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ABSTRACT

Queuing theory is the mathematical study of queues or waiting lines. A queue is formed

whenever the demand for service exceeds the capacity to provide service at that point in time. In

this thesis, the birth-and-death process is used to model the movement of customers or units into

and out of a network of queues in tandem. We start with the theoretical analysis of M/M/1

queues with Poisson arrival and exponential service time with first-come first-served (FCFS)

discipline and one service station. We derive the global balance equation for each network. Using

both the iterative and the probability generating function, we obtain the probabilities of the state

for each service point in the network at equilibrium, and also discuss the statistical properties of

the migration of customers from one service point to another. We generalize the probability

generating function for the system with n states, and also the marginal for each of the queues in

tandem. Specifically, two networks are considered, namely, one that allows customers into the

system from the leading queue, and another with porous medium, which allows customers into

the system of queues through any service stations. Finally, we simulate a queue network of 10,000

customers and generalize the traffic intensity, the proportion of customers moving from one

station to another.

viii



CHAPTER 1

INTRODUCTION

The beginning of queuing theory can be traced back to 1909, when Agner Krarup Erlang

(1878-1929, now considered the father of the field) published his principal paper on congestion in

telephone traffic [5]. Erlang established a strong foundation for queuing theory in terms of the

nature, presumptions and procedures of analysis. His work with the Copenhagen Telephone

Company is what prompted him to delve into the field. He pondered the problem of determining

how many telephone circuits were necessary to provide phone service that would prevent

customers from waiting too long for an available circuit. He discovered that the problem of

minimizing waiting time was applicable to many fields [8]. The study of waiting line has made

great contributions in modelling and designing communication systems since inception [8].

A queuing framework is composed of clients or units requiring a kind of service who arrive

at a service station where they receive service. A queue is said to be formed when such clients or

units are waiting to be served. Queuing theory is a field of operations research since the results

are used for making choices around the assets required to supply service [11]. Applications of the

queuing theory are traffic flow (vehicles, aircraft, people, communications), scheduling (patients in

hospitals, jobs on machines, programs on computer), service design (banks, post offices,

supermarkets), among many others [14].

The mechanism of tandem queue with k ≥ 1 service stations is described as follows:

Customers access the system through the first service station, after service completion at the

station i, a customer has the option of either proceeding automatically and forming input into the

jth station with the transition probability αij per unit time, i = 1, 2, ...k and j = 2, 3, ...k, [1].

1.1 Queuing Network

A queuing system can be described by the flow of customers for service, forming or joining

the queue. The term customer is used in a general sense and does not necessarily imply human

customer [6]. Customers could be an airplane waiting in line to take off, a computer program

waiting to be run, or items arranged together in a grocery store. A mechanism that performs the
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kind of service on customers or units that are fed into it is called a server or service channel. For

example, jobs arriving at a component in a computer center are also regarded as customers and

the component of the computing system (such as CPU, drum, disk, line printer, etc.) where such

a facility is provided is considered the server.

There are cases where customers leave the system without joining the queue (balked) or

leave without receiving service even after waiting for some time (reneged). In an event that

there are two or more parallel waiting lines, customers may switch from one line to another; that

customer is said to have (jockey) for position. These are forms of queue with impatient

customers. Queuing network can also be described as a group of nodes, where each of the nodes

represents a service facility of some type. Customers can arrive from outside the system to any

node and may leave the system from any node. Therefore, customers may enter the system at

some node, transverse from node to node in the system and finally leave the system [15].

1.1.1 Queue Components

The arrival pattern of customers is the manner in which arrivals occur. It is specified by

the inter-arrival time between any two consecutive arrivals. The inter-arrival may be

deterministic, so it is the same between any two consecutive arrivals, or it may be stochastic.

Usually in queuing situation, the inter-arrival time is stochastic, and it is necessary to know the

probability distribution describing the times between successive customer arrivals (inter-arrival

times). The arrival pattern also indicates whether arrivals occur singly or in groups or batches

[10].

The service pattern is another queue component. It simply means the manner in which

service is rendered. It is specified by the time taken to complete a service; the time may be

constant (deterministic) or it may be stochastic. If it is stochastic, the pattern specification

involves the distribution of service time of a unit. Sometimes service may be rendered in bulk or

batches as in the case of an elevator, instead of personalised service of one at a time.

The manner in which customers are selected for service when they arrive is called queue

discipline. The most common discipline is first-come, first-served (FCFS). Some other common

queuing disciplines are last-come, first-served (LCFS), service in random order (SIRO), etc.,

2
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Figure 1: State Transition Rate Diagram.

The above state transition flow rate in Figure 1 shows that the system goes to state 1 if a service
is completed or to state 3 if an arrival occurs.

which are independent of the time of arrival to the queue.

A system may have an infinite capacity; that is, the queue in front of the server(s) may

grow to any length, this is called system capacity. However, there may be limitation to the

waiting room, so that when the line reaches a certain length, no further customers are allowed to

enter until space becomes available as a result of a service completion. This type of queue is called

gated queue or queue with finite capacity. This queue component may be viewed as one with

forced balking where customer is forced to balk if it arrives when the queue size is at its limit.

A queuing system may have single service stage, as in a hair styling salon or several

stages, like queuing system designed for physical examination procedure, where each patient must

proceed through several stages, such as medical history, ear, nose, and throat examination, blood

tests, electrocardiogram, eye examination and so on. Such systems are examples of tandem queue

and the transition from one state to another is shown in figure 1.

The number of service channels is another major queuing component; this refers to the

number of parallel service stations which can serve customers simultaneously. It is generally

preferable to design multi-channel queuing systems to be fed by a single line [10]. A hair-styling

salon with many chairs is an example of a multichannel system with one queue and parallel

channels as shown in figure 2.

1.1.2 Queue Notations and Descriptions

Kendall (1953) [7] introduced a notation which is generally adopted to denote a queuing

model. It consists of three basic characteristics: input, the service time, and the number of

parallel servers. A queuing process is described by the notation A/B/X/Y/Z, where A indicates

3
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Figure 2: Multichannel Queuing Systems With Parallel Channels.

This queuing system contains three parallel channels.

inter-arrival time distribution, B the service pattern, X the number of parallel service channels, Y

the restriction on system capacity, and Z the queuing discipline. For example, D/M/2/∞/FCFS

denotes a queuing system with deterministic inter-arrival time, exponential service time, two

parallel servers, infinite queue length and first-come, first-serve queue discipline. The Kendall

notation is sometimes written in terms of only three items (For example M/M/1). In the case,

there is no restriction on the system capacity and the queue discipline is assumed to be first-come

first-served. A queuing system is said to have deterministic service time if the time is fixed. For

example, jobs on machine can be scheduled for a fixed time. Other queuing notations used in this

thesis and their meaning are listed below:

• λ = Average arrival rate.

