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ABSTRACT
The main aim of this thesis is to explore the potential for using pavements as part of energy
harvesting infrastructure. Asphalt pavements can be used for multiple purposes such as for
energy harvesting, eco-friendly use of the car, and the utilization of the natural renewable
resources to produce electricity and that electricity use for in-lane charging technology which
helps to charge a car when it is being driven on the road. The wireless charger is set-up under the
asphalt pavement, and it will produce the magnetic field. The piezoelectric material and wind
turbine are the electric source for applications such as the wireless charger. The solar roadways
are included in the discussion but not considered as a source in this paper due to certain
limitations. The analysis of power output from the piezoelectric transducers and helical wind
turbine is calculated through MATLAB simulation. The results show significant promise for

deriving energy from various sources along and in a roadway.
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CHAPTER 1 INTRODUCTION

Road Pavements

Road pavements are structures comprised of layers of engineered materials on top of the
natural soil subgrade, and their primary function is to distribute the applied vehicle loads to the
subgrade. The pavement structure is designed to offer an acceptable surface in terms of adequate
surface friction, favorable light-reflective characteristics, and low sound pollution. There are two
types of pavements that are typically recognized: flexible and rigid pavements. This chapter provides
information about road pavement, methods of energy harvesting, objectives, source of energy to
convert into electrical energy, and charging technology.
Energy harvesting

Energy harvesting from road infrastructure using a set of technologies that capture accumulated
wasted energy that occurs in pavements and stores it for later use is the focus of study. Piezoelectric
sensors, solar panels, solar thin film, and wind turbines are energy harvesting sources that have shown
promise as detailed in chapter 2 of this thesis. Energy harvesting outputs are often listed as electrical
energy production, heating, and cooling, deicing surfaces or powering wireless networks, or monitoring
pavement conditions.
Objectives

The objective of this thesis is to review the past research on pavements as energy harvesters and
evaluate the feasibility of constructing a pavement with modern technologies for the purpose of forecasting
energy and that energy going to be used for wireless charging of electric cars. For energy harvesting from
piezoelectric material, Kirchhoff-Love’s plate theory and sensitivity analysis were analyzed to check how
much the strain affects energy production. For a wind turbine, the calculation is carried out based on

idealized environmental conditions and actual wind data. In this thesis, multiple approaches to the results
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have been included.

Source of energy

There are several renewable energies available, such as solar panels, piezoelectric materials, wind

turbines, and so on as shown in. We are not concerned about the solar technique that much in this paper,

but the focus is the piezoelectric material and wind turbine.

VRS
Energy Harvesting
Sources

~

~~

A~

Methods Principle
NS N
I N N
Solar Photovoltaic
N A
I N N
Thermal See beck
NS N
I N N
Radio Frequency Electromagnetic
(RF) (RF)
NS N
|~ N N
. Electromagnetic
Motion (Mechanical)
NS N
L~ N\ N
Wind Electrostatic
NS N
|~ N\
Piezoelectric
N
L~ N\
Air Pressure
N

Figure 1 Hierarchy of main energy harvesting technologies. (Calio, et al., 2014)



Charging of Electric Vehicles Technology

The term Electric Vehicle Supply Equipment (EVSE) in a broader sense defines all the grounding
and non-grounding equipment, electric vehicle connectors, attachment plugs, and all other kinds of
accessories needed for charging of electric vehicles (Bansal, 2015). There are different types of charging
ports and charging rates. Usually, the charging time range is less than thirty minutes to twenty hours or

more, based on the type or level EVSE, the type of battery, and the capacity of the battery (Bansal, 2015).

Outline of the thesis

Chapter 2 is about the summary of the previous researches related to this thesis paper. The
overview and brief introduction of the location is covered in chapter 3. Chapter 4 is detail explanation of
the numerical analysis and results of piezoelectric and wind turbines. Chapter 5 is discussion and it
concludes the thesis based on the results. Also, codes for the MATLAB simulation and required

permissions for the figures are attached in appendices respectively.



CHAPTER 2 SUMMARY OF PREVIOUS STUDIES
This chapter presents the summary of past research on the energy harvesting methods from asphalt
pavements. Chapter 2 includes the explanation of the method, formulas, and importance of previous papers
in this thesis. Many of the papers have been written for small scale application such as pedestrian
walkways. In this paper, the same applications have been used for a larger scale based on the dynamic

force of the vehicle on asphalt pavement.

Piezoelectric Material

Materials that produce energy through the vibrations are known as piezoelectric material (Calio, et
al., 2014). Duarte et al. (2003) explained the application to convert the kinetic energy to electric energy
using the Waynergy system at small scale utilize under the pedestrian walkway. Waynergy system was
developed by Waydip company in 2009 that converts the kinetic energy to the electric energy. Duarte et al.
(2003) has done practical implementation of Waynergy system on the university access road pavement for
the pedestrians. From this system, other few papers have been developed for larger scale application on the
asphalt pavement such as energy harvesting from the highways. For example, Calio et al. (2014) used
finite element method to calculate the energy output from sources which does not explain work flow and
how it works. The work flow and explanation of the formula are important and relevant to this thesis to
compare the result with the MATLAB simulation.

Existing smart materials, such as piezoelectric ceramics, electroactive polymers, and shape memory
alloys have various limitations holding them back from practical applications (Andriopoulou, 2012). The
limitations center on the material’s durability or size, and the material’s range of strain force actuation. The
carbon nanotube and nanofibers overcome the limitation of low electricity production because the carbon
nanotubes help to boost the electricity output while the AC current is converting to the DC current. As

shown in equation 1 and 2, the changes in the electric field, the electrical displacements, or mechanical



stresses and strains are linearly related.

Tij = CijriSki — exijEx 1
D; = ejyySii + €iEx 2
Where,

Tij = stresses

Sky = strains

Ex = electric field

Di = electrical displacement

Cijxi = Constitutive relationship

ekij = piezoelectric coefficient

eik = clamped permittivity
Carbon nanotube and nanofibers

Piezoelectric materials are solid-state smart materials. The limitations of the solid-state materials

are tolerance of high voltage, brittleness, and a small range of tolerance of strain and stress. Smart
nanoscale materials help to enhance these material properties and represent a new way to generate and
measure the motion of the device. Among the various nanoscale materials, carbon nanotubes (CNTs)
exhibit mechanical properties that help to improve strain, durability and energy output of piezoelectric
material (Kang, et al., 2006). For instance, CNTs are the strongest and most flexible molecular material
known due to the unique C—C covalent bonding and seamless hexagonal network (Kang, et al., 2006). The
nanotubes also have electrical conductivity or semi-conductivity and high thermal conductivity in the axial
direction. The discovery of Multi-Wall Carbon Nanotubes (MWNTs) and the C60 fullerene and single-

wall carbon nanotubes (SWNTs) opened the possibility for a new class of smart materials based on



nanoscale materials (Kang, et al., 2006). Structural and electrical characteristics of CNTs make them
potential for developing unique and revolutionary smart composite materials. The nanotube continuous
strain sensor or the neuron discussed are new approaches to monitor strains and crack propagation in large
structures, such as aircraft, helicopters, and civil infrastructures. The power generation property of carbon
nanotubes and nanofibers was demonstrated on a vibrating structure, and later, an electrolytically gated
carbon nanofiber field-effect sensor was developed for biosensing applications (Kang, et al., 2006).
Modeling

In order to model an electricity energy harvester, we want to grasp the piezoelectric through effect

and strain—charge relationships through the use of the derived equations (Ilyas, 2018):

S = [sE]T + [d*]E 3

D = [d]T + [¢t]E 4

Where,

D = electrical displacement of charge

E = force field strength

S = Mechanical strain

T = mechanical stress

&' = permittivity of fabric underneatha constant stress

SE = compliance underneath a relentless electric field

d = matrix for direct electricity

d' = matrix for reverse electricity effect

t = denotes the matrix operation


James Bryce
Finish this sentence. You have the tracked changes version (which you sent me), so go back and find what you deleted.


