the 8 week study. RER, an indication of which type of fuel 

(carbohydrate (CHO) or fat) is primarily being metabolized to supply energy demands, was 

lowest in the male NC fed WT mice group as well as in all HFD fed mice (Figure 21A). 

However, when groups overexpressing catalase were provided NC, the RER was significantly 

higher compared to the WT mice during both light (p<0.01) and dark cycles (p<0.001). When 

provided an OM3 enriched diet, the RER levels remained intermediate between the NC and HFD 

 

Figure 21. CLAMS analysis of RER and substrate oxidation over a 48 hour period in 

male mice overexpressing catalase. Light and dark cycle CLAMS analysis of average 

Respiratory Exchange Ratio (RER) and calculated CHO and Fat Oxidation per 2h over a 48 

hour time interval: A. RER (CO2 emission/O2 consumption); B. CHO Oxidation, and; C. Fat 

Oxidation for WT, [Tg(CAT)±], and Bob-Cat mice fed NC, HFD, and OM3 diet (n≥4/group). 

One-way and two-way ANOVA was performed on GraphPad Prism 7. Data is represented as 

mean ± S.E.M. Letters indicate significant p values: a=p<0.05, b=p<0.01, c=p<0.001, 

d=p<0.0001; symbols represent significant differences between genotypes * = compared to 

WT; an additional ‘o’ represents comparison to OM3 fed WT. 
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groups. As seen within the NC groups, the mice overexpressing catalase fed OM3 also had a 

higher RER in comparison to the OM3 fed WT groups. Since RER levels reflect the circadian 

patterns of food consumed, it also followed similar light and dark cycle patterns as seen with FI 

(Figure 19). The NC fed groups followed a normal circadian pattern, but the HFD fed groups did 

not. It was interesting to note that Bob-Cat mice fed NC or OM3 diet followed a normal pattern 

which was not evident when these mice were fed HFD. 

We further delineated the levels of CHO and fat oxidation based on the VO2 and VCO2 

data derived from the CLAMS analysis. As seen in Figure 21B, the most significant differences 

seen in CHO oxidation of male groups were observed during the dark cycle. However, in 

comparison to the WT groups, mice overexpressing catalase provided NC had significantly 

higher levels of CHO oxidation (p<0.0001) independent of the light or dark cycle. Conversely, 

when provided HFD, there were no differences between genotypes, but all mouse groups had 

significantly lower levels of CHO oxidation than the NC fed WT groups during the dark cycle. 

Similar to that seen with the NC groups, OM3 diet also showed that mice overexpressing 

catalase had significantly higher levels of CHO oxidation compared to both the NC fed WT mice 

and OM3 fed WT mice independent of the time of day. Contrary to CHO oxidation, NC fed WT 

mice had significantly higher levels of fat oxidation (p<0.0001) compared to every other group 

during the light cycle and significantly higher levels compared to mice overexpressing catalase 

(p<0.0001) on NC diet in addition to OM3 diet during the dark cycle. Mice provided HFD 

showed a trend for having the highest levels of fat oxidation regardless of the genotype during 

the dark cycle (not significant). When fed an OM3 diet, it was interesting that the mice 

overexpressing catalase had significantly lower levels of fat oxidation in comparison to the WT 

mice provided OM3 diet during both light and dark cycles. However, in comparison to 
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littermates provided NC, both groups overexpressing antioxidant catalase had significantly lower 

levels of fat oxidation (p<0.01) during the dark cycle. 

When comparing the various diets, female mice followed similar trends in RER 

compared to what was seen in male mice (Figures 21& 22).  

NC fed female diet groups had the typical circadian cycles. Although unlike male mice, 

female NC fed Bob-Cats showed a trend for having a lower RER than the NC fed WT females 

throughout the light and dark cycles. Within the female HFD groups, WT and [Tg(CAT)±] had a 

significantly lower RER during both light and dark cycles (p<0.01), while Bob-Cats only showed 

a trend. However, it was interesting that the HFD fed Bob-Cats had a significantly higher RER 

 

Figure 22. CLAMS analysis of RER and substrate oxidation over a 48 hour period in 

female mice overexpressing catalase.  Light and dark cycle CLAMS analysis of average 

Respiratory Exchange Ratio (RER), and calculated CHO and Fat Oxidation for 48 hours: A. 

RER (CO2 emission/O2 consumption); B. CHO Oxidation, and; C. Fat Oxidation for WT, 

[Tg(CAT)±], and Bob-Cat mice fed NC, HFD, and OM3 diet (n≥3/group). One-way and two-

way ANOVA was performed on GraphPad Prism 7. Data is represented as mean ± S.E.M. 

Letters indicate significant p values: a=p<0.05, b=p<0.01, c=p<0.001, d=p<0.0001; symbols 

represent significant differences between genotypes * = compared to WT; an additional ‘h’ 

represents comparison to HFD fed WT while an additional ‘o’ represents comparison to OM3 

fed WT. 
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compared to the HFD fed WT group during the dark cycle (p<0.05). When provided an OM3 

diet, Bob-Cat and WT groups had a significantly lower RER compared to NC fed WT mice 

(p<0.01), but [Tg(CAT)±] mice only had significantly lower levels (p<0.05) during the dark 

cycle. This was not seen in the male mouse groups overexpressing catalase fed OM3 diet, where 

we observed higher levels of RER than the NC fed WT mice. 

Calculations of CHO oxidation in females showed that in contrast to males, NC fed 

female mice overexpressing catalase had similar or significantly lower levels of CHO oxidation 

(NC fed Bob-Cat) compared to their WT littermates (Figure 22B). On the other hand, similar to 

males, when fed a HFD, the CHO oxidation in each mouse group was significantly decreased in 

the dark cycle compared to NC fed WT mice and no significant differences were seen among the 

female genotypes fed HFD. Also, as observed in males, OM3 fed female [Tg(CAT)±] mice had 

significantly higher levels of CHO oxidation (p<0.0001) compared to both NC and OM3 fed WT 

mice, but levels did not significantly differ from NC fed WT mice. On the other hand, Bob-Cat 

females either had similar or significantly lower levels of CHO oxidation compared to their NC 

or OM3 fed WT control groups. With regard to fat oxidation, the same general trends occurred in 

both female and male diet groups with the exception that female fat oxidation trended to be much 

higher (kcal/h/g) than males on the same intervention. It is of special interest however, among 

the female groups, the NC and OM3 Bob-Cat mice groups trended to have the highest levels of 

fat oxidation regardless of the time of day. This may be an indication of why these groups 

trended to have one of the lowest body weight and fat mass averages compared to the other 

intervention groups (Figure 17). 
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3.3.6 Insulin Sensitivity 

Both redox stress and dietary interventions (HFD and OM3) can modulate insulin 

sensitivity; hence we measured fasting levels of glucose and insulin and subsequently calculated 

the HOMA-IR, an indirect measure of insulin sensitivity. As depicted in Figure 23A, a 

genotypic (p<0.01) and dietary effect (p<0.0001) was observed in glucose levels. There was a 

trend for lower glucose levels in mice fed OM3 diet compared to NC mouse groups, and 

significantly lower levels in mice fed OM3 vs. HFD fed groups (p<0.01). Bob-Cat mice on OM3 

diet had the lowest glucose levels in comparison to every other group. All genotypes on HFD 

had increased levels of glucose compared to every other group. Similarly, a significant genotypic 

(p=0.0005) interaction was seen in circulating insulin levels (Figure 23B). Interestingly, in spite 

 

Figure 23. Insulin sensitivity in male and female mice overexpressing catalase. 

Quantification of fasting blood glucose (glucometer), plasma insulin (ELISA), and calculated 

HOMA-IR: Male, A. Glucose; B. Insulin, and; C. HOMA-IR in WT, [Tg(CAT)±], and Bob-

Cat mice fed NC, HFD, and OM3 diet (n≥5/group). Graphs D-F. show data collected from 

female mice of each genotype and diet group (n≥4). One-way and two-way ANOVA was 

performed on GraphPad Prism 7. Data is represented as mean ± S.E.M. Letters indicate 

significant p values, a=p<0.05, b=p<0.01. 
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of the large range within the group, the HFD fed [Tg(CAT)±] mice had the highest insulin levels 

compared to any other mouse group (p<0.05). Calculated HOMA-IR (Figure 23C), revealed a 

significant difference in genotype (p<0.001) and diet (p<0.05). As expected, due to the larger 

range in the insulin levels within this group, the [Tg(CAT)±] mice on HFD also had the highest 

calculated HOMA-IR (p<0.01). Interestingly, ketone levels showed no significant differences in 

the [Tg(CAT)±] male and WT mice fed NC where insulin signaling was optimal (Table 9). In 

fact, the ketone levels in the HFD fed WT male group were >2 fold higher than the levels in the 

[Tg(CAT)±] group on HFD, thus indicating insulin is repressing ketone body production. Thus, 

these mice may not be classified as insulin resistant or hyperinsulinemic (Puchalska & Crawford, 

2017). In contrast, [Tg(CAT)±] mice on NC or OM3 had much lower insulin levels and 

calculated HOMA-IR. 

In female mice, glucose levels showed no significant differences between groups as 

depicted in Figure 23D. However, when comparing diets, the [Tg(CAT)±] mice had the highest 

levels of glucose within each dietary group. Also, as observed in males, there was a trend for 

HFD fed mice of each genotype to have an overall increase and mice provided OM3 diet to have 

an overall equivalent or reduced plasma glucose level compared to littermates placed on NC, 

though none reached significance. An overall diet interaction was observed for insulin (Figure 

23E) among female groups (p<0.001). Contrary to the highest levels of insulin in the 

[Tg(CAT)±] males, the female mice had the lowest average insulin levels of all mice provided 

HFD. Additionally, in contrast to males, female ketones did not significantly differ in the female 

HFD fed [Tg(CAT)±] in comparison to any other female mouse group (Table 9). Bob-Cat mice 

within each diet group showed the highest insulin levels among the genotypes, and were 

significantly higher (p<0.05) compared to both the NC and HFD fed WT females. HOMA-IR 
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calculations revealed an interaction between diet and genotype (p<0.05) as well as a genotype 

interaction (p<0.0001). In contrast to the males, the female [Tg(CAT)±] had the lowest calculated 

HOMA-IR and the HFD fed Bob-Cat groups had the highest, pointing to a possible sexual 

dimorphism in regard to insulin sensitivity within the ‘stress-less’ mice models. 

3.3.7 Diet-Redox Stress Interaction in Adipose Tissue 

3.3.7.1 Redox Status 

In order to determine if differences in redox environment, due to dietary intervention, 

contributed to the observed metabolic changes in the ‘stress-less’ mouse models, we measured 

signatures of adipose tissue redox stress: i.e. oxidized carbonyl groups, expression of Nrf2 (a 

transcription factor and key regulator of redox homeostasis), and key targets reflecting the 

activity of Nrf2: catalase activity and HO-1 (antioxidants transcribed upon activation of Nrf2). 

Oxidized carbonyl groups, measured using the OxyBlot protein oxidation kit (Millipore), 

interestingly showed that within male groups, there was no major induction of oxidized proteins 

in the NC or HFD fed groups (Figure 24A). However, in mice fed an OM3 enriched diet, we 

saw higher levels of oxidized carbonyls, with the highest levels seen within the OM3 fed WT 

mouse group (p<0.05) compared to the NC and HFD groups followed by the OM3 fed Bob-Cat 

group (not significant). Within females (Figure 24B), there was a trend for the mice 

overexpressing catalase to have lower levels of oxidized carbonyl groups in comparison to the 
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WT littermates. The only exception was the Bob-Cat mice fed OM3 diet, which showed a 

significant increase (p<0.05) in oxidized carbonyl groups. 

 

When mRNA expression of Nrf2, a redox sensitive transcription factor was determined, 

the male Bob-Cat mice showed an increase in Nrf2 induction when fed HFD (>4 fold) or OM3 

(>9 fold) compared to its NC fed littermates and the other genotypes fed any diet. However, none 

reached statistical significance (Figure 25A). Similar trends of Nrf2 induction were also seen in 

 

Figure 24. Adipose tissue oxidized carbonyl groups in male and female mice 

overexpressing catalase. Male, A. and Female, B. oxidized carbonylated proteins in 

perigonadal adipose tissue. Oxidized protein levels in all mouse groups are represented as % 

of the oxidized proteins in WT mice fed NC. One-way and two-way ANOVA was performed 

on GraphPad Prism 7. Letter a indicates significance at p<0.05. 
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the Bob-Cat female mice where the levels increased to >50 fold when fed HFD and >120 fold 

(p<0.05) when fed OM3 diet vs. the WT group (Figure 25B). 

 
Figure 25. Nrf2 signaling in adipose tissue of male and female mice overexpressing 

catalase. Redox stress was evaluated in adipose tissue by measuring mRNA expression of 

Nrf2 (transcription factor and redox regulator), Catalase enzymatic activity and mRNA 

expression of HO-1 (downstream antioxidant targets of Nrf2): Male, A. and Female, B. Nrf2 

mRNA expression level in the perigonadal adipose tissue measured by RT-qPCR. Male, C. 

and Female, D. Catalase specific activity (U/mg protein) was measured and data for Catalase 

activity is represented as mean ± S.E.M. of WT, [Tg(CAT)±], and Bob-Cat mice fed NC, 

HFD, and OM3 diet (n≥3/group); Male, E. and Female F. HO-1 mRNA expression level in 

the perigonadal adipose tissue measured by RT-qPCR. mRNA expression is depicted as fold 

change compared to WT mice fed the same diet by ddCT method. One-way and two-way 

ANOVA was performed on GraphPad Prism 7. Letters indicate significant p values, 

a=p<0.05, b=p<0.01; symbols represent significant differences between genotypes * = 

compared to WT; an additional ‘h’ or ‘o’ represents comparison to HFD or OM3 fed WT 

mice respectively.  

Figure 9: Redox Stress in Adipose Tissue
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Both antioxidant catalase and HO-1 are downstream targets activated by Nrf2. Therefore, 

catalase activity and expression of HO-1 was measured in the adipose tissue of each mouse 

group (Figure 25C-F). Catalase activity was down-regulated in HFD and OM3 fed WT and 

[Tg(CAT)±] male mice. However, activity levels remained 10 fold higher (not significant) in the 

Bob-Cat mice fed any diet, compared to the other two genotypes. Interestingly, the females 

expressed at least 5 fold increased catalase activity in all the genotypes compared to their male 

counterparts (Figure 25C-D). In addition, the mice overexpressing catalase trended to have 

higher levels of catalase activity compared to the WT mice. HO-1 mRNA expression was shown 

to be the highest in the male and female Bob-Cat mice groups (Figure 25F-G). Similar to the 

mRNA of its transcriptional activator, Nrf2, in males, the Bob-Cat mice showed a gradual 

increase in HO-1 induction when fed HFD (>3 fold) or OM3 (>15 fold, p<0.05) compared to the 

controls on the same respective diets. Similar trends were seen among the Bob-Cat female mice. 

An induction of HO-1 was observed in the Bob-Cat HFD group (>63 fold) and OM3 group 

(>208 fold) compared to WT controls fed the same diet. The induction of both catalase and HO-1 

observed in the Bob-Cat male and female mice fed an OM3 diet provides evidence that Nrf2 had 

translocated to the nucleus and activated its downstream targets. 

3.3.7.2 GPR120/FFAR4 expression 

Our data thus far have shown that in general, mice overexpressing catalase fed OM3 diet 

in comparison to mice fed HFD or WT mice fed any of the diets, had lower body weight and fat 

mass, decreased energy consumption, and maintained normal glucose and insulin levels. 

However, sexual dimorphism was observed within some of the measured metabolic parameters. 

GPR120/FFAR4 is a lipid sensing, long chain fatty acid receptor highly expressed in adipose 

tissue and macrophages and is attributed to the beneficial anti-inflammatory and insulin 
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sensitizing effects of an OM3 diet (D. Y. Oh et al., 2010). Therefore, we investigated whether 

GPR120 was contributing to the alterations in metabolic parameters seen within the antioxidant 

overexpressing mice and to the observed sexual dimorphism. As shown in Figure 26A&C, the 

male [Tg(CAT)±] mice had a lower expression of GPR120 at baseline (NC fed animals); 

however the levels increased 2-3 fold higher (not significant) than WT mice, when fed HFD or 

OM3 diets. In contrast, there was a gradual induction of GPR120 mRNA expression in Bob-Cat 

mouse groups when fed NC or HFD (>12 fold induction, p<0.01) and over 108 fold (p<0.01) 

when fed OM3 diet (Figure 26A). Western blotting of the protein expression of GPR120 showed 

a genotypic effect (Figure 26B) among the male groups (p= 0.002). It was intriguing that, 

regardless of the diet, Bob-Cat mouse groups had the highest levels of GPR120 protein 

expression. 

In females, the [Tg(CAT)±] group showed a slight decrease in GPR120 expression 

(Figure 26D) when fed HFD or OM3 (p<0.05), compared to the NC fed diet groups. In contrast, 

similar to the male mice, Bob-Cat female mice provided an OM3 diet had a significant increase 

(p<0.05) in GPR120 mRNA expression compared to WT mice. As indicated in Figure 26 B&D, 

Western blotting showed that the GPR120 protein level in the adipose tissue only had a trend 

towards increased expression in NC fed female mice overexpressing catalase ([Tg(CAT)±] and 

Bob-Cat), whereas those fed HFD had a lower expression compared to their WT littermates. As 
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seen in the males, OM3 fed Bob-Cat female mice also showed a significant increase (p<0.05) in 

GPR120 protein expression compared to NC fed WT mice. 

3.3.7.3 Adipokine modulators of insulin sensitivity 

Adipose tissue produces and secretes adipocytokines which play both an autocrine and 

paracrine role in metabolic pathways involving insulin sensitivity as well as in inflammation 

(Kern, Di Gregorio, Lu, Rassouli, & Ranganathan, 2003). Their levels can also be influenced by 

an OM3 rich diet (Bargut et al., 2016; Chopra, Siddhu, & Tandon, 2014) and redox status of the 

adipose tissue (D. L. Amos et al., 2017; Kern et al., 2003; Lawler et al., 2016; Marseglia et al., 

 

Figure 26. GPR120 mRNA and protein expression in adipose tissue of male and female 

mice overexpressing catalase. Male, A. and Female, C. GPR120 mRNA expression 

measured by RT-qPCR in the adipose tissue from WT, [Tg(CAT)±], and Bob-Cat mice fed 

NC, HFD, and OM3 diet depicted as fold change compared to WT mice fed the same diet by 

Pfaffl ∆∆CT method (n≥4 and 3/group respectively). Male, B. and Female, D. Western Blot 

of GPR120 protein in adipose tissue, shown as % densitometric ratio of Anti-GPR120 and 

total protein (memcode stain) per genotype to % ratio observed in WT mice fed similar diet 

(n≥4 and 3/group respectively). One-way and two-way ANOVA was performed on 

GraphPad Prism 7. Letters indicate significant p values: a=p<0.05, b=p<0.01; symbols 

represent significant differences between genotypes * = compared to WT; an additional ‘o’ 

represents comparison to OM3 fed WT. 
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2014; Ruan, Zheng, Li, Wang, & Li, 2015). We first measured adiponectin, which alleviates 

insulin resistance by stimulating lipid oxidation and anti-inflammatory processes (Choe et al., 

2016). As shown in Figure 27A, within male groups, we saw both a significant difference 

among the genotypes (p<0.0001) in addition to the diet (p<0.05). Bob-Cat mice provided a NC 

and OM3 rich diet had a >6 fold (p<0.05) and >19 fold (p<0.001) increase in adiponectin mRNA 

levels respectively, compared to the WT groups fed similar diets. All female Bob-Cat groups 

showed a trend to have the highest fold change (Figure 27B) in adiponectin expression 

 
Figure 27. Adipose tissue mRNA expression and circulating levels of key adipokines 

determined in male and female mice overexpressing catalase. Male, A. and C. and 

Female, B. and D. of Adiponectin (n≥4/group) and FGF-21 (n≥4/group) respectively. Data 

depicted as fold change compared to WT mice fed the same respective diet using the Pfaffl 

ddCT method. Male, E. and Female, F. Circulating FGF-21 was measured using a mouse 

FGF21 ELISA kit according to manufacturer’s protocol (n≥3/group). All analyses were 

measured in WT, [Tg(CAT)±], and Bob-Cat groups fed NC, HFD, and OM3 diet. One-way 

and two-way ANOVA was performed on GraphPad Prism 7. Data for serum FGF-21 levels 

are represented as mean ± S.E.M. Letters indicate significant p values: a=p<0.05, b=p<0.01, 

c=p<0.001, d=p<0.0001; symbols represent significant differences between genotypes * = 

compared to WT; an additional ‘o’ represents comparison to OM3 fed WT. 
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compared to the WT mouse groups fed the same diet, but similar to males, the most significant 

fold increase was within the OM3 fed Bob-Cat mouse group (>82 fold increase, p<0.01). 

Adiponectin works in concert with Fibroblast Growth Factor 21 (FGF-21) (Hui et al., 

2016), both an adipokine and hepatokine, with paracrine effects on adipose tissue (X. Lin, Liu, & 

Hu, 2017). It was most recently identified to be a stress response hormone (Gomez-Samano et 

al., 2017) in addition to its known beneficial function as a metabolic regulator of glucose and 

lipid homeostasis and insulin sensitivity (Z. Lin et al., 2013). Therefore, we investigated both the 

adipose mRNA expression and the plasma levels of FGF-21. Within the adipose tissue from 

male mice (Figure 27C), FGF-21 levels were not significantly different. However, there was a 

trend for mice overexpressing catalase on a NC diet to have a lower FGF-21 expression while 

littermates provided HFD or OM3 diet showed a >2 fold increase. The highest levels of FGF-21 

within each diet group overexpressing catalase were within the HFD groups. Female mice 

showed similar results with the exception of the HFD fed [Tg(CAT)±] group where there was a 

lower expression of FGF-21 in comparison to the NC (p<0.05) and HFD (not significant) fed 

WT mouse group. However, the most significant finding was that the OM3 fed Bob-Cat female 

mice had a >60 fold increase (p<0.01) compared to the WT group fed the same diet (Figure 

27D). With FGF-21 also being secreted by liver, we used an ELISA kit to measure circulating 

levels of FGF-21. Within the male mouse groups, mice overexpressing catalase had significantly 

lower levels (p<0.05) than the NC WT mice as seen in Figure 27E.  However, when provided 

HFD, [Tg(CAT)±] had significantly higher levels (p<0.05) compared to every other mouse group 

provided HFD. Interestingly, Bob-Cat mice, regardless of the diet, showed a trend for having 

lower plasma FGF-21 levels than the WT mice of each respective diet group. Circulating levels 

of FGF-21 in female mouse groups were also measured (Figure 27F). Contrary to males, female 
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mice overexpressing catalase provided NC diet did not have significantly lower levels of 

circulating FGF-21 than their WT littermates. In fact, the NC fed [Tg(CAT)±] had the highest 

levels of circulating FGF-21, which did not correlate with the mRNA expression of FGF-21 in 

the adipose tissue. Perhaps the liver was a major source of the circulating FGF-21. It was also 

surprising to find that when provided either high-fat diet (HFD or OM3) intervention, female 

Bob-Cat mice trended to have higher levels of plasma FGF-21 compared to their WT littermates. 
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3.4 DISCUSSION 

Obesity and its comorbidities are characterized with increased levels of ROS that alter 

lipid and glucose homeostasis in key metabolic organs (Barazzoni, Gortan Cappellari, Ragni, & 

Nisoli, 2018; Carrier, 2017; Rani et al., 2016). This leads to increased body weight and fat mass 

thus increasing risk for hyperglycemia, hyperlipidemia, hyperleptinemia, systemic inflammation, 

and IR (Carrier, 2017). Both endogenous and exogenous antioxidant supplementation, known to 

mitigate the negative effects of redox stress, were shown to lower the levels of ROS in these 

metabolic diseases (Drummond, Selemidis, Griendling, & Sobey, 2011; Haidara et al., 2011; 

Park et al., 2016; B. Patel, Mann, & Chapple, 2018). Additionally, in both lean and obese rodent 

models, dietary interventions, such as those rich in OM3 fatty acids (including EPA and DHA) in 

contrast to saturated fatty acids (lard diet), also lowered body weight and fat mass, increased 

insulin sensitivity, and induced browning of white adipose tissue through anti-inflammatory 

actions (Bargut et al., 2016; Hirabara et al., 2013; Luo et al., 2016; D. Y. Oh et al., 2010). 

However, the mechanisms leading to these beneficial effects were not clearly defined. We 

recently showed that mice overexpressing catalase in a genetically obese background (Bob-Cat), 

in contrast to its wild-type littermates, significantly lowered redox stress (‘stress-less’ mice), 

improved energy metabolism, and altered the expression of key adipocytokines (D. L. Amos et 

al., 2017). The overexpression of catalase in this mouse model with a genetic obese background 

was implicated to be the key factor responsible for these effects. Therefore, these mice presented 

characteristics of an effective model to study the interaction between redox regulation and 

dietary intervention, on adipose tissue function and glucose and lipid signaling in a “diet-induced 

obesity” model. In the present study, eight weeks (chronic effect) of dietary intervention in the 

‘stress-less’ mouse model overexpressing catalase, in comparison to their WT controls, showed 
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that the high-fat omega-3 enriched (OM3) diet, in contrast to the high-fat lard (HFD) diet, 

stabilized body weight and fat mass, maintained balanced energy metabolism and normal 

circadian rhythm, and sustained insulin sensitivity by regulating GPR120-Nrf2 cross-talk.  