• µ = Average service time.

• Ls = Average number of customers on the system.

• Lq = Average number of customers on the queue.

4



• Ws = Average waiting time in the system.

• αij= Transition probability.

• Wq = Average waiting time on the queue.

• c = Number of service channels.

• N(t)= Number of customers in the system at time t.

• Pn(t) = Probability of exactly n customers are in the system at time t.

• ρ =
λ

µ
=traffic intensity.

The traffic intensity is a measure of traffic congestion for one server system with the condition

that
λ

µ
< 1, that is– the mean arrival rate must be less than the mean maximum potential service

rate of the system. If ρ > 1, then it means that the average arrival rate into the system exceeds

the service rate of the system, and we would expect the queue to get bigger and bigger as time

goes on unless customers are not allowed to enter again at some point.

In the case of a model with more than one service station like the M/M/c/∞ model, where

the first M is the interarrival time, the second M is service pattern, c is the number of parallel

server and infinite queue length. The condition for traffic intensity of the system is given as
λ

(cµ)
.

The Kendall’s notation described in figure 1 is M/M/1. So the queue has M exponential

inter-arrival time, deterministic service time D, servers arranged in series, infinite queue length

and first come first serve discipline.

5



1.1.3 Types of Queuing Networks

• M/M/n/ ∞ → Queues with n parallel channels, Poisson inter-arrival time and exponential

departure, ∞ possible length and FCFS discipline.

• M/M/n/K → Queues with n parallel channels, exponential arrival and departure, K

possible length and FCFS discipline.

• M [X] / M / 1 → Queues with bulk arrivals or input i.e., exactly X at each time step.

• M/M [Y ]/1→ Queues with bulk service.

• M/Ek/1, Ek/M/1, Ej/Ek/1→ Erlangian Models.

• M/G/1→ Single server queue with exponential input and general service.

• G/G/1→ General input, general service.

• M/D/n→ Multichannel queue with exponential input and constant service.

1.2 Definitions

1.2.1 Little’s Formula

One of the most relevant and useful relationship in queuing theory is the Little’s formula,

which was developed by John Little in the early 1960s [9]. The Little’s formula is defined by

L = λW, (1.1)

where λ is the average arrival rate, L is the expected number of units in the system, and W is the

expected waiting time in the system at steady state. Using similar notation, the expected number

in the queue LQ is defined by

LQ = λWQ. (1.2)

The Little’s formula describes the long term average number of customers in a stable system as

the product of the average arrival rate and the average time a customer spent in the system.

6



1.2.2 Poisson Process

The Poisson process is a special case of pure birth process with parameter λ. It is one of

the most widely-used counting processes. Poisson process can be used as a model for a large class

phenomena, like the number of car accidents at a site or in an area, the location of users in a

wireless network and so on. The Poisson postulates are stated as follows:

1. The probability that an arrival occurs between time t and time t+4t is equal to

λ4t+O(4t), where λ is a constant independent of N(t), 4t is an incremental element, and

O(4t) denotes a quantity that becomes negligible when compared to 4t as 4t→ 0.

2. The probability that there is more than one arrival between time t and time t+4t is equal

to O(4t).

3. The numbers of arrivals in nonoverlapping intervals are statistically independent; i.e, the

process has independent increments.

1.2.3 Properties of Poisson Process

• Additive property: The sum of n independent Poisson processes with parameter

λi, i = 1, 2, 3, ..., n is a Poisson process with parameter λ1 + λ2 + ...+ λn.

• Interarrival Time: The interarrival times between two consecutive occurrences of a

Poisson process with parameter λ are independently and identically distributed random

variable having exponential distribution with parameter λ.

• Memoryless Property of Exponential Distribution: If the interval between two

occurrences is exponentially distributed, then the memoryless property implies that the

interval to the next occurrence is statistically independent of the time from the last

occurrence.

Suppose X has the exponential distribution, then

Pr{X ≥ x+ y|X ≥ x} = Pr{X ≥ y} (1.3)

7



is independent of x. That is,

Pr{X ≥ x+ y|X ≥ x} =
Pr{X ≥ x+ y|X ≥ x}

Pr{X ≥ x}

=
Pr{X ≥ x+ y}
Pr{X ≥ x}

=
exp(−λ(x+ y))

exp(−λx)

= exp(−λy) = Pr{X ≥ y}.

8



1.2.4 The PASTA Property

Another very essential tool used in the analysis of many queuing systems is the PASTA

(Poisson Arrivals See Time Average) property. This property proposed by Wolff (1982) [17],

asserts that customers with poisson arrivals see the system as if they arrived at an arbitrary point

in time despite the fact that they induce transitions in the system. This phenomenon arises from

the lack of memory of an exponential interarrival time with the result that the arrival history just

before a tagged arrival instant is stochastically identical to that of a random instant as well as

that of the arrival instant. Markovian queuing systems with Poisson arrivals possess the PASTA

property.

9
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Figure 3: Tandem Queue and Faculty Mobility.

1.3 Description of Manpower System Using Tandem Queue

A Manpower system has been defined as any identifiable group of people working with a

common end in view [3]. It will be essential to recognize inside such a framework a set of

homogeneous classes. These classes may be based on any pertinent properties of their individuals

such as age, grade, seniority, salary, job or location [3]. Each class contains a certain number of

people, which may change based on the behaviour of individuals in the system. Hence, it has

become of great interest to many operations researchers and statisticians to know how the

manpower system changes with time. These changes are described by the flow of people which

takes place between classes (e.g., promotions and transfers) and between the system and its

environment (e.g., recruitment and retirement) [3].

In figure 3, we described the movement of faculty in a university system from Assistant

professor to Associate professor and to Professor. These movements are described as recruitment

(flow of faculty into the system), retention (faculty remaining at the same level), promotion (flow

from one level to another) and retirement/resignation (flow of faculty out of the system) at any

state in the system. Essentially, this movement can be modeled using stochastic processes,

queuing theory, and compartmental models.

10



Compartmental models are a common technique for mathematical modeling of infectious

diseases. It is used in epidemiology to model the transmission of infectious diseases from

susceptible to infectious to recovered. The population is divided into homogeneous groups called

compartments and the compartments of the model can either flow between each other or they can

interact. As compartmental model, faculty splits into Assistant, Associate and full Professor as

seen in figure 3.