E and D are outlined as electrical quantities with vector nature, whereas T and S are mechanical
quantities with tensor nature of six elements. The constants in every electricity material referred to as
direct electricity, and permittivity of fabric rely upon the directions of an electrical field, displacement, and
stress and strain.

In 3 dimensions, the electricity is given by:

_Tl_
Ty
D, 0 0 0 0 dis O T €11 O 0 1[E; 5
D,|]=|{0 0 0 d,, O 0]T3+ 0 €, O0]||E
D3 d3; dizp dzz O 0 0 T4 0 0 es3llEs
5
| T
For direct piezoelectricity, we tend to use equations to deduce the following co-efficient:
aD, as; 6
4 =\a1, ) = 3K,
j j
<6Di) . <6Ti> S 7
e. . = =
4 =\ 3s; OE,
The energy in an exceeding electricity material is designed as energy stored in an exceeding
condenser. Thus, the subsequent equation is derived:
1 8
W33 = 2 Q33V33
Where Q33 and V33 are described as:
Q33 = ds3F3 9
10

T
V33 = WL F3933

Where T = thickness

W = width



L = length
F = force

233 and d33 are constants piezoelectric material

Fix Support

Mass (weight of vehicle)

C

o

-

D

—_

= KN
c /1,,/ %
il 7
-

o

Qo

=

Figure 2 Cantilever arrangement with mass (Andriopoulou, 2012)

Conceptual Design of the Piezoelectric material in the pavement

Asphalt pavements throughout their lifespan endure repeated loading that causes stress, strain,
deformation, and vibration. At the same time, the pavement obtains strain and kinetic energies from the
work of carload and gravity as shown in Figure 2 (Andriopoulou, 2012). Electricity transducers embedded
into the pavements also have the potential to harvest the waste energy and store it within the electronic
capacitance. To date, the harvested energy has been used for small scale road applications like road
furnishings, lighting, edge advertising or railway and aerodrome assemblage wherever the installation and
maintenance price is practical (Jasim et al., 2017).

Figure 3 shows the schematic design of an array arrangement of piezoelectric transducers under the
pavement. This arrangement will be used for the numerical analysis in chapter 4. The number of columns
and rows of the piezoelectric transducers depend on the number of transducers that needs to be placed.
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Number of transducers also affect the efficiency of the power output.

Road Surface

Piezoelectric
Transducers

Piezoelectric array arrangement under the
asphalt pavement

Figure 3 Schematic of piezoelectric transducers embedded in a pavement (Jasim, et al., 2018)

Jasim et al. (2018) tried to judge the potency of the sensing element by use of its potential electrical
output and its coupling effects with the pavement (pavement’s displacement). Therefore, increasing both
the diameter and the thickness of the PZT and the thickness of the cap steel, the mechanical energy is
increased beside the value (Jasim et al., 2017). There are two types of structural design of piezoelectric
transducer, Moonie structure and Cymbal. However, the Cymbal structure looks like bridge structure but
the structural loading condition in both is different from each other as shown in Figure 5 and Figure 6 (Zhao,

Ling, & Yu, 2012).



Piezoelectric Transducer

y ( Steel Metal Cap
T

Figure 4 Schematic layout of the PZT transducer (Jasim, Wang, Yesner, Safari, & Maher, 2017)

Distributed load (q) Distributed load (q)

% N
o TN

Figure 6 Loading condition in Bridge

Figure 5 Loading condition in Cymbal _ _ _
piezoelectric transducers (Zhao, Ling, & Yu, 2012) piezoelectric tr ansgglc; (Zhao, Ling, & Yu,

Factors affecting the performance of energy harvester

The following factors have to be considered during the designing steps for the piezoelectric
material as well as in deciding the location of the piezoelectric transducer under the pavement; overall

these factors affect the efficiency of the output of electricity of the piezoelectric transducers.

1. Effect of epoxy thickness on transducer failure
2. Effect of gap design on energy harvester performance

3. Effect of cover/gap material on energy harvester performance

Simplified Design for the piezoelectric transducer

It had been found that the synthetic PZT-5H part was applicable in pavements because it exhibits the
highest electricity property from 25° to 170° (Najini & Muthukumaraswamy, 2016). Higher electricity property is
well inside the Curie temperature (at a certain temperature the material tends to lose its permanent magnetism). It

was tested that the design of electricity transducers from the study given would surrender to 150kW/h per lane per
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klick (Zhao et al., 2012). According to the results of Najini and Muthukumaraswamy (2016), it is confirmed that the
PZT piles and multilayer, cycloidal plates of brasses, that create the electrical device to bridge the piles along, have
the potential of operating underneath the asphalt pavement atmosphere. It had been suggested to use 8-16 PZT piles

for pavement space wherever these PZT piles were organized between the circular steel plates as seen in Figure 7.

Distributed load

R

\

Pile

Figure 7 Structure of Piezoelectric Transducer (Zhao et al., 2014)

The form of the PZT piles was to make sure of the reduction of stress concentration in an area, whereas the
multi-layering was suggested to decrease the electrical potential of the generator. Moreover, multiple references
describe these generators work as sensors that are inside the pavement to observe the traffic movement, pavement

stress, and condition.
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Figure 8 Location of a piezoelectric transducer (Najini & Muthukumaraswamy, 2016)

The piezoelectric transducers are embedded under the asphalt pavement to produce the electricity from the
kinetic energy to electric energy. As shown in Figure 8, the location of piezoelectric transducers is immediately
below the asphalt layer and the depth of asphalt layer is approximately 3-5 inches. In this design of piezoelectric, the
pile structure is used and that can produce 50 kWh from the pavement under significant traffic conditions (Najini &

Muthukumaraswamy, 2016).

]/' Single-wheel load Four-wheel load

Y

it R

Aisisscssssizsoay

J Piezoelectric Transducer

Figure 9 Plate on elastic foundation subjected to moving distributed loads (Zhang, Xiang, & Shi, 2016)
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Wind turbine

Wind energy is another common approach to harvest the energy. This section describes the past
few papers on the application of the wind turbine along the highway side. Hu et al. (2018) wrote the paper
on the application of Vertical Axis Wind Turbine (VAWT) along the highway side, which explained the
determination and utilization of the wind characteristics, flow field, and principle. In that paper, the finite
element method has been used to calculate the electricity output. The concept of this paper is similar to that
paper, but in that paper VAWT turbine is used. The helical wind turbine is more efficient than the VAWT
(Tong, 2010). The explanation about the helical wind turbine is covered later in this chapter.

There was another paper that explained about the application of S-rotor and H-rotor turbines at the
high-speed railway tunnels (Pan, et al., 2019), which proposed the wind energy harvesting method inside
the tunnel to fulfill the need of the electricity inside the tunnels. Pan et al. (2019) developed self-powered
application of wind turbines for the tunnels. There are three main components: harvesting mechanism,
main module (Convertor), and power storage module. The analysis of the output in the Pan et al. paper is
carried out with finite element method (FEM). This paper is important for the comparison of result of FEM
and MATLAB simulation and location.

In addition, Wind energy technology recognizes the technical complexity and deployment speed of
wind power and the fact that the percentage of wind integrated into the electricity system cannot be limited
in practical terms. It has been estimated that the total solar energy received by the earth is approximately
1.8 x 10! MW. Of this solar energy input, only 2% is converted into wind energy and around 35% of wind
energy is dissipated within 1000m of the earth’s surface (Tong, 2010). Therefore, the available wind power
that can be converted into other forms of energy is approximately 1.26 x 10° MW. Since this value
represents 20 times the rate of the present global energy consumption, wind energy in principle could meet

all the energy needs of the world (Tong, 2010).
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Recently, there have been three types of modern vertical axis wind turbines (VAWT) according to
their blade design. The designs which are useful to harvest energy efficiently are the Savonius turbine,
Darrieus turbine, and H-rotor. Different designs of a wind turbine have different efficiency and
characteristics which affects the output of electricity generation.