Administration of OM3 diet, in contrast to the HFD fed animals, for 8 weeks showed that 

mice overexpressing catalase (male and female Bob-Cats), maintained or lowered body weight 

and fat mass, similar to that observed in NC fed mice groups, despite a lower food intake (total g 

and kcal/g consumed) of chow provided ad libitum. Decreased food intake when fed HFD in 

comparison to a normal rodent diet has been reported in previous studies as the result of a higher 

caloric and satiating diet (Pendergast et al., 2013). These observations support the importance of 

the composition of a meal on fat accumulation and distribution during weight 

management/weight loss therapies in humans (Goss et al., 2013). This is of particular interest in 

obese subjects, where an excessive accumulation of visceral fat mass elevates the risk of 

numerous health conditions including coronary heart disease, IR, osteoarthritis, and hypertension 

(U. J. Jung & Choi, 2014), which further contributes to the 8 year reduction in life expectancy in 

these individuals (C. H. Jung et al., 2017; Muzumdar et al., 2008; Tzanetakou, Katsilambros, 

Benetos, Mikhailidis, & Perrea, 2012). In contrast, the increased life expectancy observed in 

studies conducted in catalase overexpressing mice (Schriner & Linford, 2006) may be attributed 

to the type of diet consumed.    

 Lean mass is representative of the muscle tissue mass equivalent of all the body parts 

containing water, excluding fat, bone minerals, and such substances which do not contribute to 

the NMR signal, such as hair, claws, etc. (ECHO-MRI (Houston, TX) user’s manual). It was 

interesting that in the Bob-Cat male groups, we observed an increase in lean mass at 4 weeks and 

decrease at 8 weeks independent of diet. Other studies have shown similar fluctuations in lean 
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mass as the body begins to adapt to alterations in diet or food /caloric intake (V. P. Chen et al., 

2016). At the 4 week time point, the body likely had not completely adjusted to the diet, however 

at around the 8 week time point, a complete response to the dietary intervention had occurred. In 

addition to lean mass, other studies have also seen similar fluctuations in bone mass and density 

(Weiss, Jordan, Frese, Albert, & Villareal, 2017). Nonetheless, it is unclear why only Bob-Cat 

male mice behaved as such compared to the other genotypes. One can only speculate that it 

might be a response to the differences in redox regulation in this novel mouse model. 

CLAMS assessment of energy metabolism (energy intake vs. energy expenditure) 

showed differences between the genotypes tested on various diets. The three day CLAMS 

measurement of FI supported the earlier observation of lower weekly food intake by the HFD 

and OM3 fed groups despite the genotype (Pendergast et al., 2013). In addition, it was observed 

that HFD and OM3 feeding altered the eating patterns (circadian rhythm) in WT mice compared 

to those fed NC. This is consistent with other studies that showed HFD feeding alters the 

quantity, time of day, and how much chow is consumed during each visit to the food hopper 

(Marvyn, Bradley, Mardian, Marks, & Duncan, 2016; Sasaki, 2017; M. So, Gaidhu, Maghdoori, 

& Ceddia, 2011). However, this diet effect (HFD or OM3) on eating patterns was not altered in 

either gender of the [Tg(CAT)±] and Bob-Cat mice, which followed similar circadian rhythm 

patterns of eating as that seen in mice provided NC diet. This observation suggested that catalase 

overexpression (i.e. redox balance) may be shifting the paradigm of a high-fat diet altering 

circadian rhythm and patterns of food intake. This speculation is further supported by our 

previously published observations where the secretion of key adipokines that modulate 

hypothalamic appetite regulation was altered in mice overexpressing catalase (D. L. Amos et al., 

2017).  
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In addition to measurement of FI, the CLAMS analysis also provided insights into the 

differences in RER and EE in the various genotypes and diet interventions. We observed a 

significant increase in RER as well as CHO oxidation (hence lower fat oxidation) in the NC fed 

male mice overexpressing catalase compared to their WT groups fed NC. This might be 

attributed to the increased expression of human catalase gene, since other studies have shown 

changes in energy metabolism as a result of increased antioxidant catalase (D. L. Amos et al., 

2017; Heit et al., 2017) in addition to alterations in substrate utilization as a result of differences 

in genetics (Albarado et al., 2004). In contrast, all groups on a high-fat diet intervention (lard or 

fish oil), had a lower RER and levels of CHO oxidation (higher fat oxidation) which has been 

reported in numerous other studies as a result of higher fat % available to be oxidized from the 

HFD provided to the animals (Church et al., 2009; Hatori et al., 2012; Nilsson et al., 2016). The 

ability of OM3 diet to lower the RER and increase fat oxidation within the male mice groups 

overexpressing catalase and female Bob-Cats vs the Bob-Cat mice fed NC may have contributed 

to the observed decrease in their body weights compared to their littermates that overexpress 

catalase fed NC or HFD. On the contrary, male mice overexpressing catalase provided an OM3 

diet, had significantly lower fat oxidation compared to WT mice provided a NC diet. This may 

be a beneficial outcome from the intake of OM3 fatty acids termed “metabolic flexibility”; a 

newer concept describing the body’s ability to match fuel oxidation to fuel availability (Carstens 

et al., 2013). We believe this may have been acquired in our mouse model through intake of the 

OM3 diet during the 8 week study period. Another plausible reason for the lower levels of fat 

oxidation observed may be due to “altered metabolic partitioning” of fatty acids where there is a 

reduction in oxidation and increased re-esterification of particular fatty acids dependent on their 

structure (Forbes et al., 2006). This would also provide reasoning as to why the same effect was 
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not seen in the HFD fed mice overexpressing catalase. In comparison to males, fat oxidation 

trended to be elevated in females (kcal/h/g) even though all were provided the same type of diet 

and the quantity consumed by females was not higher than what was consumed by males. Even 

more interesting was the opposite effects of CHO vs. fat oxidation seen in male and female Bob-

Cat mouse groups provided an OM3 diet. We believe this was a result of sexual dimorphism (X. 

Wang, Magkos, & Mittendorfer, 2011).   

All HFD fed groups in our study, having significantly higher levels of EE (heat 

production) is consistent with previous studies (Leibel, Rosenbaum, & Hirsch, 1995), where a 

significant increase in EE was observed within just one week of HFD feeding (M. So et al., 

2011). It is hypothesized that this phenomenon is due to the increased body mass and amount of 

oxygen necessary to facilitate normal cellular/tissue function in addition to higher energy 

required to catabolize the 45% high-fat diet vs. the 13.4% fat in the NC diet. However, the 

increase in EE of the HFD groups is not sufficient to create energy balance resulting in an 

accumulation of body weight and fat mass. Though calorically (45% fat) similar to the HFD, EE 

levels in OM3 fed mice remained intermediate to NC and HFD fed mice, yet EE levels were still 

significantly higher than the NC fed WT group. Previous studies have also shown an OM3 rich 

diet increases EE levels by enhancing thermogenesis via activating GPR120 (Bargut et al., 2016; 

Quesada-Lopez et al., 2016). Male [Tg(CAT)±] and Bob-Cat mice also displayed significantly 

higher activity (XAMB) levels compared to WT mice fed NC or high-fat (HFD or OM3) diets. 

Furthermore, when provided HFD or OM3 diet, the WT mice had the lowest activity levels, not 

reaching above 3000 counts per two hours. These results indicate that overexpression of catalase 

might be increasing the activity levels within the male gender. Previous reports have suggested 

that in rodent models, a high caloric diet can decrease XAMB counts of physical activity by up 
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to 28% (M. So et al., 2011). It is also possible that the increased body weight and fat mass may 

have been a secondary factor in the hypo-activity. Interestingly, the effect was not as severe in 

groups overexpressing catalase; again, an indication of the beneficial effect of antioxidant 

overexpression coupled with an OM3 diet. This is of great importance since research in human 

obesity studies has shown  that HFD promotes a more sedentary, less physically active lifestyle 

in addition to alterations in sleep/wake cycles (Branecky, Niswender, & Pendergast, 2015). 

Alterations in redox balance (as seen within the catalase overexpressing mice), such as by OM3 

dietary interventions, might improve metabolic imbalance and circadian rhythm abnormalities in 

obese humans. 

Eight weeks of dietary intervention altered the circulating metabolic profile in the 

catalase overexpressing mice. As seen in other studies, and expected with increased fat mass, 

mice fed a HFD had the highest levels of TC (L. Wu & Parhofer, 2014). The only exception was 

the female [Tg(CAT)±] mice fed HFD which had similar TC levels to all mouse groups fed NC 

and OM3 diet. This female group also had significantly higher levels of activity (XAMB counts) 

which might have influenced the lowering of cholesterol levels (Meissner et al., 2010). In 

contrast to the HFD, and as previously documented (Tani et al., 2018), mice provided an OM3 

diet did not alter TC and the levels remained similar to that seen in NC fed mice groups. HDL 

levels were highest among the groups fed HFD in both genders, but among OM3 fed mice, there 

was a higher ratio of HDL:TC compared to the HFD groups. Furthermore, among the OM3 fed 

mice groups, Bob-Cat males and females had the highest levels of HDL making their HDL:TC 

ratio the highest among all mice groups thus showing the significance of the regulatory 

interaction between overexpression of antioxidant catalase and feeding OM3 diet on lipid profile. 

There have been previous studies conducted in the leptin deficient Ob/Ob mice (parent group of 
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the Bob-Cat mouse model) showing increases in HDL level (Nishina, Lowe, Wang, & Paigen, 

1994; Silver, Jiang, & Tall, 1999). It has been postulated that although typically in human 

obesity HDL levels are substantially lower, the decrease in functional leptin in the obese Ob/Ob 

mice may be playing a role in the higher HDL (being the major lipoprotein in rodents) levels 

(Silver et al., 1999). Since Bob-Cats are heterozygous for the Ob gene, it is plausible that leptin 

is playing a role in modulating HDL levels. Surprisingly, male Bob-Cats had the highest TG 

levels. A similar effect, although to a lower degree, was also seen in the NC and OM3 fed female 

Bob-Cats and the other female genotypes on similar diet. In general, the mice provided OM3 diet 

had lower plasma TG levels, which was expected as the result of a higher intake of OM3 fatty 

acids (Bargut et al., 2016; Yeop Han et al., 2010). Bob-Cat mice, compared to the other 

genotypes, also had increased levels of plasma ketones in all groups (except the HFD males), and 

those provided an OM3 diet had the highest ketone levels independent of gender. Generally, high 

ketone levels are classically associated with metabolic dysfunction and diabetes (Alberti, 1975; 

Beylot, Sautot, Laville, & Cohen, 1988; Mahendran et al., 2013; P. Yan, Cheah, Thai, & Yeo, 

1983), but more recent studies have shown that lower carbohydrate diets provoking ketosis cause 

an inverse correlation between circulating ketones and plasma glucose levels, thus suggesting 

higher levels of ketones are associated with more favorable effects on glycemic control (Paoli, 

Rubini, Volek, & Grimaldi, 2013). Other studies have now recognized ketones as imperative 

signaling molecules promoting metabolic function and regulating appetite (Newman & Verdin, 

2014; Puchalska & Crawford, 2017). These studies further solidify the beneficial effects of an 

OM3 diet coupled with antioxidant catalase overexpression on metabolic parameters.   

Consistent with other studies on the metabolic effects of an OM3 enriched diet (D. Y. Oh 

et al., 2010; Paniagua, 2016; Sundstrom et al., 2017), irrespective of gender, the lowest glucose 
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levels were seen in the Bob-Cat groups fed OM3 diet.  Sexual dimorphism was observed in 

insulin levels. The highest average levels were in the HFD fed [Tg(CAT)±] males, while the HFD 

[Tg(CAT)±] females had the overall lowest levels of plasma insulin. The same results were 

reflected in the HOMA-IR. Furthermore, males in general had higher levels of insulin than 

females regardless of diet or genotype. This could be a direct effect of the increased visceral 

adipose tissue and liver weights in males compared to females (Snel et al., 2012). Insulin levels 

are key in the metabolic function of the liver (Sheng et al., 2018), so it was interesting that the 

males had an increase in liver weight, but not the females, as well as NC and HFD fed 

[Tg(CAT)±] mice groups compared to WT littermates. Despite increases in insulin, plasma 

ketone levels showed no significant differences in male HFD fed [Tg(CAT)±] mice compared to 

the WT mice fed HFD. In fact, ketone levels were >2 fold in the WT vs [Tg(CAT)±] HFD group 

indicating insulin is repressing ketone body production in the [Tg(CAT) ±] mice (Meidenbauer, 

Ta, & Seyfried, 2014; Newman & Verdin, 2014). Nevertheless, most importantly, Bob-Cat mice 

fed an OM3 rich diet maintained glucose and insulin homeostasis throughout the duration of the 

8 week study. Mechanistically, this result was expected to occur in part by the production of 

OM3-derived inflammatory resolution mediators (Cipollina, 2015), the higher ketones generated, 

“metabolic flexibility (Carstens et al., 2013),” and potential alterations in “metabolic 

partitioning” (Forbes et al., 2006) (indicated by the CLAMS fat oxidation analysis) in the Bob-

Cat mice. However, in addition to these effects, the major contributor to the favorable metabolic 

profile of the Bob-Cat mice fed OM3 diet is through the activation of its receptor, GPR120 

(Ichimura, Hasegawa, Kasubuchi, & Kimura, 2014; Miyamoto et al., 2016; D. Y. Oh et al., 

2010).  
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GPR120 (FFAR4) is a long-chain fatty acid receptor highly expressed in adipose tissue 

(D. Y. Oh et al., 2010) and activated by OM3 fatty acids (Imamura, 2010; D. Y. Oh et al., 2010; 

Oliveira et al., 2015; Quesada-Lopez et al., 2016). It plays beneficial roles in anti-inflammatory 

pathways in adipose tissue, food preference, glucose homeostasis, and insulin sensitivity, all of 

which are interrelated to regulate metabolic energy homeostasis in both physiological and 

pathophysiological conditions (Ichimura, Hara, & Hirasawa, 2014). Though there are 

contradicting reports of GPR120 not required for these beneficial effects of OM3 fatty acids 

(Paerregaard et al., 2016), the support for its role in OM3 mediated effects stems from genetic 

studies performed in humans. The human studies showed that mutations in GPR120 were 

associated with increased risk of obesity and IR (Ichimura, Hasegawa, et al., 2014). GPR120 is 

also a novel risk factor for DIO (Ichimura et al., 2012; D. Y. Oh et al., 2010). For these reasons, 

it was most compelling that within the OM3 fed Bob-Cat mouse group, which overexpresses 

antioxidant catalase within an obese parent background, we observed the highest levels of both 

mRNA and protein expression of GPR120 in the perigonadal adipose tissue. Based on our 

measurements of redox stress markers, the OM3 fed Bob-Cat mice also had an increased level of 

oxidized carbonyl groups within the adipose tissue. Together, this might suggest that redox 

regulation is playing a role in the upregulation of GPR120 expression and beneficial outcomes of 

the OM3 diet within the antioxidant-overexpressing mice of both genders. Redox regulation of 

GPR120 has not been previously shown. 

Furthermore, Nuclear factor erythroid-2-related factor 2 (Nrf2) is a redox sensitive 

transcription factor activated by long chain fatty acids (including EPA and DHA), phenolic 

antioxidants, and imbalances in redox stress (Cipollina, 2015; Uruno, Yagishita, & Yamamoto, 

2015). Raising levels of Nrf2 by endogenous production of electrophilic products or 
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pharmacological agents has been shown to prevent or act as therapy for type 2 diabetes, 

metabolic syndrome, obesity, and cardiovascular disease through activating anti-inflammatory 

pathways (Jimenez-Osorio, Gonzalez-Reyes, & Pedraza-Chaverri, 2015; Pall & Levine, 2015; 

Seo & Lee, 2013; Silva-Palacios, Konigsberg, & Zazueta, 2016; Tarantini et al., 2018) in 

addition to lowering body weight and fat mass (Valenzuela et al., 2012). Specifically, in the Bob-

Cat mouse groups, when fed a diet high in OM3 fatty acids, there were higher levels of adipose 

tissue Nrf2 mRNA expression. We speculate this to have occurred as a result of the synergistic 

effect of antioxidant overexpression and consumption of an OM3 rich diet. Studies concentrated 

on the beneficial effects of polyunsaturated fatty acids (primarily EPA and DHA) have shown 

that their oxidized derivatives regulate the redox environment by covalently and reversibly 

reacting with nucleophilic residues on target proteins (Cipollina, 2015; Nanthirudjanar, 

Furumoto, Hirata, & Sugawara, 2013). These reactions trigger the activation of cytoprotective 

pathways, including the Nrf2 antioxidant response (Gao et al., 2007). Nrf2 activation 

subsequently causes an upregulation of phase II enzymes/antioxidants thus balancing oxidant: 

antioxidant ratios in addition to suppressing the NF-κB proinflammatory pathway (Cipollina, 

2015). Both antioxidant catalase and HO-1 are two of the key antioxidants upregulated in 

response to induction of Nrf2 (J. Chen et al., 2014; S. E. Lee et al., 2015; Zhu et al., 2008). In 

our model, the Bob-Cat mouse group fed OM3 diet had the highest levels of catalase activity in 

addition to mRNA expression of HO-1, providing further evidence of Nrf2 induction and 

subsequent activation of the antioxidant and cytoprotective response.  

With the administration of OM3 fatty acids, it has previously been shown that the 

activation of GPR120 is linked to the secretion and circulating levels of the adipokine 

adiponectin (Yamada et al., 2017) promoting anti-inflammation (downregulation of NF-κB) and 
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insulin sensitivity (Itoh et al., 2007). Interestingly, Nrf2 also decreases inflammation through the 

same pathway as GPR120 (Cipollina, 2015; Matzinger, Fischhuber, & Heiss, 2018), but no 

previous study has shown the cross-talk between GPR-120 and Nrf2. In the Bob-Cat mice fed 

OM3 diet, we saw a significant increase in adiponectin mRNA expression within the adipose 

tissue. The combined results of high expression of GPR-120, Nrf2 (and its downstream 

signaling-activation of catalase and HO-1) provide evidence for a potential cross-talk between 

activation of GPR120 and Nrf2 synergistically decreasing inflammation within the adipose tissue 

as well as modulating whole body metabolism in the Bob-Cat mice. Although Nrf2 has been 

studied in depth in the brain (Q. Liu et al., 2014; Zgorzynska et al., 2017) and heart (J. Chen et 

al., 2014; S. E. Lee et al., 2015), because of its cytoprotective and anti-inflammatory benefits, we 

provide evidence for a similar role in adipose tissue. Furthermore, as observed from our current 

findings from our novel mouse model fed OM3 diet, we believe there is an interaction between 

Nrf2, GPR120, and adiponectin which could potentially give rise to new therapies in obesity, if 

its induction could aid in mediating energy homeostasis through adipokine expression and 

secretion. 

Another metabolic regulator that is induced by both GPR120 and NRf2 is FGF21 

(Furusawa, Uruno, Yagishita, Higashi, & Yamamoto, 2014; Quesada-Lopez et al., 2016). In the 

current study, male mice overexpressing catalase trended to have increased FGF-21 mRNA 

expression compared to WT diet group controls, but the highest expression was in the HFD 

groups. Similar elevations in FGF-21 have been shown in studies investigating obese humans 

and rodent models (Gomez-Samano et al., 2017; Tanajak, Pongkan, Chattipakorn, & 

Chattipakorn, 2018; X. Zhang et al., 2008). Contrary to males, in female mice, the highest 

mRNA expression was within the OM3 fed groups, and mainly in Bob-Cat mice. Additionally, 
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we observed plasma levels in female [Tg(CAT)±] and Bob-Cat mice fed HFD had opposite 

effects compared to males, yet, the FGF-21 levels were similarly increased when fed OM3 diet. 

However, there are conflicting reports on the regulation of FGF-21 by redox stress/Nrf2 

activation (Chartoumpekis et al., 2011; Furusawa et al., 2014; Yu et al., 2016; L. Zhang, Dasuri, 

Fernandez-Kim, Bruce-Keller, & Keller, 2016) or whether increased FGF-21 is actually 

metabolically beneficial.  

It is of special importance to discuss the sexual dimorphism observed in the results of this 

study within the Bob-Cat mouse groups. With gender differences in sex hormones (i.e. estrogen 

vs. testosterone), distribution of fat pads, and the role of epigenetics, it is essential to study both 

male and female genders  to fully define energy–related metabolic signaling pathways (B. F. 

Palmer & Clegg, 2015; M. Yoon et al., 2002). Additionally, to our knowledge, no study has 

investigated the gender differences of supplementation of OM3 fatty acids in relation to redox 

homeostasis, making the findings of the sexual dimorphism in the ‘stress-less’ model truly novel. 

Figure 28 provides a schematic overview of the sexual dimorphism observed within the Bob-Cat 

mice fed an OM3 enriched diet related to GPR120-Nrf2 crosstalk. As seen in humans (X. Wang 

et al., 2011), we also observed higher plasma TG  levels in the Bob-Cat mice fed OM3 diet. 

Furthermore, males had significantly higher levels of plasma TG when provided an OM3 diet 

compared to their WT littermates provided the same diet. Female Bob-Cat mice, in contrast, 

trended to have lower levels compared to the female WT control group. This is of importance 

since clinical vintrials show that in comparison to women, men have significantly lower levels of 

plasma total lipids/phospholipids of α-linoleic acid (ALA) and DHA in addition to less potent 

metabolic effects of the OM3 fatty acids EPA and DHA in decreasing risk for IR (Abbott et al., 

2016). Plasma analysis of FGF-21 showed that Bob-Cat males have lower levels compared to 
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WT controls and the opposite was seen within females. This is most intriguing due to recent 

studies showing that FGF-21 lowers TG levels within both human and rodent models (Schlein et 

al., 2016). Additionally, CLAMS analysis revealed that RER and CHO/fat oxidation in females 

trended to be higher compared to males regardless of the diet or genotype. In particular, we saw 

significant gender differences within the Bob-Cat mice. When fed OM3 diet, Bob-Cat males had 

much higher levels of RER/CHO oxidation and lower levels of fat oxidation compared to the 

WT mouse group. However, in females, Bob-Cats fed OM3 diet had lower RER/CHO oxidation 

and higher levels of fat oxidation. Previous reports have shown that males and females differ in 

how they process polyunsaturated fatty acids (Abbott et al., 2016) and that females retain higher 

levels of PUFA in circulation (Walker et al., 2014). Additionally, the differences in oxidized 

substrates could also potentially play a role in modulating the circulating TG and FGF-21 levels 

providing an explanation for why we saw differences between the genders of the Bob-Cat mice. 
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Therefore, overall, among the many similarities (as seen in Figure 28),  we have shown 

differences in TG, FGF-21 levels, and oxidation of CHO/Fat between the Bob-Cat male and 

female mice. Because the same general phenotypic results occurred (body weight, fat mass, lean 

 

Figure 28. Sexual dimorphism observed in an OM3 fed ‘stress-less’ mouse model. 

Schematic representation of the sexual dimorphism observed in the ‘stress-less’ mouse 

model; Bob-Cat mice fed a diet enriched with OM3 fatty acids. These mice, when fed OM3 

enriched diet, showed significant differences in circulating markers and CLAMS analysis of 

substrate oxidation. However, these differences did not impact the GPR120/Nrf2 crosstalk 

and downstream effects within this mouse model. Significance to WT mice fed NC and OM3 

depicted as increase: +, ↑ while decrease: -, ↓ respectively. p values are represented as p<0.01 

++, ↑↑, p<0.0001 ++++, ↑↑↑↑ and likewise for a significant decrease. 
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mass, etc.) in both groups fed OM3 diet, we believe that the overexpression of catalase and 

increase in OM3 fatty acids have synergistically enhanced the Bob-Cat mouse group’s ability to 

regulate energy metabolism in using different signaling pathways. Future studies investigating 

additional metabolic tissues such as the liver and skeletal muscle would help elucidate the 

mechanisms involved in the sexual dimorphism observed in the Bob-Cat mouse models.     
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3.5 CONCLUSION 

Overall, this study provides compelling evidence that overexpression of catalase coupled 

with an enriched diet of OM3 fatty acids are metabolically beneficial. This combination was 

shown to increase adipose tissue expression of the GPR120/FFAR4, which by interacting with 

the Nrf2 pathway, resulted in decreased body weight and fat mass, enhanced or maintenance of a 

normal circadian rhythm, anti-inflammation and insulin sensitivity, and regulation of key 

adipokines compared to HFD fed mice (Figure 15: Graphical Abstract). In fact, to our 

knowledge, this is the first study to provide evidence that GPR120 expression may be modulated 

by redox status in addition to providing evidence of the GPR120-Nrf2 cross-talk mechanism. 

With the beneficial outcomes seen within the ‘stress-less’ Bob-Cat mouse model provided an 

OM3 diet, we believe that this model is an excellent tool to further study adipose tissue function, 

crosstalk with other metabolic tissues, and metabolic signaling pathways involving energy 

homeostasis in both male and female mice. Also, in addition to obesity, inflammation in adipose 

tissue has been linked to a number of types of carcinogenesis (Lengyel, Makowski, DiGiovanni, 

& Kolonin, 2018) and cardiovascular events. (Figueroa et al., 2016; Ghantous, Azrak, Hanache, 

Abou-Kheir, & Zeidan, 2015; Luna-Luna et al., 2015). Thus, using the ‘stress-less’ mice as a 

novel model, future studies may be conducted to look at the combination of antioxidant 

overexpression and other therapies for diseases of metabolic syndrome as well as lowering the 

risk and progression of the metabolic syndrome-associated cancers and CVD.  
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ABSTRACT 

Obesity, a result of excess fat accumulation, disrupted energy metabolism, and imbalance 

in oxidant: antioxidant ratio is now considered a chronic disease with no appropriate treatment. 

The need to counteract obesity is of great importance due to its contribution to the progression of 

cardiometabolic disease, chronic inflammation, neurological disorders, and cancer. Lifestyle 

modification, such as exercise, decreases risk for obesity by reducing fat mass, lowering redox 

stress, modifying metabolic tissue function, and regulating energy homeostasis (appetite and 

energy expenditure). Current studies show the gut microbiome’s diversity and function play a 

key endocrine role in host energy metabolism, where the diversity can be altered dependent on 

physical activity level/intensity as well as redox stress. During prolonged exercise, Type 1 / Type 

2 fiber type ratio increases and contracting skeletal muscle secretes “exercise-induced” myokines 

(i.e. FGF-21, PGC1-alpha). Although the current literature suggests physical activity regulates 

energy metabolism by altering myokine and adipokines levels, it is unknown how redox 

modulated changes in the gut microbiota is involved in these interactions. We tested this 

hypothesis by subjecting a novel stress-less obese mouse model (Bob-Cat) to eight weeks of 

moderate exercise. Changes in the diversity of the gut microbiome due to exercise in these mice 

were correlated to improvements in energy metabolism and skeletal muscle-adipose tissue-brain 

crosstalk. We observed that when subjected to a moderate, 8 week treadmill exercise regimen, 

mice overexpressing catalase ([Tg(CAT)±] and Bob-Cat), had lowered body weight and fat mass 

(ECHO-MRI) and a healthier overall blood/lipid profile compared to sedentary controls. 