In this thesis, birth-and-death processes are used to model the movement of customers or

units into a queuing system. More specifically, we consider M/M/1 tandem queue with n queues.

Customers enter the system with poisson inter-arrival rate λi and exponential departure time µi.

Customers may exit the system after being served at station Si or proceed to the next station

Si+1 where i ≥ 1.

We start with theoretical analysis of tandem queue with one service station. We compute

some statistical properties of tandem queue, the global balance equation, probability of having n

customers or units in the system at steady state using iterative method as well as probability

generating function. We increased the service station by one (i.e., tandem queue with two service

stations) and allow entrance to the second service station only from station one. Again we

obtained the global balance equation for this model using probability generating function and also

the probability of having n customers or units in the system at steady state. We further

considered tandem queue with two service stations and allow arrival to and departure from both

service stations. We generalized the traffic intensity, the proportion of customers moving from one

service station to the other and also the marginal probability generating function for tandem

queue with n service stations. Finally, we simulate a queue network of 10,000 customers.

11



1.4 Literature Review

In this section, related journals on manpower planning, queuing theory and

compartmental models are reviewed. We start with an interesting work done by Ayyappan and

Thamizhselvi [2] where a single server queuing system with two types of batches arrivals and

services under non pre-emptive priority rule was considered. The server provides single service to

high priority customers and the general bulk service rule for low priority customers on a FCFS

discipline. The server starts service to the low priority customer only if the high priority queue is

empty and the number of customers in the low priority queue is greater than or equal to a. If

there are no customers in the high priority queue and the number of customers in the low priority

queue are less than a, then the server becomes idle [2]. The average number of customers in the

queues and the average waiting time are derived for this model.

In 2007, Yadavalli, Natarajan, and Udayabhaskaran [12] studied time dependent behaviour

of stochastic models of manpower system considering the impact of pressure on promotion. They

considered time dependent behaviour of three stochastic models of manpower system namely: 1)

the pressure for promotion in a particular grade is contributed by the employees in the grade

alone. 2) the pressure for promotion to a particular grade is proportional to the number of

employees in the lower grades who have eligibility to get promoted to that grade. 3) the pressure

for promotion is considered to be proportional to the number of employees in a particular grade

as in (1) above. They considered length of service as the sole criterion for promotion [12].

Human behaviour is unpredictable and constitutes an essential aspect of manpower

planning: hence, Ugwuowo and McClean reviewed methods of incorporating population

heterogeneity into a manpower model [16]. The analysis of differentials in manpower system is

stressed because they are a source of aggregation error in stochastic models. Ugwuowo and

McClean [16] stressed two strategies: the use of observable sources of heterogeneity as they affect

wastage and latent sources which cannot be identified precisely but are known to affect the key

parameters of the models [16]. It has always been accepted that there are variations among

individuals in life endeavours, thus the analysis of individual difference is clearly of central

importance in the study of manpower systems. In survival analysis, it is well known that
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individuals differ substantially in their endowment for longevity [16].

Bleau [4] described academic flow model as one with three major stages and a minor

stage, namely: fixed term, tenure track, tenured and part-time, respectively. Membership to a

stage is determined by faculty member’s current contract classification. The author considered a

person changing from a part-time to a full-time appointment to have left the system and

re-entered as a new hire. A person changing from full-time to part-time appointments are treated

in the same manner. An assumption was made that a faculty member initially hired as a

tenure-track appointment cannot change to a fixed-term appointment. It presented a better

understanding of the complex phenomena of faculty movement through an institution and on its

relationship to salary cost, composition of faculty and faculty turnover rate.

The model was implemented and tested at two different institutions. The findings

suggested that the model is a viable means of gaining useful insights and quantitative data on the

faculty profile, salary costs, expected departures and part-time trends and further, when used as a

planning tool. The model apparently is comprehensive and flexible enough to analyze the

probable effects, both in the short and long run, of alternative personnel policies on the faculty

composition.

Knisley et al. [13] used linear compartmental model to model migration of salmon fishes.

This model was introduced by dividing a river into a contiguous collection of habitat zones and

assuming that the population is initially in zone 0, which corresponds to the river segment where

the salmon hatched and developed into smolt. After living in zone 0 for almost a year, the smolt

will actively swim down the river into the ocean estuaries through the sequence of zones (i.e,

compartments). Thus, if N(t) is the population of the habitat zone at time t in days, then the

population one day later satisfies

N(t+ 1) = N(t) +Arrivals−Departures,

where arrivals and departures are those entering or leaving during that day. They in general

wrote the model of the habitation zone as
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N(t+4t) = N(t) + I4t− E4t,

where I is the immigration rate, I4t = is the arrivals during a given time increment, E4t is the

departures and E is the rate of emigration. Their approach was found to be of great value in

introducing derivatives, integrals and fundamental theorem of calculus.
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CHAPTER 2

INTRODUCTION

2.1 Model Description

The stochastic queuing models described in this section assume that customers’ arrivals

occur as a poisson process with parameter λ and the service times are independent and

exponentially distributed with parameter µ and there is only one server. Customers exit the

system after being served.

2.1.1 Poisson Process

Components of the model

• Probability of one arrival during ∆t = λ∆t

• Probability of more than one arrival during ∆t = 0

• Probability of no arrivals during ∆t = 1− λ∆t

• Probability of one service during ∆t = µ∆t

• Probability of no service during ∆t = 1− µ∆t

• Probability of more than one departure during ∆t = 0

2.2 Tandem Queue With One Service Station

We want to compute the probability of n arrivals in a time interval of length t, Pn(t), n

being an integer greater than or equal to zero. To do this, we first develop a differential-difference

1Arrival Departure
λ µ

Figure 4: M/M/1 Queue With One Service Station.
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equation for the arrival process which can be obtained by the birth and death process as

Pn(t+ ∆t) = The probability of n arrivals in time t and none in ∆t

+ probability of having n− 1 arrivals in time t and one arrival in ∆t

+ probability if having n− 2 arrivals in time t and two arrivals in ∆t

+ ...

+ the probability of having no arrival in time t and n arrivals in ∆t.

Now for our model M/M/1 queue with one service station, poisson arrival rate and

exponential service time figure 4, we obtain the differential-difference equation as follows.

