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ABSTRACT

The orbital evolution of black hole binaries is described by two main phases: the inspiral

and the merger. Using the post-Newtonian (PN) theory for the inspiral phase of the

binary, we build up a Mathematica script to obtain strain waveforms for the inspiral. We

expand our previous inspiral formulation to include eccentric orbits, which greatly

complicates the calculations. Since this model breaks down as the two bodies approach

merger, a separate model for the merger and ring-down is required. This part of the

evolution is highly non-linear and numerical relativity (NR) is required to simulate this

problem. However, this is computationally expensive, so an effort to create an analytic

formulation that gives results comparable to NR simulations is essential in gravitational

wave modeling. Our previous work used the generic implicit rotating source (gIRS)

formulation, but since then another analytic model has been introduced called the

Backwards-one-body (BOB) approach. This model is chosen because it builds the

waveform based on the physical principles of the problem. We build a BOB model and

check to see how it compares with the gIRS model. A complete waveform is built by

matching the merger models with the inspiral model when it begins to break down. We

compare our model with the Simulating Extreme Spacetimes (SXS) data produced using

numerical relativity simulations and find great agreement.

v



CHAPTER 1

INTRODUCTION

The problem of developing templates for gravitational waves is of great importance

since it allows us to extract information about the source of the signal. Detectable

gravitational wave signals are produced through the orbital evolution of stellar massive

compact binaries, such as black holes or neutron stars. The binary loses orbital energy

through the emission of gravitational radiation and the orbit shrinks, increasing the

frequency and amplitude of the emitted gravitational wave until the two bodies merge and

the emission of gravitational radiation stops. This rapid increase in frequency near the

merger is known as the “chirp” of the gravitational wave signal and is what ground-based

observatories are sensitive to. It may seem like a rare scenario that two black holes or

neutron stars lock each other into a collapsing orbit. These bodies are created from the

remnants of stars massive enough to collapse into neutron stars (NS) or stellar-mass black

holes (SBH). However, stars massive enough to result in SBH/NS (Mstar > 10M�) are

found in binary systems 70% of the time [8]! The evolution and dynamical processes of

black hole binary (BBH) systems is a deep subject discussed in great detail in the lecture

notes of reference [8].

LIGO and VIRGO began their third observation run (O3) on April 1st, 2019 and

gathers detections at a much higher frequency than previous runs, at a rate of one

detection every few days. Before this observation run, it had been offline since August of

2017. This down time allowed for many improvements to the ground-based detectors,

updating things like the quality of the mirrors and specifications of the lasers. The results

of these upgrades gave the detectors a large increase in sensitivity, allowing for detections

even further away and giving the ability to locate the source of signal with higher accuracy.

The knowledge of quantum mechanics allows for the manipulation of the uncertainty
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relation between the phase and amplitudes of the lasers used for detection. Timing of the

laser is essential for gravitational wave detectors. The phase uncertainty of the photons is

reduced or “squeezed” to allow for timing that is more precise than the standard quantum

limit. These “squeezed states” of light still obey the uncertainty principle by increasing the

uncertainty in the amplitude, a parameter that is not crucial for detections. The detections

published up until now described circularized binaries, but this is not necessarily because

they had zero eccentricity. LIGO and VIRGO had not reached sensitivity levels that

allowed for the observation and confirmation of small eccentricities [12]. As our

ground-based detectors become more advanced and gain the ability to be sensitive to small

eccentricities, complete and accurate gravitational wave templates that are valid for small

to moderate eccentricities will be essential for confirming any detections of binaries that

show characteristics of eccentric orbits. This wider range of signals we expect to receive

highlights our reasoning for expanding our previous model by adding corrections for

eccentric binaries in their inspiral phase. In the near future, an improved detector called

Cosmic Explorer will replace LIGO and will be sensitive enough to detect eccentric binaries.
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CHAPTER 2

KEPLER’S PROBLEM

To understand the intensive calculations for modeling gravitational waves emitted

by binary black holes (BBH) with eccentric orbits, it will be helpful to review Kepler’s

problem. For a binary system with masses m1 and m2, and total mass M = m1 +m2, it is

necessary to describe the motion by reducing the two-body problem to a Keplerian

one-body problem to obtain analytic solutions for Newtonian gravity. Reducing the

problem following the effective one-body description allows us to only have to describe the

motion of one body instead of two, in an equivalent form. For a binary in a circular orbit, a

visualization of reducing the problem is shown in Figure 1.

This visualization applies to elliptical orbits where the first body is at the

center-of-mass (CM) and has mass M. This body remains stationary, located at the

principle focus of the ellipse as shown on the left side of Figure 2. The body in motion has

the reduced mass µ = m1m2

M
and an elliptical orbit, moving in the gravitational field caused

by the CM. We consider an auxiliary circle, whose origin is the center of the ellipse, with

radius equal to the length of the semi-major axis of the ellipse which we denote a. The

eccentric anomaly, u, is the angle from the semi-major axis to the position of the reduced

mass, µ, when projected on the auxiliary circle; this is determined by drawing a

perpendicular line going from the semi-major axis, through the actual position of µ on the

ellipse, to the fictitious circle, and is shown on the right side of Figure 2.