Additionally, we observed an increase in Type 1 / Type 2 fiber ratio in association with an 

induction of key myokines (FGF-21, PGC1-alpha, and FNDC5) in the exercised mice 

overexpressing antioxidant vs. sedentary controls. There was also a concomitant induction in 
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expression of adiponectin (p<0.05) in the adipose tissue and alterations in hypothalamic genes 

that regulate appetite (NPY and POMC). Our key finding was a significant shift in microbial 

diversity in all exercise mice groups and in particular in mice overexpressing catalase. Our 

results thus far suggest a synergistic effect of exercise and catalase overexpression on the 

diversity of the gut microbiome which results in improving overall energy metabolism via 

promoting skeletal muscle-adipose-brain cross-talk.   
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4.1 INTRODUCTION 

Obesity is now a worldwide epidemic with more than 35% of adults classified as obese 

and rates expected to rise to 42% by 2030 (Organization, 2018). This is of great concern 

considering that obesity leads to other serious, life-threatening health conditions such as 

cardiometabolic diseases, which has the world’s highest morbidity and mortality rate 

(Organization, 2018), responsible for more than 15.2 deaths per year (Writing Group et al., 

2016). Furthermore, there are no universally effective treatments currently available for obesity.  

It is well known that the expansion of visceral adipose tissue is a major risk factor for 

obesity and its comorbidities (Golbidi & Laher, 2014). Increased adipose mass also contributes 

to pro-oxidant and pro-inflammatory states by increasing free radical production (Fernandez-

Sanchez et al., 2011). Reactive oxygen species (ROS) alters glucose and lipid metabolism by 

modulating the functions of  skeletal muscle, adipose tissue, brain, and the newly classified 

“endocrine organ,” the gut microbiome,  all leading to overall changes in energy homeostasis 

(Alleman, Katunga, Nelson, Brown, & Anderson, 2014; Fernandez-Navarro et al., 2017; 

Fernandez-Sanchez et al., 2011; Gyengesi, Paxinos, & Andrews, 2012; Manna & Jain, 2015). 

Physical activity has been proven time and again to be the most efficacious approach and 

recommended therapeutic option for individuals with metabolic disorders due to its weight loss 

effects (Golbidi & Laher, 2014; Leal et al., 2018; Savini et al., 2013). Not only is it an effective 

way to  lower body weight and fat mass (Fiuza-Luces et al., 2013; Golbidi et al., 2012), improve 

lipid profile (Sanchis-Gomar et al., 2015; Vina et al., 2012), decrease inflammation (Golbidi & 

Laher, 2014), boost physical performance (Vina et al., 2012), and enhance neurological function 

(Radak et al., 2013), it also paradoxically is beneficial by increasing redox stress which in turn 

induces antioxidant synthesis (Done & Traustadottir, 2016; Gomez-Cabrera, Domenech, & Vina, 
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2008; Ji, 2008; Savini et al., 2013; Shern-Brewer, Santanam, Wetzstein, White-Welkley, & 

Parthasarathy, 1998).  

Research has shown that increased skeletal muscle contraction during aerobic physical 

activity shifts the muscle fiber-type ratio toward higher levels of Type 1 vs. Type 2 fibers (Fry et 

al., 2017; Y. X. Wang et al., 2004) as well as production and secretion of key myokines involved 

in metabolic homeostasis (Febbraio & Pedersen, 2005; Hoffmann & Weigert, 2017; Huh, 2018). 

Similarly, in adipose tissue, moderate exercise regulates the expression and secretion of key 

adipokines such as leptin and adiponectin (Golbidi & Laher, 2014; Lubkowska, Dudzinska, 

Bryczkowska, & Dolegowska, 2015) that are involved in  regulating energy storage, energy 

expenditure, and appetite regulation (Bluher & Mantzoros, 2015; K. J. Oh et al., 2016).  

Located within the hypothalamus of the brain are orexigenic and anorexigenic signaling 

pathways that primarily control satiety. The orexigenic pathway contains neurons that co-express 

Neuropeptide Y (NPY) and Agouti Related Peptide (AGRP), which lower satiety and energy 

expenditure. On the contrary, the anorexigenic pathway contains neurons that express 

Proopiomelanocortin (POMC) and Cocaine-Amphetamine Related Transcript (CART), which 

suppress appetite and increase energy expenditure (Burke et al., 2016; Wilson & Enriori, 2015). 

It is now known that both exercise-induced myokines, adipokines, and several secreted 

metabolites affect appetite regulation and energy expenditure (Benite-Ribeiro, Putt, & Santos, 

2016; Delezie & Handschin, 2018; Gorgens, Eckardt, Jensen, Drevon, & Eckel, 2015; Leal et al., 

2018; A. Rodriguez, Becerril, Ezquerro, Mendez-Gimenez, & Fruhbeck, 2017; A. Rodriguez et 

al., 2015). Although we now understand some of the underlying pathways involved in the 

metabolic benefits of regular physical activity, there are still gaps in knowledge in reference to 
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how exercise is involved in metabolic tissue crosstalk (skeletal muscle-adipose-brain) and 

regulation of energy metabolism.  

 Recent studies suggest there is a possible association between the microorganisms 

residing within the gut and the beneficial effects of exercise (Allen et al., 2015; Zhao et al., 

2018). Although studies have shown the skeletal muscle-adipose axis (Leal et al., 2018; F. Li et 

al., 2017; A. Rodriguez et al., 2017), adipose-brain axis (J. Friedman, 2016; Seoane-Collazo et 

al., 2015; Spiegelman & Flier, 2001; Wilson & Enriori, 2015), and skeletal muscle-brain axis 

(Delezie & Handschin, 2018; Huh, 2018; Pedersen & Febbraio, 2012) are all involved in 

improving energy homeostasis, it is not yet fully investigated if gut microbes communicate with 

these metabolic organs, if gut-derived metabolites are involved in these interactions (Kallus & 

Brandt, 2012; Nehra, Allen, Mailing, Kashyap, & Woods, 2016), or how exercise and/or redox 

stress modulate these interactions (Allen et al., 2015; Allen et al., 2018).  

We recently developed a novel obese mouse model overexpressing the antioxidant 

catalase (Bob-Cat) which by lowering redox stress improved overall energy metabolism (D. L. 

Amos et al., 2017). We additionally showed that this mouse model potentiated the beneficial 

effects of an omega 3 enriched fatty acid diet by inducing GPR120-Nrf2 crosstalk (D. Amos, 

Cook, & Santanam, 2019). Very little is known at the current time about the relationship between 

redox stress and the diversity and function of the microbiome, but it is evident that specific 

species of bacteria use ROS as defense mechanisms and others can produce antioxidants that 

scavenge free radicals. Additionally, some studies suggest that the gut microbiome can be altered 

dependent on the redox state (Borrelli et al., 2018; Staerck et al., 2017; Y. Wang et al., 2017). 

Therefore, in order to better understand the interplay between redox regulation and exercise 

intervention on the gut microbiome and its potential effects in improving energy homeostasis, we 
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subjected the catalase-overexpressing ‘stress-less’ mice and C57/WT mice to moderate exercise 

regimen and compared their outcomes on skeletal muscle-adipose-brain crosstalk. Our studies 

showed antioxidant overexpression in combination with exercise was beneficial in the 

maintenance of energy homeostasis, regulating lipid metabolism, enhancing skeletal muscle and 

adipose tissue function, and possibly by shifting the gut microbiome toward taxa with known 

metabolically beneficial effects on energy metabolism. 
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4.2 MATERIALS AND METHODS 

4.2.1 Mouse Models and Exercise 

Catalase Transgenic ([Tg(CAT)±]) mice, a gift from Dr. Arlan Richardson’s Laboratory 

(X. Chen et al., 2004), were bred and housed in Marshall University Animal Facility. “Bob-Cat” 

mice are a novel mouse model generated and bred in our laboratory by crossing [Tg(CAT)±] 

mice with leptin deficient, Ob/+, heterozygous hybrids of the Ob/Ob leptin-resistant mice 

(heterozygous JAX 000632, B6.Cg-Lepob/J) (D. L. Amos et al., 2017). C57Bl6 (C57/WT), 

[Tg(CAT)±], “Bob-Cat,” and Ob/Ob male mice were housed in cages of 3 or 4 according to their 

respective genotypes. WT mice were bred at our animal facilities or bought from Hilltop 

Laboratories and acclimated to the mouse facilities at Marshall University. All groups were fed 

normal rodent chow (NC - Lab Diet 5001) ad libitum. All guidelines were followed according to 

IACUC rules and regulations in accordance with the approved study protocol. Each of the four 

mouse models were divided into exercise and sedentary groups (n≥7/group) at the age of 16 

weeks which is representative of a mature adult human 20-30 yrs of age (Jackson et al., 2017). 

Sedentary mice remained in their respective cages in the same environment as the exercised 

mice. Exercised mice were subjected to a 5 day acclimation period to the treadmill (Columbus 

Instruments) prior to beginning the exercise protocol: 8 weeks of treadmill exercise, 5 days/week 

for 30 min. at a rate of 15 m/min during the light cycle. This protocol was based on physical 

activity level recommendations by the American Heart Association and World Health 

Organization (Organization, 2019) in addition to the Mayo Clinic (Laskowski, 2018). Animals 

were treated in compliance with Marshall University Animal Committee (Institutional Animal 

Care and Use Committee) regulations.  
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4.2.2 Body Weight and Body Composition 

Body mass (g) was measured for 8 consecutive weeks to determine differences in total 

body weights between groups: C57/WT, [Tg(CAT)±], Bob-Cat, and Ob/Ob (sedentary and 

exercise) throughout the study. Body composition (fat and lean mass) was determined using 

magnetic resonance imaging, ECHO-MRI (Houston, TX). Total water content and free water 

content were also calculated. Each mouse was individually placed into the MRI machine, and 

three or more measurements were taken per mouse. Median values of each parameter per mouse 

were calculated using Microsoft Excel, then averaged per genotype and intervention. 

Comparisons between groups were made by one or two-way ANOVA followed by Bonferonni 

post hoc Analysis and t-tests.   

4.2.3 Comprehensive Laboratory Animal Monitoring System (CLAMS) 

Metabolic parameters were determined indirectly by assessing O2 consumption (VO2) 

and CO2 production, respiratory exchange ratio (RER), food intake (FI), Energy Expenditure 

(EE), as well as X-Ambulatory counts (XAMB - physical activity) using the CLAMS (Columbus 

Instruments, Columbus, OH, USA). Mice were supplied with ground rodent chow (Lab Diet 

5001) for three days as the analysis was conducted. Computations were made on the middle 48 

hours the mice were subjected to the machine, which was approximately the 0600 hour of the 

first day to the 0600 hour of the third day. Food intake was measured by CLAMS as chow 

displaced from the food hopper. RER is given as the ratio of carbon dioxide production and 

oxygen consumption. Carbohydrate (CHO) oxidation was calculated using the formula 

((4.585*VCO2) − (3.226*VO2))*4, and similarly, fat oxidation was calculated using the formula 

((1.695*VO2) − (1.701*VCO2))*9 (Peronnet & Massicotte, 1991). EE (heat production) was 

calculated as the Cal/h/lean mass (g). EE average, RER average, average FI per day, as well as 
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X-Ambulatory locomotor activity per day (XAMB – counts of movement across the cage) were 

determined for each mouse in all groups. One and two-way ANOVA were used to determine 

comparative changes between the various genotypes on the sedentary or exercise regimen.   

4.2.4 Grip Strength Tests 

The grip strength of each individual mouse was tested at the end of the 8-week study 

period using an apparatus consisting of a ball of tangled fine gauge metal wire and a “scale 

collector” (metal wire clip). At the time of the experiment, the scale collector was attached to one 

chain length. The number of links range from one to five (additional weights may be added). 

Links weighed approximately 25.7 (1 link), 34.97 (2 links), 44.24 (3 links), 53.51 (4 links), and 

62.79 (5 links) grams. Mice were held by the middle/base of the tail and lowered toward the wire 

mesh, which they were naturally attracted to, to determine whether the mouse could grasp and 

hold the first weight (25.7g). The number of seconds the mouse held the weight was recorded (up 

to 3 sec). A hold of three seconds was the criterion for success at that weight level. If the mouse 

dropped the weight before 3 sec. passed, it was allowed to rest for 10 sec and retested with the 

same weight. If the mouse was unable to hold the weight for three consecutive trials, it was 

returned to the cage. If the weight was held for a minimum of 3 sec, then the mouse was tested 

with the next set of links. A final total score was calculated as the product of the number of links 

in the heaviest chain held for the full 3 sec, multiplied by the time (sec) it was held. If the 

heaviest weight was dropped before 3 sec, an appropriate intermediate value was calculated 

(Deacon, 2013). 

4.2.5 Blood and Tissue Collection 

After 12h fasting, mice were anesthetized using Isoflurane. Blood was obtained by 

cardiac puncture and placed in heparin tubes; red blood cells (RBCs) and plasma were separated 
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by centrifugation for 10 min. Mice were perfused intracardially with cold 1X PBS. Tissues 

including skeletal muscle, adipose tissue, brain, and liver were removed, weighed, and flash 

frozen in liquid nitrogen. All tissues were stored at -80˚C.  

4.2.6 Blood Plasma Hormones and Metabolites 

Whole blood was used to measure fasting glucose levels (Precision Xtra Glucometer) 

then centrifuged for 10 min. to separate the plasma and RBCs. Approximately 35 µL of plasma 

was placed on a Cholestech cassette and read on a LDX Cholestech Machine (Cholestech 

Corporation, Hayward, CA) to determine Glucose, High Density Lipoprotein (HDL), Low 

Density Lipoprotein (LDL), and Total Cholesterol (TC) levels. The remaining plasma was frozen 

at -80˚C. 

Triglyceride (TG) levels were measured in blood plasma using the Cayman Chemical 

Triglyceride Colorimetric Assay Kit (Cayman, Ann Arbor, MI). Plasma insulin was analyzed 

using an ultrasensitive mouse Insulin ELISA Kit (Crystal Chem, Downers Grove, IL). The end 

point colorimetric assays were read using a BioRad Benchmark Plus microplate reader.  

A Luminex 200 laser technology system was used to determine circulating leptin levels 

using the Milliplex Mouse Adipokine Array (Millipore) in each mouse’s plasma according to 

manufacturer’s protocol. Adipokine levels were calculated based on the known concentrations of 

manufacturer’s standards. 

Plasma irisin levels were determined using a commercially available Irisin ELISA Kit 

(Biovendor Laboratory Medicine, Brno, Czech Republic). All procedures performed were in 

accordance with the user manual. Absorbance was read using a BioRad Benchmark Plus 

microplate reader. Calculations were conducted in accordance with the best fit line created from 

the standard curve of plotted absorbance values against the known concentrations of standards.  
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4.2.7 RT-qPCR Adipose Tissue, Brain, and Skeletal Muscle  

RNA was isolated from ≈ 100 mg of abdominal adipose tissue, the hypothalamic region 

of the brain, and the Gas muscle of each mouse using TRI Reagent according to the 

manufacturer’s recommended protocol (Sigma). Concentrations of RNA were measured by use 

of the NanoDrop 1000 (NanoDrop Technologies Inc., Thermo Scientific, Wilmington, DE, 

USA).  Reverse transcription of total RNA (1 µg) was performed using iScript™ cDNA 

Synthesis Kit (Bio-Rad, Hercules, CA, USA). RT-qPCR was conducted using iQ SYBR™ Green 

Supermix (Bio-Rad). The mouse specific primers for expression of leptin, adiponectin, FGF-21, 

and UCP-1 in adipose tissue, POMC, NPY, and LepR within the hypothalamic region of the 

brain, and PGC1-α, IL-6, FGF-21, and FNDC5 were used in skeletal muscle tissue. β-actin 

expression within each tissue type was used as the house-keeping gene. All primer accession and 

sequences are provided in Table 10. RT-qPCR was performed in the Bio-Rad MyiQ or Bio-Rad 

CFX ConnectTM instrument. Transcription was considered nondetectable when the Cq value 

reached  ≥40. All samples were run in duplicate or triplicate. Results were calculated using the 
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Pfaffl Equation (2^-ddCt) and expressed as fold change compared to either the WT control or the 

sedentary control within each genotype.  

4.2.8 Catalase Activity 

The Shimadzu UV-1800 Spectrophotometer was used to determine the enzymatic activity 

of catalase according to the method of Aebi (Aebi, 1984). Approximately 50 mg of tissue was 

homogenized and 8 µL of each sample was added to 1mL of 25mM H2O2 solution and analyzed 

for one minute in duplicate or triplicate. Change in absorbance was recorded and specific activity 

was calculated based on protein estimation by the Lowry Method (Lowry et al., 1951). 

Primer 

Name 

Accession 

Number 

Forward Reverse 

Mu-

Adiponectin 

NM-009605 5’- gcagagatggcactcctgga -3   5’- cccttcagctcctgtcattcc -3’ 

Mu-FGF-21 NC_000019.1

0 

5’- cgtctgcctcagaaggactc -3’ 5’- aatcctgcttggtcttgggg -3’ 

Mu-UCP1 NM_009463.

3 

5’- tttcgtgcccgcatcaggcaa -3’ 5’- ttggagggcagagaggcgtga -

3’ 

Mu-Leptin NM-008493 5’- ctcatgccagcactcaaaaa -3’ 5’- agcaccacaaaacctgatcc -3’ 

Mu-POMC NM_0012785

84.1 

5’- gcgacggaagagaaaagaggt -3’ 5’– gtcaggcctagtctctgtcg –3’ 

Mu-NPY NM_023456.

2 5’- cgctctgcgacactacatca –3’ 5’ –ttgttctgggggcgttttct –3’ 

Mu-LepR NM_146146.

2 

5’ –cttctggagcctgaacccat –3’ 5’ –cagggtctggtgtggtcaaa –

3’   

Mu-BDNF NM_007540.

4 

5’- tagcttgacaaggcgaaggg–3’ 5’- atttgcacgccgatcctttg–3’ 

Mu-PGC1-

αlpha 

NM_008904.

2 

5’- ccgagaattcatggagcaat–3’ 5’- tttctgtgggtttggtgtga–3’ 

MU-IL-6 NM_031168 5’ –catgttctctgggaaatcgtgg- 3’ 5’ –aacgcactaggtttgccgagta- 

3’ 

Mu-GLUT 

4 

NC_018928.2 5’- gattctgctgcccttctgtc -3’ 5’- attggacgctctctctccaa -3’ 

Mu-FNDC5 NM_027402.

3 

5’ –tgttatagctctcttctgccgc- 3’ 5’- ggtttctgatgcgctcttgg- 3’ 

Mu-UCP-1 NM_009463.

3 

5’ –tttcgtgcccgcatcaggcaa- 3’ 5’- ttggagggcagagaggcgtga-

3’ 

Mu-β-Actin NM-007393 5’- ctacctcatgaagatcctcaccga -3’  5’- ttctccttaatgtcacgcacgatt -

3’ 

Table 10. Quantitative RT-PCR primer sequences.  
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4.2.9 Oxidized Proteins in Adipose Tissue (OxyBlot) 

Carbonylated proteins are a hallmark of redox stress (Fedorova et al., 2014). Oxidized 

proteins were measured in epididymal adipose tissue by determining the presence of 

carbonylated proteins using the Protein Oxidation Detection OxyBlot kit (Millipore, Billerica, 

MA) as referenced in our previous study (D. Amos et al., 2019) in accordance with the 

manufacturer’s recommendations.  

4.2.10 Preservation and Cryostat Sectioning of Skeletal Muscle 

During tissue collection, the Gas skeletal muscle was removed and subsequently weighed 

(g) and measured (length in mm). Each individual muscle was preserved by subjecting it to 

cooled isopentane and frozen slowly by lowering the isopentane in liquid Nitrogen. Once fully 

frozen, the muscle was sliced into three segments. The middle segment was used for cryostat 

sectioning after being frozen in O.C.T. (Optimal Cutting Temperature) medium and kept at -

80ºC until cryostat sectioning. The other two segments were frozen in separate tubes for mRNA 

and protein analysis. The Leica CM1900 Cryostat (Bannockburn, IL) was used to slice muscle 

into 5-8 µm sections. Sections were transferred to room temperature slides that were kept at -

80ºC until Myosin ATPase Staining was performed. 

4.2.11 Myosin ATPase Staining and Microscope Analysis 

Slides were warmed from -80ºC and the Myosin ATPase Protocol (Kelly Lab-ATPase 

Histology Stain 2006) was followed to stain the right and left (R and L) side of each 

Gastrocnemius (Gas) muscle. The pH 4.3 stain protocol was used to determine the fiber type 

ratio of Type 1 (Oxidative) to Type 2 (Glycolytic) fibers within each mouse group. Myosin 

ATPase stained slides were analyzed at 10X magnification using a Nikon Eclipse Ti Inverted 
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Microscope (Melville, NY). Counts of muscle fiber type were determined using ImageJ Software 

and saved as JPEG files.  

4.2.12 Microbial DNA Extraction and Quantification 

Fecal samples were collected at the 8 week time point which correlated with the final 

analysis by MRI, and immediately frozen until shipment to Wright Labs, LLC. Nucleic acid 

extractions were performed on approximately 0.25 g of each sample using a Qiagen DNeasy 

Powersoil DNA Isolation kit following the manufacturer’s instructions (Qiagen, Frederick, MD). 

The lysing step was performed using the Disruptor Genie cell disruptor (Scientific Industries).  

Genomic DNA was eluted in 50 μl of 10 mM Tris followed by quantification using a Qubit 2.0 

Fluorometer (Life Technologies, Carlsbad, CA) with the double stranded DNA high sensitivity 

assay.  

4.2.13 PCR Amplification  

Illumina iTag Polymerase Chain Reactions (PCR) were performed based on the Earth 

Microbiome Project’s 16S rRNA amplification protocol (Walters et al., 2016) where the 

hypervariable regions V3-V4 of bacterial 16S rRNA genes were amplified by PCR using bar-

coded universal primers. The volume of each reaction was 25 μL containing the final 

concentration of 1X PCR buffer, 0.8 mM dNTPs 0.625 U Ex Taq DNA Polymerase (Takara), 0.2 

μM 515F forward primer, 0.2 μM 806R barcoded reverse primer and approximately 10 ng of 

template DNA per reaction. PCR was performed using a T100 Thermal Cycler (Bio-Rad, 

Hercules, CA) using the following cycling conditions: 98 °C for 3 min., 35 cycles of 98 °C for 1 

min., 55 °C for 40 s, 72 °C for 1 min, and the final extension was at 72 °C for 10 min. PCR 

products were held at 4 °C. A 2% agarose E-Gel was used with ethidium bromide (Thermo 

Fisher Scientific)  to visualize the PCR products for bands at approximately 400 bp.  
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4.2.14 Library Purification, Verification, and Sequencing 

PCR products were combined (pooled) in an approximate equimolar manner and run on a 

2% agarose gel with Gel Star Nucleic Acid Gel Stain (Lonza) for visualization. Bands of 

expected product length were cut from the gel using sterile scalpels and subsequently purified 

using the QIAquick Gel Purification Kit (Qiagen, Frederick, MD). The pure library was then 

quantified using the Qubit 2.0 Fluorometer double stranded DNA high sensitivity assay (Life 

Technologies, Carlsbad, CA). Finally, each library on the sequencing run was combined 

(multiplexed) into one sequencing library. This was completed by normalizing each library’s 

input based on the number of samples per project to ensure even sequencing and coverage. 

Libraries were quality checked using a 2100 Bioanalyzer high sensitivity DNA analysis kit 

(Agilent Technologies, Santa Clara, CA) prior to sequencing. The sequencing library was stored 

at -20˚C until shipment on dry ice to Laragen Inc (Culver City, CA) for sequencing. 

Library pools were size verified using the Fragment Analyzer on the ABI3730 and were 

quantified with a KAPA Library quantification kit (Kapa Biosystem, Wilmington, MA, USA). 

After dilution with EBT (Illumina) to a final concentration of 2 nM, containing 15% PhiX V3 

library control (Illumina, San Diego, CA, USA), the library pools were denatured for 5 min. in 

an equal volume of 0.2 M NaOH, then further diluted to 8 pM in HT1 buffer (Illumina) and were 

sequenced using an Illumina MiSeq V2 500 cycle kit cassette with 16S rRNA library sequencing 

primers set for 250 basepair, paired-end reads. Overall sequencing run performance was 

evaluated by determining if the sequencing run met the Illumina specifications for quality scores 

and data output. Actual run performance varied based on sample type, quality, and clusters 

passing filter. Specifications are based on the Illumina PhiX control library at supported cluster 

densities. 
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4.2.15 Quality Filtering and OTU Picking 

Paired-end sequences were merged with a minimum overlap of 200 bases, trimmed at a 

length of 253 bp, and quality filtered at an expected error of less than 0.5% using USEARCH 

(Edgar, 2010). After quality filtering, reads were analyzed using the QIIME 1.9.0 software 

package (Caporaso et al., 2010; Caporaso et al., 2011). Chimeric sequences were identified using 

USEARCH61. Open reference operational taxonomic units (OTUs) were picked using the 

USEARCH61 algorithm at 97% identity (Edgar, 2013), and taxonomy assignment was 

performed using the Greengenes 16S rRNA gene database (13-5 release) (DeSantis et al., 2006). 

Taxomony was assigned to OTUs and organized into a BIOM formatted OTU table, which was 

summarized within QIIME 1.9.0. (Note: an OTU table contains each sample and the relative 

abundance of each unique bacterial taxon identified within each sample). 