Darrieus turbine

There is a considerable amount of research going on relating to VAWTs as varied universities and
research establishments have allotted in-depth analysis activities and developed varied styles based on
many mechanics’ models. These models are crucial for deducing optimum style parameters and
additionally, they predict the performance before fabricating the VAWT (Mazharul et al., 2006). In this
review, the authors have compiled the mechanical models that are used for performance prediction and
style of straight-bladed Darrieus-type VAWT as shown in Figure 10. At this time, it has been discovered
that the foremost widely used models are double-multiple stream tube model, the Vortex model, and the
Cascade model. These are the modified design of the VAWT for more power output. It is important to

compare to decide the optimal design of the VAWT.
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Figure 10 Curved blade Darrieus VAWT (Tong, 2010)

Savonius wind turbine

S.J. Savonius invented this type of VAWT turbine in 1925 (Tong, 2010). It is primarily a drag force
driven turbine with two cups or half drums mounted to a central shaft in opposing directions. Every
cup/drum catches the wind and so turns the shaft, delivering the opposing cup/drum into the flow of the
wind as shown in Figure 11. This cup/drum then repeats the method, inflicting the shaft to rotate more,
therefore finishing a full rotation. This method continues when the wind blows all the time; the rotating
shaft is used to drive a pump or a small generator. This type of rotary engine is appropriate for low-power

applications and the area units are typically used for wind speed instruments (Tong, 2010).
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Vanes

= Height of rotor and blade

Figure 11 Savonius type VAWT (Tong, 2010)

H-rotor

H-Rotors, as shown in Figure 12, were developed within the United Kingdom through the analysis
carried out throughout the 1970-1980s (Tong, 2010). Once it was established that the elaborate
mechanisms would not feather, the straight-bladed Darrieus VAWT blades were superfluous. It was
distinguished that through the drag/stall result created by a blade effort the wind flow would limit the

speed that the opposing blade (in the wind flow) might propel the entire blade configuration forward.

Diameter of rotor

Height of blade

(RO

Figure 12 H-rotor type VAWT
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Solar Energy

Solar energy is electric or thermal energy that is converted from the sun. Solar energy is the
cleanest and most abundant renewable energy source available, and the United States (U.S.) has some of
the richest solar resources in the world (Andriopoulou, 2012). There are three different ways through
which solar energy can be harvested: photovoltaics, solar heating and cooling, and concentrated solar
power. It has been estimated that the total solar power received by the earth is approximately 1.8 x 10!!
MW (Andriopoulou, 2012). This thesis paper does not include the analysis on the solar roadways due to
many practical applications yet to be overcome; however, it can be used for future reference.
Wireless Charging Technology

Wireless charging technology is based on the principle of inductive coupling (Bansal, 2015). In this
kind of coupling, a circular magnetic field is generated as a result of the movement of current through a
wire coil. If another loop of the coil is placed close to the first coil, a current will be induced in it. The
concept of inductive charging has been used for charging small electronic devices like toothbrushes,
cellphones, and tablets with power mats acting as the primary coil. Mutual inductance occurs when the
change in current in one inductor induces a voltage in another nearby inductor (Bansal, 2015). The
mechanism of wireless charger is like transformers, but it can also cause unwanted coupling between
conductors in a circuit. In wireless charging technology, an induction coil present in the induction chargers
creates an electromagnetic field within a charging base station. Another induction coil in the small
transformers acquires the energy generated due to the electromagnetic field and converts it into electric
current for charging the battery. These coils are regulated to have the same resonant frequency in order to

avoid energy leakage and reduce the risk of electrical shock.
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Qualcomm HALO WEVC (Wireless Electric Vehicle Charging)

Wireless Electric Vehicle Charging (WEVC ) technology operates on the principles of magnetic
inductance and magnetic resonance. Similar to the way a transformer operates, a magnetic field is induced
in the surrounding area by running currents through a coil of wire. Exposing another coil nearby to that
magnetic field will induce an electric current in the nearby coil; thus, wireless power transfer (WPT) is
achieved (Bansal, 2015). However, unless the coils are very close together and aligned correctly, this
power transfer method, known as inductive power transfer, typically has a suboptimal efficiency.

Level of charging

Based on the EV charging installation guide, these are the following levels for charging as provided
by Bansal (2015):

Level 1: 120 V AC.

This is a common charger, which is used for residential charging purposes. The current rating for
this case is in the range of 15 A —20 A.

Level 2: 240 V AC.

These are used for the public charging facilities. The main reason is their efficiency in charging as

compared to level 1 charging. They use 220-240 V range and current is of the order 80-100 A.
Level 3: DC Fast Charging.

This type of charger would provide a fast recharge and fifty percent of the total recharge in just 10-

15 minutes. It is suitable for the vehicles’ on-board battery management system that controls the off-board

charger to deliver the direct current (DC) to the battery.
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CHAPTER 3 OVERVIEW ABOUT LOCATION

The main aim of this study is to analyze the 3™ avenue of Huntington, WV from 20 street to Hal

Greer Blvd (Figure 13). According to the traffic record of 2018, the daily average traffic on this avenue is

14732, and during the peak hour, the traffic count is 1264. According to the Federal Highway

Administration’s data, the annual average mean air temperature in a specific location is 12 °C (FHWA,

2019). The results about how much electricity can be produced from piezoelectric and wind sources from

that specific section within 24 hours have been carried out. Moreover, the comparison of output from

harvesting source with the average daily requirement of the Marshall University Weisberg Applied

Engineering Complex will be presented. The calculation has been carried out with the help of the

MATLAB coding for the strain, energy output from piezoelectric transducers and wind turbine; MATLAB

code is given in appendix B, C and D.

Marshall University Campus
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Figure 13 Intersection of 3rd avenue and Hal Greer Blvd
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CHAPTER 4 NUMERICAL ANALYSIS

Piezoelectric material

This section covers the explanation of the methodology to calculate the conversion of the kinetic

energy to electric energy. The main principle is kinematic displacement of pavement and the output
depends on speed, load intensity of the vehicle, strain, and structure of the pavement. The FEM and
numerical simulation are two approaches for the calculation of power output. In this paper, the latter
approach is used, and the MATLAB code is given in appendix B. Also, the MATLAB code for an
empirical analysis is given in appendix C; this analysis is detailed later in this chapter.
Formulas for the piezoelectric material

This section includes the important formulas that help to design, calculate and analyze the output of
piezoelectric transducers under the pavements. In this section, Table 1 gives the values of constants for the
piezoelectric calculation.

Capacitance
Capacitance can be defined as the capacity of piezoelectric transducers to store the electricity

generated by the dynamic impact load and using by equation 11.

_ K3 Eglw

Cs A

Where, Cs = Capacitance
KT = relative dielectric constant (constant stress)
Eo = permittivity of free space (8.85 x 10-12 farad/m)
1 = length of ceramic element (m)
w = width of ceramic element (m)

h = height (thickness) of the ceramic element (m)
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Static displacement
Static displacement is the amount of cymbal PZT compresses under the distributed load equation

Ah == d33V 12

Where, A h = Vertical displacement
ds3 = Piezoelectric charge constant (C / N)

V = Voltage

Static Voltage
Static voltage is the potential difference between the positive and negative pole. The electric

charges move because of the potential difference between the two nodes equation 13.