Pn(t+ ∆t) = Pn(t)(1− λ∆t)(1− µ∆t) + Pn−1(t)λ∆t(1− µ∆t) + Pn+1(t)(1− λ∆t)µ∆t, (2.1)

where Pn(t) is the probability of having n units in the system at time t and Pn(t+ ∆t) is the

probability of having n units in the system at time t+ ∆t.

From equation (2.1) the probability of n units in the system at t+ ∆t equals the sum of

the probabilities of the three mutually exclusive events

(1) n units in the system at t, no arrival or service during ∆t

(2) n− 1 units in the system at t, one arrival and no service during ∆t

(3) n+ 1 units in the system at t, no arrival and one service during ∆t

Expanding the right-hand side of (2.1), moving Pn(t) to the left-hand side, dividing by ∆t and

letting ∆t→ 0 gives the following differential-difference equation:

lim
∆t→0

Pn(t+ ∆t)− Pn(t)

∆t
= Pn(t)(−µ− λ) + Pn−1(t)λ+ Pn+1(t)µ (2.2)

dPn(t)

dt
= −Pn(t)(µ+ λ) + Pn−1(t)λ+ Pn+1(t)µ. (2.3)

At steady state (i.e, when t→∞),
dPn(t)

dt
= 0. Here, Pn(t) is no longer a function of t. Thus, t
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can be excluded and (2.3) becomes the global balance equation

(µ+ λ)Pn = λPn−1 + µPn+1 (2.4)

If we consider state n ≥ 0, the system can go to the next state (n+ 1) at rate λPn, and it

can come down from state (n+ 1) to the original state n at rate (µPn+1). At equilibrium, these

two rates (i.e, the rate up from a particular state n to the next state (n+ 1) and the rate down,

that is, from state (n+ 1) to the original state n must be equal. This implies that

λPn = µPn+1, (n ≥ 0) (2.5)

We obtain the probability that there are exactly n customers in the queue from the

difference equation (2.4), first by using iterative method and then by probability generating

function later.

For the iterative method, we start by setting n = 0 and find the boundary conditions.

Clearly, there cannot be service when there is no one in the system; this makes µP0 = 0 and also

Pn−1λ = 0 because it is not possible to have -1 person on the queue, thus (2.4) becomes

λP0 = µP1,

which implies that

P1 =
λ

µ
P0 = ρP0, (2.6)

where ρ =
λ

µ
is a measure of traffic congestion for one server system with the condition that

λ

µ
< 1. Now from the steady state equation (2.4), when n = 1;

(µ+ λ)P1 = λP0 + µP2 (2.7)
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Recall P1 = λ
µP0, so that

λ

µ
(µ+ λ)P0 − λP0 = µP2. (2.8)

It implies that µP2 = λ2

µ P0. So that,

P2 =

(
λ

µ

)2

P0. (2.9)

If we continue this process we will obtain P3 =

(
λ

µ

)3

P0, P4 =

(
λ

µ

)4

P0 and so on. Thus, in

general,

Pn =

(
λ

µ

)n
P0. (2.10)

Now to obtain the probability that there is no one in the system P0, we rely on the fact that∑∞
n=0 Pn = 1 and sum both sides of (2.10). We obtain,

1 = P0

∞∑
n=0

ρn. (2.11)

Now we know that the sum of an infinite geometric series
∞∑
n=0

ρn = [1 + ρ+ ρ2 + ...] is

given as
1

1− ρ
, where ρ is the common ratio. Hence, (2.11) becomes

P0
1

1− ρ
= 1,

which implies that the proportion of time that the system is empty is

P0 = 1− ρ. (2.12)

2.2.1 Probability Generating Function

Now, solving the steady-state difference equation (2.4) using probability generating

function. We recall from the literature that the probability generating function is given as

G(z) =

∞∑
n=0

znPn. (2.13)
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Now multiply equation (2.4) through by zn and sum appropriately to have

∞∑
n=1

znPn(µ+ λ) =
∞∑
n=1

znPn−1λ+
∞∑
n=1

znPn+1µ. (2.14)

But we cannot sum from n = 0, due to the Pn−1 term. So we have

(µ+ λ)
∞∑
n=1

znPn = λz
∞∑
n=1

zn−1Pn−1 + µz−1
∞∑
n=1

zn+1Pn+1. (2.15)

We can write the above more appropriately as

(µ+ λ)[
∞∑
n=0

znPn − P0] = λz

∞∑
n=0

znPn + µz−1[

∞∑
n=0

znPn − P0 − zP1]. (2.16)

Thus,

(µ+ λ)[G(z)− P0] = λzG(z) + µz−1[G(z)− P0 − zP1],

or

(µ+ λ− λz − µz−1)G(z) = (λ+ µ)P0 − µz−1P0 − µP1. (2.17)

Substituting
λ

µ
P0 for P1 in (2.17) we have,

(µ+ λ− λz − µz−1)G(z) = (λ+ µ)P0 − µz−1P0 − µ
λ

µ
P0, (2.18)

which now gives,

G(z) =
(µz − µ)P0

z

(µ+ λ− λz − µz−1)
,

=
µ(1− z−1)P0

λ(1− z) + µ(1− z−1)

=
(µz − µ)P0

(µz + λz − λz2 − µ)
.

(2.19)

Now, G(z)|z=0 = P0.

We obtain P1 by finding the first derivative of G(z) with respect to z and then setting
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z = 0 to have,

G
′
(z) =

(µz + λz − λz2 − µ)µP0 − (µz − µ)P0(µ+ λ− 2λz)

(µz + λz − λz2 − µ)2
,

=
λµz2P0 + λµP0 − 2λµzP0

(λz + µz − λz2 − µ)2
.

G
′
(z)|z=0 =

µλP0

µ2
=
λ

µ
P0. (2.20)

Therefore P1 = λ
µP0, as obtained using the iterative method.

Again P2 =
G

′′
(z)

2!
|z=0.

G
′′
(z) = (λz+µz−λz2−µ)2(2λµzP0−2λµP0)−(λµz2P0+λµP0−2λµzP0)2[(λz+µz−λz2−µ)(λ+µ−2λz)]

(λz+µz−λz2−µ)4

G
′′
(z)|z=0

2!
=
−2λµ3P0 + 2λ2µ2P0 + 2λµ3P0

2!µ4
=

2λ2µ2P0

2µ4

P2 =
2λ2µ2P0

2µ4
=
λ2

µ2
P0 =

(
λ

µ

)2

P0 (2.21)

Thus, P2 =

(
λ

µ

)2

P0. So in general,

Pn =
Gn(z)|z=0

n!
=

(
λ

µ

)n
P0. (2.22)

2.2.2 Expectation and Variance of the Model

To obtain the expected number of people in the system at steady state, let N represent

the random variable, then

E(N) =

∞∑
n=0

nPn = (0P0 + P1 + 2P2 + ...)