4.2.16 Alpha Diversity Comparisons (16S) 

Alpha diversity box plots were generated within the QIIME-1.9.0 sequence analysis 

package using an unrarified OTU table. Samples with less than 10,000 sequences per sample 

were excluded from alpha diversity analyses. Multiple rarefactions were conducted on sequences 

across all samples to a maximum depth of 10,000 sequences, with a step size of 1,000, and 20 

iterations at each step. Alpha diversities were then collated and plotted and compared using a 

two-sample t-test and non-parametric Monte Carlo permutations (n = 999). 

4.2.17 Beta Diversity Comparisons (16S) 

Principal coordinates analyses (PCoA) plots and Adonis tests for significance were 

generated from a weighted UniFrac distance matrix made within QIIME 1.9.0 from a CSS 

normalized OTU table (Paulson, Stine, Bravo, & Pop, 2013). 
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4.2.18 Taxonomic LEfSe Enrichment Plots 

Relative abundances of bacterial taxa summarized at the genus level were multiplied by 1 

million and formatted as described in Segata et al. 2011 (Segata & Huttenhower, 2011). 

Comparisons were made between exercised and sedentary groups within each genotype in 

addition to exercised groups compared to their control C57/WT sedentary and exercised mouse 

groups. Alpha levels of 0.05 were used for both the Kruskal–Wallis and pairwise Wilcoxon tests. 

Linear Discriminant Analysis (LDA) scores greater than 2.0 are displayed.  

4.2.19 PICRUSt Enrichment Plots 

Phylogenetic Investigation of Communities by Reconstruction of Unobserved States 

(PICRUSt) functional predictions were generated from a closed-reference OTU table generated 

within QIIME-1.9.0. Relative abundances of level 3 summarized predicted functional genes were 

multiplied by 1 million and formatted as described in Segata et al. (2011) (Segata & 

Huttenhower, 2011). Comparisons were made with “HLR_Group” as the main categorical 

variable (“Class”). Alpha levels of 0.05 were used for both the Kruskal–Wallis and pairwise 

Wilcoxon tests. LDA scores greater than 1.0 are described.  

4.2.20 Statistical Analysis 

Results are presented as mean ± standard error of the mean (S.E.M.). Data were evaluated 

by one and two-way ANOVA followed by Bonferonni’s multiple comparison tests using 

GraphPad Prism Version 7. T-tests were also performed between pre-determined individual 

mouse groups in comparison to the sedentary groups. N indicates the number of animals per 

group. Statistical significance was accepted at p<0.05. RT-qPCR gene expression was 

determined by use of the Pfaffl equation (Pfaffl, 2001) and represented as fold change with 

significance denoted as differences in delta CT/genotype and intervention. Catalase activity is 
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represented as % of control group. Analysis of oxidized carbonyl groups are represented as the 

ratio of oxidized carbonyls to the total protein memcode stain. Microbial analysis statistics are 

defined per test used within each method subsection of that parameter.  
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4.3 RESULTS 

4.3.1 Body Weight and Body Composition  

At sixteen weeks of age, mice expressing the human catalase gene ([Tg(CAT)±] and Bob-

Cat) (D. L. Amos et al., 2017) in addition to the C57/WT control and Ob/Ob mice, were put on 

 

Figure 29. Weekly body weight changes. (A) Final whole-body weight (g); (B) Body 

weight change (initial and final body weight); (C) Overall weekly body weight measurements 

of WT, [Tg(CAT)±], Bob-Cat and Ob/Ob mice that remained sedentary or were exercised 8 

weeks (n≥7/group). The WT, [Tg(CAT)±], and Bob-Cat mouse groups’ data are depicted on 

the left vertical axis, while the Ob/Ob mice data is depicted on the right vertical axis. Mice 

overexpressing catalase on an exercise regimen in contrast to WT S or their sedentary cohorts 

showed no change or lesser gain in body weight over the eight week period. One and two-

way ANOVA followed by Bonferonni post-hoc and preplanned t-tests were performed on 

GraphPad Prism 7. Data is represented as mean ± S.E.M. Letters indicate significant p values, 

a= p<0.05, b= p<0.01, d<0.0001; symbols represent significant differences between 

genotypes *= compared to WT S; an additional ‘s’ represents comparison to sedentary 

cohorts. 
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an exercise regimen (30 min. of treadmill exercise, 5 days a week, at 15 m/min.) or remained 

sedentary in the same environment for the 8 week study period. All mouse groups were fed ad 

libitum normal chow diet. Changes in body weight and body composition (fat and lean mass) in 

the mouse groups overexpressing catalase were compared to the control WT and leptin deficient 

(Ob/Ob) mouse groups. Body weight (BW) was recorded each week and the final BW and 

change in body weight is shown in (Figure 29A-B). Analysis of change in BW by two-way 

ANOVA showed a significant interaction between genotype (p<0.0001). There was also a trend 

for lower body weight shown with exercise intervention compared to their sedentary controls, 

however, it did not quite reach significance (p=0.056). Bonferonni post hoc test did not show a 

significant difference between the groups, but using the t-test on preplanned groups, in 

comparison to the WT S and the sedentary cohorts within each genotype, the change in BW was 

significantly lower in exercised mouse groups, especially within the mice overexpressing 

catalase. Interestingly, the only group to actually lose body weight was the exercised [Tg(CAT)±] 

mouse group. As expected, the leptin deficient Ob/Ob sedentary and exercised mouse groups 

gained the highest amount of BW (p<0.0001) with the Ob/Ob sedentary group gaining the most 

weight of all mouse groups. The overall changes are reflected in the plotted body weight 

measurements taken per week (Figure 29C).  
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Total fat and lean mass were determined for each mouse group at baseline, 4 week, and 8 

week time points by ECHO-MRI. Total change in fat and lean mass between the beginning and 

end points of the study are shown in Figures 30A-B. Analysis by two-way ANOVA and 

Bonferonni post-hoc analysis showed a significant interaction in the change in fat mass between 

genotype (p<0.0001) in addition to exercise (p<0.01). Preplanned t-tests were also used to 

determine pair-wise differences between each exercise group and their sedentary controls. 

Similar to the results of body weight measurements, overexpression of catalase caused a similar 

change or loss in fat mass in comparison to the WT S control group. With exercise intervention, 

however, there was a significantly diminished gain in fat mass compared to the sedentary groups 

 

Figure 30. Fat and lean mass (ECHO-MRI). Change in (A) Fat mass and (B) lean mass (0 

and 8 week time point difference calculated by ECHO-MRI average measurements) in WT, 

[Tg(CAT)±], Bob-Cat, and Ob/Ob mouse groups that were sedentary or exercised 8 weeks. 

Mice overexpressing catalase on an exercise regimen in contrast to WT S or their sedentary 

cohorts had no change or a lower gain in fat mass. Bob-Cat E and WT E mice showed a trend 

for increased lean mass vs. their sedentary respective cohorts. One-way and two-way 

ANOVA followed by Bonferonni post hoc analysis in addition to preplanned t-tests were 

performed on GraphPad Prism 7. Data is represented as mean ± S.E.M. Letters indicate 

significant p values, a= p<0.05, b= p<0.01, d= p<0.0001; symbols represent significant 

differences between genotypes *= compared to WT S; an additional ‘s’ represents 

comparison to sedentary cohorts. 
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(p<0.01). As with body weight, the [Tg(CAT)±] mice were the only group to lose fat mass which 

was significantly lower than the WT S control group (Figure 30A). Similar to the [Tg(CAT)±] E 

mice, the Bob-Cat E group had a significantly lower change in fat mass (Figure 30A). Ob/Ob S 

and E mouse groups had the greatest increase in body fat (p<0.0001 and p<0.001 respectively). 

Lean mass comparisons showed an interaction (p<0.01) between exercise and genotype in 

addition to a significant difference between the genotypes (p<0.01). Between the genotypes, lean 

mass calculations showed WT E groups gained a significant amount of lean mass compared to 

their sedentary cohorts (p<0.05) and Bob-Cat groups showed a trend for increased lean mass 

(Figure 30A).  

4.3.2 Adipose, Liver, and Brain Weights 

Differences in subcutaneous (SubQ) and visceral adipose tissue weights and an increase 

in liver weight all play a key role in energy metabolism and are indicators of metabolic status 

(Paniagua, 2016; Sheng et al., 2018). Exercise is known to lower adipose tissue weight (J. Chen 

et al., 2018; Hoffmann & Weigert, 2017; Leal et al., 2018) and may play a role in maintaining 

the liver weight by lowering the amount of ectopic fat deposition. Therefore, as shown in Table 

11, adipose tissue and liver weights were measured during tissue collection at the end of the 

study from all mouse groups. Analysis by two-way ANOVA followed by Bonferonni post hoc 

tests and preplanned t-tests showed a significant genotype interaction (p<0.0001) in both SubQ 

and visceral adipose tissue weight. It was interesting that in both the excised SubQ and visceral 

adipose tissue, the [Tg(CAT)±] mouse groups had the lowest adipose tissue weight compared to 

the control WT S group. Exercised [Tg(CAT)±] mouse had significantly lower grams of SubQ 

adipose tissue, while the sedentary [Tg(CAT)±] had significantly lower grams of visceral adipose 

tissue. This result was also reflected in MRI analysis of the [Tg(CAT)±] E mouse group where 
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the greatest amount of fat mass was lost at the end of the study (Figure 30A). As expected, the 

Ob/Ob sedentary and exercised mouse groups both had the highest levels of adipose tissue 

weight (p<0.0001) with more than 7 times the amount of fat as the WT mice and mouse groups 

overexpressing catalase. In addition to adipose tissue weight, analysis by two-way ANOVA 

followed by Bonferonni post-hoc test showed a significant interaction between the mouse groups 

in liver weight with regard to genotype (p<0.0001). Ob/Ob mice, independent of exercise 

intervention, had significantly higher liver weights (p<0.0001). It is intriguing that the Bob-Cat S 

and E groups showed trends for increased liver weight.  

 SubQ Adipose (g) Visceral Adipose (g) Liver (g) Brain (g) 

WT S 0.33 ± 0.07 0.79 ± 0.07 1.19 ± 0.07 0.47 ± 0.003 

WT E 0.51 ± 0.22 0.90 ± 0.20 1.15 ± 0.04 0.45 ± 0.009 

[Tg(CAT)±] S 0.18 ± 0.06 0.48 ± 0.07 a* 1.07 ± 0.06 0.46 ± 0.01 

[Tg(CAT)±] E 0.15 ± 0.04 a* 0.71 ± 0.13 1.18 ± 0.07 0.44 ± 0.01 a*s 

Bob-Cat S 0.30 ± 0.04 1.02 ± 0.12 1.4 ± 0.13 0.47 ± 0.01 

Bob-Cat E 0.31 ± 0.05 1.03 ± 0.07 1.31 ± 0.05 0.48 ± 0.01 

Ob/Ob S 14.54 ± 0.47 d* 7.63 ± 0.17 d* 4.43 ± 0.18 d* 0.42 ± 0.003 d* 

Ob/Ob E 13.93 ± 0.61 d* 8.07 ± 0.27 d* 4.16 ± 0.31 d* 0.42 ± 0.008 d* 

Table 11. Tissue weights. Subcutaneous (SubQ) and visceral adipose tissue, liver, and brain 

weights (g) were measured during tissue collection at the end of the 8 week study 

(n≥7/group). One and two-way ANOVA followed by Bonferonni post hoc test and 

preplanned t-tests were used for statistical analysis. Data are represented as mean ± S.E.M. 

Letters indicate significant p values,  a= p<0.05, d= p<0.0001; symbols represent significant 

differences between genotypes *= compared to WT S; an additional ‘s’ represents 

comparison to sedentary cohorts. 
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Decreased brain weight could be an indicator of neurodegeneration or neurological 

dysfunction since previous studies have found that individuals with decreased brain volume have 

increased cortisol levels, are at higher risk for dementia, and tend to do poorer on cognitive tests 

(Stern, 2012). Two-way ANOVA indicated a significant difference within genotype (p<0001). It 

was surprising to find that among the control WT and groups overexpressing catalase, the 

[Tg(CAT)±] E group was the only group with a lower brain weight. We also observed that both 

sedentary and exercised Ob/Ob groups had significantly lower brain weight (10% decrease; 

p<0.0001) compared to the WT S mice in addition to every other mouse group.  

 

Figure 31. Weekly measurements of food consumed. (A) average weekly food 

consumption for 8 weeks; (B) weekly food consumption for 8 weeks per mouse group 

(n≥7/group). WT, [Tg(CAT)±], Bob-Cat, and Ob/Ob mouse groups remaining sedentary or 

exercised were studied. One-way and two-way ANOVA followed by Bonferonni post hoc 

analysis were performed on GraphPad Prism 7. Data is represented as mean ± S.E.M. Letters 

indicate significant p values: a= p<0.05, b= p<0.01, d= p<0.0001; symbols represent 

significant differences between genotypes * = compared to WT S; an additional ‘s’ represents 

comparison to sedentary cohorts. 
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4.3.3 Weekly Food Consumption 

Each week, the grams of food consumed were measured from each mice group. Figure 

31A shows the average food intake of each mice group per day, and Figure 31B displays the 

food intake per mouse group each week throughout the 8 week study. In comparison to the WT S 

mice, the only group that consumed a significantly lower amount of chow was the [Tg(CAT)±] 

sedentary group, which also had the lowest visceral fat mass (Table 11). On the other hand, 

although the body weight and fat mass were significantly decreased, when put on exercise 

intervention, it was intriguing the [Tg(CAT)±] E mouse consumed a similar amount of chow 

compared to the WT S and WT E groups. Bob-Cat mice, independent of intervention, consumed 

significantly more chow than the WT mice. As expected, Ob/Ob mice consumed more chow than 

all other mouse groups (p<0.0001). However, when put on exercise regimen, the Ob/Ob mice, 

trended to consume less food in comparison to the sedentary group. A similar effect was seen in 

the Bob-Cat group (p<0.05). However, this opposite was observed in the other two genotypes 

tested (WT and [Tg(CAT)±] mice).  



176 

4.3.4 Circulating Markers 

Numerous studies show physical activity improves the lipid profile and insulin sensitivity 

in both rodents and humans (J. Chen et al., 2018; Hoffmann & Weigert, 2017; Meissner et al., 

2010). Therefore, to determine the overall effect of exercise on circulating metabolic parameters, 

we measured plasma TC, HDL, and TG levels at the end of the 8 week study. All mice groups, 

with the exception of the Ob/Ob mice, had TC levels under 100 mg/dL. (This was below the 

detection limit of the kit, so the “<” sign was used to provide data for all groups.)  

As shown in Table 12, Ob/Ob mice had significantly higher levels than all other mouse 

groups. However, exercise intervention showed a trend for decreasing the TC levels in the 

Ob/Ob E mouse group (10%). HDL levels were significantly increased in the Bob-Cat genotype 

  

TC 

(mg/dL) 

n=7+ 

HDL (mg/dL) 

n=7+ 

TG (mg/dL) 

n=5+ 

Glucose 

(mg/dL) n=7+ 

Insulin 

(ng/mL) n=3+ 

WT S <100 46.13 ± 3.0 47.29 ± 2.8 178.4 ±  12.7 0.25 ± 0.05 

WT E <100 50.38 ± 2.65 43.27 ± 3.4 207 ±  16.7 0.26 ± 0.13 

[Tg(CAT)±] S <100 52.9 ± 3.34 40.4 ± 3.4 197.1 ± 15.1 0.56 ± 0.18 

[Tg(CAT)±] E <100 

55.3 ± 3.14 

(p=0.06) 33.2 ± 2.6 a* 198.3 ± 13.5 0.31 ± 0.05 

Bob-Cat S <100 60.6 ± 2.43 b* 46.5 ± 3.7 222.3 ± 22.2 0.80 ± 0.47 

Bob-Cat E <100 61.5 ± 2.63 b* 38.7 ± 3.0 235.5 ± 20.5 a* 1.52 ± 0.58 

Ob/Ob S 

142.3 ± 

5.12 d* 97.9 ± 1.32 d* 90.5 ± 16.8 d* 256.2 ± 15.8 c* 7.73 ± 2.01 c* 

Ob/Ob E 

127.1 ± 

7.36 b* 90.1 ± 5.16 d* 64.7 ± 8.7 b* 279 ± 26.2 c* 4.47 ± 1.46 b* 

Table 12. Circulating levels of metabolic markers. Total Cholesterol (TC) and High 

Density Lipoprotein (HDL) levels were determined using the Cholestech kit, while plasma 

Triglyceride (TG) levels were measured using the Triglyceride Colorimetric Assay Kit. 

Fasting blood glucose was measured by glucometer and plasma insulin was measured by 

ELISA. Data were collected from WT, [Tg(CAT)±], Bob-Cat, and Ob/Ob sedentary or 

exercised mice for 8 weeks. One and two-way ANOVA followed by Bonferonni post hoc 

analysis in addition to preplanned t-tests between exercise groups and sedentary controls 

were performed on GraphPad Prism 7. Data is represented as mean ± S.E.M. Letters indicate 

significant p values, a=p<0.05, b= p<0.01, c= p<0.001, d= p<0.0001; symbols represent 

significant differences between genotypes *= compared to WT S; an additional ‘s’ represents 

significant differences between sedentary cohorts.  
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independent of exercise (p<0.01), although all mice overexpressing catalase had higher HDL 

levels (not significant) compared to the WT S group. It was also interesting that exercise 

increased the HDL level in every genotype on exercise with the exception of the Ob/Ob mice. 

Although HDL was highest among the Ob/Ob mouse groups, the TC was also very high. All 

mouse groups overexpressing catalase trended to have lower circulating TG levels compared to 

the WT S mice, with the [Tg(CAT)±] mice on exercise intervention having the lowest levels 

(p<0.05). This directly correlates with their lower adipose tissue weights compared to all the 

other mouse groups. Exercise intervention not only lowered the TG levels (p<0.05), but the 

effect was exacerbated in the mice overexpressing catalase. On the contrary, highest TG levels 

were seen in the Ob/Ob sedentary mouse group (p<0.0001). Exercised Ob/Ob mice had 

significantly higher TG levels than the WT S group (p<0.01), but levels were not as significantly 

high as their sedentary cohorts.  

Circulating levels of glucose and insulin were also measured and shown in Table 12 

followed by one and two-way ANOVA and Bonferonni post hoc analysis. T-tests were also used 

between preplanned mouse groups to compare exercised mice with their sedentary cohorts. No 

significant differences were noted between the mouse groups regarding blood glucose levels with 

the exception of the Bob-Cat E mice and both Ob/Ob mouse groups. Bob-Cat exercised mice had 

higher (p<0.05) glucose levels than the WT S group, but the highest levels were observed in both 

the Ob/Ob mouse groups (p<0.001). Plasma insulin levels were significantly higher (p<0.001) in 

the Ob/Ob sedentary group of mice. The Ob/Ob mice on exercise had 8-fold higher levels 

compared to the WT S group (p<0.01), but this was much lower than the insulin levels observed 

in their sedentary cohorts. Therefore, exercise seemed to have a beneficial effect by lowering the 

insulin levels in the Ob/Ob exercised mouse group. It is also interesting that we observed the 
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lowest levels of circulating glucose and insulin in the WT S and [Tg(CAT)±] mice on exercise 

intervention.  

4.3.5 Comprehensive Animal Monitoring System (CLAMS) Analysis 

4.3.5.1 Food Intake 

At the end of the study, the Comprehensive Animal Monitoring System (CLAMS) was 

used to conduct a three-day assessment of food intake (FI) per mouse and averaged for each 

mouse group (Figure 32A-D). Results are displayed for two-hour time intervals for all mouse 

groups and between each genotype in addition to 12 h light and dark cycles per mouse group. 

Unlike the weekly food measures, while analyzed in the CLAMS, there were no significant 

differences between any mouse group. However, we found that on average, mice on exercise 

 

Figure 32. CLAMS analysis of food intake over a 48h time period. Light and dark cycle 

CLAMS measurements of (A) WT (C57/WT), (B) [Tg(CAT)±], (C) Bob-Cat, and (D) Ob/Ob 

sedentary and exercised mice food intake as average grams/2h for 48h (n≥7/group). One-way 

and two-way ANOVA followed by Bonferonni post hoc analysis was performed on 

GraphPad Prism 7. Data is represented as mean ± S.E.M. (n≥7/group) 
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intervention consumed more food than their sedentary cohorts. The only exception was the 

Ob/Ob group. Because rodents are nocturnal, we also averaged FI during both the light and dark 

cycles as displayed in Table 13.  
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Again, although there were no significant differences, we found exercised mice trended 

to consume more chow than their sedentary cohorts. It was also interesting to note that the 

  FI RER EE XAMB 

Group Light Dark Light Dark Light Dark Light Dark 

WT S 

0.20 ± 

0.03 

0.46 

± 

0.06 

0.89 ± 

0.02 

0.95 ± 

0.02 

18.39  

± 0.86 

21.29 

± 0.8 

593.3 ± 

134 

1931 ± 

234 

WT E 

0.24 ± 

0.03 

0.43 

± 

0.07 

0.91 ± 

0.01 a* 

0.96 ± 

0.02 

17.63 

± 0.72 

d* 

19.88 

± 0.98 

809.2 + 

294.4 

1763 ± 

359 

[Tg(CAT)±] 

S 

0.23 ± 

0.05 

0.46 

± 

0.08 

0.91 ± 

0.02 

0.97± 

0.02 

16.81 

± 1.12 

d* 

19.31 

± 1.32 

b* 

635.5 ± 

177.6  

2169 ± 

624 

[Tg(CAT)±] 

E 

0.24 ± 

0.04 

0.53 

± 

0.09 

0.93 ± 

0.02 

d*;b*s 

0.99 ± 

0.02 d* 

16.64 

± 0.73 

d* 

20.07 

± 0.60 

466.3 ± 

91.8 

1678 ± 

1015 

Bob-Cat S 

0.22 ± 

0.44 

0.45 

± 

0.27 

0.86 ± 

0.02 d* 

0.91 ± 

0.02 d* 

16.63 

± 0.79 

d* 

19.99 

± 0.74 

2064 ± 

872 d* 

5002 ± 

1631 

d* 

Bob-Cat E 

0.25 ± 

0.04 

0.50 

± 

0.06 

0.89 ± 

0.01 

d*;d*s 

0.94 ± 

0.01 

a*s 

15.54 

± 0.71 

d*;a*s 

18.87 

± 0.61 

c* 

1313.09 

± 618.1 

b*;b*s 

3944 ±  

907 c* 

Ob/Ob S 

0.18 ± 

0.05 

0.46 

± 

0.07 

0.80 ± 

0.04 d* 

0.85 ± 

0.04 d* 

20.27 

± 0.81 

d* 

23.07 

± 0.68 

a* 

150.4 ± 

24.45  

413.4 ±  

74.0 a* 

Ob/Ob E 

0.16 ± 

0.03 

0.45 

± 

0.05 

0.87 ± 

0.01 

b*;d*s 

0.92 ± 

0.01 

d*;d*s 

20.57 

± 0.83 

d* 

22.94 

± 0.76 

a* 

157.3 ± 

27.71  

374.23 

±  59.7 

a* 

 

Table 13. Light and dark cycles of metabolic parameters. 2h light and dark cycle 

averages of food intake (FI) as average grams (g) of chow consumed, average 

Respiratory Exchange Ratio (RER) as VCO2/VO2, metabolic energy expenditure (EE) as 

Cal/h/(g) lean mass of each mouse group, and counts of physical movement as XAMB / 

cycle (XAMB) of each exercised and sedentary mouse group per light (0-12, 24-36h) and 

dark (12-24,36-48h) cycle of the 48h analysis. One-way and two-way ANOVA followed 

by Bonferonni post hoc test as week as pre-planned t-tests between each genotype and 

sedentary control was performed using Graph-Pad Prism 7. Data are represented as mean 

± S.E.M. and significant differences are displayed with letters indicating p values: 

a=p<0.05, b= p<0.01, c=p<0.001, d=p<0.0001; symbols represent significant differences 

between genotypes *= compared to WT S; an additional ‘s’ represents significant 

differences between sedentary and exercise cohorts. (n≥7) 
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exercised [Tg(CAT)±] and Bob-Cat mice consumed among the highest levels of food overall, 

despite their low body weight, fat mass, and circulating levels of TG (Figures 29-30 and Tables 

11 and 12).  

CLAMS analysis can also be indicative of normal eating patterns and circadian rhythm 

(can change based on the frequency of food consumption). It was surprising that the Ob/Ob 

mice, contrary to expectation, did not significantly differ in their frequency of food consumption.   

4.3.5.2 Respiratory Exchange Ratio, CHO Oxidation, and Fat Oxidation 

RER is an indication of the type of fuel (carbohydrate (CHO) vs fat) being primarily 

oxidized to supply energy demands. In comparison to the WT S group, shown in Table 13, 

exercised mice within each genotype showed an increase in the RER (p<0.05). This was also true 

of each exercised group compared to their sedentary cohorts. (Overall 2h time intervals are 

reflected in Figure 33A-D.) 
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As expected, the RER of the Ob/Ob S mice was the lowest among all mouse groups, yet 

the Ob/Ob E group had higher levels than their sedentary cohorts (Table 13, p<0.0001). 

However, most interesting, was the RER measurements observed in the [Tg(CAT)±] and Bob-

Cat mouse groups on exercise intervention. While [Tg(CAT)±] E showed the overall highest 

levels (p<0.0001) independent of the light or dark cycle, Bob-Cat E mice had increased levels 

compared to their sedentary cohorts yet retained similar RER levels to the WT S group (Table 

13).  

 
Figure 33. CLAMS analysis of respiratory exchange ratio over a 48h time period. Light 

and dark cycle CLAMS measurements of (A) WT (C57/WT), (B) [Tg(CAT)±], (C) Bob-Cat, 

and (D) Ob/Ob exercised and sedentary mouse group’s Respiratory Exchange Ratio (RER) is 

depicted as VCO2 emission / VO2 consumption. (n≥7/group) One and two-way ANOVA 

followed by Bonferonni post hoc analysis was performed on GraphPad Prism 7. Results are 

represented as mean ± S.E.M.  
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In addition to determining the RER, we further delineated the CHO and fat oxidation 

levels using the VO2 and VCO2 obtained from the CLAMS measurements (Figure 34).  