V:‘9331:'3}1 13
lw

Where,V = Voltage
g33 = Piezoelectric voltage constant
F3 = Force
1 = length of ceramic element (m)
w = width of ceramic element (m)

h = height (thickness) of the ceramic element (m)
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Table 1 Piezoelectric Constant (Jasim, Wang, Yesner, Safari, & Maher, 2017)

Material Properties  Symbol PZT Material Type
4 4D  SA SH 5] 8 5X
Piezoelectric Charge Ds; 289 320 374 593 530 225 750
Constant (pC/N)
Ds) -23 -45  -171 274 230 -37 -320
Piezoelectric Voltage Gs; 26.1 26.7 248 19.7 22.6 254 19
Constant (x10°
Vm/N) G 11.4 - -11.4  -9.11 -9.8 -10.9 -8.2
11.8
Relative  Dielectric €33 1300 1450 1700 3400 2600 1000 4500
Constant
€31 1475 1610 1730 3130 2720 1290 4410
Poison’s Ratio qt 0.33 0.35 0.35 0.34 0.35 0.33 0.35
Elastic Modulus (10" y® 8 7.5 7.4 6 6.8 8.6 6.1
N/m?)
Density (Kg/m?) p 7500 7600 7750 7500 7400 7600 7400
Elastic Compliance S 12.3 13.3 164 16.5 16.2 11.5 16.4
at Constant Electric .
Field (10-12 S 12,21 '405 - -574 -478 -454 -370 -478
4.76
m’/newton) SF32312313 -5.31 =722 845 -59 -4.80 -8.45
-6.2
S*3 15.5 18.8 20.7 22.7 13.5 233
E 16.8
S 55 39 47.5 43.5 47 31.9 43.5
42
S"e6 32.7 443 42.6 41.5 30.4 42.6
36.1
Formulation

The initial analysis of what kind of piezoelectric material is appropriate for this implementation
was detailed within an earlier section of this thesis. Considering the assorted piezoelectric parts that exist,
it had been found by Najini and Muthukumaraswamy (2016) that the PZT-5H was the foremost acceptable
material on coming up with an energy harvest style system for the appliance of generating energy from the

moving traffic and the road.
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This form of implementation was achieved by fixing the empirical structure of the pavement such
that it behaved as a sort of a plate resting on the Winkler foundation. This technique was mentioned in that
it deals with the classic plate theory based on Kirchhoff-Love’s plate theory and Navies answer in
conjunction with Fourier analysis, Cauchy’s residue theorem, and then on (Zhang et al., 2016). To deduce
the deformation of the pavement, the governing equation of the pavement is denoted by equation 14 that
was obtained consistent with Kirchhoff-Love’s plate theory, or called the classical plate theory (Reddy,
2006).

dw(x,y,t) 14

DV*w(x,y,t) + ph 32 + Kw(x,y,t) = F(x,y,t)

Where,
K = modulus of the subgrade reaction
p = density
t=time
The flexural rigidity of the pavement D is given by

Eh3 15

P=na-w

Where,
E = Young’s modulus
p = Poisson’s ratio
h = thickness of the pavement
The fourth-order displacement gradient is addressed by the following equation with the Winkler

foundation represented by the second and the third term of Equation 16.

dw*(x,y,t) s dw*(x,y,t) dw*(x,y,t) 16

4 —
Ve y,t) = dx* dx2y? ay*
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Incorporating Equation 14 and 16 in the piezoelectric equation given by equation 17 estimates the
power produced in each piezoelectric transducer unit (Zhao et al., 2012).

av(e) V() dQ() 17
gt TR dt

Moreover, this form of implementation is advantageous than the bimorph (cantilever) structural
implementation for the following reasons:
e The output power increases with the decrease in the condition of the road structure, and
e The output power increases with the decrease in smaller bridges span length
The total power generation estimation is required because the power loss analysis is
dynamic. The main reason for the dynamic loss of generated power is the component of a system like DC
boost converter, rectifier, and inverter (Najini & Muthukumaraswamy, 2017). The main limitation of this
kind of system is that it may not be able to capture all kinetic energy and convert into useful energy
because of the heat loss and the high-speed of vehicles. To estimate the utilized kinetic energy that is
produced by the vehicles which are traveling at a different velocity and the moving load is continuously
applying on the pavement is known as load intensity which is given by equation 18 (Najini &
Muthukumaraswamy, 2017).
Load Intensity
_ Mass of vehicle (N) = coef ficient of rolling friction * Contact tires 18

B mile)
hour

area of contact(m?) = speed of travel(

Results

The results are carried out based on the actual traffic data for typical hours and peak hours from
FHWA, and constant based on the material properties. The load of a vehicle per axle is 3300 N. The
piezoelectric transducers are provided under the wheel load on each side of the vehicle. There are two sets

of piezoelectric material that are considered — those on the left side of the car (left wheel load), and those
24



on the right side of the car (right wheel load). Individually, the left and right wheel load piezoelectric
materials are in series connection. However, if one considers both the left and right wheel load
piezoelectric material chains for the entire lane, they are in parallel connection. Kirchhoff-Love’s Plate
Theory can be used if the width and thickness ratio of the piezoelectric plate was equal to 7. There are two
different results included: Winkler’s foundation equation and empirical strain equations detailed in Bryce
et al. (2019). The results of the two approaches are compared in order to better understand the influence of
strains on energy output.

In this section, Table 2 gives the specification of the piezoelectric transducers which are going to be
used for the analysis. Table 3 gives the physical dimensions of the transducers. Table 4 and Table 5 explain
the output of electricity from 33000 cymbals piezoelectric material during typical hours and peak hour
respectively. The estimation of number of piezoelectric materials depends on the dimensions of
transducers, area of the road, and the location of the piezoelectric from the top surface.

Table 2 Piezoelectric Transducer Specifications

Parameter Value
Poisson’s Ratio 0.15
Young’s Modulus E (Mpa) 27560
Winkler Modulus (N/m) 136"
Resistive Load (N) 800
Mass of Vehicle (N) 3200*
Coefficient of Rolling Friction 0.015
Contact Tires 2
Area of Contact (m?) 0.0025
Speed of Travel (mile/hr) 35-45

a. Mass of vehicle is higher due to the location of a steel factory close to the road evaluated.

b. Winkler modulus is obtained from Najini and Muthukumaraswamy (2017).
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Table 3 Piezoelectric Transducer Dimensions

Parameter Dimension (m)
Length 0.14
Width 0.14
Depth 0.02

All the calculations have been performed under Winkler’s foundation equation and the equation from
Bryce et al. (2019). For the Bryce et al. (2019) approach which is specific to strains in asphalt pavements, |
referred the equation which is described in Bryce et al. (2019) for better accuracy to get the strain value.
From Table 4, the values for the strain at the various locations underneath the pavement surface are
reasonable based on Bryce et al. (2019). The strain is effective factor for the power out through
piezoelectric material that can be defined from difference in output. In Table 5 and Table 6, the results are
shown for both approaches. Table 5 is the result for the typical traffic hours and the result in Table 6 is
based on the peak hour traffic count.

Table 4 Strain Values for the Asphalt Pavement

Strain Values for Different Levels of the Asphalt Pavement

Speed Assumed Assumed Base Horizontal  Vertical Vertical Vertical Mid Base
Limit Asphalt Layer Thickness (m) Bottom Mid Top
(mile/hr)  Thickness (m) HMA HMA  Subgrade
30 0.2032 0.2540 1.27*10% 6.30*10° 5.18*10° 2.34*10%
5
35 0.1524 0.2032 1.62*10* 6.15*10° 7.65*10° 3.23*10*
5
40 0.2540 0.1524 1.11*10% 6.72*10° 3.34*10° 2.39*10%

5
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Table 5 Power estimation from 20th Street to Hal Greer Blvd (0.5 miles)

Number of Transducers
Hourly Traffic Rate

Speed Limit (mile/hr)
Total Power (piezo/mile/hr)

Total Power (kWhr)

Number of Transducers
Hourly Traffic Rate

Speed Limit (mile/hr)
Total Power (piezo/mile/hr)
Total Power (Wmin)

Total Power (kWhr)

Cost analysis

Winkler’s Foundation Method
33000
620
30
70.50

230.169

Table 6 Power estimation for Peak Hour

Winkler’s Foundation Method
33000
1200
30
139.70
7523

455.60

Bryce et al. (2019)
33000
620
30
70.50

250.230

Bryce et al. (2019)
33000
1200
30
139.70
7523

478.23

An estimation of the costs has also been conducted to support the information calculated from the

previous section. This paper considers all the conditions which are described in Chapter 2 for the Levelized

cost of the piezoelectric cymbals per energy generated by the embedded piezoelectric cymbals in our

specific conditions. The line in Figure 14 marks the value calculated for the present technology shown

during this work. The blue line indicates the calculation for an additional price reduction of 90% because it

saves additional land lease cost and addition power unit cost (Moure, et al., 2016). The three regions

correspond to the bounds of the $64000 current prices for standard, photovoltaic sources and windmill

technologies, respectively.
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Price with Current Technology
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Reduced Price