=
(
0(ρ)0P0 + ρP0 + 2(ρ)2P0 + ...

) (2.23)

= P0

∞∑
n=0

nρn (2.24)
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Looking at the summation,

P0

∞∑
n=0

nρn = P0(ρ+ 2ρ2 + 3ρ3 + ...)

= P0ρ(1 + 2ρ+ 3ρ2 + ...)

(2.25)

= P0ρ
∞∑
n=0

nρn−1 (2.26)

Note that
∑∞

n=1 nρ
n−1 is the derivative of

∑∞
n=0 ρ

n with respect to ρ. Hence,

P0ρ

∞∑
n=0

nρn−1 = P0ρ

∞∑
n=0

d

dρ
ρn (2.27)

= P0ρ
d

dρ

∞∑
n=0

ρn. (2.28)

We know that
∞∑
n=0

ρn =
1

1− ρ
,

thus,

P0ρ
d

dρ

∞∑
n=0

ρn = P0ρ
d

dρ
(

1

1− ρ
)

= P0ρ

(
1

(1− ρ)2

)

= (1− ρ)

(
ρ

(1− ρ)2

)
So the expected number in the system at steady state is

ρ

1− ρ
=

λ

µ− λ
. (2.29)

We know from literature that the variance V ar(N) = E(N2)− [E(N)]2.

E(N2) =
∞∑
n=0

n2Pn =
∞∑
n=1

n2P0ρ
n =

∞∑
n=1

n2(1− ρ)ρn (2.30)
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Note that the second derivative d2

dρ(
∑∞

n=0 ρ
n)

=
∞∑
n=0

n(n− 1)ρn−2 =
∞∑
n=0

(n2 − n)ρn−2.

E(N2) in equation (2.30) can be written as

E(N2) = (1− ρ)

∞∑
n=1

[(n2 − n) + n]ρn

= (1− ρ)

[ ∞∑
n=1

(n2 − n)ρn +
∞∑
n=1

nρn
]

= (1− ρ)

[
ρ2
∞∑
n=1

d2

dρ
ρn + ρ

∞∑
n=1

d

dρ
ρn
]

= (1− ρ)

[
ρ2 d

2

dρ

(
1

1− ρ

)
+ ρ

d

dρ

(
1

1− ρ

)]
= (1− ρ)

[
2ρ2

(1− ρ)3
+

ρ

(1− ρ)2

]
=

2ρ2

(1− ρ)2
+

ρ

1− ρ

=
ρ+ ρ2

(1− ρ)2
.

So that V ar(N) = E(N2)− [E(N)]2

=
ρ

(1− ρ)2
=

λ

µ(1− λ
µ)2

=
λµ

(µ− λ)2
. (2.31)

2.3 Tandem Queue With Two Service Stations

A queuing network in which a customer, served at point i, can immediately join the queue

at point i+ l, l ≥ 1 is called tandem queues or queues in series. This type of queue is described in

figure 5. Now consider a network of two queues in tandem. The global balance equation that an

arriving customer finds n1, customers in the queue 1 and n2 customers in queue 2 may be written

as,
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1 2Arrival

Departure

Departure

µ1

λ

(1− α12)λ

α12λ µ2

Figure 5: Tandem Queue With Two Service Stations and Intermediate Withdrawal.

Pn1,n2(t+ ∆t) = Pn1,n2(t)(1− λ∆t)(1− α12µ1∆t)(1− µ1(1− α12))(1− µ2∆t)

+ Pn1−1,n2(t)λ∆t(1− α12µ1∆t)(1− µ1(1− α12))(1− µ2∆t)

+ α12µ1∆tPn1+1,n2−1(t)(1− λ∆t)(1− µ2∆t)

+ (1− α12)µ1∆tPn1+1,n2(t)(1− λ∆t)(1− µ2∆t)

+ Pn1,n2+1(t)(1− λ∆t)(1− α12µ1∆t)(1− µ1(1− α12))µ2∆t.

(2.32)

From the above equation, the probability that there are n1, n2 units in station 1 and 2 respectively

at time t+4t is equal to the probabilities of the following mutually exclusive events, namely;

(1) n1, n2 units in the system at time t and no arrival or service during 4t in both service

stations.

(2) n1 − 1, n2 units in the system at time t, one arrival and no service at station 1, no arrival

and no service at station 2 during 4t.

(3) n1 + 1, n2 − 1 units in the system at time t, no arrival and one service at station 1, one

arrival and no service at station 2 during 4t.

(4) n1 + 1, n2 units in the system at time t, no arrival and one service at station 1, no arrival

and no service at station 2 during 4t.

(5) n1, n2 + 1 units in the system at time t, no arrival and no service at station 1, no arrival and
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one service at station 2 during 4t.

Simplifying equation (2.32) gives

Pn1,n2(t+ ∆t) = Pn1,n2(1− µ1 − µ2 − λ)∆t+ λ∆tPn1−1,n2

+ α12µ1∆tPn1+1,n2−1 + (1− α12)µ1∆tPn1+1,n2 + µ2∆tPn1,n2+1.

(2.33)

lim∆t→0
Pn1,n2(t+ ∆t)− Pn1,n2(t)

∆t
= −Pn1,n2(µ1 + µ2 + λ) + λPn1−1,n2

+α12µ1Pn1+1,n2−1 + (1− α12)µ1Pn1+1,n2 + µ2Pn1,n2+1.

(2.34)

At steady state (i.e, when t →∞)
dPn1,n2(t)

dt
= 0. Here, Pn(t) is no longer a function of t.

Equation (2.34) now becomes

Pn1,n2(µ1 + µ2 + λ) = λPn1−1,n2 + α12µ1Pn1+1,n2−1 + (1− α12)µ1Pn1+1,n2 + µ2Pn1,n2+1. (2.35)

Equation (2.35) is known as the steady-state difference equation or global balance equation.

Now, the boundary conditions for this model are as follows. When n1 = 0, (2.35) becomes

(µ2 + λ)P0,n2 = α12µ1P1,n2−1 + (1− α12)µ1P1,n2 + µ2P0,n2+1. (2.36)

The meaning of each of the quantities in (2.36) is as follows:

• (µ2 + λ)P0,n2 is the probability of having no one at station 1 and n persons at station 2.