In Newtonian gravity, the eccentricity is only dependent on the ellipticity of the

orbit. We define the Keplerian eccentricity in equation (2.1).

eK =
r+ − r−
r+ + r−

(2.1)

The terms r+ and r− in equation (2.1) correspond to the distances from the CM to the

3



Figure 1: Circular Effective-One-Body.
Reducing the two-body problem to a single circular Keplerian orbit which has solutions to
Einstein’s equations. (Figure from
https://quantumredpill.files.wordpress.com/2013/01/two-body-cm-systems.png)

Figure 2: Eccentric Effective-One-Body.
The left shows the position of the masses for the eccentric, reduced mass case of Figure 1.
On the right we have a visualization of the angle called the eccentric anomaly u, which
evolves as the reduced mass orbits. (Figure with code from
https://matlab-monkey.com/astro/keplerEquation/KeplerEquationPub.html)
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apocenter and to the pericenter of the ellipse. The apocenter is the distance from the CM

to the point where the orbiting, reduced mass is furthest away from the CM. The pericenter

is the point of closest approach. The Keplerian formalism, with eccentricity as the

Keplerian eccentricity eK , can completely describe the orbital motion of the binary through

the separation between the fictitious bodies rK and their relative phase φK as a function of

the eccentric anomaly u [12]. The separation of the bodies within Kepler’s problem has the

solution given by equation (2.2), and their relative phase is given by equation (2.3).

rK = a(1− eK cosu) (2.2)

φK = 2 tan−1
[
(eK)1/2 tan

(u
2

)]
(2.3)

The positions of the actual bodies m1 and m2 in the binary can be recovered from the

separation rK in equation (2.2).

|r1,2| = rK

(m1,2

M

)
(2.4)

Equation (2.4) gives the location of each body with respect to the center of mass M [14].

2.1 Kepler’s equation

To determine how the binary evolves with time, we must know how the eccentric

anomaly u can be mapped to units of time. The famous Kepler’s equation (2.5) gives us a

relation between the mean anomaly l and the eccentric anomaly.

l = u− eK sinu (2.5)

The angular velocity of the orbit is variable and is called the mean motion n. The mean

motion is related to the mean anomaly by n = l̇. Since the mean motion is a function of

the period of the orbit, we are able to find a relation between u and time. Finding the

inversion u(l) is the tricky part and involves Bessel functions of the first kind. This
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problem has been on the minds of mathematicians for centuries. The eccentric anomaly (u)

is one of the most challenging terms to describe in calculating the inspiral strain. This

term (u) is difficult determine is due to the many Bessel functions of the first kind that

appear in the summations describing the eccentric anomaly. With Mathematica we can

simplify this problem with the help of the built in Bessel function command. At its core,

the Bessel functions are the solution to Bessel’s differential equation, a linear second-order

ordinary differential equation. Differential equations that have solutions described by the

Bessel function are found in many branches of physics, specifically ones that are described

by wave propagation such as electricity and magnetism or Schrödinger’s equation. The

Bessel function of the first kind can be described by a series expansion around the origin in

equation (2.6).

Js(x) =
∞∑
n=0

(−1)n

n!Γ(n+ s+ 1)

(x
2

)2n+s

(2.6)

F. W. Bessel was a German astronomer in the early 1800s who formulated solutions to

Kepler’s equation as a Fourier sine series. Bessel did not have Kepler’s equation in mind at

first when formulating his solutions to Bessel’s differential equation, but it was not long

after that others realized that his work could be applied to Kepler’s equation [9].

The analytic form of the eccentric anomaly that we use is given containing no

relativistic corrections in equation (2.7), where Js(seK) is the Bessel function of the first

kind using the form seen in equation (2.6) [4]. We chose this form because it is accurate

and easily reproducible.

u0PN = l +
∞∑
s=1

2

s
Js(seK) sin(sl) (2.7)

2.2 quasi-Keplerian parametrization

However, all of this is Newtonian where the eccentricity is a parameter simply

determined by the shape of the orbit. This definition of eccentricity does not hold in

General Relativity because there are other factors that change the eccentricity, such as the

6



orbit losing energy due to the emission of gravitational waves. The two-body problem does

not have analytic solutions in General Relativity so we must add perturbative corrections

(known as Post Newtonian terms) to Newtonian equations of motion to obtain an analytic

solution. The eccentricity becomes coordinate dependent and the approach that we chose

to solve the problem of eccentric binaries in General Relativity is the quasi-Keplerian (QK)

formalism. In this parameterization, the eccentricity is broken into terms: the temporal

eccentricity et, the radial eccentricity er, and the angular eccentricity eφ. These

coordinate-based eccentricities are all related to the conserved energy and angular

momentum, which means that they are not independent of each other. In calculations, it is

convenient to express each coordinate-based eccentricity component in terms of a single

component by using their dependence on each other. The temporal eccentricity is a

common choice in many works, including our own.

7



CHAPTER 3

METHODS AND PROCEDURES

3.1 Eccentric Inspiral Waveforms

We implement 2PN and 3PN corrections for an eccentric binary in the inspiral

phase and obtain the resultant strain. A commonly accepted quasi-circular limit for

eccentricity is e ≤ 0.02. If we find that our eccentricity approaches zero near the end of the

inspiral, we can rely on our results. The only initial parameter that is required is the

symmetric mass ratio, given by equation (3.1). We work with an equal mass system, such

that η = 0.25 with a total mass in solar masses of M = 1 and eccentricity of et(0) = 0.1.

η =
µ

M
(3.1)

The first major step is determining the time evolution of the Post-Newtonian

parameter x ∝ v2

c2
(which adds relativistic corrections) and of the temporal eccentricity et

[1],[10],[11]. Equations (3.2,3.3) include 3PN corrections and form a system of differential

equations that can be solved numerically to determine x and et using the NDSolve

command in Mathematica when given initial values for both x(0) and et(0).