Low density

9000 12000 15000
Density of Traffic (vehicle/day)

Figure 14 Cost as a function of the vehicle density (Guo & Lu, 2017)

The effective cost estimation is not only relying on the electricity generated from the pavement. In
this section, the potential benefits are evaluated based on the investment cost per each unit over their

lifetime. The effective cost analysis can be defined as a Levelized cost of electricity, which is as follows

(Guo & Lu, 2017):

LCOE = sum of cost over lifetime 19
~ sum of electricity produced over lifetime
C, + C; 20
LCOE = —2
W, Nw365Y

Where, Cp = cost of each PZT unit ($)

Ci = cost of installation ($)

Wy = energy output from each PZT unit per vehicle (kWh)

N= number of vehicles per day
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w = equivalent hit rate (frequency of air impact on the blades)
Y = service life (year)

The normal rate for the cymbal piezoelectric transducers per meter square is $1000, and the
installation cost is $50/m? (Guo & Lu, 2017). Here, the dimension of the road is 804 m x 12 m. So, the
total cost of a cymbal piezoelectric transducer for the specific area is $1.01 million. The total cost for each
cymbal is $306. The average number of vehicles per day is 22,000. The expected life span is 15 years.

Table 7 Levelized cost for the piezoelectric material

33000 Cymbals Transducers in 0.5 miles

Estimated Cost (C, + Ci) ($ in millions) 1.01
Energy Output (W) (kWh/vehicle) 0.0109
Number of Vehicles (per day) 14732
Equivalent Hit Rate 100
Expected Service Life (years) 15
Levelized Cost ($/kWh) 244x10*
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Wind Turbine

This section includes the explanation of the conceptual design of the helical wind turbine set up
along the highway. However, that design cannot be used due to certain limitations which are explained in
upcoming sections. The proposed design section explains the solution for that limitation. In this section,
analysis for the power output and cost estimation for power generation are also covered.
Conceptual Design of the wind turbine along the highway

In the literature review, proposal design is shown in Figure 15, which has few drawbacks that are
not good for road users. The specific design shown in Figure 15 did not appear as environmentally friendly
due to the large propellers, which can be dangerous for the local birds and wildlife. In this design, wind
turbines placed into road dividers or on overhead poles as seen in the design (Champagnie, Altenor, &
Simonis, 2013). Champagnie et al. (2013) calculated that with cars moving at 70 mile/hr, 9,600 kilowatts

of electricity may be produced per annum using the researchers' design in Figure 15.

Helical Wind turbine

/\ Route guiding Pole

Figure 15 Cross Section of Road with Wind Turbine (Malave & Bhosale, 2013)

In Figure 15, the turbines are embraced above the roads. This style is especially complicated as a
result of the poles needing to be fitted with vanes so as for the wind made by vehicles to reach the turbines
within. This style was not implemented because of safety considerations (Malave & Bhosale, 2013). The
components are tiny and might simply be snapped out of place. This style may be rejected because it

requires specially designed support posts.
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Proposed Design

Vertical axis wind turbines will be placed on roadways that have a high volume of fast-moving
traffic. The electricity generated can then be stored in batteries. Since the electricity made is direct current
(DC) it should be converted to electricity (AC) before it is used for lighting the road lamps, sold to the grid
or any of the ways in which we tend to use electricity these days (Bani-Hani, et al., 2018) and implies that
the DC current should be sent to an electrical converter first before it is used. Figure 16 shows a sample

vertical axis turbine with half labels.

ia) (h)

Figure 16 Helical Wind turbine (Kothe, Moller, & Petry, 2019)

Analytical Analysis
Hu et al. (2018) has done calculation for the VAWT on the expressway with help of FEM. This

paper covers the calculation for the helical wind turbine through MATLAB with Monte Carlo’s simulation
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for accuracy. The formulas that are used to run the simulation to get a power output from wind turbine for
every hour of the day is covered later in this section. The MATLAB code for the power output is given in
appendix D. The calculation of power output under ideal conditions is also calculated for the comparison
with results from the actual data.
The blade area is given by:

The total area of the helical blade for the wind turbine to maintain the ratio of the dimensions of the
rotor, shaft, and blade.

A=2RH 21

Where A = area of the blade (m?)
R =rotor radius (m)
H = height of the rotor

The formulas which are helpful to design an efficient turbine are as follows:

1
Power available = 5P AV3 22
The power coefficient (CP) is the power extracted divided by the power available (Nakil, Tekale,
Sambhus, & Patil, 2016).
1 3 23
_ Power extracted 73 PAV N C, Pm _ Power out
P % P AV B % pAV "~ Power available  Power in
= Np NmNe

Where Pm= (2 N T/ 60)
nb = blade aerodynamic efficiency
nm = mechanical efficiency

ne = electrical efficiency
32


James Bryce
I think you should continue with all metric units – you can google the conversions.


The maximum value for the power coefficient is called the Betz limit.

%pAW 16 24
Cpmax = 1— = ﬁ = 0.5926
2pcd

Now the most mechanical power which will be extracted from a given wind stream is outlined by
what is referred to as the Betz limit, therefore, the ability extracted is calculated by the following equation
(Champagnie et al., 2013).

1
Power extracted = 5P C, AV3 2

Where, V = Wind Velocity

p = Fluid Density

These equations show that velocity is the most important factor in generating power. Power is
directly proportional to the cubed speed of the wind.

According to the FHWA (2019), the wind speed in Huntington is on average (annually) of

3.5 m/s. Specifically, on 3rd Avenue, the speed limit for the vehicle is 30 mile/hr. So, because of traffic
flow and actual average wind speed, the upper limit of the wind speed should be maximum 6 m/s. Mostly,
the height of the streetlight pole is 9 feet to 14 feet. Based on height of streetlight pole, the area of the
blade does not suppose larger than 1 m2. In our specific location, I assumed that 0.950 m2. The air density
is equal to the standard sea-level value for standardizing value which is 1.225 kg/m>. The following
calculation is just for the idealized condition of weather, wind, and efficient wind turbine.

Given parameter,

Wind velocity (V) = 6 m/s

R=0.70m

H=143m
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From equation 5.1 A=2 m?

Cp = 0.4 (Normal efficiency of VAWT)

p=1.225kg/m3

generated power = 114.619 watt

By substituting the value of the given parameter in equation 25, the maximum generated power is
114.619 watt. So theoretically, it can produce 3.5 MWhr electricity per year on the wind speed of 6 m/s.
However, we must be concerned about the cost of a wind turbine, design of blades, and materials.
According to the previous research, aluminum is the best material for the wings to keep the wind turbine
lighter in weight and improve the efficiency because lighter weight can rotate at higher speed. The main
disadvantage is the special lighting pole design.

This thesis also investigated the power from wind using hourly wind data. We have done the
calculation for the wind turbine power generation through MATLAB distribution as well as from actual
data. The data for the wind speed and air density from the FHWA database is called Modern-Era
Retrospective analysis for Research and Applications (MERRA), which was released in 2018.