• α12µ1P1,n2−1 is the probability that one person moved from station 1 to station 2 after been

served.

• (1− α12)µ1P1,n2 is the probability that one person left the system from station 1.

• µ2P0,n2+1 is the probability that one person left station two and there is no body in station

1.

When n2 = 0, (2.35) becomes

(µ1 + λ)Pn1,0 = λPn1−1,0 + (1− α12)µ1Pn1+1,0 + µ2Pn1,1. (2.37)
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The meaning of each of the quantities in (2.37) is as follows:

• (µ1 + λ)Pn1,0 is the probability of having n persons at station one and none at station 2.

• λPn1−1,0 is the probability that there is no one at station 2 and one person joined station 1.

• (1− α12)µ1P1,n2 is the probability that one person left the system from station 1.

• µ2Pn1,1 is the probability that one person left station 2.

When n1 = 0, n2 = 0, (2.35) becomes

λP0,0 = (1− α12)µ1P1,0 + µ2P0,1. (2.38)

Again, the meaning of each of the quantities in (2.38) is as follows:

• λP0,0 is the probability of having no customer at either of the two stations.

• (1− α12)µ1P1,0 is the probability that one person left the system from station 1.

• µ2P0,1 is the probability that one person left station 2.

Now, we further analyze the global balance equation for this model using probability generating

function. We define the probability generating function as follows:

GN1,N2(z1, z2) =

∞∑
n1=0

∞∑
n2=0

zn1
1 zn2

2 Pn1,n2

GN1,0(z1) =

∞∑
n1=0

zn1
1 Pn1,0

G0,N2(z2) =
∞∑

n2=0

zn2
2 P0,n2 (2.39)

GN1,1(z1) =
∞∑

n1=0

zn1
1 Pn1,1

G1,N2(z2) =
∞∑

n2=0

zn2
2 P1,n2 .
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Now we simplify the left hand side of (2.35) in the generating function

(µ1 + µ2 + λ)
∞∑

n1=1

∞∑
n2=1

zn1
1 zn2

2 Pn1,n2 = (µ1 + µ2 + λ)
∞∑

n1=1

zn1
1

[ ∞∑
n2=0

zn2
2 Pn1,n2 − Pn1,0

]

Let γ = (µ1 + µ2 + λ). Hence,

γ

∞∑
n1=1

∞∑
n2=1

zn1
1 zn2

2 Pn1,n2 = γ

[ ∞∑
n1=1

zn1
1

∞∑
n2=0

zn2
2 Pn1,n2 −

∞∑
n1=1

zn1
1 Pn1,0

]

= γ

[ ∞∑
n1=1

zn1
1

∞∑
n2=0

zn2
2 Pn1,n2 −

∞∑
n1=0

zn1
1 Pn1,0 + P0,0

]

= γ

[ ∞∑
n2=0

zn2
2

( ∞∑
n1=0

zn1
1 Pn1,n2 − P0,n2

)
−
∞∑

n1=0

zn1
1 Pn1,0 + P0,0

]

= γ

[ ∞∑
n1=0

∞∑
n2=0

zn1
1 zn2

2 Pn1,n2 −
∞∑

n2=0

zn2
2 P0,n2 −

∞∑
n1=0

zn1
1 Pn1,0 + P0,0

]
= γ

[
GN1,N2(z1, z2)−G0,N2(z2)−GN1,0(z1) + P0,0

]
.

(2.40)

The first item on the RHS of (2.35) is

λ

∞∑
n1=1

∞∑
n2=1

zn1
1 zn2

2 Pn1−1,n2 = λz1

∞∑
n1=1

∞∑
n2=1

zn1−1
1 zn2

2 Pn1−1,n2

= λz1

∞∑
n1=1

zn1−1
1

[ ∞∑
n2=0

zn2
2 Pn1−1,n2 − Pn1−1,0

]

= λz1

[ ∞∑
n1=1

∞∑
n2=0

zn1−1
1 zn2

2 Pn1−1,n2 −
∞∑

n1=1

zn1−1
1 Pn1−1,0

]

= λz1

[ ∞∑
n2=0

zn2
2

∞∑
n1=1

zn1−1
1 Pn1−1,n2 −

∞∑
n1=1

zn1−1
1 Pn1−1,0

]

= λz1

[ ∞∑
n2=0

zn2
2

∞∑
n1=0

zn1
1 Pn1,n2 −

∞∑
n1=0

zn1
1 Pn1,0

]

= λz1

∞∑
n1=0

zn1
1

∞∑
n2=0

zn2
2 Pn1,n2 − λz1

∞∑
n1=0

zn1
1 Pn1,0

= λz1

∞∑
n1=0

∞∑
n2=0

zn1
1 zn2

2 Pn1,n2 − λz1

∞∑
n1=0

zn1
1 Pn1,0

= λz1GN1,N2(z1, z2)− λz1GN1,0(z1).

(2.41)
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The second item on the RHS of (2.35) is

α12µ1Pn1+1,n2−1 = α12µ1

∞∑
n1=1

∞∑
n2=1

zn1
1 zn2

2 Pn1+1,n2−1

= α12µ1z
−1
1 z2

∞∑
n1=1

∞∑
n2=1

zn1+1
1 zn2−1

2 Pn1+1,n2−1

= α12µ1z
−1
1 z2

∞∑
n2=0

zn2
2

∞∑
n1=1

zn1+1
1 Pn1+1,n2

= α12µ1z
−1
1 z2

∞∑
n2=0

zn2
2

( ∞∑
n1=0

zn1
1 Pn1,n2 − P0,n2 − z1P1,n2

)

= α12µ1z
−1
1 z2

( ∞∑
n1=0

∞∑
n2=0

zn1
1 zn2

2 Pn1,n2 −
∞∑

n2=0

zn2
2 P0,n2 − z1

∞∑
n2=0

zn2
2 P1,n2

)
= α12µ1z

−1
1 z2GN1,N2(z1, z2)− α12µ1z

−1
1 z2G0,N2(z2)− α12µ1z2G1,N2(z2)

(2.42)

The third item on the RHS of (2.35) is

(1− α12)µ1Pn1+1,n2 = (1− α12)µ1

∞∑
n1=1

∞∑
n2=1

zn1
1 zn2

2 Pn1+1,n2

= (1− α12)µ1z
−1
1

∞∑
n1=1

∞∑
n2=1

zn1+1
1 zn2

2 Pn1+1,n2

(2.43)