ẋ =
1

M

(
ẋ0PNx

5 + ẋ1PNx
6 + ẋ2PNx

7 + ẋ3PNx
8
)

(3.2)

ėt =
1

M

(
ė0PNx

4 + ė1PNx
5 + ė2PNx

6 + ė3PNx
7
)

(3.3)

The PN corrections for the Post-Newtonian parameter x are given in equations (A3-A6) of

reference [11], and the PN corrections for the temporal eccentricity et are given in

equations (6.19a-6.19d) of reference [1]. The initial value for the PN parameter, x, was

taken from Table 1 [10], but we have shown in our previous work that this can be

calculated if we know the total mass of the binary and the low frequency limit of ground

8
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Figure 3: Temporal Eccentricity Convergence.
Time evolution of the temporal eccentricity et with initial values of et(0) = 0.25 and
x(0) = 0.0740853. Time is given in solar masses where 1M = 4.93µs. At late times, the
temporal eccentricity drops off swiftly showing that the binary reaches circularization near
the end of its inspiral.

based detectors [7]. The initial eccentricity can range anywhere from et(0) = 0 to

et(0) = 0.3. We check that the eccentricity does approach zero at late times in the inspiral

phase (near the merger) in Figure 3. This tells us that our model is ready to be matched

with a merger model since a key assumption of merger models is quasi-circularization.

The resultant functions for the PN parameter x and temporal eccentricity et become

“stiff” and the numerical method used by Mathematica is no longer applicable at a time

that is close to the start of the merger when the inspiral model begins to break down. We

consider this to be the final time of the inspiral, tfin. Before the implementation of the

3PN equations, we first obtained results for the 2PN corrections. We discovered that we

can push the equations closer to the merger when we include higher order corrections,

which tells us that t2PNfin < t3PNfin . At early times, the 3PN and 2PN corrections give similar

results. However, the closer to the merger that we push the equations, the larger the

disagreement between the 3PN and 2PN corrections. This comparison will be shown in a

9



figure plotting the strains, later in this section. Merger models are limited in their ability

to describe the strain waveform at the late inspiral, so we are required to push the inspiral

calculations as far as we can to match with the merger. The limitations of merger models

highlights the importance of obtaining and implementing high order corrections since they

allow us to more accurately describe the terms at times near the merger.

The next step is to determine the eccentric anomaly, u. This term is complex and

contains Bessel functions of the first kind and the mean anomaly l [4]. Our 3PN form of u

is given by equation (3.4).

u = l +
∞∑
s=1

As sin sl (3.4)

The Bessel functions previously mentioned for the eccentric anomaly are contained within

the term As given by equation (3.5).

As =
2

s
Js(set) +

∞∑
j=1

αj [Js+j(set)− Js−j(set)] (3.5)

It can be seen in this equation that the 0PN term present in equation (2.7) is contained

within As. The coefficient αj varies depending on the chosen coordinate system. The

Arnowitt-Deser-Misner (ADM) coordinates form of αj is given by equation (3.6), and the

modified harmonic (MH) form is given by equation (3.7) up to the 2PN order. We omit

the 3PN corrections in this paper due to their length. Equations (18a & 18b) in reference

[4] give αj including the 3PN corrections, which is what we use in our calculations.

αADMj = βjt

[
x2

(
15− 6η

j
√

1− e2
t

− 4η + η2

4

)]
(3.6)

αMH
j = βjt

[
x2

(
15− 6η

j
√

1− e2
t

− 15η − η2

4

)]
(3.7)

The term βt is a function of the temporal eccentricity given by equation (3.8) and is useful

10



in writing αj in a simpler form.

βt =
1−

√
1− e2

t

et
(3.8)

Comparing the strain of each coordinate system, there is no visual difference. However,

closer to the merger a small difference between the two arises, but this difference is

negligible.

The last term we need to describe the eccentric anomaly, u, is the mean anomaly, l,

which is related to u through Kepler’s equation. As discussed in Section (2.1), the mean

motion is related to the mean anomaly by n = l̇ and is given by equation (3.9) up to the

3PN order.

n = l̇ =
1

M

(
x3/2 + n1PNx

5/2 + n2PNx
7/2 + n3PNx

9/2
)

(3.9)

The PN corrections for the mean motion n are given in equations (A2-A4) in reference [10].

Integrating this result gives the mean anomaly, providing us with all of the pieces needed

to describe the eccentric anomaly analytically.

The computational cost of evaluating the eccentric anomaly u is so large that it

requires several minutes to evaluate. This long computation time is not ideal because u

appears many times in other terms leading up to the strain waveform, causing the script to

not run in a reasonable amount of time. The upper bound of relative error caused by

computer precision is known as machine epsilon (εm = 2.22 · 10−16). We want to decrease

the time of evaluation to have it running in seconds instead of minutes without sacrificing

the accuracy of the script by having a relative error in the realm of εm. The first step to

decreasing the evaluation time is to determine the upper limit of the summations in

equations (3.4 & 3.5), since the Bessel functions contained within the sums are

computationally expensive. After comparing the accuracy and computation time of

different truncation values, we decided to choose j, s = 1, 2, ..., 8 for our truncation value.