In comparison to the WT S mice, exercised mouse groups showed an overall trend for 

higher levels of CHO oxidation and lower levels of fat oxidation independent of the light or dark 

 

Figure 34. Substrate oxidation level over a 48h time period. Calculated oxidation levels of 

carbohydrate (CHO) during the (A) light and (B) dark cycles as well as the oxidation of fat 

during the (C) light and (D) dark cycles in WT (C57/WT), [Tg(CAT)±], Bob-Cat, and Ob/Ob 

exercised and sedentary mice (n≥7/group). One and two-way ANOVA were performed 

followed by Bonferonni post hoc analysis on GraphPad Prism 7. Data is represented as mean 

± S.E.M. Significant differences are displayed with letters indicating p values b= p<0.01, 

c=p<0.001, d=p<0.0001; symbols represent significant differences between genotypes *= 

compared to WT S; an additional ‘s’ represents significant differences between sedentary 

cohorts. 
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cycle. However, when comparing the two time periods, the highest levels of carbohydrate 

oxidation were observed during the dark (wake) cycle while the highest levels of fat oxidation 

were seen during the light cycle as the animals slept. Ob/Ob mice were expected to have the 

lowest levels of CHO oxidation and the highest levels of fat oxidation due to their obese state. 

However, it was unexpected that the Bob-Cat sedentary mouse group had the lowest level of 

CHO oxidation and the highest level of fat oxidation (p<0.01). In fact, their level of fat oxidation 

was even higher than the obese, leptin deficient Ob/Ob mouse groups.  

Nonetheless, even more surprising was that the [Tg(CAT)±] E group had both the overall 

highest levels of CHO oxidation and lowest levels of fat oxidation (p<0.0001) regardless of the 

time of day. Bob-Cat E mice, on the other hand, showed the opposite effect in the dark cycle 

with increased levels in fat oxidation compared to the WT S mouse group. These results indicate 

antioxidant catalase and/or exercise is playing a role in modulating the metabolic pathways 

involved in fuel oxidation within the antioxidant overexpressing mouse groups.  

4.3.5.3 EE and XAMB 

The CLAMS technology also provides measurements of Energy Expenditure (EE) as 

well as physical activity levels (XAMB). EE, indirectly calculated as Cal/h/g of lean body mass, 

was significantly different in each mouse group compared to the WT S mice. Figure 35A-E 

depicts the 2h time point measurements for each of the mouse groups. With the exception of the 

Ob/Ob mice, which had significantly higher levels (p<0.0001), all mouse groups overexpressing 

catalase or on exercise intervention had decreased levels of EE compared to the WT S group 

during the light cycle (Figure 35A and Table 13). The same trend was shown during the dark 

cycle, although, not all levels reached significance (Table 13). Exercise showed a trend for 
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decreasing the EE, and the exercised mouse groups overexpressing catalase (Bob-Cat and 

[Tg(CAT)±]) had the lowest levels (Table 13).   

XAMB, a count of beam breaks while the mice resided in the CLAMS chambers, was 

averaged and showed that in comparison to the WT S group, all groups overexpressing catalase 

showed a trend of having higher activity levels (Table 13 and Figure 36A-D). The only 

exception was the [Tg(CAT)±] E group. As shown in Table 13 and reflected in Figure 36, 

Ob/Ob mice had the lowest levels of physical activity (p<0.05), independent of exercise 

intervention and the time of day, compared to every other mouse group. As observed in other 

 

Figure 35. CLAMS analysis of energy expenditure over a 48h time period. Light and 

dark cycle CLAMS analysis of Energy Expenditure (EE) per 2h over a 48h time period in (A) 

WT (C57/WT), (B) [Tg(CAT)±], (C) Bob-Cat, and (D) Ob/Ob exercised and sedentary mouse 

groups (n≥7/group). Metabolic EE averaged as Cal/h/Lean (g) body mass. One-way and two-

way ANOVA followed by Bonferonni post hoc analysis were performed on GraphPad Prism 

7. Data is represented as mean ± S.E.M. 
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metabolic measurements, mice overexpressing catalase continued to show intriguing results. As 

previously mentioned, the [Tg(CAT)±] E mouse group had lower (light cycle) or similar XAMB 

levels (dark cycle) to the WT S mice, but Bob-Cat mice independent of intervention had 

significantly higher levels of activity compared to the WT S groups (p<0.01) (Table 13). This 

further provides evidence of an antioxidant and exercise effect on metabolic pathways in this 

novel mouse model.  

 
Figure 36. CLAMS analysis of total activity over a 48h time period. Light and dark cycle 

CLAMS analysis of X-Ambulatory movement (XAMB) per 2h over a 48h time period in (A) 

WT (WT/C57), (B) [Tg(CAT)±], (C) Bob-Cat, and (D) Ob/Ob exercised and sedentary 

mouse groups. (n≥7/group). One-way and two-way ANOVA was performed on GraphPad 

Prism 7. Data is represented as mean ± S.E.M.  
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4.3.6 Synergistic Effects of Exercise and Antioxidant Catalase on Skeletal Muscle Function  

 
 

Figure 37. Type 1 / Type 2 fiber type ratio in the gastrocnemius skeletal muscle. (A) 

Skeletal muscle ATPase fiber type analysis (pH 4.3) images (black Type 1 vs. gray-shaded 

stains of Type 2 fibers) of exercised and sedentary C57/WT, [Tg(CAT)±], Bob-Cat, and 

Ob/Ob mouse groups and (B) fiber type analysis of Type 1 / 2 ratios evidencing antioxidant 

and  exercise intervention induced a general trend for higher Type 1 / 2 fiber ratios vs. 

C57/WT sedentary mice. Data shown as % of Type 1 / Type 2 fiber type ratio vs. C57/WT 

sedentary mice (n≥6). One-way and two-way ANOVA followed by Bonferonni post hoc tests 

in addition to preplanned t-tests between exercised mice and their sedentary controls were 

performed on GraphPad Prism 7. Significance was denoted as a*= p<0.05 to WT sedentary 

(S) group. 
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Exercise is known to induce morphological and physiological changes in skeletal muscles 

that are beneficial for metabolic health (Schnyder & Handschin, 2015; B. So et al., 2014). 

Therefore, we analyzed differences in muscle weight during tissue collection, grip strength 

(Deacon, 2013), Type 1 / Type 2 fiber type ratio, and key myokine expression and secretion. No 

differences were seen in average muscle weight of the Gas (0.12- 0.17g) or Soleus muscle (≤ 

0.01g) within each mouse group. In addition, there were no significant differences seen within 

the various groups in the grip strength test. The Gas muscle is comprised of both Type 1 and 

Type 2 muscle fibers, while the soleus muscle is predominately comprised of Type 1 muscle 

fibers (Gollnick & Hodgson, 1986). Therefore, we used the Gas muscle to determine alterations 

in fiber type as a result of exercise intervention and antioxidant overexpression. Post staining for 

Myosin ATPase (pH 4.3), which provided visual evidence of Type 1 (dark) and Type 2 fibers 

(shades of gray) (Figure 37), we observed a significant increase in the Type 1 / Type 2 fiber 

ratio of all exercised mouse groups, except for the Ob/Ob E group (p<0.05). This observation 

within the Ob/Ob E group may have been a result of their leptin mutation since leptin is an 

adipokine involved in the skeletal muscle-adipose axis (A. Rodriguez et al., 2017). Most 

interestingly, as shown in Figure 37, the [Tg(CAT)±] E and Bob-Cat E groups showed the 

highest Type 1 / Type 2 muscle fiber ratio (p<0.05; 211% and 239% increase respectively vs WT 

S). With these evidences, exercise and antioxidant overexpression had a synergistic effect on the 

fiber type ratio within the Gas muscle.  
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Increasing evidence indicates that Type 1 and Type 2 muscle fibers express and secrete 

different proteins which can have both autocrine and paracrine effects (Hoffmann & Weigert, 

2017; S. Jung & Kim, 2014; Mizgier, Rutti, Pinget, & Bouzakri, 2018). Therefore, as a direct 

effect of exercise, and a synergistic effect with the combination of increased endogenous 

antioxidant altering the fiber type ratio, we further analyzed key myokine mRNA gene 

expression within the Gas skeletal muscle tissue using RT-qPCR (Table 14).  

 

mRNA Expression Fold Change to WT S Controls 
Plasma 

(ug/mL) 

Mouse Group 
GLUT 4 IL-6 FGF-21 

PGC1-

alpha 
FNDC5 Irisin 

C57/WT S 
1 1 1 1 1 

2.96 ± 

0.48 

C57/WT E 
2.5 b* 2.33 4.4 2.2 1.61 a* 

2.72 ± 

0.12 

[Tg(CAT)±] S 
1.32 1.48 1.52 0.33 0.92 

3.58 ± 

0.09 

[Tg(CAT)±] E 
2.51 b* 2.52 9.44 b* 2.35 

2.37 

a*a*s 

2.66 ± 

0.20 

Bob-Cat S 
1.33 1.79 2.42 1.7 1.23 

3.65 ± 

0.66 

Bob-Cat E 
1.68 1.15 3.73 2.13 1.83 

2.98 ± 

0.05 

Ob/Ob S 
0.92 0.78 6.06 a* 1.56 2.38 

3.45 ± 

0.14 

Ob/Ob E 
0.14 a* 1.66 5.54 1.12 2.36 

2.40 ± 

0.29 

Table 14. Gastrocnemius skeletal muscle myokine expression. Skeletal muscle mRNA 

expression of exercise-induced myokines (GLUT 4, IL-6, FGF-21, PGC1-alpha, and 

FNDC5) were determined within the gastrocnemius skeletal muscle of each sedentary (S) 

and exercised (E) group by RT-qPCR. In addition, circulating levels of plasma irisin 

(ELISA) were also evaluated. (n≥3). mRNA expression is depicted as fold change to 

sedentary C57/WT mice by Pfaffl ddCT method. Levels of plasma irisin are represented 

as mean ± S.E.M. One-way and two-way ANOVA was performed followed by 

Bonferonni post hoc analysis in addition to preplanned t-tests between exercised mice and 

their sedentary controls on GraphPad Prism 7. Significant differences are displayed with 

letters indicating p values: a=p<0.05, b= p<0.01; symbols represent significant differences 

between genotypes *= compared to WT S; an additional ‘s’ represents significant 

differences between sedentary cohorts. 
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GLUT 4 is a glucose transporter expressed in skeletal muscle tissue that aids in regulation 

of glucose levels and is known to be induced by exercise (Ikeda et al., 2016). With oxidative 

stress known to play a key role in glucose homeostasis (Grattagliano et al., 2008), we sought to 

determine whether GLUT 4, being an exercise-induced myokine, significantly differed among 

the mouse groups. As shown in Table 14, exercise intervention showed an increased fold change 

(p<0.05) compared to the sedentary control groups. However, it was interesting to find the 

plasma glucose levels were slightly elevated in all exercised mice compared to their sedentary 

cohorts (Table 12).  

IL-6 is another exercise-induced myokine that is also expressed in adipose tissue and 

macrophages (Febbraio & Pedersen, 2005; Leal et al., 2018; Raschke & Eckel, 2013). As shown 

in Table 14, within the Gas skeletal muscle, though not significant, IL-6 showed a trend for 

increased expression in both mouse groups overexpressing catalase, with an exacerbated effect 

observed in the [Tg(CAT)±] E group (>2.5 fold induction).  

Another myokine increased by exercise (Leal et al., 2018), and previously shown to be 

induced by alterations in redox stress, is Fibroblast Growth Factor 21 (FGF-21) (Gomez-Samano 

et al., 2017). It plays a key role in systemic glucose homeostasis (X. Lin et al., 2017) and has 

been shown to modulate adipose tissue function in addition to its browning, thus inducing 

thermogenesis/energy expenditure (BonDurant et al., 2017; A. Rodriguez, Becerril, Ezquerro, 

Mendez-Gimenez, & Fruhbeck, 2016). As shown in Table 14, exercise intervention in each 

mouse group, apart from the Ob/Ob mice, caused an induction in FGF-21 levels in comparison to 

the WT control. Specifically, within the [Tg(CAT)±] E and Bob-Cat E groups, there was > 8 fold 

(p<0.01) and 3 fold change (not significant) respectively.  
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With both groups expressing human antioxidant catalase, we expected oxidative stress 

levels within the skeletal muscle tissue played a role in the induced FGF-21 gene expression. 

Therefore, we also measured catalase activity using the established method of Aebi (Aebi, 1984). 

Although not significant, specific activity calculations showed an increased level of Gas skeletal 

muscle catalase activity compared to the WT S group in both [Tg(CAT)±] E and Bob-Cat E mice 

(Figure 38). 

In recent years, one key signaling pathway that has received attention is the PGC1-

alpha/FNDC5/Irisin pathway (Hoffmann & Weigert, 2017; Huh, 2018; Perakakis et al., 2017) 

which has been shown to be activated by exercise (Leal et al., 2018) and FGF-21 (Fisher et al., 

2012; Sanchis-Gomar, Pareja-Galeano, Mayero, Perez-Quilis, & Lucia, 2014). With the 

induction of FGF-21 shown in the exercised mice overexpressing catalase (Table 14), we first 

                                   

Figure 38. Skeletal muscle catalase activity level. Catalase enzymatic specific activity 

(U/mg protein) was calculated for each mouse using Aebi method. Data is represented as 

percent specific activity to the WT (C57/WT) S mouse group. One-way and two-way 

ANOVA followed by Bonferonni post hoc tests in addition to preplanned t-tests between 

each exercised group and their sedentary cohorts were performed on GraphPad Prism 7. 

Significance was considered as a*= p<0.05 to the WT sedentary (S) group.  



192 

analyzed PGC1-alpha. Though not quite significant, an increased fold change in the mRNA 

expression of PGC1-alpha was observed in all mouse groups subjected to exercise intervention 

vs the WT S group and their sedentary cohorts. With this trend we further analyzed the mRNA 

expression of FNDC5 and saw the same effect compared to the WT S mice (p<0.05) (Table 14). 

Therefore, we further analyzed circulating plasma irisin levels since there has been evidence 

showing increased levels with chronic endurance exercise interventions (Leal et al., 2018). 

Surprisingly, we did not observe any significant differences within any mouse group.  

4.3.7 Adipokine Expression and Adipose Tissue Redox Status   

Not only does exercise play a role in skeletal muscle function, but it also decreases 

adipose tissue mass in addition to altering expression and secretion of key adipokines related to 

 

Fold 

Change to 

WT S 

Protein 

Expression 

(Plasma) 

Fold Change 

to WT S 

Fold Change to 

WT S 

Mouse Group Leptin 

mRNA 

Leptin (pg/mL) UCP-1 

mRNA 

Adiponectin 

mRNA 

C57/WT S 1.00 29.6 ± 13.8 1.00 1.00 

C57/WT E 1.78 84.2 ± 18.8 1.08 1.55 

[Tg(CAT)±] S 2.01 14.9 ± 5.3 1.69 0.49 

[Tg(CAT)±] E 0.60 113 ± 46.8 b*b*s 0.58 b* 0.73 

Bob-Cat S 0.51 43.61 ± 6.5 1.80 0.44 

Bob-Cat E 1.66 27.5 ± 5.5 5.44 0.56 

Ob/Ob S 0.60 1.34 ± 0.62 6.29 a* 0.05 b* 

Ob/Ob E 0.81 0.97 ± 0.01 1.81 a*s 0.1 b* 

Table 15. Adipose tissue expression level of key adipokines. mRNA expression of key 

adipokines (Leptin, UCP-1, and Adiponectin) involved in energy metabolism and/or 

inflammatory signaling were evaluated in the adipose tissue of each sedentary (S) and 

exercised (E) mouse group by RT-qPCR. (n≥3) mRNA expression is displayed as fold 

change compared to C57/WT (WT) sedentary (S) mice determined by Pfaffl ddCT method. 

Plasma leptin levels were measured using a Mouse Adipokine Array (Millipore) on a 

Luminex system. One and two-way ANOVA followed by Bonferonni post hoc tests in 

addition to preplanned t-tests between each exercised and sedentary control were performed 

on GraphPad Prism 7. Significant differences are displayed with letters indicating p values: 

a=p<0.05, b= p<0.01; symbols represent significant differences between genotypes *= 

compared to WT S; an additional ‘s’ represents significant differences between sedentary 

cohorts. 
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energy metabolism (Golbidi & Laher, 2014). In recent years, evidence has indicated a crosstalk 

between skeletal muscle and adipose tissue (Leal et al., 2018). Some of the key factors 

speculated to be involved in the crosstalk include IL-6, FGF-21, irisin, and leptin (Hoffmann & 

Weigert, 2017; Roca-Rivada et al., 2013; A. Rodriguez et al., 2016). With our novel model 

showing decreased adipose tissue mass in each exercised mouse group (Figure 30 and Table 

11), we sought to determine if there were differences in the adipokine leptin, a 42 kD protein 

produced primarily in adipose tissue and a key regulator of energy homeostasis.  

Leptin regulates appetite by hypothalamic signaling in the arcuate nucleus (Frago & 

Chowen, 2015; Wilson & Enriori, 2015). More recently it has been shown to be involved in the 

crosstalk between adipose tissue and secretion of myokines (A. Rodriguez et al., 2016). 

Compared to the WT S group, the exercised, antioxidant-overexpressing mice showed opposing 

effects (Table 15). Although not significant, the [Tg(CAT)±] E group showed a slight decrease in 

expression while the Bob-Cat E, similar to the WT and Ob/Ob exercised groups, showed a trend 

for increased expression. We further analyzed plasma leptin levels using a mouse adipokine 

array and found that in circulation, the group with the highest leptin levels was the [Tg(CAT)±] E 

while Bob-Cat E had similar levels in comparison to the WT S group (not significant).  

On the other hand, with an upregulation of FGF-21 expression in the skeletal muscle 

tissue of the antioxidant overexpressing mouse groups, we analyzed the downstream 

modifications expected to occur in adipose tissue. FGF-21 is known to have a beneficial 

metabolic effect in adipose tissue by inducing browning through upregulation of UCP-1 (Fisher 

et al., 2012; P. Lee et al., 2014). We found this to have occurred within the Bob-Cat E mice with 

a 5-fold increase (trend) in UCP-1 mRNA expression compared to the WT S group. 

Interestingly, contrary to the Bob-Cats, [Tg(CAT)±] E mice had a significant decrease in UCP-1 
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expression (p<0.05) vs the WT S group. Nonetheless, specifically within the Bob-Cat E group 

we observed the highest fold change of  FGF-21 in adipose tissue. This may also have been a 

factor in the decreased body weight and fat mass at the end of the exercise study (Figure 29 & 

30, Table 11). Additionally, a few studies have discussed the interaction between exercise-

induced myokine FGF-21 and adiponectin (Manole, Ceafalan, Popescu, Dumitru, & Bastian, 

2018). Therefore, we also analyzed adipose tissue adiponectin levels. Although no significant 

differences were noted between the genotypes, evidence was shown for an induction of 

adiponectin (p<0.05) in exercised groups providing evidence of adipose - skeletal muscle 

crosstalk.  
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As analyzed in the skeletal muscle tissue, we also evaluated the oxidative state of the 

adipose tissue by detecting oxidized carbonyl groups and measuring catalase activity levels 

(Figure 39A-B).  

There were no significant differences in oxidative stress levels (oxidized carbonyl 

groups) between the antioxidant-overexpressing groups and WT mouse groups, but the Ob/Ob 

mouse groups had the highest levels of carbonylated proteins as shown in Figure 39A. Analysis 

of catalase activity showed both WT E and [Tg(CAT)±] E mouse groups had significantly 

increased catalase activity levels (Figure 39B) compared to the sedentary control group. Bob-

Cat E mice enzymatic activity levels were similar yet slightly increased compared to the WT S 

 

Figure 39. Oxidized carbonyl groups and catalase activity in adipose tissue. (Left) 

Oxyblot of oxidized carbonyl groups shown as densitometric ratios of oxidized proteins to 

total proteins (memcode) in adipose tissue of C57/WT (WT), [Tg(CAT)±], Bob-Cat, and 

Ob/Ob sedentary (S) and exercised (E) mouse groups. Error is reported as mean ± S.E.M. 

(Right) Catalase enzymatic specific activity in adipose tissue (U/mg protein) was calculated 

for each mouse using the Aebi method. Data is represented as percent specific activity of 

each mouse group to the WT S group. One and two-way ANOVA followed by Bonferonni 

post hoc analysis and preplanned t-tests were performed using GraphPad Prism 7. 

Significance was considered as p<0.05, a*= p<0.05, d* p<0.0001 to the WT sedentary (S) 

group; an additional ‘s’ represents significant differences between sedentary cohorts. 
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mouse group. These results indicate that specifically, antioxidant catalase may be playing a role 

in adipose tissue function.  

4.3.8 Hypothalamic Appetite Regulation 

There is a well-known link between adipose tissue and hypothalamic signaling through 

the satiety hormone leptin (J. Friedman, 2016; Kwon, Kim, & Kim, 2016). Although we did not 

observe significant changes within the adipose tissue with regard to leptin mRNA expression nor 

plasma leptin levels (Table 16), we did observe changes in body weight, fat mass, and metabolic 

parameters which are impacted by neurons within the hypothalamus of the brain (Benite-Ribeiro 

et al., 2016; Funahashi et al., 2003). mRNA expression of the key orexigenic (NPY) and 

anorexigenic (POMC) genes were detected within each mouse group along with Brain Derived 

Neurotrophic Factor (BDNF). BDNF has been shown to be upregulated by exercise (Jodeiri 

Farshbaf et al., 2016) and plays a role in anxiety, cognition, mood, and behavior (Archer, 

Josefsson, & Lindwall, 2014). With regard to appetite regulation, we saw that there was a trend 

 
mRNA expression Fold Change to C57/WT S Controls 

Mouse Group NPY LepR POMC BDNF 

C57/WT S 1 1 1 1 

C57/WT E 0.74 4.35 b* 5.54 a* 3.61 a* 

[Tg(CAT)±] S 0.96 6.79 a* 5.89 b* 3.88 

[Tg(CAT)±] E 0.76 3.09 8.29 a* 2.79 

Bob-Cat S 1.2 6.7 a* 2.07 6.04 

Bob-Cat E 0.94 2.83 3.52 1.34 b* 

Ob/Ob S 1.65 4.15 a* 7.98 a* 2.18 

Ob/Ob E 1.46 5.41 a* 12.77 3.64 

Table 16. Hypothalamic mRNA gene expression.  mRNA expression analysis of key genes 

involved in hypothalamic appetite regulation and neurogenesis (NPY, LepR, POMC, and 

BDNF) in the hypothalamic region of the brain by RT-qPCR. Expression levels within each 

sedentary (S) and exercised (E) mouse genotype are depicted as fold change to sedentary 

C57/WT (WT) mice by Pfaffl ddCT method. (n≥3). One-way and two-way ANOVA 

followed by Bonferonni post hoc test and preplanned t-tests were performed on GraphPad 

Prism 7. Significant differences are displayed with letters indicating p values: a=p<0.05, b= 

p<0.01; symbols represent significant differences between genotypes *= compared to WT S 

mice. 
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for all exercised groups to have a decreased fold change in NPY mRNA expression (Table 16), 

which could cause a decrease in food intake.  

On the other hand, there was an increased expression of LepR (would induce satiety) 

within every mouse group in comparison to the WT S mice except the [Tg(CAT)±] E and Bob-

Cat E groups. POMC was also analyzed. Known for its downstream effects of induced satiety 

and increased energy expenditure, we found POMC in both the WT E and [Tg(CAT)±] S group 

to have >5 fold increase (p<0.05), and the [Tg(CAT)±] E (p<0.05) and Ob/Ob E (p<0.05) mice to 

have the highest mRNA expression. Surprisingly, the Bob-Cat S and E groups showed only a 

slight fold increase, but it was not significant compared to every other mouse group vs. the WT S 

mice. 

BDNF levels were also measured since we saw significant changes in the brain weight 

(Table 11) and its level has been shown to be increased by exercise potentially through a PGC1-

alpha, FNDC5, BDNF (Jodeiri Farshbaf et al., 2016; Siamilis et al., 2009). In comparison to the 

WT S group, the highest levels were seen in the Bob-Cat S mouse group. However, there was 

also a slight increase in the Bob-Cat E group (not significant) and almost a 3-fold increase in the 

[Tg(CAT)±] E group.  

4.3.9 Impact of Exercise on Microbial Composition and Predicted Function 

4.3.9.1 Alpha Diversity 

Numerous studies have shown shifts in the taxa and function of the gut microbiome as a 

result of physical activity in both humans and mice (J. Chen et al., 2018; Denou et al., 2016; 

Monda et al., 2017). Exercise has been shown to increase species richness, the number of 

beneficial microbes, the microflora diversity, and the development of commensal bacteria 

(Monda et al., 2017). Nonetheless, we are not aware of any studies who have investigated the 
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synergistic effect of exercise and antioxidant overexpression on the composition and function of 

the gut microbiome. In our novel model, we observed changes in skeletal muscle morphology, 

 

Figure 40. Boxplot of microbiome alpha diversity. A boxplot of the alpha diversity 

measured by Faith’s phylogenetic diversity (PD) as implemented in QIIME of the (A) 

exercise and sedentary groups of all samples (n≥27) and (B) each intervention group per 

genotype (n≥7). A two-sample t-test and non-parametric Monte Carlo permutations (n = 999) 

were used for statistical analysis (p<0.05).  



199 

myokine/adipokine crosstalk, and appetite regulation with exercise which may have been a result 

of shifts in the gut microbiome in response to increased catalase or exercise intervention. 

Therefore, to further our knowledge in the field, the variable regions 3 and 4 of bacterial 16S 

rRNA genes were amplified by PCR and sequenced using the Illumina MiSeq platform. To 

determine the microbiota phylogenetic richness in each fecal sample, we analyzed the alpha 

diversity. No significant differences were shown between sedentary and exercised mouse groups 

(Figure 40A). 