Let β = (1− α12)µ1z
−1
1 . Then (2.43) becomes

(1− α12)µ1Pn1+1,n2 = β

∞∑
n1=1

zn1+1
1

[ ∞∑
n2=0

zn2
2 Pn1+1,n2 − Pn1+1,0

]

= β

[ ∞∑
n1=1

∞∑
n2=0

zn1+1
1 zn2

2 Pn1+1,n2 −
∞∑

n1=1

zn1+1
1 Pn1+1,0

]

= β

[ ∞∑
n1=1

∞∑
n2=0

zn1+1
1 zn2

2 Pn1+1,n2 −
∞∑

n1=0

zn1
1 Pn1,0 + P0,0 + z1P1,0

]

= β

[ ∞∑
n2=0

zn2
2

( ∞∑
n1=0

zn1
1 Pn1,n2 − P0,n2 − z1P1,n2

)
−
∞∑

n1=0

zn1
1 Pn1,0 + P0,0 + z1P1,0

]

= β

[ ∞∑
n2=0

∞∑
n1=0

zn1
1 zn2

2 Pn1,n2 −
∞∑

n2=0

zn2
2 P0,n2 − z1

∞∑
n2=0

zn2
2 P1,n2

−
∞∑

n1=0

zn1
1 Pn1,0 + P0,0 + z1P1,0

]
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= β

[
GN1,N2(z1, z2)−G0,N2(z2)− z1G1,N2(z2)−GN1,0(z1) + P0,0 + z1P1,0.

]
(2.44)

The fourth item on the RHS of (2.35) is

µ2Pn1,n2+1 = µ2z
−1
2

∞∑
n1=1

∞∑
n2=1

zn1
1 zn2+1

2 Pn1,n2+1

= µ2z
−1
2

[ ∞∑
n1=1

zn1
1

( ∞∑
n2=0

zn2
2 Pn1,n2 − Pn1,0 − z2Pn1,1

)]

= µ2z
−1
2

[ ∞∑
n1=1

zn1
1

∞∑
n2=0

zn2
2 Pn1,n2 −

∞∑
n1=1

zn1
1 Pn1,0 − z2

∞∑
n1=1

zn1
1 Pn1,1

)]

= µ2z
−1
2

[ ∞∑
n1=1

zn1
1

∞∑
n2=0

zn2
2 Pn1,n2 −

∞∑
n1=0

zn1
1 Pn1,0 + P0,0 − z2

∞∑
n1=0

zn1
1 Pn1,1 + z2P0,1

]

= µ2z
−1
2

[ ∞∑
n2=0

zn2
2

( ∞∑
n1=1

zn1
1 Pn1,n2 − P0,n2

)
−
∞∑

n1=0

zn1
1 Pn1,0

+ P0,0 − z2

∞∑
n1=0

zn1
1 Pn1,1 + z2P0,1

]

= µ2z
−1
2

[ ∞∑
n1=0

∞∑
n2=0

zn1
1 zn2

2 Pn1,n2 −
∞∑

n2=0

zn2
2 P0,n2 −

∞∑
n1=0

zn1
1 Pn1,0

+ P0,0 − z2

∞∑
n1=0

zn1
1 Pn1,1 + z2P0,1

]

Hence µ2Pn1,n2+1 equals

µ2z
−1
2

[
GN1,N2(z1, z2)−G0,N2(z2)−GN1,0(z1) + P0,0 − z2G1,N2(z2) + z2P0,1

]
. (2.45)

From the boundary condition for the steady state equation (2.35) when n1 = 0,

(λ+ µ2)P0,n2 = α12µ1P1,n2−1 + (1− α12)µ1P1,n2 + µ2P0,n2+1. (2.46)

The left hand side of (2.46) can be expressed in terms of probability generating function as follows

∞∑
n2=1

(λ+ µ2)zn2
2 P0, n2 = (λ+ µ2)

∞∑
n2=0

zn2
2 P0,n2 − (λ+ µ2)P0,0

= (λ+ µ2)G0,N2(z2)− (λ+ µ2P0,0).

(2.47)
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The first item on the RHS of (2.46) is

α12µ1P1, n2−1 = α12µ1

∞∑
n2=1

zn2
2 P1,n2−1

= α12µ1z2

∞∑
n2=1

zn2−1
2 P1,n2−1

= α12µ1z2G1,N2(z2).

(2.48)

The second quantity on the RHS of (2.46) is

(1− α12µ1)P1, n2 = (1− α12)µ1

∞∑
n2=1

zn2
2 P1,n2

= (1− α12)µ1

∞∑
n2=0

zn2
2 P1,n2 − (1− α12µ1P1,0)

= (1− α12)µ1G1,N2(z2)− (1− α12µ1P1,0).

(2.49)

The third quantity on the RHS of (2.46) is

µ2z
n2
2 P0,n2+1 = µ2z

−1
2

∞∑
n2=1

z
n2+1

2 P0,n2+1

= µ2z
−1
2

∞∑
n2=0

zn2
2 P0,n2 − µ2z

−1
2 P0,0 − µ2P0,1

= µ2z
−1
2 G0,N2(z2)− µ2z

−1
2 P0,0 − µ2P0,1.

(2.50)

Combining (2.47), (2.48) , (2.49), (2.50) we have the marginal probability

(λ+ µ2)G0,N2(z2) = (λ+ µ2)P0,0 + α12µ1z2G1,N2(z2) + (1− α12)µ1G11, N2(z2)

−(1− α12)µ1P1,0 + µ2z
−1G0,N2(z2)− µ2z

−1P0,0 − µ2P0,1.

(2.51)

We solve the boundary condition when n2 = 0 of the steady state equation (2.37) using

probability generating function method.
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The left hand side of (2.37) becomes

∞∑
n=1

(µ1 + λ)zn1
1 Pn1,0 = (µ1 + λ)

∞∑
n1=0

zn1
1 Pn1,0 − (µ1 + λ)P0,0

= (µ1 + λ)GN1,0(z1)− (µ1 + λ)P0,0.

(2.52)

The first quantity on the right hand side of (2.37)

∞∑
n=1

λzn1
1 Pn1−1,0 = λz1

∞∑
n1=0

zn1−1
1 Pn1−1,0 = λz1

∞∑
n1=0

zn1
1 Pn1,0

= λz1GN1,0(z1). (2.53)

The second quantity on the right hand side of (2.37)

(1− α12)µ1P1,0 = (1− α12)µ1z
−1
1

∞∑
n1=1

zn1+1
1 Pn1+1,0

= (1− α12)µ1z
−1
1

∞∑
n1=0

zn1
1 Pn1,0 − (1− α12)µ1z

−1
1 P0,0 − (1− α12µ1)P1,0

= (1− α12)µ1z
−1
1 Gn1,0(z1)− (1− α12)µ1z

−1
1 P0,0 − (1− α12µ1)P1,0.