Truncating the sums at this value allows u to be evaluated with the desired accuracy, but

still not near the desired time of a couple seconds. We developed a method that allows us

11



to only have to evaluate u once in its complex, Bessel function form. When u appears in

other terms, we use a nearly equivalent polynomial form that evaluates swiftly, allowing for

the script to run in a desirable amount of time. This equivalent function is obtained using

a command built into Mathematica that preforms a polynomial interpolation (fitting a

polynomial to a given set of data in a way that minimizes error). First, we must tabulate

the values of u at every time up until tfin in increments of ∆t = 0.2 and create a table of

the form (t, u[t]). This table gives us the data in a format that can be interpolated with a

simple command. The four lines of code that create an interpolated, polynomial function

for u out of the Bessel function form are given in Figure (13). We choose a polynomial

order of 4 because this has a relative error (between the interpolated function and the

Bessel function form of the eccentric anomaly) near the order of 10−16. The extremely

small error means that using an interpolating polynomial to describe u in future terms

leading up to the strain is much faster with virtually no loss of accuracy, a highly desired

feature of any problem in numerical analysis!

Before we can obtain the inspiral strain waveform, we need to determine how the

separation, r in equation (3.10), and the relative angular velocity, φ̇ in equation (3.11),

evolve in time with corrections up to the 3PN order.

r = M
(
r0PNx

−1 + r1PN + r2PNx+ r3PNx
2
)

(3.10)

φ̇ =
1

M

(
φ̇0PNx

3/2 + φ̇1PNx
5/2 + φ̇2PNx

7/2 + φ̇3PNx
9/2
)

(3.11)

The PN corrections for the separation and the relative angular velocity are given by Hinder

in equations (A6-A9) and (A11-A13) respectively [10]. The eccentric anomaly, u, appears

even in the zeroth order corrections for the separation in equation (3.12), and relative

angular velocity, in equation (3.13).

r0PN = 1− et cosu (3.12)
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φ̇0PN =

√
1− e2

t

(et cosu− 1)2
(3.13)

We also require the differentiation of the separation ṙ and integration of φ̇ to obtain

the phase φ. Doing the differentiation and integration gives us the last of the terms in the

strain that are not parameters left for us to choose. Integration of the angular velocity goes

smoothly in Mathematica by formatting it as a differential equation that solves for the

phase, φ. However, to obtain time derivative of the separation evolution, we must use the

same trick that was used to simplify the eccentric anomaly given in the lines of code in

Figure (13). Following the previously outlined method simplifies the complex form of the

separation, given by equation (3.10), into a fourth order polynomial that can easily be

differentiated in Mathematica. The relative error between the interpolated form of the

separation and its original form is of the order the 10−15 which is well within our desired

accuracy, which means we are able to differentiate the interpolated polynomial instead of

the complex expression for r and still have reliable results.

We use the form of the strain that we calculated in our previous work [7], which

assumes that the binary is optimally oriented for the detector for simplicity.

h = (A1 + iA2)e−i2φ (3.14)

A1 = −2
Mη

R

(
ṙ2 + rφ̇2 +

M

r

)
(3.15)

A2 = −2
Mη

R

(
2rṙφ̇

)
(3.16)

The term R is the distance from the detector to the binary system, which we can choose to

be unity since we will normalize the strain amplitude. The plus and cross polarizations of

the waveform are found by taking the real and imaginary parts of equation (3.14). In

Figure 4 we can see the disagreement between the resultant strains, using 2PN corrections

and 3PN corrections, as we approach the late inspiral into the merger. It is known that

the inspiral model no longer holds true when we reach the merger. Using higher order
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Figure 4: 2PN vs. 3PN Order Strain.
Comparison of the unnormalized strain in ADM coordinates using 2PN corrections and
3PN corrections. The strain is cut-off at a time before t3PNfin since we are unable to obtain
results for 2PN corrections at times later than t2PNfin . This plot is produced for the equal
mass case with initial temporal eccentricity et(0) = 0.1.

corrections to the inspiral model is desired because it allows us to push the validity of the

inspiral closer to a time where we can match with a merger waveform model. Merger

models assume that the binary has circularized prior to merger. We can check that our

inspiral model is valid, and we see that the eccentricity, et(tfin) ≈ 0, is close enough to zero

to assume that the binary has circularized prior to matching with a merger model. We plot

the real part of the strain for the eccentric binary black hole, using our parameters

mentioned in the beginning of the section with time in units of solar masses in Figure 5.

The strain is plotted for a variety of initial temporal eccentricities in Figure 6. The

eccentricity introduces a second harmonic within the strain waveform, if compared to a

circular binaries waveform like the one we look at in the next section for the first

gravitational wave detection (GW150914).

In the world of GW detections, the event will rarely be optimally orientated, and

thus the inclination angle θ causes the strain to vary. This is the angle between the
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Figure 5: Eccentric Inspiral Strain.
The plus polarization (the real part) of the normalized strain waveform for an equal mass
binary of initial eccentricity e = 0.1.
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Figure 6: Small to Moderate Eccentric Strain.
Comparing the inspiral strain waveforms for different initial temporal eccentricity values.
The higher eccentricity case introduces extra harmonic behavior later in the inspiral phase,
when compared to the low eccentricity strain.
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detectors plane of reference and the orbital plane of the binary. The plus and cross

polarizations for the strain waveform with an adjustable inclination angle is given by

equations (3.17 & 3.18) [11].

h+ = −Mη

R

[(
cos2 θ + 1

) [
cos 2φ

(
−ṙ2 + r2φ̇2 +

M

r

)
+ 2rṙφ̇ sin 2φ

]
+

(
−ṙ2 + r2φ̇2 +

M

r

)
sin2 θ

]
(3.17)

hx = −2Mη

R
cos θ

[(
−ṙ2 + r2φ̇2 +

M

r

)
sin 2φ − 2rṙφ̇ cos 2φ

]
(3.18)

We will leave the study of the inclination angle to other work.