The MATLAB code is attached in appendix C. From the numerical analysis, the velocity and air density
are directly proportional to the power extraction but the velocity is more effective because during the
calculation velocity is multiplied three times. We used distribution fitter tool in the MATLAB for the
results of velocity, air density, and power extracted. The plots are shown in Figure 17 through Figure 19.
The survival analysis is consistency studies in the engineering field. Figure 17 and Figure 18 show the

consistency of the velocity and air density respectively.
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Figure 19 Distribution plot of power extracted from wind turbine

Cost analysis

This section gives an explanation about the cost for different phases to develop this system on the
road side that includes capital cost, operation cost, revenue, and overall cost per kWh. For the cost
analysis, the calculation should be carried out for the levelized cost (net cost).
The Levelized Cost of the energy of the wind turbine is expressed as follows (Pan, et al., 2019):

COE = (FCR X ICC) T AOE 26
~ AEP,,,

Where, COE = levelized cost of energy ($/kWh) ()
FCR = fixed charge rate ($) (1/year)
ICC = initial capital cost ($)
AEPnet = net annual energy production (kWh/yr)

AOE = annual operating expense = LLC+(O&M + LRC)/AEPnet
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LLC = Land Lease cost

O&M = levelized operation and management cost

LRC = levelized replacement/overhaul cost

The estimated initial capital cost is $21,000 for ten wind turbines and the maintenance cost for each
year is $7000 (Bani-Hani, et al., 2018). According to past research, the normal annual operating expense of
any wind turbine is $5000. However, that cost has been calculated for very large wind turbine projects. For
the wind turbine on the roadside, the approximate annual operating cost for ten helical wind turbines was
assumed to be $948 per year.

_ (21000 % 7000) 27

COE 3500000 + 948 = $980 /kWh

The cash flow for the 10 wind turbines for 30 years is shown in Figure 20. In that graph, operation
cost, net capital cost, and revenue is covered. The revenue is the tax that should be collected by the Federal
government from the user based on current energy costs. The net cost influences with operation cost, revenue, and

maintenance cost.

30 Year Cash Flow Diagram
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Figure 20 30-year Nominal Cash flow for wind turbine
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Solar roadway

A solar roadway is made up of three layers: base, electronic, and the tempered glass layer. In this
type of road structure, asphalt is replaced by the tempered glass which is the main reason to not take it in
consideration in this thesis because there is no previous research about how much friction can be achieved
with that tempered glass. The brief detail about three layers is given in the following section.
Conceptual Design of the solar roadway

A solar roadway could be a series of structurally engineered solar panels that are driven on. The
concept is to replace current petroleum-based asphalt roads, parking lots and driveways with solar road
panels that collect energy to be utilized by homes and businesses, and ultimately to be able to store excess
energy in or alongside the solar roadways. Therefore, renewable energy replaces the need for the present
fossil fuels used for the generation of electricity, which in turn reduces greenhouse gasses and helps in
sustainable development. Parking lots, driveways and eventually highways are all targets for the panel
(Mehta, Aggrawal, & Tiwari, 2015). If the whole United States interstate transportation system was
surfaced with solar roadway panels, it would manufacture over 3 times the quantity of electricity presently
used nationwide (Mehta et al., 2015). A Solar roadway consists of 3 layers as shown in Figure 21 and Figure

22.

PV Cell Compartments
B 4 , <—Transparent Layer
. - <—Optical Laver}Structura!

<—Base Layer Layers

Figure 21 Three layers of solar roadway (Northmore & Tighe, 2016)
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Figure 22 Layers of Solar Roadways (Rahman et al., 2017)

Road Surface layer
Translucent and high strength, it must have enough roughness to produce adequate friction, yet still
passes daylight through to the reflector cells embedded among, at the side of LEDs and component. This
layer must be capable of handling today's heaviest loads underneath the worst of conditions and to be
weatherproof, to shield the electronic layer below it (Rahman et al., 2017). Usually, tampered glass is
widely used as a transparent layer because of the smoothness and solidity of this glass. For the driving
safety, there should be enough roughness in the surface to maintain the friction (Selvaraju, 2012).
Electronic layer
It contains photovoltaic cells that absorb solar energy. It additionally contains a small processor
board with support circuit for sensing masses on the surface and a dominant heating element with a view to
reducing or eliminating snow and ice removal, as well as college and business closings because of

inclement weather. The microchip controls lighting communication that may be built into this pavement
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and monitoring etc.
Base Plate Layer
This layer must be able to protect the electronic layer from wet weather and helps to distribute
power to and from the electronic panel.
Analytical Analysis
The model for the solar panel is shown in Figure 23. The solar Irradiance (the flux of radiant energy
per unit area) received by the solar cells is given as an input current to a voltage-controlled current source

(Selvaraju, 2012). Current can be supported by the following equation:

[ = iscm 28
L™ 1000

Where, IL = photocurrent (the current which is produced by the sunlight)
G = solar irradiance (W/m?)

isem = the measured short circuit current of solar module under standard condition

Discrete,
[ = 5€-05 s

powergui
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Figure 23 Model of solar panel (Rahman, Mahmud, Ahmed, Rahman, & Arif, 2017)

The series resistors placed into the model show the resistive losses in series which are existing in
real solar panel. These losses mainly occur from the movement of currents which are generated by solar
cells through the emitter, base of the cells, and partially due to the resistances. A series of resistive loss
reduces the fill factor and the short circuit current of solar cells. The fill factor is the ratio of maximum

obtainable power to the product of an open-circuit voltage and short circuit currents. Therefore, to include
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shunt resistive losses, which are present in the actual solar panels, a shunt resistor should be included in the
model. It might be noticed that shunt obstruction is likewise alluded to as parallel opposition. Shunt
resistive losses are caused in the sun-powered cells principally because of assembling surrenders present in
the sun-powered cells. Shunt resistive losses are additionally known to be bigger when the daylight falling
over the sun-powered cells is at low levels (Selvaraju, 2012). To beat the current, a diode is incorporated
into the proportional electrical circuit model. In this manner, the current (I) and voltage (V) attributes of

the comparable electrical circuit of the sun-powered board depend on the equation 29:

v+IRs v+ IR; 29
I=IL_IO enVT_l -

RSh

Where I = output current
Io = Dark saturation current (Diode leakage current density in the absence of sunlight)
V = Voltage at output terminal
Rs, Rsh = Series and shunt resistance respectively
n = ideal diode factor (always between 1 and 2)
VT = thermal voltage according to the absolute temperature T in kelvin
Short circuit current for the comparable electrical circuit model of the sun-powered board is given

by substituting V = 0 (for example the yield voltage is being set to zero) in equation 30:

v+IRs v + IR 30
ISC:IL_IO enVT_l -
Rsp

Where Isc = short circuit current of solar panel

Open circuit voltage for the proportionate electrical circuit of the solar panel is acquired by
substituting I = 0 (for example the yield voltage is set to zero) in equation 29. It is realized that the open-
circuit voltage is autonomous of the series resistance value and furthermore the shunt obstruction value

(Selvaraju, 2012). Consequently, those terms including the arrangement and shunt opposition value in the
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equation 30 can be dismissed, for the open-circuit voltage Voc:

I
V,. = nVyln (1 + I—L> 31
0

In a typical solar panel, several solar cells are connected in series and parallel. In order to model a
solar panel into an equivalent electrical circuit, some assumptions must be made. The shunt resistance of
the solar cells is assumed to be larger so that its effects can be neglected, and the photogenerated current I
is assumed to be equal to that of the short circuit current Isc of the solar cell (Selvaraju, 2012). The scaling

rule for a solar panel where the number of cells in series is Ns and the number of cells in parallel is Np

results in:
Iy = Npl Isem = Nplge 32
Vu = NsV Voecm = NsVoc 33
N, 34
Rey = N_:Rs

In the above equations, the parameters with subscript M are used for the solar panel module, and

without subscript, M is used for the single solar cell.
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Specification of Solar Panel

Table 8 150W Poly Solar Panel Specification

Parameter Value
Power (W) 150
Output tolerance + 3%

Open Circuit Voltage (V) 224
Optimum Power (V) 18

Short circuit current (A) 9.02
Optimum current (A) 8.33
Dimension (m?) 1.54*0.7150*0.006
Temperature range (°C) -40 to 90
Cost per unit (8$) 220

Table 9 300W Poly Solar Panel Specification (CS6K-300MS) Recommended

Parameter Value
Power (W) 300
Output tolerance +5%
Open Circuit Voltage (V) 39.70
Optimum Power (V) 32.50
Short circuit current (A) 9.83
Optimum current (A) 9.24
Dimension (m?) 1.65*%0.992*0.04
Temperature range (°C) -40 to 85
Cost per unit ($) 178

According to our location, the maximum 8352 solar panels are needed including only the
walkways. However, after the analysis of all the possible energy harvesting sources, the solar panel is less

compatible and economical as compared to the other two sources piezoelectric and wind turbine.
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CHAPTER 5 DISCUSSION AND CONCLUSION

Discussion

According to the potential calculation of different energy harvest sources, piezoelectric is the most
efficient source to generate energy from the pavement. The potential energy production calculations cover
the cost and benefit ratio. In this thesis, I have covered the equation to calculate the estimation of energy
production and the cost to produce that energy through the specific energy harvesting source. However, the
estimation of the amount of energy harvesting from any source depends on capital investment, installation
charge, operation, and management cost, and cost per kWh. This thesis is not advocating solar energy
harvesting method at this time because solar roadways have been proposed but the solar roadways with
glass surface as a top layer in the roads can resist the vehicle 80 mile/hr without skidding and that has not
been proved. However, no paper has been published about it, so I have not covered it in my paper.