 Because genotype could have played a role in the alpha diversity assessment, we chose 

to also analyze alpha diversity between the genotypes on sedentary or exercise regimen. When 

only considering the sedentary cohorts, despite differences in species richness, no statistically 

significant differences were observed between any pairwise cohort-to-cohort groups. This same 

effect was seen when only considering the exercise cohorts. Further analysis of each individual 

mouse group (genotype and exercise) showed slight differences in species richness, but none 

were statistically significant (Figure 40B). 
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4.3.9.2 β Diversity 

Exercise is also known to shift the microbial species composition (Denou et al., 2016). 

To determine whether there were phylogenetic differences in microbial community composition 

(β Diversity) between the sequenced fecal samples, principal coordinate analysis (PCoA) of 

weighted UniFrac distances between the fecal boli samples of the various mouse groups were 

generated based on a CSS normalized OTU table (Paulson et al., 2013). Pairwise comparison 

between exercise and sedentary groups yielded significantly different clustering (anosim 

p<0.05), indicating a profound shift in microbial community composition dependent on exercise. 

Further analysis comparing the genotypes of sedentary samples (Figure 41A) showed significant 

clustering between cohorts at an anosim p= 0.001, indicating a defined microbial community 

composition within each respective mouse group. Comparing each genotype of exercised mice 

(Figure 41B) showed the same result thus indicating a defined microbial community 

 

Figure 41. β-Diversity plots of sedentary and exercised mice. PCoA plots of 

phylogenetic differences in microbial community composition between sequenced 

sedentary and exercised samples. (A) C57/WT (blue), [Tg(CAT)±] (red), Bob-Cat (green), 

and Ob/Ob (purple) sedentary mouse groups and (B) of each respective exercised cohort 

is displayed in the images showing a defined microbial community composition within 

each genotype (anosim p< 0.05). (n≥6)   
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composition within each respective exercised cohort. Finally, we determined if there were 

significantly different microbial community compositions between each genotype (Figure 42A-

D).  

 

Figure 42. β-Diversity plots per genotype. PCoA plots of phylogenetic differences in 

microbial community composition between sequenced sedentary and exercised samples per 

mouse genotype. (A) C57/WT, (B) [Tg(CAT)±], (C) Bob-Cat, and (D) Ob/Ob mouse groups 

(sedentary depicted as blue and exercise depicted as red dots) as displayed in the images 

show a defined microbial community composition within each E and S group of each 

genotype (anosim p< 0.05). (n≥6)   
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 Significant clustering was observed within each genotype: C57/WT: anosim p= 0.031, 

[Tg(CAT)±]: anosim p= 0.025, Bob-Cat: anosim p= 0.033, and Ob/Ob: anosim p= 0.021. 

Therefore, our data shows evidence of a defined microbial community composition within 

exercised and sedentary mice of each respective genotype. 

4.3.9.3 Taxa LEfSE Analysis  

With significant differences observed in microbial composition between sedentary and 

exercised groups within each genotype, we conducted LEfSE analysis to compare the microbial 

taxa. This allowed identification of taxonomy shifts in the microbial community composition. 

Comparison diagrams were created based on LEfSE results among sedentary mouse groups and 

separately among exercised groups of each genotype in comparison to the C57/WT mice. 

Between the sedentary groups it was interesting to find that the mice overexpressing catalase 

both were enriched with Rikenellaceae and Helicobacteraceae. Additionally, the sedentary Bob-

Cat and Ob/Ob shared the taxa Weeksellaceae and Erysipelotrichaceae. Comparisons between 

the exercised mouse groups showed that the mouse groups overexpressing catalase were both 

enriched with the Helicobacteraceae while both the C57/WT and Ob/Ob mice were both 

enriched with Rikenellaceae. Additionally, it was interesting to find that the [Tg(CAT)±] E mice 

were enriched with the Bifidobacteriaceae which has been shown to be increased with exercise 

intervention and is known to produce the SCFA butyrate (Munukka et al., 2018; Rivière, Selak, 

Lantin, Leroy, & De Vuyst, 2016).   

We subsequently conducted an analysis to determine the impact of exercise within each 

specific mouse group (Figures 43-46). LEfSE analysis plots portrayed significantly enriched 

bacterial taxonomy within the sedentary and exercise cohorts of each mouse model (Figure 43-

46).  
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Figure 43. C57/WT taxa LEfSe analysis. Linear discriminant analysis (LDA) scores 

derived from LEfSe analysis showing the biomarker taxa (LDA score >2.0 and significant at 

p<0.05) of C57/WT mouse groups (green- sedentary; red-exercise) determined by Kruskal–

Wallis and pairwise Wilcoxon tests. (n≥7) 

 

Green- Sedentary 

Red- Exercise 
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A total of 27 significantly differential taxa between C57/WT S and C57/WT E cohorts 

were observed. Of the sedentary C57/WT samples, there was an enrichment of bacteria 

belonging to the Firmicutes Phylum while the exercised samples showed an enrichment of the 

Bacteriodes S24-7. At the genus level, sedentary groups were significantly enriched in 

Oscillospira, while exercised groups were enriched in Corynebacterium, Enterococcus, 

Desulfovibrio, and Proteus. In comparing the [Tg(CAT)±] E and S groups, LEfSE analysis only 

showed a total of 3 significantly different taxa, the fewest differential taxa of all experimental 

groups, comparing the exercise and sedentary mice (Figure 44).   

 

 

 
Figure 44. [Tg(CAT)±] taxa LEfSe analysis. Linear discriminant analysis (LDA) scores 

derived from LEfSe analysis showing the biomarker taxa (LDA score >2.0 and significant at 

p<0.05) of [Tg(CAT)±] sedentary mouse groups (no significantly enriched taxa in the 

exercised cohort compared to the sedentary mice) determined by Kruskal–Wallis and 

pairwise Wilcoxon tests. (n≥7) 
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Also interesting was that all enriched taxa were identified within the sedentary cohort where 

 

Figure 45. Bob-Cat taxa LEfSe analysis. Linear discriminant analysis (LDA) scores 

derived from LEfSe analysis showing the biomarker taxa (LDA score >2.0 and significant at 

p<0.05) of Bob-Cat mouse groups (green- sedentary; red-exercise) determined by Kruskal–

Wallis and pairwise Wilcoxon tests. (n≥7) 

 Green- Sedentary 

Red- Exercise 
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there was an enrichment of Desulfovibrionaceae and Aeromonadaceae at the family level. Within 

the Bob-Cat mouse groups, LEfSe analysis determined there was a total of 42 significantly 

differential taxa between the sedentary and exercise cohorts (Figure 45).  

This was the highest number of significantly differentiating taxonomy compared to every 

other genotype analyzed. As with the C57/WT mice, there was also an enrichment of Firmicutes 

within the sedentary groups, while within the exercised Bob-Cats, the Bacteroidales was 

enriched. At the genus level, sedentary mice were enriched in Methanobrevibacter, 

Chryseobacterium, Butyrivibrio, and Bilophila in comparison to their exercised cohorts. 

Exercised Bob-Cat mice had significantly higher levels of Parabacteroides, Prevotella, 

Ruminococcus, Sutterella, and Akkermansia. Within the obese, Ob/Ob mouse groups there was a 

total of 26 significantly differential taxa between the exercised and sedentary cohorts (Figure 

46). 
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Figure 46. Ob/Ob taxa LEfSe analysis. Linear discriminant analysis (LDA) scores 

derived from LEfSe analysis showing the biomarker taxa (LDA score >2.0 and significant 

at p<0.05) of Ob/Ob mouse groups (green- sedentary; red-exercise) determined by Kruskal–

Wallis and pairwise Wilcoxon tests. (n≥7) 

 

Green- Sedentary 

Red- Exercise 
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Specifically, the Lachnospiraceae were enriched in the exercised cohort compared to the 

Ob/Ob S group. Interestingly, with Ob/Ob mice being the parent group of Bob-Cat genotype, this 

family was also enriched in the Bob-Cat S mice yet significantly depleted in the Bob-Cat E 

group. Additionally, Ob/Ob S mice had significantly higher levels of Adlercreutzia, 

Parabacteroides, AF12, Weissella, and Anaeroplasma, while exercised groups had significantly 

higher levels of Prevotella and Sutterella.  

4.3.9.4 PICRUSt Pairwise LEfSe Analysis 

Dependent upon the microbial species present and their interaction with one another, 

their overall impact on the host organism changes (Heiss & Olofsson, 2018). To determine the 

predicted function of each mouse group’s gut microbiome, PICRUSt functional predictions were 

generated from 16S data for each fecal sample and uploaded to the LEfSe analysis tool for 

functional biomarker identification between the exercise and sedentary cohort of each mouse 

genotype. We observed a total of 7 significantly differential functional predictions between the 

sedentary and exercise cohorts of the C57/WT genotype. Of all the remaining cohorts, the 

C57/WT genotype had the fewest number of predicted functional pathways. LEfSe analysis 

distinguished 29 significantly differential functional predictions between the [Tg(CAT)±] S and E 

cohorts. Sedentary mice showed an enrichment of bacteria predicted to carry out butyrate 

metabolism, dioxin degradation, and xylene degradation. Within the [Tg(CAT)±] E mouse group, 

glycan biosynthesis and metabolism as well as glycan degradation were significantly enriched. A 

profound number of 118 significantly differential functional predictions were found between 

Bob-Cat S and E cohorts by LEfSe analysis. The high number of functional predictions enriched 

in the exercised samples, indicates exercise contributes a strong effect on the functional potential 

of the microbial community. Within the Bob-Cat S group, several functional pathways involved 
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in cell motility were enriched including flagellar assembly, bacterial motility proteins, and 

bacterial chemotaxis. Bob-Cat mice in the exercised cohort showed an enrichment of glycan 

biosynthesis, just as was seen in the [Tg(CAT)±] E group. It is also interesting that bacteria 

capable of  LPS biosynthesis were enriched in the Bob-Cat E group. LEfSe analysis of the 

Ob/Ob groups showed a total of 12 significantly differential functional predictions between the 

sedentary and exercise cohorts. One pathway particularly enriched was fructose and mannose 

metabolism within the Ob/Ob exercised samples.  
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4.4 DISCUSSION  

Cardiometabolic diseases are characterized by increased levels of ROS that alter glucose 

and lipid signaling pathways in key metabolic organs such as adipose tissue, skeletal muscle, and 

brain (Barazzoni et al., 2018; Carrier, 2017; Rani et al., 2016). These effects lead to increased 

visceral fat mass and risk for adipose tissue inflammation, hyperglycemia, dyslipidemia, 

hyperleptinemia, and IR (Carrier, 2017). Both increased endogenous antioxidant expression and 

exogenous antioxidant supplementation mitigate the negative effects of high redox stress and 

lower risk in acquiring diseases of the metabolic syndrome (Drummond et al., 2011; Haidara et 

al., 2011; Park et al., 2016; B. Patel et al., 2018). Additionally, in lean and obese human and 

rodent models, increases in moderate physical activity lowers body weight and fat mass, 

increases insulin sensitivity, and induces browning of white adipose tissue (Leal et al., 2018; P. 

Lee et al., 2014; Nunan et al., 2013; Warburton et al., 2006). Nonetheless, the mechanisms 

leading to exercise’s beneficial effects have not been fully elucidated. Recently, we showed 

evidence that mice overexpressing catalase in a genetically obese background (Bob-Cat), in 

contrast to the C56Bl6/WT mice, significantly lowered redox stress (‘stress-less’ mice), 

improved energy metabolism, and modulated the expression of key adipocytokines (D. L. Amos 

et al., 2017). In the present study, the effect of an eight-week moderate exercise intervention was 

evaluated in the ‘stress-less’ Bob-Cat mice overexpressing catalase compared to WT and 

sedentary controls. Results showed increased antioxidant levels within the ‘stress-less’ mice 

maintained or decreased body weight and fat mass when put on exercise intervention. 

Additionally, these novel mice maintained balanced energy metabolism, normal circadian 

rhythm, and showed a trend for increased HDL and decreased plasma TG levels. Most 

interestingly, we saw significant differences in skeletal muscle Type 1 / Type 2 fiber ratio and 
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mRNA expression of key myokines which may have induced a change in adipose tissue function 

via the skeletal muscle-adipose tissue axis (crosstalk). This study also provided evidence for an 

exercise and redox-induced shift in the gut microbiome and a change in hypothalamic appetite 

regulation as a mechanism of the beneficial impact of exercise on metabolic homeostasis in the 

mice overexpressing antioxidant catalase.  

Mice overexpressing catalase exercised on a mouse treadmill, in contrast to WT mice and 

cohorts that remained sedentary for the 8 week study period, maintained or lowered body weight 

and fat mass. This was to be expected due to the effects of exercise causing a deficit in energy 

storage from increased energy output vs. input when the mice were sedentary (Fiuza-Luces et al., 

2013; Leal et al., 2018; Sanchis-Gomar et al., 2015) although other studies have not observed 

significant decreases in body weight post-exercise. Nonetheless, pathways modulating energy 

metabolism were significantly altered (Denou et al., 2016). It is also intriguing that in all groups, 

with the exception of the Bob-Cat mice, catalase activity in adipose tissue was increased where 

we also observed a loss in body weight or fat mass. Recent studies have indicated that exercise 

combined with another anti-obesity intervention should be studied as a therapeutic method for 

metabolic disease (Leal et al., 2018). Our data shows in relation to body composition, 

endogenous overexpression of antioxidant and exercise may be an effective means of lowering 

body weight and fat mass. In addition to decreases in body weight and fat mass within these 

groups vs. the WT S group, it was interesting that the Bob-Cat E mice showed a trend for 

increased lean mass compared to their sedentary cohorts and the WT S group. Increased lean 

mass and lowering of fat mass would be indicative of a metabolically healthier body (Kelly, 

Nehrenberg, Hua, Garland, & Pomp, 2011). Opposed to the beneficial effects seen in increased 

antioxidant and/or exercise, the Ob/Ob group showed the most significant increases in body 
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weight and fat mass. They also showed increases in lean mass, but this was likely only a 

response to the increase in body size in general. Nonetheless, it is noteworthy that the Ob/Ob E 

group did not have as severe obesogenic markers as their sedentary cohorts.  

Because it has been found that there are different metabolic effects dependent on the 

levels of SubQ vs. visceral adipose tissue (Bonomini et al., 2015; Harman-Boehm et al., 2007), 

we also recorded the weights of each fat depot at the end of the 8 week study period during tissue 

collection. Bob-Cat mice had similar levels of fat mass compared to their WT controls although 

both sedentary and exercised [Tg(CAT)±] mouse groups showed decreased levels of fat mass in 

comparison to the WT control groups. This was reflective of what was observed by analysis 

using the ECHO-MRI. As expected, both Ob/Ob mouse groups had the highest measurements of 

both adipose depots, but the exercised mice did not accumulate as much fat mass as their 

sedentary cohorts. The higher levels of fat mass likely played a role in the higher levels of 

oxidized carbonyl groups as was seen in the oxyblot conducted on adipose tissue. Liver weights 

were also measured during tissue collection. Although not significant, Bob-Cat mice, 

independent of exercise intervention, showed a trend for higher liver weight compared to the WT 

control group. This was also seen in Bob-Cat mice when analyzed in our recent Omega 3 

enriched dietary intervention study (D. Amos et al., 2019). Ob/Ob mice had a significantly lower 

brain weight compared to every other group. In previous studies, neurodegeneration and 

increases in chronic stress have been associated with lower brain mass (Lupien, McEwen, 

Gunnar, & Heim, 2009; Stern, 2012). Therefore, it was surprising that the exercised [Tg(CAT)±] 

mouse group had significantly lower brain weight compared to the WT S group since their 

sedentary cohorts had a normal brain mass and exercise has been shown to positively impact 

brain development, neurogenesis, and overall function (Delezie & Handschin, 2018; Jodeiri 
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Farshbaf et al., 2016). Nonetheless, unlike the Ob/Ob group with a very large body size, the 

[Tg(CAT)±] E group had a lower body weight, fat mass, lean mass, and other tissue weights 

compared to the other mouse groups. Therefore, it is reasonable to assume that brain weight 

would also be lower due to decreased body size in general. Body mass and fat/lean mass is 

reflective of both diet and lifestyle. Food consumption over the study period showed that the 

only group that consumed less chow than the WT control group was the sedentary [Tg(CAT)±] 

mouse group. As shown in previous studies, exercise caused an increase in food intake over time 

(M. Martin et al., 2016; Melzer, Kayser, Saris, & Pichard, 2005). Additionally, due to energy 

expended during the physical activity, the exercised groups (except Ob/Ob mice) did not gain as 

much weight or fat mass, compared to the WT S group.  

In addition to body composition, another beneficial effect of exercise is improvement in 

the lipid profile (J. Chen et al., 2018). All mouse groups, with the exception of the leptin 

deficient, Ob/Ob mice, showed levels of TC lower than the detection limit of the kit (<100 

mg/dL) as shown in Table 12. As expected, highest levels of TC were evidenced in the Ob/Ob 

sedentary group with exercise showing a trend for lowering these levels in the exercised cohorts. 

HDL and TG levels are markers of metabolic health (Coqueiro et al., 2019; Fiuza-Luces et al., 

2013; Sanchis-Gomar et al., 2015), where lower levels of HDL and higher levels of plasma TG 

are associated with obesity and other metabolic disorders (Bonomini et al., 2015; Bryan et al., 

2013). As with previous research studies analyzing the effects of exercise, HDL levels were 

significantly increased and plasma TG levels were lowered in the mouse groups overexpressing 

catalase compared to the sedentary control group. However, specifically in the Bob-Cat S and E 

mice, HDL was significantly higher. These groups also had significantly higher liver weights 

than the WT control group (Table 11). It was also interesting that exercise increased the HDL 
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level in every mouse group with the exception of the Ob/Ob mice (not significant). Although 

HDL was highest among the Ob/Ob mouse groups, the TC was also very high. Previous studies 

have shown that the ratio of HDL to TC is more indicative of metabolic health than looking 

strictly at the level of HDL (Association, 2017; Coqueiro et al., 2019). In this case, it is evident 

the Ob/Ob mice do not have a healthy lipid profile with regard to cholesterol levels. With regard 

to TG levels, the [Tg(CAT)±] E mice displayed the lowest levels (p<0.05) as shown in Table 12. 

This directly correlates with their low levels of adipose tissue compared to all the other mouse 

groups. Exercise intervention not only lowered the TG levels (p<0.05), but the effect was 

exacerbated in the mice overexpressing catalase. In addition to the lipid profile, we surprisingly 

saw a trend for increased levels of plasma glucose within the exercised groups compared to their 

sedentary cohorts. Typically, exercise lowers glucose levels (Fryer et al., 2002; Ikeda et al., 

2016). Nonetheless, with the exception of the Ob/Ob mice, all other mouse groups fell under the 

normal range remaining well below 250 mg/dL (Collins, Martin, Surwit, & Robidoux, 2004). 

Contrary to glucose levels, exercise significantly lowered plasma insulin levels. This did not 

come as a surprise knowing that exercise is used as a therapy for T2D as a means of regulating 

insulin levels (Golbidi & Laher, 2014; Phillips et al., 2015). Although levels were still high, 

Ob/Ob mice subjected to exercise intervention had much lower levels than their sedentary 

cohorts. Nonetheless, not having the parent group as an obese mouse model, the [Tg(CAT)±] 

mice on exercise intervention had the lowest levels of plasma insulin relative to the sedentary 

controls. One of the mechanisms involved in glucose and insulin homeostasis is through the 

translocation of GLUT 4 transporters. Skeletal muscle uses this particular GLUT for 

maintenance of energy and muscle integrity (Ikeda et al., 2016). With trends for an increase in 
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skeletal muscle mRNA of this transporter in exercise groups (Table 14), it is plausible that 

GLUT 4 was involved in the insulin lowering effects.  

As an additional assessment of metabolic parameters, the CLAMS technology was 

utilized to measure FI over a 48 h time period. In comparing the group averages, we saw a trend 

for all exercised groups to consume more chow than their sedentary cohorts with the exception 

of the Ob/Ob mouse group. Furthermore, mice overexpressing catalase had the highest levels of 

intake among the groups when placed on an exercise regimen. This exercise effect is not 

uncommon where exercised organisms typically consume more energy to provide for muscle 

repair and to fuel the body during exercise (Melzer et al., 2005). However, it is more interesting 

that there was a trend seen specifically for the mice overexpressing catalase to have the highest 

food intake when their body weight, fat mass, and TG levels were lower than the WT mice on an 

exercise or sedentary regimen indicating an increase in energy utilization (Figures 29&30 and 

Tables 11&12). Additionally, CLAMS analysis can be indicative of normal eating patterns and 

circadian rhythm which can change based on the frequency of food consumption (Sasaki, 2017). 

It was surprising that the Ob/Ob mice did not significantly differ in the time period food was 

consumed as had been observed in DIO mice in our previous study (D. Amos et al., 2019). 

The CLAMS technology also measured the type of fuel primarily oxidized for energy 

production. RER measurements showed exercised mice within each genotype had an increase in 

the use of carbohydrates vs. fat for energy (p<0.05) compared to both the WT S group and their 

sedentary cohorts (Figure 34). This was not expected, as exercise typically increases fat 

oxidation in low intensity and moderate exercise (Ramos-Jiménez et al., 2008). However, most 

interesting was the differences observed between [Tg(CAT)±] and Bob-Cat mice on exercise 

intervention. [Tg(CAT)±] E mice showed the highest RER levels (p<0.0001) independent of the 
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light or dark cycle and thus the lowest levels of fat oxidation. Bob-Cat E mice, on the other hand, 

had increased levels of RER and CHO oxidation compared to their sedentary cohorts yet retained 

similar RER levels to the WT S group on average. Another novel finding was the Bob-Cat S 

mice had one of the highest levels of fat oxidation compared to all other groups. Ob/Ob mice 

showed results consistent with the previous literature compared to leaner phenotypes of mice 

where their RER was significantly higher due to their increased sedentary lifestyle and/or 

availability of fat to be taken from storage and oxidized for energy (Hirsch et al., 2016). These 

combined results provide evidence for an exercise and/or antioxidant effect on fuel utilization 

uncommon to previous data derived from exercise studies. Mechanisms behind this result may be 

indicative of alternate signaling pathways utilizing increased levels of carbohydrates.  

In addition to the type of fuel utilized, systemic energy expenditure also plays a role in 

overall energy metabolism. CLAMS technology indirectly measures the EE of mice which is 

then used to compare the mouse groups based on the Cal/h/g of lean body mass. Additionally, 

the physical activity level (XAMB) was measured which also contributes to the energy output. 

We observed that exercised mice, with the exception of the Ob/Ob E group, had decreased levels 

of EE compared to the WT S group during both light and dark cycles. It was more interesting to 

see that the lowest levels were among the mice overexpressing catalase on exercise regimen. 

This is not uncommon for organisms with lower body mass expending energy through physical 

exercise. If the body reaches lower levels of fuel, it will begin to decrease energy used by the 

body as a means of being more fuel efficient. This concept, now termed “metabolic flexibility,” 

may be what was observed in these exercised mouse groups (Goodpaster & Sparks, 2017). 

During the CLAMS analysis, all mouse groups overexpressing antioxidant showed trends of 

higher physical activity (XAMB) compared to WT controls with the exception of the 
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[Tg(CAT)±] E group. This phenomenon is often observed in exercised organisms (de Carvalho, 

Benfato, Moretto, Barthichoto, & de Oliveira, 2016). It is expected that it is due to the body 

being fatigued after the increased muscle movement/contraction during the exercised regimen 

resulting in lower levels of movement as a result. Nonetheless, this was not the case for the Bob-

Cat exercised group. Ob/Ob mice had the lowest levels of physical activity (p<0.05) independent 

of exercise intervention as well as the time of day compared to every other mouse group. This 

was expected as it would take much more effort for these groups to move across the cage with 

their high body weight. The combined data derived from the CLAMS technology, body 

composition, and lipid profile provides compelling evidence of an antioxidant and exercise effect 

on metabolic pathways in this novel mouse model.  

With exercise-induced alterations in metabolic signaling pathways and energy 

metabolism, we investigated muscle fiber type and measured the expression levels of key 

myokines and adipokines involved in energy metabolism within each mouse group and found 

intriguing results. Exercise improves muscle function and strength (Vina et al., 2012). Although 

we did not observe differences in grip strength or muscle weight at tissue collection as a result of 

exercise intervention or antioxidant overexpression, we did observe significant differences in 

Type 1 / Type 2 fiber ratio and myokine levels in the gastrocnemius muscle. It is possible that 

the differences of the expression levels of the key myokines analyzed may be due to the higher 

levels of Type 1 fibers in comparison to Type 2 fibers (Figure 37) within the gastrocnemius 

muscle. Specifically, we observed increased levels of FGF-21, PGC1-alpha, and FNDC5 within 

the exercised mice overexpressing antioxidant catalase compared to the sedentary WT control 

group. It was also within these antioxidant-overexpressing mouse groups where we observed the 

highest levels of Type 1 / Type 2 fiber ratios (Table 14 and Figure 37). It is also interesting to 
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note that within these mouse groups there was a trend for increased catalase activity in the 

skeletal muscle tissue compared to the sedentary control group (Figure 38). We also observed an 

induction in GLUT 4 in the exercised mouse groups which may have played a role in the 

lowered insulin levels observed within the mice on exercise intervention compared to their 

sedentary littermates. Another myokine we investigated was IL-6. Although not significant, we 

observed a trend for increased expression in both mouse groups overexpressing catalase, with an 

exacerbated effect observed in the [Tg(CAT)±] E group (>2.5 fold induction). Further 

exploration should be conducted to determine if this played an anti-inflammatory role in the 

skeletal muscle tissue.  

With exercise intervention and redox playing a role in lowering fat mass, enhancing the 

lipid profile, and altering energy metabolism (measured by CLAMS) within the novel 

antioxidant mouse model, we expected one factor that might be involved in these observed 

changes was the induction of the redox sensitive and exercised-induced myokine, FGF-21 

(Gomez-Samano et al., 2017; Raschke & Eckel, 2013). We showed FGF-21 mRNA levels in the 

skeletal muscle of [Tg(CAT)±] E and Bob-Cat E models had a > 8 fold (p<0.01) and 3 fold 

increase (not significant) respectively. FGF-21 not only modulates skeletal muscle function, but 

it also crosstalks with adipose tissue (Keipert et al., 2014). Research has shown FGF-21 is able to 

induce browning by upregulation of UCP-1 (Fisher et al., 2012; P. Lee et al., 2014). Within 

adipose tissue, we observed a 5 fold increase in UCP-1 mRNA expression in the Bob-Cat E mice 

(not significant) yet a significant decrease in the [Tg(CAT)±] E mouse group. This may have 

been reflective of the loss of fat mass observed in the [Tg(CAT)±] E group, while the Bob-Cat E 

group did not actually lose any grams of fat over the 8 week intervention. Furthermore, the 
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induced expression of UCP-1 could have also been reflective of the increased mRNA expression 

of FGF-21 within the adipose and skeletal muscle tissue of the Bob-Cat E mouse group.  