3.2 GW150914 Inspiral Waveform Comparisons

A good way to test the accuracy of our eccentric inspiral model is to look at it in

the zero eccentricity limit and compare the results to the data available at the LIGO Open

Science Center (LOSC) for the first gravitational wave detection, GW150914. The initial

masses of each black hole in solar masses are m1 = 36.2 and m2 = 29.1. The initial value of

the PN-parameter x is taken to be x(0) = 0.04672277, which is calculated and proven in

our previous work [7]. The binary in this detection has circularized prior to being

detectable, so the eccentricity is zero. Before we can compare our results to the LOSC

data, we need to be certain that the zero eccentricity limit of our new inspiral model agrees

with our previous publication [7]. The old model contains corrections up to the 6PN order

when determining the post-newtonian parameter x for the quasi-circular limit, while the

new eccentric model only has corrections up to the 3PN order and skips half-order

corrections. To get these two models to agree, we must include only the corrections that

our eccentric model has by taking out the half-order corrections and the corrections higher

than 3PN from our previous circular model. Having et(0) = 0 greatly simplifies our

eccentricity model and makes the eccentric anomaly, u = 0, for all times, which speeds up

the evaluation time. Now that our models are in agreement, we need to take the necessary

steps in order to have our model strains be comparable to the LOSC data. First, we choose

16



what cycles of the waveform that we want to compare from the LOSC data. Since the true

test of the strength of an inspiral model is how accurate it is approaching the merger, we

choose a peak just before merger for the LOSC data and compare results for five cycles

before that peak. Similarly, for our inspiral model, we choose a peak just before the model

breaks down and take data for five cycles before that peak. Up until now, we have always

worked with time in units of solar masses, but the LOSC data is given in real units of time

(seconds). By simply expressing the initial total mass in units of seconds instead of solar

masses we see that the eccentric model and circular model produce results with time in

units of seconds. This unit conversion is explained, and a conversion factor is proven in

Appendix A of our previous work [7]. The last step before obtaining comparable results is

to fit the amplitudes. This fit is accomplished by using a scaling factor to compare the

starting peak in our data with the LOSC data. The comparison of the results from our

inspiral models to the LOSC data is shown in Figure 7. We see that both the amplitude

and the frequency of the strain waveform evolve the same for our previous model, the zero

eccentricity limit of the model outlined in this paper, and the LOSC data for the first

gravitational wave detection. This agreement shows that our results are reliable and that

the zero eccentricity limit of the model in this paper gives similar results to our old model

that was limited to the case of a circular binary, which convinces us that we have

successfully expanded our previous inspiral model to allow for less limitations.

3.3 BOB Merger Model

The Backwards One Body (BOB) method developed in reference [13] presents an

analytic approach to calculating the gravitational wave strain of a binary black hole system

during the late inspiral, merger, and ringdown phases. Our reasoning for using this model

is that it is the first merger model to be created analytically without the help of fitting to

numerical relativity data. It is stated that this model is accurate during the “late inspiral,”

which refers to the time once the binary reaches the innermost stable circular orbit (ISCO)

(when rISCO = 6M) to before it reaches the light ring at rlr = 4M . The reason for using
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Figure 7: GW150914 Strain.
Comparing the numerical relativity data, available through the LOSC, of the gravitational
wave detection GW150914 to the results produced from our models from plugging in the
estimated initial parameters extracted from the actual signal. This is the only plot where
time is expressed in units of seconds. The old model is only valid for the circular case while
the eccentric model is being checked to see how it holds at the zero eccentricity limit.

the term “backwards” in BOB is due to the way the problem is modeled for calculations.

This approach tackles the merger dynamics of a BBH by envisioning a single black hole,

with mass and spin equal to the mass and spin of the final remnant black hole, Mfin and

sfin. The gravitational wave emissions in this picture are caused by a second, much less

massive perturber that orbits the remnant black hole starting at the ISCO until it passes

through the light ring. Since the final form of the remnant is known, we work backwards to

determine the path that the perturber must take to describe the disturbances in spacetime

leading to the stable remnant. Considering the gravitational radiation from the geometric

optics perspective, it was found that the majority of the signal does not come from the

perturber itself [6]. Instead, we are observing the reflections off the light ring as the

perturber spirals towards the light ring from ISCO. Once the perturber passes through the

light ring, the majority of the gravitational radiation caused by the perturber is absorbed

into the remnant black hole. In this model, the ringdown corresponds to the higher

frequency disturbances caused by the perturber passing through the light ring. Since this
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passage occurs at the light ring, the high frequency perturbations emitted during the

passage have greater azimuthal momentum and travel around the light ring longer, causing

us to observe them at later times. The frequencies of these later signals range from the

frequency of the perturber itself, to the frequency of a massless particle traveling at the

light ring (the null circular orbital frequency), which corresponds to the quasi-normal mode

(QNM) frequency. This condition sets an upper limit on the frequency of gravitational

radiation that we can observe since perturbations with a greater frequency are trapped in

the light ring and do not have enough momentum in the radial direction to escape and

reach our detectors.

Our goal with this model is to build it from the ground up following reference [13]

and to confirm any equations that may be unclear. Once we have built the model, we will

check the accuracy of the model by comparing the results to the Simulation Extreme

Spacetime (SXS) data for a nearly equal mass binary [5]. We will also compare the results

with those obtained through a generic implicit rotation source (gIRS) formulation, which

was the merger model we used in the past [11]. The calculations and methods for this

model are found in our previous work [7].