Piezoelectric was shown to be a good source to harvest the energy from the asphalt pavement.
Specifically, it is feasible in urban areas because piezoelectric is inversely proportional to the vehicle
speed. So, due to the high traffic density in urban area the energy production potential is significant. There
are three types of piezoelectric transducers available; Cymbal, Bridge, and Moonie. In this thesis we
considered cymbal because of the loading condition and efficiency under the asphalt pavement. From
Table 4 and Table 5, the increment in energy production was found to be approximately 250 kWh because
of the strains. After a cross-check with the energy usage of the Weisberg Arthur Engineering Building
which is located on 3™ Avenue in Huntington, I found that we can produce the energy that can be used for
an engineering building. The cost to produce the energy from the piezoelectric material is $1.44/kWh. This
cost includes the maintenance cost and installation cost throughout the life span of the piezoelectric

transducers.
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An important note is that I have compared the use of the Winkler’s foundation equation to an
empirical formula for the asphalt pavement strains. The main reason for comparison of two approaches is
strain does not behave like a Winkler foundation in asphalt pavement, but it is unknown how the addition
of piezoelectric sensors will affect this. For all the calculation for the piezoelectric output we used
MATLAB for more accuracy with the results, and the MATLAB code is attached in appendix B, C, and D.
Advantages of Piezoelectric materials
In addition to power generation, piezoelectric sensors provide other potential benefits including:

1. Piezoelectric transducers have sensors which can help to measure the pavement condition as well as
the base layer condition if it is in contact with both surfaces.

2. If the piezoelectric circuit has coil base coupling, then it can help to melt down the snow during the
winter season.

3. It is the most economical way to harvest energy from the pavements.

Disadvantages of Piezoelectric materials

1. The set up under the existing roads is difficult.

2. If the coil base coupling is using for the collection of power, then we must provide sufficient heat
to absorb material around the coil to protect the asphalt layer.

3. The sensors can be damaged when the asphalt layer is damaged and replacement of damaged
sensors would require damage to the pavement.

The wind turbine is another alternative to produce energy from the roadside. However, there are
different types of wind turbines available in the market, but for the specific location, after analysis helical
VAWT turbine is more efficient than a normal vertical wind turbine. In this situation, the wind turbine is
placed into the lighting pole on the roadside, due to efficiency concern the radius of the rotor should be

sufficient larger than the height of the rotor. In this case, we have calculated the wind speed of air. The
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energy cost products from the wind turbine are $980 /kWh including all the maintenance, operation and
management costs.

There are many benefits and drawbacks to employing a vertical turbine design. The vertical turbine
design is chosen as a result of vertical turbines being able to capture the wind in any direction, whereas,
horizontal turbines ought to be pointed within the direction of the wind.

Advantages of VAWT
1. TItis cheaper to produce the electricity than the horizontal axis wind turbine.
2. It can be installed more easily than the horizontal axis wind turbine.
3. Lessening the risk to people and local birds because it is equipped with the low-speed blades.
4. Tt can work in extreme weather.
Disadvantages of VAWT
1. It has higher vibrations due to turbulent flow of air near the ground.
2. Bearing wear increases due to vibrations that increase the maintenance cost.
3. It may create noise pollution.
Conclusion

For the analysis, MATLAB tool is helpful for the accurate Monte Carlos simulation. For both
sources, the calculation has been done with distribution by MATLAB coding. In this paper, the estimation
of both source piezoelectric material and wind turbine has been calculated with the help of Levelized cost.
Levelized cost covered all capital, maintenance, and leasing costs which provides more complete cost
information. After output analysis and the cost simulation for the two harvesting sources, theoretically, it is
feasible and potentially beneficial for the specific location investigated.

The piezoelectric material is good harvesting sourced from the asphalt pavement as compared to

others because the potential benefits of the piezoelectric are more than a wind turbine. However, it is a
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time consuming and expensive process to implement on existing roads because of labor work. Also,
Piezoelectric material produces the heat and asphalt is a temperature sensitive material. So, for that, you
must have arrangements to maintain the temperature or reuse that heat to generate energy. For future
recommendation, the heat can be used to produce more electricity through the photovoltaic plate.

The initial cost for the wind turbine is much higher than the piezoelectric material but it is more
feasible along the highways as compared to specific locations. The 3rd Avenue of Huntington has parking
on both sides of the road, so the wind which is generated by the moving vehicle cannot be considered in
that case. Also, in this case, land leasing cost should not be considered for estimation but this paper

covered it for the general idea of the cost of a wind turbine on the roadside light pole.
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APPENDIX B MATLAB CODING FOR PIEZOELECTRIC TRANSDUCERS

cle

symsmxty

rho=2323;

h=0.3048;

E=27560*%10"6;

mu=0.15;

B=§;

K=136;

N=20;

Massofvehicle=3200;
coeffofrollingfriction=0.015;
Contacttires=2;
areaofcontact=0.0025;
v=(30*5)/18; %assumng 30mile/hr
b0=.508/2;

a0=0.254/2;

d0=1.22/2;

q0= Massofvehicle*coeffofrollingfriction*Contacttires/(areaofcontact*v)%-7.7871073;
%distributed load of vehicle
y1=3.2;

y2=4.8;

%piezo

d31=-274*10"(-12); %V/m
hc=0.055;

1p=0.14;

bp=0.14;

hp=0.02;

€33=30.06%10"(-9); % F/m
S11=16.5*¥10"(-12); %m?2/N
S12=-5.74*10"(-12); %m?2/N
xp=8;%tenative

yp=0.5;%centre of piezo

R =800*10"3;

xp1=xp-0.5*Ip;

xp2=xp+0.5*1p;

yp1=yp-0.5*bp;
yp2=yp+0.5*bp;

%pavement structuring
D=E*h/(12*(1-mu”2));
am=m*sym(pi)/B;
al=sym(pi)/9.8814; %supposed to be B
ve=sqrt((2*(al”2)*D+2*sqrt((al1”4)*D"2+K*D))/(rho*h));
Lm=sqrt(am”4+K/D);
Bm=((v*2)*rho*h/(2*D))-am”2;
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Tm=sqrt(0.5*(Lm-Bm));

Pm=sqrt(0.5*(Lm+Bm));

vO=sqrt((4*D*am”2)/(rtho*h));