FGF-21’s interplay with adiponectin (Manole et al., 2018), an anti-inflammatory 

adipokine that has been shown to be reduced in obese individuals, seems to be observed in our 

study as well. In exercised groups of mice, where there were increased levels of skeletal muscle 

FGF-21, adiponectin was also increased (p<0.05) providing further evidence of crosstalk 

between skeletal muscle and adipose tissue. 

Two other key myokines, PGC1-alpha and FNDC5, may have influenced the phenotype 

observed in the antioxidant mouse models on exercise intervention. PGC1-alpha as well as 

FNDC5 (p<0.05), which are known to be induced by exercise showed a trend for increased fold 

change in mouse groups subjected to exercise intervention compared to the control WT S group 

and their sedentary cohorts. Previous studies have shown increased plasma irisin levels are a 

result of the induction of FNDC5 (Huh et al., 2012) and have a profound effect on browning of 

adipose tissue (Leal et al., 2018). However, we were surprised to find no significant differences 

in circulating plasma irisin levels between the mouse groups (Table 14). This could have been a 

result of the time the analysis took place. It is possible there was a significant increase in irisin 

immediately after exercise, but the blood in our study was collected after the mice had been 

sedentary for multiple hours since their last bout of exercise. Additionally, as described in the 

methods, we used an ELISA kit for human irisin. A few recent articles have noted false results in 

detection of irisin within these ELISA kits (Albrecht et al., 2015; Perakakis et al., 2017). 

Therefore, with the interesting results of UCP-1 in adipose tissue and alterations in body weight 

and fat mass, further studies should be done on irisin, such as measurement immediately post 

exercise or staining and analysis of morphology of adipose tissue. With these limitations to our 
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analysis of irisin, it is still possible that in addition to FGF-21, exercise-induced myokine 

signaling through the PGC1-alpha/FNDC5/irisin pathway modified adipose tissue function 

resulting in a leaner mice phenotype in the antioxidant overexpressing mice.  

It is known that specific adipokines, such as leptin, influence satiety through the 

activation of hypothalamic appetite-regulating neurons (J. Friedman, 2016). Nonetheless, we did 

not observe significant differences in adipose mRNA or circulating leptin levels. We also 

measured expression levels of the leptin receptor (LepR), located within the appetite regulating - 

hypothalamic region of the brain (Abella et al., 2017). LepR was interestingly increased in every 

mouse group in comparison to the WT S mice except the [Tg(CAT)±] E and Bob-Cat E groups. 

Nonetheless, with significant differences in body weight, fat mass, and metabolic parameters of 

exercised mouse groups overexpressing antioxidant we further evaluated expression levels of the 

appetite regulating genes NPY and POMC. With all exercised groups having a decreased fold 

change in NPY mRNA expression and increased expression of POMC (some groups did not 

quite reach significance), the result would be increased satiety and metabolism through 

dissipation of heat thus decreasing body weight/fat mass. These results provide evidence that in 

the [Tg(CAT)±] E and Bob-Cat E mouse groups, metabolic pathways other than those regulated 

by leptin signaling likely contributed to the observed differences in body parameters, 

metabolism, and appetite regulation.  

We also measured the expression levels of BDNF within the hypothalamic region, which 

has been shown to be induced by exercise (Walsh et al., 2018). Interestingly, one signaling 

mechanism involved may be through PGC1-alpha and FNDC5 signaling (Jodeiri Farshbaf et al., 

2016), which is also a pathway involved in the skeletal muscle-brain axis. Additionally, in 

relation to obese humans and rodents, upon activation, BDNF has been associated with 
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cognition, neuroplasticity, glucose regulation, fat oxidation, and appetite regulation in adults 

(Budni, Bellettini-Santos, Mina, Garcez, & Zugno, 2015; Walsh et al., 2018). In comparison to 

the WT S group, the highest levels were seen in the Bob-Cat S mouse group. However, there was 

also a slight increase in the Bob-Cat E group (not significant) and almost a 3-fold increase in the 

[Tg(CAT)±] E group. This warrants further study to determine whether the synergistic effects of 

antioxidant catalase and exercise may promote increased neuroplasticity in the novel mouse 

model. If so, the Bob-Cat model is potentially useful to study neurodegenerative diseases such as 

Alzheimer’s Disease (Budni et al., 2015), or mood disorders including schizophrenia and 

depression (Peng, Li, Lv, Zhang, & Zhan, 2018). 

Due to differing phenotypic and metabolic data in addition to appetite regulation 

modifications likely not related to the key satiety hormone leptin, we chose to investigate 

alternative pathways that may play a role in satiety in the exercised ‘stress-less’ mouse groups. 

The gut microbiome is considered an endocrine organ (G. Clarke et al., 2014) that is altered by 

exercise (Barton et al., 2018; Denou et al., 2016; Estaki et al., 2016; Monda et al., 2017) and has 

been shown to be significantly different in obese vs. lean individuals (Turnbaugh et al., 2009) 

and rodents (Kallus & Brandt, 2012) due to its functional roles on energy metabolism through 

crosstalk with other metabolic tissues. Post fecal collection, sequencing, and analysis of the gut 

microbes of the various mouse groups, we observed significant shifts in the microbiome. 

Although we only saw slight differences in the alpha diversity (species richness) between 

respective cohorts, highly significant differences in β diversity (microbial composition) were 

seen among exercise and sedentary groups, as well as mice overexpressing catalase on sedentary 

or exercise regimen (ANOSIM p<0.05). Furthermore, LEfSe analysis of the various taxa were 

plotted displaying significantly enriched bacterial taxa within the respective sedentary and 
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exercised cohorts. Analysis of microbial enrichment within the genotypes, of the sedentary and 

exercised groups separately, showed within the sedentary C57/WT and Bob-Cat cohorts, at the 

Phyla taxonomic level, there was an enrichment of Firmicutes vs. Bacteroidetes. This is 

consistent in the literature for both sedentary humans and animals to have an enrichment of 

Firmicutes vs. Bacteroidetes. This enrichment in Firmicutes is also common in DIO or 

overweight/obese organisms vs. the lean phenotype (Ley et al., 2005; Ley et al., 2006; Savini et 

al., 2013; Turnbaugh, Backhed, Fulton, & Gordon, 2008; Turnbaugh et al., 2009; Turnbaugh et 

al., 2006). Both sedentary mouse groups overexpressing catalase ([Tg(CAT)±] and Bob-Cat) 

showed an enrichment of both the Rikenellaceae and Helicobacteraceae where the family of 

Rikenellaceae is associated with a lower BMI and healthier metabolic state compared to obese 

organisms (Clarke et al., 2013; Ottosson et al., 2018). The family Helicobacteraceae is classified 

as pathogenic (van der Mee-Marquet et al., 2017). Few studies have associated its prevalence 

with respect to parameters associated with obesity or its comorbidities, but Schulz et. al reported 

an increased abundance within mice who had been transfected with feces from cohorts fed a 

HFD (Schulz et al., 2014). This increase may have been associated with the increased levels of 

antioxidant within these mouse groups. Additionally, the sedentary Bob-Cat and Ob/Ob mouse 

groups were both enriched with Weeksellaceae and Erysipelotrichaceae. Weeksellaceae is 

pathogenic and associated with Irritable Bowel Syndrome (IBS) in humans and primates as well 

as rat visceral pain (Fourie et al., 2017), but no studies have specifically looked at its relevance to 

obesity. Additionally, there was an enrichment in the family Erysipelotrichaceae. This was of 

particular interest because of evidence from the literature showing a bloom of species belonging 

to this family in diet-induced obese animals (Turnbaugh et al., 2008). Other studies have also 

seen higher levels of this family in obese individuals and individuals producing higher levels of 
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the SCFA butyrate (Kaakoush, 2015; H. Zhang et al., 2009). With both sedentary groups having 

a leptin deficient background (heterozygous or homozygous for the mutation of the satiety 

hormone leptin) showing an enrichment, it is plausible there may be an association between this 

family and leptin levels. As with the sedentary groups, we also analyzed taxa enrichment 

between genotypes that were exercised. Exercised [Tg(CAT)±] and Bob-Cat mice were both 

enriched with the Helicobacteraceae, while both the C57/WT and Ob/Ob mice were enriched 

with Rikenellaceae. Additionally, it was interesting to find that the [Tg(CAT)±] E mice were 

enriched with the Bifidobacteriaceae which has been shown to be increased with exercise 

intervention and enriched in lean male mice (Munukka et al., 2018; Y. Qin et al., 2018). These 

results provided evidence of a synergistic effect of antioxidant and exercise on the gut 

microbiome as was hypothesized. It is of great interest in future studies to further explore species 

of the family Helicobacteraceae in relation to redox stress since there were significant 

differences in abundance comparing the exercise and sedentary cohorts in mice overexpressing 

catalase. 

In addition to genotype comparisons within the sedentary and exercise groups, we also 

compared the enrichment of specific taxa between sedentary genotypes and their exercised 

cohorts individually. Within the C57/WT groups, exercise shifted the microbial taxa toward an 

enrichment of the Corynebacterium, Proteus, Enterococcus, and Desulfovibrio, at the genus 

level compared to their sedentary cohorts. At present little data has been published with the 

relevance of Corynebacterium or Proteus with parameters related to obesity, but many studies 

have shown that Enterococcus is associated with gut dysbiosis and depletion of commensal gut 

microbes which can decrease microbial diversity (Dubin & Pamer, 2014; Scotti et al., 2017). The 

genus Desulfovibrio of the family Desulfovibrionaceae has been associated with increased 
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voluntary exercise and may play a role in mucin function and gut permeability (T. W. Liu et al., 

2015). Additionally, the family in its entirety has been found to be of higher prevalence in lean 

as well as healthy individuals (Million et al., 2012) in addition to the genus Desulfovibrio (Zietak 

et al., 2016). Within the [Tg(CAT)±] groups, we found exercise shifted the microbiome with 

evidences of enriched taxa Desulfovibrionaceae and Aeromonadaceae at the family level. No 

taxa were defined to be significantly different between the exercised and sedentary mice of the 

[Tg(CAT)±] genotype. As previously described, Desulfovibrionaceae has been associated with 

leanness (Million et al., 2012). It is of interest that the sedentary group was enriched and the 

exercised group was depleted of the family Aeromonadaceae which is a known human pathogen 

(Eid et al., 2017), has been associated with increased risk for the development of atherosclerosis, 

and is more abundant in T2D patients (F. Wu et al., 2019). It was of special interest that the 

novel Bob-Cat mice showed the largest number (42) of significantly differential taxa between the 

sedentary and exercise cohorts in comparison to the other genotypes. This finding indicates 

exercise as having a profound effect within the Bob-Cat genotype. Bob-Cat sedentary mice were 

enriched in Methanobrevibacter, Chryseobacterium, Butyrivibrio, and Bilophila in comparison 

to their exercised cohorts. Exercised Bob-Cat mice had significantly higher levels of 

Parabacteroides, Prevotella, Ruminococcus, Sutterella, and Akkermansia. With relevance to 

obesogenic characteristics, Methanobrevibacter has been negatively correlated with BMI 

(Million et al., 2012) and reduced in obese individuals (Stenman, Burcelin, & Lahtinen, 2016). 

Chryseobacterium has not been well studied, but we do know it is catalase-positive and part of 

the normal flora (Calderón et al., 2011). Butyrivibrio has been found in individuals with a 

healthier physical state and higher microbial diversity (Stenman et al., 2016), but contrary to the 

previously mentioned taxa enriched in the Bob-Cat sedentary groups, the Bilophilia which is 
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almost depleted in the exercise cohort of Bob-Cat mice is associated with increased body weight, 

adiposity, insulin, leptin, and inflammatory markers. Additionally, Bilophila are LPS‐producing 

bacteria that theoretically could contribute to inflammation associated with obesity (Mulders et 

al., 2018). It was most interesting that the exercised Bob-Cat mice were enriched with taxa that 

did not have significant associations with increased fat mass or obesity. Parabacteroides were 

one of the five most significantly enriched taxa. Parabateriodes have been associated with a 

healthy host and gut environment (Fourie et al., 2017). The genus Prevotella have been 

positively correlated with SCFA propionate levels (Riva et al., 2017), which are typically 

increased with exercise and generation of enzymes found to be involved in mucin 

oligosaccharide degradation which protects endothelial cell wall against pathogens (Riva et al., 

2017). It is also interesting that this genus was recently associated with non-westernized 

populations that were hunter-gatherers (healthier and characterized with a more active lifestyle 

than Westernized nations) (de la Cuesta-Zuluaga et al., 2018). The genus Ruminococcus has been 

negatively correlated with fasting glucose levels in humans, but as of yet, no studies have shown 

significant differences in other obesogenic parameters (Mulders et al., 2018). Suterella were 

enriched in a study comparing DIO to lean rodents (Clarke et al., 2013). Unlike the other taxa 

previously mentioned, the genus Akkermansia have been studied intensely. They are associated 

with a healthy gut microbiome in numerous studies. They are typically more abundant in 

individuals who are physically active/athletes in addition to being associated with individuals 

possessing a healthier metabolic profile (S. F. Clarke et al., 2014; Lai et al., 2018; Mach & 

Fuster-Botella, 2017). Additionally, Akkermansia are enriched in subjects with a low BMI and 

correlated with improvements in gut barrier function (G. Clarke et al., 2014). Also, a study 

conducted by Fourie et al. showed that epithelial inflammation, IBD, obesity, and diabetes are 
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decreased when there is a restoration of this genus (Fourie et al., 2017). Overall, a recent review 

has surmised the characteristics of Akkermansia to being negatively correlated with adiposity, 

fasting glucose, insulin, IR, leptin, inflammation, and intestinal permeability (Mulders et al., 

2018). With these particular taxa being significantly enriched in the exercised Bob-Cat mouse 

group, this strengthens our hypothesis that the combination of exercise and overexpression of 

antioxidant is beneficial to the metabolic profile by positively shifting the gut microbiome.  

We saw that the sedentary, obese Ob/Ob mice were enriched with taxa associated with 

obesogenic parameters. For example, Anaeroplasma, have been positively associated with DIO 

in mice and correlated with lower production of the SCFA butyrate which can exacerbate gut 

dysbiosis (Hwang et al., 2017). Additionally, there was increased abundance of the taxa 

Weissella, which have been correlated with decreased cardiovascular function and increased BW 

(Sherman et al., 2018). These taxa were depleted within the exercised Ob/Ob mouse group. 

Within the exercised cohort, we found an enrichment of the Lachnospiraceae family, which are 

butyrate producing organisms shown to be significantly depleted within diabetic mice on high fat 

diets (Serino, Chabo, & Burcelin, 2012). Depletion of these organisms have been associated with 

gut barrier disruption, metabolic endotoxemia, and low-grade inflammation leading to other 

debilitating diseases (Vital, Karch, & Pieper, 2017). Additionally, we found exercise caused an 

enrichment in the taxa Prevotella and Sutterella at the genus level. Prevotella, as previously 

mentioned, is associated with an increase in SCFA propionate, improvement in gut health, and 

increased in the hunter-gatherer human population (de la Cuesta-Zuluaga et al., 2018; Riva et al., 

2017). Also previously mentioned, and not completely characterized, the Sutterella taxa, have 

been found to be enriched in lean vs DIO mice (Clarke et al., 2013). This is interesting where we 
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also saw “leaner” phenotypic characteristics in our Ob/Ob exercised mice vs. their sedentary 

littermates.  

With regard to appetite regulation in the context of the gut microbiome, it is also 

interesting that previous studies have shown associations between butyrate levels and the brain. 

For example, acute butyrate administration decreased food intake and suppressed orexigenic 

neurons that express NPY within the hypothalamic region of the brain (Z. Li et al., 2018), and 

chronic butyrate administration prevented DIO, hyperinsulinemia, hypertriglyceridemia, as well 

as reduced food intake (Z. Li et al., 2018). Exercise has been shown to increase butyrate 

production by the gut microbiome (Lai et al., 2018; Matsumoto et al., 2008). Our findings 

showed that the antioxidant models overexpressing catalase put on exercise intervention had 

higher levels of Bifidobacteriaceae, Suterella, and Akkermansia which either produce butyrate or 

are associated with higher levels of the SCFA (Rivière et al., 2016; J. Ye et al., 2018). 

Additionally, Bob-Cat sedentary mice were enriched and exercisers were depleted of Bilophila 

and Rikenellaceae (also observed in the [Tg(CAT)±] E group) which thrive in environments of 

low levels of butyrate (J. Ye et al., 2018). It was also particularly interesting that the lowest 

levels of NPY and highest levels (although not all significant) of POMC expression were found 

in the exercised cohorts of each genotype (Table 16). Also interesting is the fact that butyrate 

has been associated with lowering TG levels. This also correlates with our findings that the 

exercised mice overexpressing antioxidant catalase had lower levels of plasma TG compared to 

their sedentary control groups as shown in Table 12.  

All of the described significant associations of microbes to particular mouse groups are 

extremely interesting; nonetheless, it is the gut microbiome as a whole and the interaction 
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between the various microbes that determines the impact on the host organism’s metabolism 

(Heiss & Olofsson, 2018; Kreznar et al., 2017). 

PICRUSt analysis allowed us to predict the function of the microbiome based on the 

species found most prevalent within each mouse group. It was interesting that the lowest number 

of functional differences as a result of exercise was found in the C57/WT group analysis, and the 

Ob/Ob group only had 12. On the contrary, mice overexpressing catalase, the [Tg(CAT)±] and 

Bob-Cat, had 29 and 118 significantly differential functional predictions respectively. This is an 

indication that exercise in conjunction with catalase overexpression, is contributing a strong 

effect on the functional potential of the microbial community in these groups and is likely 

contributing to metabolic pathways related to the phenotypic changes we saw in our study. From 

our findings, it was most interesting to discover that within the Bob-Cat sedentary group, several 

functional pathways relating to cell motility were enriched including flagellar assembly, bacterial 

motility proteins, and bacterial chemotaxis. On the other hand, within the exercised samples, we 

observed an enrichment of glycan biosynthesis in addition to bacteria capable of LPS 

biosynthesis. Glycan biosynthesis was also enriched within the [Tg(CAT)±] exercised samples in 

addition to bacteria capable of glycan degradation. These findings align with recent studies 

conducted by Hou et. al (Hou et al., 2017) where PICRUSt analysis showed, in obese 

individuals, there were elevated counts of bacterial chemotaxis and depletion of glycan 

metabolism and biosynthesis. This finding impeccably aligns with our novel Bob-Cat mice 

where the exercised samples showed evidence of an elevation in glycan metabolism and 

biosynthesis, and sedentary samples showed an enrichment in bacterial motility genes. Although 

in many studies lipopolysacharrides (LPS) are associated with negative health biomarkers, it is 
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dependent on which LPS are produced and the other microbes present (some microbes that 

produce LPS are beneficial to the microbial environment) (Kreznar et al., 2017).  
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4.5 CONCLUSION 

In this study, we comprehensively compared the synergistic effects of exercise and 

antioxidant overexpression in a novel mouse model. We hypothesized that the combined effects 

of catalase overexpression and exercise may play a role in body composition and energy 

metabolism by altering myokine and adipokine secretion and shift the diversity and composition 

of the gut microbiome. As expected, exercise significantly attenuated weight gain and decreased 

fat mass in each mouse genotype, with an exacerbated effect in the mice overexpressing 

antioxidant catalase. At the tissue level, known exercised-induced myokines were upregulated 

and showed evidence for crosstalk between skeletal muscle and adipose tissue. Additionally, we 

saw changes in appetite regulating hormones which may have played a role in changes in the 

phenotypic and metabolic data determined in the antioxidant mouse models subjected to 

moderate treadmill exercise. Nonetheless, our most interesting and novel findings were 

discovered in our analysis of the gut microbiome. We saw shifts related to differences in the 

mouse groups based on exercise vs. sedentary intervention in addition to redox status. These 

findings mandate further studies on the role of redox stress and exercise in energy homeostasis 

by further correlating metadata to microbial species and conducting fecal transfer to determine if 

the gut microbes from our novel mouse model alter phenotypic and metabolic characteristics in 

other mouse models with chronic diseases (Ex. DIO, neurodegenerative models, cancer models, 

etc.) 
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CHAPTER V: DISCUSSION AND FUTURE DIRECTIONS 

DISCUSSION 

At the conclusion of my research of the aforementioned studies discussed in Chapters II-

IV, I am just as interested now as when I began my research regarding the complexity of energy 

metabolism and how it is regulated by so many extrinsic variables such as diet, exercise, 

genetics, and other environmental stimuli. I still desire to discover an efficient lifestyle, for 

myself and others, to maintain physical health among living in the most obese state (West 

Virginia). Obtaining knowledge to prevent or reduce the rising levels of obesity, a key risk factor 

for metabolic tissue dysfunction, redox stress, and thus chronic inflammatory and 

cardiometabolic diseases, remains important to me.  

At the beginning of my research as a PhD student, I studied numerous investigations 

conducted in other laboratories, in addition to our own laboratory, showing evidence of redox 

stress impacting diseases related to metabolic tissue dysfunction and inflammatory signaling. By 

doing this, I saw the critical need to further explore the role of antioxidants as a therapeutic 

intervention. Our lab desired to determine the role of one of the key antioxidants, catalase, which 

is directly involved in energy metabolism. To accomplish our goal, we engineered a novel mouse 

model expressing the human antioxidant catalase in addition to mouse catalase with an obese 

parent background (D. L. Amos et al., 2017). From this point, we developed three hypotheses: I. 

modulating redox stress by altering endogenous antioxidant content (overexpression of catalase) 

alone would enhance adipose tissue function, glucose and lipid signaling, and overall energy 

metabolism; II. modulating redox stress by antioxidant overexpression or dietary intervention 

with an enriched OM3 diet (45%) vs. a HFD (45% lard) would positively regulate fatty acid 

signaling, glucose and lipid homeostasis, energy metabolism, and overall metabolic function; III. 
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antioxidant overexpression in addition to exercise would both enhance skeletal muscle and 

adipose tissue function, alter appetite signaling, and shift the composition and function of the gut 

microbiome thus improving overall energy metabolism in the ‘stress-less’ mice. To address our 

first hypothesis (Chapter II), we investigated both male and female ‘stress-less’ mice and found 

that the novel mouse model had significant differences in energy expenditure, activity levels, 

metabolic profile, and oxidative stress levels compared to the other genotypes studied 

(C57Bl6/WT, [Tg(CAT)±], and Ob/Ob). Additionally, we also showed evidence of sexual 

dimorphism, which suggests more studies should be conducted in both male and female genders 

separately to better treat the population in a manner that specifically targets an individual’s 

abnormalities. Additionally, in generating the Bob-Cat mice, being heterozygous for the Ob 

mutation (Ob/+) in combination with the expression of the human catalase gene, we generated a 

few mice that were homozygous for the Ob mutated gene and expressed the human catalase 

gene. This new genotype was titled “Big Bob,” and its basic characteristics were also discussed 

in Chapter II. The intriguing characteristics of the Bob-Cat mice kindled our desire to explore the 

potential of coupling antioxidant catalase with other therapeutic interventions to study 

mechanisms involved in regulating energy metabolism.  

Since redox stress plays a key role in obesity and cardiometabolic diseases, and a 

common treatment is dietary intervention, we tested our second hypothesis using male and 

female mice overexpressing endogenous antioxidant catalase to study the impact of altered redox 

balance and an enriched OM3 diet (D. Amos et al., 2019). As discussed in Chapter III, we 

discovered that after eight weeks of OM3 dietary intervention in the novel mice, compared to 

their littermates on HFD, the mice fed OM3 diet maintained or lowered body weight and fat 

mass, enhanced energy metabolism, maintained normal circadian rhythm, and sustained insulin 
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sensitivity. Our data showed these results were all due to the regulation of GPR120-Nrf2 cross-

talk, which to our knowledge, had not been previously shown in any other studies. This study 

advanced the field of nutrition and in a direction showing the potential therapeutic capacity of 

overexpression of antioxidants. Additionally, we also saw sexual dimorphism play a role in the 

metabolic parameters assessed. Further investigation should be conducted on this topic to 

determine the mechanisms behind these differences.  

With exercise being another major remedy to counteract metabolic diseases, we 

addressed our third hypothesis and studied the impact of a 30 min. exercise regimen, 5 days a 

week, for 8 weeks in the ‘stress-less’ mouse model. Here, we showed increased antioxidant 

levels in the catalase over-expressing mice maintained or decreased body weight and fat mass. 

Additionally, the novel mice maintained balanced energy metabolism, normal circadian rhythm, 

and showed a trend for increased HDL and decreased plasma TG levels. Most interestingly, we 

saw significant differences in skeletal muscle Type 1 / Type 2 fiber ratio and mRNA expression 

of key myokines which may have caused a change in adipose tissue function by a skeletal 

muscle-adipose tissue axis (crosstalk). This study provided additional knowledge to the field 

with evidence of an exercise and redox-induced shift in the gut microbiome and a change in 

appetite regulation as a mechanism of the beneficial impact of exercise on metabolic homeostasis 

in the mice overexpressing antioxidant catalase, as discussed in Chapter IV. With the results 

from each of the studies outlined in Chapters II-IV, it is evident our hypotheses were correct. 

Antioxidant catalase functions as an adjuvant to OM3 diet or exercise to enhance metabolic 

tissue function and improve overall energy metabolism in the novel ‘stress-less’ mouse. 

Additionally, antioxidant overexpression shifted the composition and function of the gut 
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microbiome, which was further shifted with exercise, showing potential for impacting the 

alterations seen in the body composition and metabolic measurements we collected.  