The three key terms that we need to produce a strain are the amplitude term given

by the Weyl scalar |ψ4|, the orbital frequency Ω, and the phase Φ (obtained by integrating

the frequency). The terms used in strain calculations are lower case and are related to the

capitalized terms by φlm = mΦ and ωlm = mΩ. The capitalization of the terms is used as a

way to distinguish between the rotation of the source and the terms directly related to the

gravitational waves. We limit our approach to only the l = m = 2 mode from now on, so

subscripts will be dropped.

The first term we will look at is the widely used Weyl Scalar, ψ4. It is proportional

to the second time derivative of the strain and is a key term in determining the waveform

amplitude in numerical relativity codes. We work towards deriving the Weyl Scalar by

starting with the evolution of the radial coordinate r in equation (3.19), which describes
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the position of the perturber and is related to the path that the leading gravitational wave

takes. The other coordinates are considered to be constant in time.

r = rlr[1 + εf(t− tp)] (3.19)

The time tp is when the waveform amplitude is maximum and can be freely chosen to be

tp = 0. The term f(t− tp) is the function of the perturbation given by equation (3.20), and

ε is some small scaling factor that the perturbation is multiplied by.

f = sinh

(
t− tp
τ

)
(3.20)

The term τ is the dampening time of the amplitude given by equation (3.21).

τ =
Q

ΩQNM

(3.21)

The fit for the quality factor Q is given in reference [3] for different modes. For our 2, 2

mode, Q is given as a function of the final spin, sfin, shown in equation (3.22).

Q = 0.7 + 1.4187(1− sfin)−0.499 (3.22)

The quasi-normal mode frequency is also given in reference [3] for the 2, 2 mode in

equation (3.23).

ωQNM =
1.5251− 1.1568(1− sfin)0.1292

Mfin

(3.23)

In this equation, Mfin is the final remnant mass of the binary, and this is related to the

term in the dampening time by ΩQNM = ωQNM/2. The values of Mfin and the final spin,

sfin, are taken from the SXS data. In the case that these values are not known, one may

have to resort to numerical relativity. Since it is desirable to build a model that does not

rely on NR, papers have been published containing methods for calculating the final mass
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and final spin of a remnant black hole analytically [13, 2].

From geometric optics, the amplitude is shown to satisfy a transport equation given

by equation (3.24).

d

dt
(drA) = 0 (3.24)

If we plug the perturbative function (3.20) into the equation for our radial component

(3.19) and differentiate, we clearly see that dr ∝ cosh
( t−tp

τ

)
. Performing a time integration

on equation (3.24), we set it equal to some integration constant that we call Ap. Solving for

the amplitude A, we obtain equation (3.25).

A = Apsech

(
t− tp
τ

)
(3.25)

The term Ap is a scaling factor that can be chosen freely to fit with the amplitude of

whatever we are comparing our model to. Since we will normalize the amplitude of the

final strain later on, we just set Ap = 1 for simplicity. The amplitude A can describe any

derivative of a waveform. The source of gravitational waves is the curvature of the

space-time, which is related to the second derivative of the space. General relativity

describes gravitational waves in terms of the Weyl scalar |ψ4|, a quantity commonly seen in

numerical relativity codes. The Weyl scalar is related to the strain by |ψ4| = ḧ ≈ hω2, so

we can set the amplitude of the Weyl scalar to be in the same form as the amplitude that

we derived from the transport equation.

|ψ4| = Apsech

(
t− tp
τ

)
(3.26)

Now that the form of the Weyl scalar is chosen and our amplitude is obtained, we

can shift our focus to the orbital frequency of the binary. We will deduce the orbital

21



frequency to be in the form given by reference [13], shown in equation (3.27).

Ω(t) =

(
Ω4

0 + k

[
tanh

(
t− tp
τ

)
− tanh

(
t0 − tp
τ

)])1/4

(3.27)

In this equation, k is some constant that must be determined. We start by looking at the

Bondi news, N , which is the time derivative of the strain. This quantity is related to the

orbital frequency by equation (3.28) given in reference [2].

|N |2 = 16πξΩΩ̇ (3.28)

The term ξ = m2 dJ
dΩ

is the change in dynamical moment of inertia, which is found to be

constant during the merger. Since the Bondi news is the first derivative of the strain, and

the Weyl scalar is related to the second derivative of the strain, we can compare the Bondi

news to the Weyl scalar to obtain the useful relationship given in equation (3.29).

|ψ4|2 = m2Ω2|N |2 (3.29)

In this relation, we plug in equation (3.28) and (3.26) to obtain a first order differential

equation for the orbital frequency that can be solved using the separation of variables.

sech2

(
t− tp
τ

)
dt = 16πm2ξΩ3dΩ (3.30)

At this point, we introduce the constant k that appears in equation (3.27) by enforcing the

relation shown in equation (3.31).

k

4τ
=

1

16πξm2
(3.31)

Doing this brings equation (3.30) to the form of equation (3.32).

k

4τ
sech2

(
t− tp
τ

)
dt = Ω3dΩ (3.32)
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The resultant differential in equation (3.32) can be trivially integrated to confirm

equation (3.27). However, to determine the constant k, the limits of integrations must be

carefully chosen. For the integration over dΩ, we know the lower limit must be the

frequency that we choose from the end of the inspiral model to match with BOB at time t0,

such that Ω(t0) = Ω0. The upper limit of this integration is the quasi-normal mode

frequency, ΩQNM , which is the frequency of the final waveforms that we detect from the

ringdown of the merged binary. As the frequency evolves, it asymptotes towards the

quasi-normal mode frequency so that we can consider that the frequency is equal to ΩQNM

at late times (t→∞). With this knowledge, the limits of integration for time are clearly

seen to be from t0 (the time that we match the inspiral model with BOB) to some final

time that is far enough past the peak of the merger that it can be considered infinity.