0=(2*v"2-v0"2)/(2*sqrt((vc 2-v"2)*(v 2+vc"2-v012))); Yogamma m
deg=180/pi;
cm1=((o*sin(a0*Pm)*cosh(a0*Tm)+cos(a0*Pm)*sinh(a0*Tm)));
sm1=(-0*cos(a0*Pm)*sinh(a0*Tm)+sin(a0*Pm)*cosh(a0*Tm));
cm2=((exp(-a0*Tm))*(o*sin(a0*Pm)-cos(a0*Pm)));
sm2=((-exp(-a0*Tm))*(0*cos(a0*Pm)+sin(a0*Pm)));
CM2=((exp(-d0*Tm))*(cm1*cos(d0*Pm)+sm1*sin(d0*Pm)));
SM2=((exp(-d0*Tm))*(sm1*cos(d0*Pm)-cm1*sin(d0*Pm)));
CM1=((exp(d0*Tm))*(cm1*cos(d0*Pm)-sm1*sin(d0*Pm))+CM2);
SM1=((exp(d0*Tm))*(cm1*sin(d0*Pm)+sm1*sin(d0*Pm))+SM2);
CM3=(cm2*cos(d0*Pm)*cosh(d0*Tm)+sm2*sin(d0*Pm)*sinh(d0*Tm));
CM4=(-cm2*cos(d0*Pm)*sinh(d0*Tm)-sm2*sin(d0*Pm)*cosh(d0*Tm));
SM3=(cm2*sin(d0*Pm)*cosh(d0*Tm)-sm2*cos(d0*Pm)*sinh(d0*Tm));
SM4=(sm2*cos(d0*Pm)*cosh(d0*Tm)-cm2*sin(d0*Pm)*sinh(d0*Tm));
O=abs(x-v*t);
gm1=((cosh(O*Tm))*(CM3*cos(O*Pm)+SM3*sin(O*Pm)));
gm2=((sinh(O*Tm))*(CM4*cos(O*Pm)+SM4*sin(O*Pm)));
gm=(gml+gm2);
wm=((4*q0*sin(am*b0)*(sin(am*y1)+sin(am*y2)))/(m*pi*(K+D*am"4)));
%case 1 when O-d0>a0

wm 1=(wm*(exp(-O*Tm))*(CM1*cos(O*Pm)+SM1*sin(O*Pm)));

%case 2 when |O-d0| <a0
wm2=(wm*(1+(exp(-O*Tm))*(CM2*cos(O*Pm)+SM2*sin(O*Pm))+gm));
%case 3 when (0-d0<-a0)
wm3=(wm*(2*CM2*cos(O*Pm)*cosh(O*Tm)-2*SM2*sin(O*Pm)*sinh(O*Tm)));
C0=(e33-(1/(S11+S12))*2*d31"2)*Ip*bp/hp;

syms m

WMI1=(symsum(wm]l*sin(am*y), m, 1, N));
WM2=(symsum(wm2*sin(am*y), m, 1, N));
WM3=(symsum(wm3*sin(am*y), m, 1, N));

WM=WMI1+WM2+WM3;

WM=vpa(WM,3);

gx=gradient(WM,x);

gx=vpa(gx,3)

gy=gradient(WM,y);

gy=vpa(gy,3)

gyl=gradient(gy);

gyl=vpa(gyl,3);%deba2w(x,y,t)wrty

fun=vpa((gx+gy),3);

term=vpa(int(fun,x),3); %first integral

initial=subs(term,x,xp1); %limits

final=subs(term,x,xp2);

term=vpa((final-initial),3);
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TERM=vpa(int(term,y),3);

initial I=subs(TERM,y,yp1); %limits

final 1=subs(TERM,y,yp2);
TERM=vpa((finall-initial1),3);
Q=-((d31*hc)/(S11+S12))*TERM; %fill up the two integrals
ex=-hc*gx1;

ex=vpa(ex,3);

ey=-hc*gyl;

ey=vpa(ey,3);

e31=d31/(S11+S12);

V= e31*lp*bp*(ex+ey)/CO;

% for y=8 t=8/30

V=subs(V.,y,8);

V=subs(V,t,8/30);

V=subs(V,x,1);

V=vpa(V,2)

AA=int((Q*exp(t/R*C0)),t);
Vt=(Q/CO0)-((1/R*C0"2)*(exp(-t/(R*C0)))*(AA));
Vtl=vpa(Vt,2)

Vtl=subs(Vt1,t,8/30)
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APPENDIX C MATLAB CODING FOR SENSITIVITY ANALYSIS

%For the sensitivity analysis

run gdat.m

size=3; %size of the variables

% 1t=0.03; %growth rate for traffic (backwards prediction)

% baseind=0; % use 1 for granular, and 0 for stiffer base (e.g., CTB)

%

% [Age, ESALS, lane width, speed_limit, Subgrade ResilientMod, Sand Fraction, Silt Fraction,

Clay Fraction, Plast Ind, MAAT, rain, Freeze Ind, Freeze Thaw, Depth GWT, HMA Voids,

HMA BindCont, Perc 34, Perc 38, Perc No4, Perc No80, Perc No200, Bind VTS, Bind A, Base Mod,
ACThck, BaseThck]=ACDatafunct(size, rt, baseind);

%][size, Age, ESALS, lane width, speed limit, Subgrade ResilientMod, Sand_Fraction, Silt Fraction,
Clay Fraction, Plast Ind, MAAT, rain, Freeze Ind, Freeze Thaw, Depth. GWT, HMA Voids,

HMA BindCont, Perc 34, Perc 38, Perc No4, Perc No80, Perc No0200, Bind VTS, Bind A, Base Mod,
ACThck, BaseThck]=AC_Check(size, Age, ESALS, lane width, speed limit, Subgrade ResilientMod,
Sand_Fraction, Silt Fraction, Clay Fraction, Plast Ind, MAAT, rain, Freeze Ind, Freeze Thaw,

Depth GWT, HMA Voids, HMA BindCont, Perc 34, Perc 38, Perc No4, Perc No80, Perc No0200,
Bind VTS, Bind A, Base Mod, ACThck, BaseThck);

mat=zeros(size,14);
for i=1:size

[Estar, nu]J=HMA DynMod(speed_limit(i), Perc_ No200(i), Perc_No4(i), Perc_38(i), Perc_34(i),
HMA Voids(i), HMA BindCont(i), Bind A(i), Bind VTS(1), MAAT(1));

mat(i,1)=Estar;

mat(i,2)=nu;

[Strain_Horiz BottHMA, Strain Vert MidHMA, Strain_Vert TopSUBGR, Strain Vert MidBASE,
ACThk, BaseThk[=HMA _CriticalStains(Estar, BaseThck(i), ACThck(i), Base Mod(i),
Subgrade ResilientMod(i));

mat(i,3)=Strain_Horiz_BottHMA;

mat(i,4)=Strain_Vert MidHMA;

mat(1,5)=Strain_Vert TopSUBGR;

mat(i,6)=Strain_Vert MidBASE;

end

mat(:,4)
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APPENDIX D MATLAB CODING FOR VAWT ANALYSIS

clc

R=0.70;  %rotor radius

H=1.43; %height of rotor

A=2*R*H; %area of the wind turbine

Cp=0.4; %overall efficiency of wind turbine
% rho=1.225; %eair density

size=17;

V = xlsread('velocity.xlsx','Sheet1','a2:a6721");
rho=xlsread('velocity.xlsx','Sheet1','b2:b6721");
Power extracted=(rho.*Cp.*A.*V."3)./2;
size=1e6;

a=randn(size,3);

adl=makedist('Normal',0,1); al = cdf(ad1,a(:,1));
pd2 = makedist('Beta',2,5);New_Cp = icdf(pd2,al);
hist(0.4.*New_Cp+0.2,25)

adl=makedist('Normal',0,1); al = cdf(ad1,a(:,2));
pd2 = makedist("Exponential',0.09); V2 = icdf(pd2,al);
hist(5.¥V2+1,25)

adl=makedist('Normal',0,1); al = cdf(ad1,a(:,3));
pd2 = makedist("Exponential',0.09); rho2 = icdf(pd2,al);
hist(0.3.*rho2+1.1,25)

a2=round(rand(size,3).*(length(V)-1)+1);

for i=1:size;

Cp2=New_Cp(a2(i,1));

V21=V2(a2(i,1));

rho22=rho2(a2(i,1));

Power extracted2(i)=(rho22.*Cp2.*A.*V21.13)./2;
end
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