In conclusion, with the newly generated Bob-Cat mice, we have successfully identified 

key ways this model can be used to study the impact of altered redox in the context of energy 

metabolism, cancer, and other chronic illnesses mandating new therapies to counter their 

detrimental effects on the human population. Although we have clearly shown the benefits of 

overexpressing catalase in mice with an obese-parent background (Bob-Cats) when provided an 

OM3 rich diet or put on exercise intervention, many future projects have been devised and some 

are already underway. By continuing our investigation, we believe that the Bob-Cat model has 

the potential to lead to the development of therapies that will reverse the rising levels of obesity, 

cardiometabolic diseases, chronic inflammatory conditions, in addition to altering signaling 

pathways involved in the development and progression of cancer and neurological-related 

disorders.  
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FUTURE DIRECTIONS 

The Role of FGF-21 as a Hepatokine 

In both our diet study and exercise study, we assessed expression levels of FGF-21, a 

myokine, adipokine, and hepatokine (Gomez-Samano et al., 2017) that can be induced as a result 

of redox imbalance, exercise intervention, cold stimulus, and starvation (Cuevas-Ramos et al., 

2012; Gomez-Samano et al., 2017; Potthoff et al., 2009). With its pleotropic effects on glucose 

and lipid homeostasis, thermoregulation, inflammation, and energy metabolism in general, we 

wanted to determine if it played a role in the interventions studied in the Bob-Cat mouse. 

Specifically, our results showed evidence of sexual dimorphism as well as inversed levels of 

FGF-21 within HFD vs. NC groups overexpressing catalase as described in Chapter III and 

shown in Figure 28. Additionally, with exercise intervention, we showed an induction  in 

skeletal muscle tissue in male mouse groups overexpressing catalase which may have 

contributed to an induction of adiponectin in the adipose tissue and differences in expression of 

UCP-1 thus stimulating thermogenesis. We have yet to assess female mice, which may show 

different results due to an interplay with differing hormone levels such as leptin and various sex 

hormones. In the current literature, research has indicated the possibility of “FGF-21-resistance” 

in obese individuals where FGF-21 levels are high yet FGF-21’s known effects are absent. With 

the strong association between redox stress and obesity, and FGF-21 yet to be assessed in the 

context of the liver, where it is primarily secreted, further analysis of this hormone is of great 

interest. 

Assessment of the Gut Microbiome  

In our studies of the ‘stress-less’ mouse subjected to exercise intervention, we analyzed 

the gut microbiome and found that exercise significantly shifted the microbial composition and 
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function in the mice that overexpressed antioxidant catalase. At the current time, we have only 

assessed exercised male mice. However, to further the knowledge in the field of microbiology 

and redox homeostasis, we would like to also determine the effects of an enriched OM3 diet in 

both genders in addition to an assessment of exercise effects on the microbial species in female 

mice. Additionally, we have only began to explore the effects of redox in the novel male mouse 

and its relation to the gut microbiome. We plan to do further analysis using the metadata we have 

collected, and, if appropriate, begin deep sequencing to determine the signaling pathways 

causing the noted shifts in the microbial species and how that affects systemic energy 

homeostasis in metabolic tissues. Additionally, we plan to use the method of fecal transfer from 

mice overexpressing antioxidant on various mouse models to determine if the core species 

residing in their gut can produce the same metabolic effects (Ex. decreased body weight, fat 

mass, TG levels, etc.). 

Aging Studies 

Analysis of the generation of the original [Tg(CAT)±] mice (X. Chen et al., 2003) in 

addition to tissue-targeted catalase transgenic mice in other studies showed that these mice 

displayed anti-aging effects (H.-Y. Lee et al., 2010; Linford, Schriner, & Rabinovitch, 2006). 

Therefore, to determine if our novel mouse which overexpresses antioxidant catalase 

ubiquitously (D. L. Amos et al., 2017) would confer the same effects, multiple studies have been 

conducted in concert with exercise intervention. Our current status is at the analysis of key 

signaling pathways in the context of aging and energy metabolism, since as organisms grow 

older there is typically a decline in metabolism, regulation of adipose storage, and dysfunction of 

skeletal muscle function (Shimokata & Kuzuya, 1993). We expect that by decreasing the level of 

free radicals through an induction of antioxidant catalase, the aging process will be allayed. If 
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our hypothesis is true, we would like to determine if the gut microbiome of the mice 

overexpressing catalase, which we have shown to be significantly shifted in our studies (Chapter 

IV) could potentially play a role in any anti-aging effects observed.  

 

Behavioral Analysis 

Obesity increases the risk for the development and progression of cardiometabolic 

diseases, diabetes, and cancer (Goossens, 2017; Manna & Jain, 2015) in addition to promoting 

behavior modifications (Singh, 2014). This includes excess food consumption in addition to 

stress, and depression which is commonly observed in individuals with high levels of adiposity 

(Sominsky & Spencer, 2014). Therefore, we desire to determine if lowering oxidative stress by 

increasing antioxidant catalase using our ‘stress-less’ mouse model would lower obesity-

regulated behavioral stress.  
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APPENDIX B: LIST OF ABBREVIATIONS 

IR   Insulin Resistance 

T2D   Type 2 diabetes 

NAFLD  Non-alcoholic fatty liver disease 

BMI   Body mass index 

CVD   Cardiovascular disease 

POMC   Proopiomelanocortin 

NPY   Neuropeptide Y 

WAT   White adipose tissue 

BAT   Brown adipose tissue 

UCP-1   Uncoupling protein 1 

TNF-alpha (α)  Tumor necrosis factor alpha 

IL-6   Interleukin 6 

MCP-1/JE   Monocyte chemotactic protein 1  

LepR   Leptin receptor  

ARC   Arcuate nucleus  

IL   Interleukin 

H2O2    Hydrogen peroxide 

NADPH  Nicotinamide adenine dinucleotide phosphate hydrogen 

ESR   Electron spin resonance  

O.S.    Oxidative Stress 

Ox-LDL  Oxidatively modified low density lipoprotein 

AAOP   Arachidonic acid oxidation product 
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TBARS  Thiobarbituric acid reactive molecules 

Nrf2   Nuclear factor erythroid 2-related factor 2  

Keap1    Kelch like ECH associated protein 1  

SOD    Superoxide dismutase 

GPX    Glutathione peroxidase  

TAC    Total antioxidant capacity 

LDL   Low-density lipoproteins 

ROS    Reactive oxygen species  

RNS    Reactive nitrogen species  

TG    Triglyceride 

ATP   Adenosine triphosphate 

TCA    Tricarboxylic acid 

NADH   Nicotinamide adenine dinucleotide 

FADH   Flavin adenine dinucleotide  

ER   Endoplasmic Reticulum  

MetS   Metabolic syndrome  

HDL   High-density lipoproteins 

PI3k   Phosphatidylinositol 3-kinase  

Akt   Protein kinase B  

NO/NOX   Nitric oxide 

mTOR   Rapamycin  

SFA   Saturated fatty acids  

DIO   Diet induced obesity 
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FFA   Free fatty acids 

HFD   High fat diet 

OM6 PUFA  Omega 6 polyunsaturated fatty acids  

CLA   Conjugated linoleic acids  

MUFA   Monounsaturated fatty acids 

OM3 PUFA  Omega 3 polyunsaturated fatty acids 

GPR120  G-protein coupled receptor 120 

FFAR4  Free fatty acid receptor 4 

GLUT-4  Glucose transporter 4 

HO-1   Heme oxygenase 1 

FGF   Fibroblast growth factor 

FGF-21  Fibroblast growth factor 21 

PGC1-alpha  Peroxisome proliferator-activated receptor -y coactivator -1 alpha  

FNDC5  Fibronectin type III domain-containing protein 5 

AMPK   AMP- activated protein kinase  

OM3   Omega 3-enriched diet 

AMP   Adenosine monophosphate  

IBD    Inflammatory bowel disease 

HOMA-IR  Homeostasis model assessment for insulin resistance  

GPBAR-1  G protein-coupled bile acid receptor 1  

FXR   Farnesoid X receptor 

PYY   Peptide YY  

SCFA    Short chain fatty acid 
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5-HT    5-hydroxytryptamine  

NF-κB   Nuclear factor kappa-light-chain-enhancer of activated B cells 

LPS   Lipopolysaccharides 

ClpB   Caseinolytic protease B  

CNS   Central nervous system 

[Tg(CAT)±]  Catalase transgenic mice  

U.S.A.   United States of America 

hCAT   Human catalase 

EtOH   Ethanol 

TE   Tris – EDTA 

WT   Wild type 

EtBr   Ethidium bromide 

ECHO-MRI  ECHO magnetic resonance imaging 

CLAMS  Comprehensive lab animal monitoring system  

VO2   Volume of O2 consumption  

VCO2   Volume of CO2 production 

RER   Respiratory Exchange Ratio/Rate 

XAMB/X-AMB X Ambulatory  

EE   Energy Expenditure  

FI   Food Intake  

RBCs   Red blood cells  

IM   Intestinal mucosa 

TC   Total Cholesterol 
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mCAT   Mouse catalase 

RIPA buffer  Radioimmunoprecipitation assay buffer  

1X TBST  1X Tris buffered saline 

SDS   Sodium dodecyl sulfate 

DNP   Dinitrophenylhydrazone  

DNPH   Dinitrophenylhydrazine  

1X PBST  Phosphate buffered saline and Tween 20  

BSA   Bovine serum albumin  

S.E.M.   Standard Error of the Mean  

PUFA   Polyunsaturated fatty acids 

C57Bl6  C57/WT 

NC   Normal Chow  

CHO   Carbohydrate (CHO) Oxidation 

ALA   α-linoleic acid  

AGRP   Agouti Related Peptide  

CART   Cocaine-Amphetamine Related Transcript  

Gas   Gastrocnemius  

OCT   Optimal Cutting Temperature  

OTU   Operational Taxonomic Units 

PCoA   Principal coordinates analyses  

LDA   Linear Discriminant Analysis  

BW   Body Weight 

SubQ   Subcutaneous  
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E   Exercise 

S   Sedentary 

PICRUSt Phylogenetic Investigation of Communities by Reconstruction of 

Unobserved States 

BDNF Brain Derived Neurotrophic Factor 

IBS Irritable Bowel Syndrome 
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APPENDIX C: CURRICULUM VITAE 

Deborah L. Amos 

amos23@marshall.edu 

2026 Blennerhassett Heights, Parkersburg, WV 26101 

(304)-991-5932  

 

EDUCATION  

Ph.D. Candidate in Biomedical Sciences, Marshall University, Huntington, WV  

Emphasis Cardiovascular Disease, Diabetes, and Obesity 

B.S. in Biology, Biology Education, and General Science Education, Spring 2013, University 

of Charleston, Charleston, WV 

Minor in Chemistry, Spring 2013, University of Charleston, Charleston, WV  

 

RESEARCH EXPERIENCE  

Graduate Student, Fall 2013 to present  

Marshall University, Dr. Nalini Santanam  

Assessing the effects of exercise on appetite regulation and the microbiome using an antioxidant 

mouse model with the following techniques and reagents:  

• Breeding of Mice and Genotyping (Tail DNA) 

• Mouse Grip Strength Tests as a measure of muscle function  

• Mouse Treadmill Operation according to developed protocol (Columbus Instruments; 

Columbus, OH) 

• Mouse MRI (Magnetic Resonance Imaging) use and analysis 

• Mouse CLAMS (Comprehensive Animal Monitoring System) use and analysis  

• Animal Anesthetization, Blood Draw, and Tissue Collection 

• Muscle Sectioning via Cryostat 

• Muscle Fiber Typing (myosin ATPase Staining) and H&E staining 

• Microscope Analysis of Muscle Fiber Types 

• Agarose Gel Electrophoresis  

• RNA isolation and reverse transcription  

• Real-time Polymerase Chain Reaction (PCR) to determine presence and expression of 

adipokines, cytokines, myokines, and oxidative stress markers in collected tissues 

• Protein quantification by Lowry method  

• SDS-Page and Western blotting  

• OxyBlot for detection of oxidized proteins in collected tissues 

• Enzymatic Activity of Catalase (use of Kinetics Programing on a Spectrophotometer) 

• Simple Protein “Wes” Training 

• iLab Training Software  

• Basic Cell Culture 

• GraphPad Prism 7 Software (Statistical Analysis) 

• SPSS Software (Statistical Analysis)  
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Capstone Student Mentor, Summer and Fall 2016 and 2017; Spring 2016, 2017, and 2018 at 

Marshall University  

• Trained undergraduate students to work on an exercise/redox regulation project  

Summer Undergraduate Research Student Mentor, Summer 2015, Summer 2016 

• Assisted in developing and overseeing projects of students in the NIH-funded WV-

INBRE program and SRIMS program  

Summer Medical Student Research Student Mentor, Summer 2018 

• Assisted in developing and advising medical students in conducting biomedical research 

funded by the Joan C. Edwards School of Medicine.  

 

PUBLICATIONS  

Omega 3 diet modulates energy metabolism via GPR120-Nrf2 crosstalk in a novel 

antioxidant mouse model. Amos DL, Cook C, Hoffsted A, Crain C, Santanam N. 

Biochim Biophys Acta Mol Cell Biol Lipids. January 2019; doi: 10.1016/j.bbalip.2019.01.002 

 

Catalase overexpression modulates metabolic parameters in a new ‘stress-less’ leptin-

deficient mouse model. Amos DL, Robinson T, Massie MB, Cook C, Hoffsted A, Crain C, 

Santanam N. 

Biochim Biophys Acta. June 2017; 1863(9):2293-2306. doi: 10.1016/j.bbadis.2017.06.016.  

 

Mitochondrial redox status as a target for cardiovascular disease.  

James Walters, Deborah Amos, Kristeena Ray, Nalini Santanam. Current Opinion in 

Pharmacology April 2016; 27:50-55. doi: 10.1016/j.coph.2016.01.006. 

  

SCHOLARSHIPS and GRANTS  

2017-2018 WV State NASA Space Grant Consortium: Graduate Student Fellowship 

($12,000 Grant); “Exercise Regulates the Gut Microbiome through Skeletal Muscle Myokine 

Secretion” 

2016-2017 WV State NASA Space Grant Consortium: Graduate Student Fellowship 

($12,000 Grant); “Exercise Regulates Brain-adipose Tissue Crosstalk in the Stress less Mouse 

Model” 

2015-2016 WV State NASA Space Grant Consortium: Graduate Student Fellowship 

($12,000 Grant); “Exercise Improves Skeletal Muscle Function in the ‘Stress-less’ Mouse” 

Graduate Student Organization Master’s Student Scholarship August 2014 

Marshall University Cross Country and Track/Field Scholarship 2013-2014 

Kanawha City Lion’s Club Grant: Safety Goggles at Capitol High School Spring 2013  

 

HONORS and AWARDS  

• World Congress Targeting Microbiota 2018 Director’s Selection Poster Presentation 

Award – “Synergistic effects of exercise and antioxidant-overexpression on myokines 

and gut microbiome” October 2018 

• Kappa Delta Pi Member of the Month (October 2018)  

• Kappa Delta Pi Excellence Award: for outstanding service and contributions in education 

April 27, 2018; December 8, 2018 
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• Marshall University “Spirit of Excellence Award” Recipient: Given to a student with 

exceptional contributions to student life.  The award formally honors students who excel 

in campus involvement and service to the University, their peers, and the broader 

community April 19, 2018 

• 2nd Year in a Row Awarded “Who’s Who Among Students in American Universities and 

Colleges”- Recognizing outstanding members of the Marshall University student 

community for their contributions of leadership and service. April 16, 2018 

• Recognized as both Kappa Delta Pi Education Honorary Outstanding Member Award 

(service and contributions) and Most Active Member December 8, 2017 

• Marshall University’s Most Outstanding Graduate School Student 2016-2017 

(Biomedical Sciences) August 18, 2017 

• Awarded “Who’s Who Among Students in American Universities and Colleges”- 

Recognizing outstanding members of the Marshall University student community for 

their contributions of leadership and service. April 14, 2017 

• Second Place Poster Presentation Obesity and Diabetes 2016 Appalachian Regional Cell 

Conference October 1, 2016.  

• 2016 Young WV Award (recognition for leadership in West Virginia) 

• Honorarium: Research Seminar at Juniata College: “Exercise, Redox, Microbiome?” 

June 2016 

• First Prize Graduate Poster Presentation Competition NASA S.P.A.C.E. Day April 2016 

• ASBMB (American Society for Biochemistry and Molecular Biology) Graduate Travel 

Award April 2016 

• Marshall Campus Rec Fitness Award: Fall 2014, Spring 2015, Spring 2016 

• Kanawha City Lions Club Community Service Award November 2015 

• Run, Run, Rudolph (5K Road Race) Fall 2014 

• Track and Field Conference Champion 5K Spring 2013  

• WVIAC Scholar-Athlete Award (one female chosen per institution) Spring 2013  

• First Team Capital One Academic All-District selections Spring 2013 

• Academic All-American (Cross Country) Fall 2011, Fall 2012  

• University of Charleston Outstanding Student in Science Research April 2012 

ABSTRACTS, CONFERENCES, and PRESENTATIONS  

• Marshall University Joan C. Edwards School of Medicine Research Day “Redox 

regulation of behavior changes in diet-induced ‘stress-less’ obese mouse model,” 2019 

Huntington, WV 

• World Congress Targeting Microbiota 2018: “Synergistic effects of exercise and 

antioxidant-overexpression on myokines and gut microbiome” 2018 Director’s Selection 

Poster Presentation Award, October 30, 2018, Porto, Portugal 
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• Marshall University Joan C. Edwards School of Medicine Research Day “Redox Balance 

Regulates FGF21 in the Novel “Stress-less” Mouse Model” March 2018; Huntington, 

WV 

• 2017 Appalachian Regional Cell Conference, Oral Presentation “Exercise Improves 

Energy Metabolism in a Novel Obese “Stress-Less” Mouse Model” December 2, 2017, 

Athens, OH 

• Biomedical Science Lecture on Research Topic: “Adipose Tissue: What is the Storage 

Depot We Call Fat Tissue?” September 1, 2017  

• Graduate School Lecture on Research Topic: “Obesity: What is the storage molecule we 

call fat?” April 26, 2017 Marshall University Huntington, WV 

• CCTS Spring Conference “Exercise Modulates Energy Metabolism in an Obese ‘Stress-

Less’ Mouse Model” March 30, 2017, Lexington, Kentucky 

• Marshall University Joan C. Edwards School of Medicine Research Day “Exercise 

Modulates Energy Metabolism in an Obese ‘Stress-Less’ Mouse Model”  March 24, 

2017; Huntington, WV 

• Lay Talk to Marshall University Undergraduates on Current Research Progress: 

“Exercise, Redox Regulation, and Appetite” February 21, 2017; Huntington, WV 

• 2016 Appalachian Regional Cell Conference, November 2016; Huntington, WV * 2nd 

Place Poster Presentation 

• Research Seminar “Exercise, Redox, Microbiome?” Juniata College June 8, 2016; 

Huntingdon, PA 

• CCTS (Center for Clinical and Translational Science) Spring Conference, April 2016; 

Lexington, Kentucky 

• 2nd Annual NASA S.P.A.C.E. Day, April 2016; Fairmont, WV *1st Prize Poster 

Presentation 

• Experimental Biology Conference, April 2016; San Diego, CA * ASBMB Travel Award 

Recipient  

• Biomedical Science State of the Art Seminar “Exercise and its myriad of benefits: A 

mechanistic update.” at Marshall University March 2016; Huntington, WV  

• Marshall University School of Medicine Research Day, March 2016; Huntington, WV  

• 2015 Appalachian Regional Cell Conference, November 2015; Huntington, WV  

• Marshall University School of Medicine Research Day, March 2015; Huntington, WV 

• Biomedical Science Research Retreat, August 2015; Huntington, WV 

• 2014 Appalachian Regional Cell Conference, November 2014; Huntington, WV 

• Biomedical Science Research Retreat, August 2014; Huntington, WV 

WORK EXPERIENCE  

Marshall University School of Medicine Live Patient for Examination- Fall 2013 -Spring 

2015 

o Served as a “dummy” for medical and pharmacy student examinations.  

Mountaineer Family Restaurant- Parkersburg, WV- May 2009 – Summer 2015 

o Hostess/Waitress- provided assistance as a server, cashier, and food prep personnel.  

Resident Assistant- University of Charleston- Charleston, WV -June 2010 – May 2013  

o Directed a minimum of five service projects per year, attended weekly meetings to 

organize events and work hours, served as secretary of the Residence Hall Association, 
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attended regional meetings to develop further skills in communication and conflict 

resolution.  

AmeriCorps Energy Express- Martin Elementary School- Parkersburg, WV -June–Aug 

2010 - 2013 

o Served as a mentor for children K-3rd Grade. Provided instruction in reading, writing, art, 

and drama. Taught table manners and directed two community service projects each 

summer.  

 

TEACHING EXPERIENCE  

Ohio Valley University: Parkersburg, WV (Spring 2019) 

- Instructed undergraduates in Microbiology and Human Anatomy and Physiology 

Teaching Practicum: Huntington, WV (Spring 2017)  

- Taught undergraduates in Cell Metabolism in the Marshall University Biomedical 

Science Program  

Covenant School 9th Grade Biology Teacher: Huntington, WV (2014-2015)  

- Solely instructed the high school biology course for Covenant School  

Capitol High School: Charleston, WV (Fall 2012) 

- Student Teaching 

- Semester long: 9-12th grade Biology, Advanced Biology, AP Biology 

DuPont Middle School (Spring 2012) 

- Semester long: 6th grade science : focus on the cell and metabolism  

 

AFFILIATIONS  

Marshall University Summer Biomedical Science Writing Group Summer 2018 

 

American Heart Association, Student Member 2017-Present 

 

Graduate Women in Science, Student Member 2017-Present 

 

Student Government Association, Senator and Finance Representative 2016-2017, 2017-

2018 

 

Gamma Beta Phi – National Honor Society, Member September 2016-Present 

 

Golden Key International Honor Society, Member September 2016-Present 

 

Kappa Delta Pi (KDP) – Education Honorary, Member September 2016-Present 

 

American Nutrition Society (ASN), Member 2015-Present 

 

American Association for the Advancement of Science (AAAS) Program for Excellence in 

Science, Member 2015-Present 

 

Graduate Student Organization, Secretary (2014-2015) Vice President (2015-2016), 

Marshall University BMS program  

• Scheduled and led monthly meetings and overseeing activities  
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• Aided in organization of student opportunities such as tutoring for first year students and 

various fundraising initiatives (International Food Festival, 50/50 raffle)  

• Served as BMS graduate program liaison for communication between directors, faculty, 

and students within the Biomedical Sciences program  

• Attended presentations by peers and potential faculty  

• Volunteered as a Tutor for Graduate Level Entrance Courses 

• Volunteered for BMS Open House and Ph.D. interview events  

 

Marshall University Lions Club, President, (2015-2016) (2016-2017) (2017-2018) Marshall 

University 

• Responsible for scheduling and leading bimonthly meetings and overseeing activities 

• Communication between Regional Lion’s Clubs and coordinating service events between 

the region 

• Organized Bake Sales and Other Fundraising Events (all monetary funds go toward 

giving back to the community)  

• Providing Marshall University Students with opportunities to serve the community 

through novel events (Trick or Treat for TP, the “Jared Box,” Cabell Huntington’s 

Children’s Hospital Valentine’s Day, Wingate Care Facility Easter Baskets, etc.) 

• Served weekly to provide basic necessities to Huntington’s Homeless 

 

Marshall University “Unraveled” (Knitting/Crochet Club) Treasurer, (2015-2016) (2016-

2017) (2017-2018) Marshall University 

• Communicated with Marshall University Student Organization Office to acquire funding 

and report budget status.  

• Kept records of money spent and housing club materials 

 

COMMUNITY INVOLVEMENT and PHILANTHROPY  

26th Street church of Christ – Summer 2013 –current 

• Attended biweekly services and participated in community dinners, seminars, and sings 

• Contributed to organizations providing aid in third world countries and local disaster 

relief  

• Made cheer baskets for the elderly of the Huntington Community  

 

Herd 4 Christ, 26th Street church of Christ– Summer 2013-current  

• Habitat for Humanity- roofing and basic building maintenance 

• Mid-Western Children’s Home Retreat- providing assistance in lawn/building 

maintenance for orphans 

• Biannual Senior Dinners – serving to cook and waitress for the elderly in the 

congregation  

• Kids for Christ Conference – creating activities for elementary and middle school age 

children 

 

Marshall Medical Outreach (MMO) / Saturday Street Ministry- Spring 2014 -current 

• Organizing hygiene products and snack packs for those in need 

• Clothing Donations (ie. Coat drive, knitting hats/scarves) 
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• Knitting for the Homeless (various hats, scarves, blankets) 

• Volunteer Recruitment 

 

Biological Dissections Spring 2018 

• Teaching 5th Grade Cabell County “Talented and Gifted” students how to dissect 

earthworms,  crayfish, grasshoppers, frogs, and fetal pigs 

 

Brain Expo- Fall 2015, Fall 2016, Spring 2017, Spring 2018 

• Teaching Elementary Age Students about “Brain Health” 

 

Science “Blitz” Day Spring 2018 

• Teaching Elementary – High School students how to properly conduct science projects in 

their home 

 

Jared Box Fall 2013, 2014, 2015, 2016, 2017, 2018 

• Organized, collected, wrapped, and delivered toys, donated by the community, for 

children in Cabell Huntington Hospital 

 

Medical Mission Trips to Managua, Nicarauga (2010, 2011) 

• Aided in collection of toiletry products 

• Assisted doctors and nurses with blood pressure, pulse, etc.  

 

Director of Covenant School First Annual Science Fair  

• Volunteer recruiter/organizer 

• Reservation coordinator  

• Presenter of Awards 

 

ADDITIONAL SKILLS/CERTIFICATIONS 

Laboratory: CITI Certification for Handling of Mice, Handling of Rats, and Surgical 

Procedures; Marshall University Biosafety and Chemical Safety; Flinn Scientific 

Laboratory/Chemical Safety Certification 

 

Languages: Conversational Spanish 
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