Performing the integration of equation (3.32) with the discussed limits and solving for k,

we find that the constant k becomes equation (3.33) which is in agreement with equation

(8) from reference [13].

k =

(
Ω4
QNM − Ω4

0

1− tanh[(t0 − tp)/τ ]

)
(3.33)

The statement that Ω(t) approaches ΩQNM at late times can be checked by plugging k into

equation (3.27) for a time Ω(t→∞). Since we choose tp to be zero, we must determine the

starting time of the merger model t0. The matching time is found by enforcing the

continuity condition that is obtained by rearranging equation (3.32). This condition was

chosen so that the inspiral and merger models are in phase with each other at the matching

time. At time t0, Ω and Ω̇ become Ω0 and Ω̇0 respectively. These values are obtained using

the frequency values from the PN inspiral model at late times, just before the model is no

longer applicable. Plugging in the form of k that we determined in equation (3.33), we

obtain the relation given in equation (3.34).

sech

(
t0 − tp
τ

)
= 2

√
τΩ3

0Ω̇0(1− tanh( t0−tp
τ

))

Ω4
QNM − Ω4

0

(3.34)
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Solving for t0 from equation (3.34) is best done using Mathematica due to the t0

terms being contained within hyperbolic functions. Mathematica, by default, considers any

variable, such as t0, to be complex. However, the solution could change depending on the

domain of values that t0 can take on, so we must limit t0 to the real domain in

Mathematica since we know time must take on real values. We then preform a solve

command on equation (3.34) to obtain the result in equation (3.35).

t0 = tp + τ log

[
√

2

√
− τΩ3

0Ω̇0

Ω4
0 + 2τΩ3

0Ω̇0 − Ω4
QNM

]
(3.35)

The above equation does not coincide with t0 given in reference [13]. However, after some

logarithmic identities and simplification, t0 can be rearranged into the elegant form seen in

equation (3.36), which matches form of the equation for t0 given in reference [13].

t0 = tp −
τ

2
ln

(
Ω4
QNM − Ω4

0

2τΩ3
0Ω̇0

− 1

)
. (3.36)

Finally, the last key term in obtaining a strain waveform is the phase Φ. As

previously mentioned, the phase is calculated through the integration of the frequency

given in equation (3.27), when working in the quasi-circular limit. The result of the

integration is given in a compact form shown in equation (3.37).

Φ =

∫ t

0

Ωdt′ = arctan+ + arctanh+− arctan − arctanh (3.37)

The abbreviated trigonometric terms are given in equation (10) of reference [13] and were

checked by using the integration command in Mathematica.

With the three key terms clearly derived, we can build an equation for the strain.

Equation (3.38) shows how the Weyl scalar, frequency, and phase describe the evolution of

the strain. The real and imaginary parts correspond to the plus and cross polarizations of

the strain respectively.

24



h =
|ψ4|
ω2

eiφ (3.38)
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CHAPTER 4

RESULTS

4.1 Matching

With the BOB approach programmed from the ground up using Mathematica, we

can combine it with the inspiral model to produce a full waveform. The resultant merger

waveform that we produced for matching considers an equal mass case where the total

mass of the binary system is normalized. The final spin is chosen to be sfin = 0.686461,

and the final mass of the remnant is given as a fraction of the total mass to be

Mfin = 0.95174. The real and imaginary strain waveforms using Equation (3.38) from

following the BOB formulation for these parameters is shown in Figure 8. We observe the

expected phase difference between the two polarizations.

In order to produce a complete waveform, we want to match the merger waveform

with the end of our inspiral model. We use the zero eccentricity limit of our inspiral

formulation by changing the initial eccentricity to zero the script we used to generate

Figure 5, to produce the inspiral strain for matching. The inspiral model is pushed until a

time just before the model breaks down. To determine where the strains will be matched,

we work in the frequency domain. The plot of the matched frequencies for the late inspiral

and merger is shown in Figure 9.

We then shift the inspiral waveform back in time so that the strains align as they

approach the peak amplitude seen just before t = 0 in the real part of Figure 8. Matching

in the frequency domain allows us to determine the time shift for the strain and solidifies

our strain matching results. The resultant inspiral-merger-ringdown (IMR) waveform is

shown in Figure 10.
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Figure 8: BOB Merger Strain.
The real and imaginary strain waveforms for the equal mass binary produced following the
BOB formulation. The amplitude of the strain is normalized. The data is time-shifted so

that the amplitude term
(
|ψ4|
ω2

)
peaks at time zero.
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Figure 9: Frequency Matching.
The time evolution of the frequency, ω, for the end of our PN inspiral model and beginning
of the BOB merger model. The inspiral frequency is time shifted backwards to find an
overlap with the merger.
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Figure 10: Complete Waveform.
The matching of the PN formulation for the strain of the inspiral phase with the BOB
merger waveform model to create a complete strain waveform.

4.2 Merger Model Comparisons

We now want to compare the results of the BOB strain with those of the gIRS

formulation that we coded in our previous work [7]. The gIRS model is formulated by

tuning adjustable parameters and using fitting functions directly obtained by comparison

with numerical relativity results. These models are formulated using units of time in solar

masses. The results are obtained for a nearly equal mass case where the parameters are

chosen from a numerical relativity simulation. Information on the parameters and the

strain data for this simulation is taken from the SXS data bank that is easily accessible

online. The SXS data will allow us to test our goal, which is to produce analytic results

that are comparable to the widely accepted numerical relativity simulations. The initial

masses for the specific SXS simulation that we chose for comparison are

m1 = 0.5000000618087954 and m2 = 0.4999999756534059 in order to create a normalized

total mass. The final spin (which appears in both gIRS and BOB formulation) is
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sfin = 0.880726115, and the final mass of the remnant black hole as a fraction of the total

mass of the binary is Mfin = 0.918682416261. For consistency with the BOB formulation,

we use equations (3.22) and (3.23) for the quality factor and the quasi-normal mode

frequency in our gIRS calculations. Our comparison of the two merger models is shown in

Figure 11. The merger models agree with each other throughout the merger and ringdown

phases. Slight disagreement can be seen a few cycles before the peak, but this part of the

merger model ends up being replaced by late inspiral modeling when creating a complete

IMR waveform.
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Figure 11: BOB vs. gIRS Merger Strain.
Comparison of the imaginary strain waveforms for the BOB and gIRS formulation for the
nearly equal mass case. The peaks of the strains are normalized and both models are
shifted to peak a time zero.

Since we know the models produce similar results, we can now see how the BOB

model compares with the SXS data. This data is already expressed with time in units of

solar masses, but the strain data is not normalized, and it does not peak at time zero.

After shifting the SXS time data and normalizing the strain data, we are ready to compare

our analytic results with the reliable and accepted numerical relativity data. This
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comparison is shown in Figure 12.
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Figure 12: BOB vs. SXS Merger Strain.
Comparison of the imaginary strain waveform for the BOB formulation and the time
shifted SXS imaginary strain data.
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CHAPTER 5

CONCLUSIONS

Numerical relativity is the most reliable way to model the complex evolution of

black hole binaries, but it has a major downfall. Simulating this problem is extremely

computationally expensive and requires super computers, even for just one set of initial

parameters. We need reliable simulations for a wide variety of parameters so that when a

gravitational wave is detected, the detection can be compared with the available data to

determine valuable information about the source of the signal. This issue has led to the

development of analytic gravitational wave models for the inspiral and merger phases of

the binaries’ evolution. Since the merger phase is highly non-linear, a single model cannot

describe both phases of the evolution, and separate models must be stitched together to

produce a complete waveform. In this paper, we have successfully formulated a complete

analytic waveform which gives results that match with numerical relativity simulations and

is simple enough to evaluate on personal computers.

All BBH detections that have been confirmed up until now have only caught the

end of the inspiral when the source has already circularized. However, with the

improvements to the detectors discussed in the introduction, it is highly likely that LIGO

and its partners will begin receiving detections early enough in the inspiral to see the

eccentric behavior of the binary appear in the strain as extra harmonics. The expectation

of eccentric detections was the purpose of developing an inspiral model that can describe

moderately eccentric binaries. It was important to add the highest order PN corrections

that are available because it allowed for us to push our inspiral models to a point where it

circularizes enough to be matched with analytic merger models. Eccentricity calculations

are computationally expensive so methods to speed up the time of evaluation were

developed without any loss of accuracy. An example of one of these methods was the
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polynomial interpolation that we used to express the eccentric anomaly. We tested the zero

eccentricity limit of our eccentric model by comparing our results with the LOSC data for

the first gravitational wave detection and found that our inspiral model is accurate.

The BOB model that we reproduced to describe the merger was developed based on

the physical description of the problem and independent of the numerical relativity results

(unlike the gIRS formulation). We discovered that both models produced nearly the same

results. The gIRS formulation produced more cycles before the peak, but this data is not

reliable, and we use the inspiral model to replace these cycles. More importantly, we found

that these results agree with the numerical relativity SXS data when inputting the same

initial parameters. The agreement of our analytic merger model with numerical relativity

data is critical because the merger is much more difficult to model, but it is also where the

most information about the source can be extracted. The ability to model the merger

phase accurately while maintaining computational efficiency is one of the most exciting

results of our work.

We have produced a completely analytic gravitational waveform that gives results

that agree with both numerical relativity and actual gravitational wave detections.

Analytic models such as these could replace the need for super computers to produce

numerical relativity databanks, and instead, results for an even larger range of parameters

could be produced using the more computationally efficient analytic models. As our

ground-based detectors continue to improve, we expect to see a larger number of detections

with a wider range of parameters. Although at the time no detections have been published

for O3 (since they wait until after the entire observation run is complete before

publication), promising candidates have been detected around one or two times a week on

average. The rate of detections is a much higher frequency than previous observation runs

and emphasizes the importance of having readily available databanks!

The current observation run will end in April 2020 and if any eccentric binaries are

confirmed, the inspiral model could be compared with the published data that will follow.
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Since the matching is done manually, it would be beneficial to develop a method of

matching that is done automatically without altering the script when the code is evaluated.
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APPENDIX A

APPROVAL LETTER
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APPENDIX B

Interpolation Code

Figure 13: Mathematica Interpolation.
The first line tabulates the values for u. The second creates the table (t, u). The third
removes an extra pair of brackets around u values so that the table is in a form that can be
used by the interpolation command in the fourth line.
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