(2.54)

The third quantity on the right hand side of (2.37) is

µ2Pn1,1 = µ2

∞∑
n1=0

zn1
1 Pn1,1 − µ2P0,1

= µ2GN1,1(z1)− µ2P0,1.

(2.55)

Now, combining equation (2.52), (2.53), (2.54), (2.55) we have the marginal generating function

(λ+ µ1)GN1,0(z1) = (λ+ µ1)P0,0 + λz1GN1,0(z1) + (1− α12)µ1z
−1
1 GN1,0(z1)

− (1− α12)µ1z
−1
1 P0,0 − (1− α12)µ1P1,0 + µ2GN1,0(z1)− µ2P0,1.

(2.56)

Finally, we combine equation (2.40) through equation (2.45) to obtain the probability
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generating function for this model.

(µ1 + µ2 + λz1 − α12µ1z
−1
1 z2 − (1− α12)µ1z

−1
1 − µ2z

−1
2 )GN1,N2(z1, z2)

= (λ+ µ2)G0,N2(z2) + µ1G0,N2(z2) + (λ+ µ1)Gn1,0(z1) + µ2GN1,0(z1)

− λP0,0 − µ1P0,0 − µ2P0,0 − λz1GN1,0(z1)− α12µ1z
−1
1 z2G0,N2(z2)

− α12µ1z2G1,N2 − (1− α12)µ1z
−1
1 G0,N2(z2)− (1− α12)µ1G1.N2(z2)

− (1− α12)µ1z
−1
1 GN1,0(z1) + (1− α12)µ1z

−1
1 P0,0

+ (1− α12µ1P1,0 − µ2z
−1
2 G0,N2(z2)− µ2z

−1
2 GN1,0(z1) + µ2z

−1
2 P0,0

+ µ2GN1,1(z1) + µ2P0,1.

Substituting equation (2.51) for (λ+ µ1)GN1,0(z1) and (2.56) for (λ+ µ2)G0,N2(z2) in the

above equation, we have

(µ1 + µ2 + λz1 − α12µ1z
−1
1 z2 − (1− α12)µ1z

−1
1 − µ2z

−1
2 )GN1,N2(z1, z2)

= (λ+ µ2)P0,0 + α12µ1z2G1,N2(z2) + (1− α12)µ1G1,N2(z2)− (1− α12)µ1P1,0

+ µ2z
−1G0,N2(z2)− µ2z

−1P0,0 − µ2P0,1 + µ2GN1,0(z1) + (λ+ µ1)P0,0

+ λz1GN1,0(z1) + (1− α12)µ1z
−1
1 GN1,0(z1)− (1− α12)µ1z

−1
1 P0,0

− (1− α12)µ1P1,0 + µ2GN1,0(z1)− µ2P0,1 + (λ+ µ1)P0,0 + λz1GN1,0(z1)

+ (1− α12)µ1z
−1
1 GN1,0(z1)− (1− α12)µ1z

−1
1 P0,0 − (1− α12)µ1P1,0

+ µ2GN1,0(z1)− µ2P0,1 + µ2GN1,0(z1)− λP0,0 − µ1P0,0 − µ2P0,0

− λz1GN1,0(z1)− α12µ1z
−1
1 z2G0,N2(z2)− α12µ1z2G1,N2 − (1− α12)µ1z

−1
1 G0,N2(z2)

− (1− α12)µ1G1.N2(z2)− (1− α12)µ1z
−1
1 GN1,0(z1) + (1− α12)µ1z

−1
1 P0,0

+ (1− α12)µ1P1,0 − µ2z
−1
2 G0,N2(z2)− µ2z

−1
2 GN1,0(z1)

+ µ2z
−1
2 P0,0 + µ2GN1,1(z1) + µ2P0,1.
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Further simplification of the above now yields

GN1,N2(z1, z2) =

µ1

[
(1− α12)(1− z−1

1 ) + α12(1− z2z
−1
1 )

]
G0,N2(z2) + µ2(1− z−1

2 )GN1,0(z1)

λ(1− z1) + µ1

[
(1− α12)(1− z−1

1 ) + α12(1− z2z
−1
1 )

]
+ µ2(1− z−1

2 )

.

(2.57)

By definition, we require GN1,N2(z1 = 1, z2 = 1) =
∑∞

n=0

∑∞
n2=0 Pn1,n2 = 1.

Marginal Probability Generating Function

We obtain the first marginal probability generating function for this model by setting

z2 = 1 in (2.57) to have

GN1(z1) =
µ1

[
(1− α12)(1− z−1

1 ) + α12(1− z−1
1 )
]
G0,N2(1)

λ(1− z1) + µ1

[
(1− α12)(1− z−1

1 ) + α12(1− z−1
1 )
]

=
µ1

[
(1− α12)(z1 − 1) + α12(z1 − 1)

]
G0,N2(1)

z1λ(1− z1) + µ1

[
(1− α12)(z1 − 1) + α12(z1 − 1)

] .
Therefore,

GN1(z1) =
µ1(z1 − 1)

[
1− α12 + α12

]
G0,N2(1)

(z1 − 1)
[
µ1

[
1− α12 + α12

]
− λz1

]
=
µ1G0,N2(1)

µ1 − λz1
.

But we know that GN1(z1 = 1) = 1 by definition, which implies that

µ1

µ1 − λ
G0,N2 = 1 (2.58)

G0,N2 = 1− λ

µ1
= 1− ρ. (2.59)

This is the probability that station one is empty and there are n2 people at station two.

Now we obtain the marginal probability generating function of N2 by setting z1 = 1 in

equation (2.57)

GN2(z2) =
µ1α12(1− z2)G0,N2(z2) + µ2(1− z−1

2 )GN1,0(1)

µ1α12(1− z2) + µ2(1− z−1
2 )
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GN2(z2) =
−µ1α12G0,N2(z2) + µ2GN1,0(1)

µ2 − µ1α12z2

By setting z2 = 1 in the above equation, we have

−µ1α12G0,N2(z2) + µ2GN1,0(1)

µ2 − µ1α12z2
= 1,

which is equivalent to

µ2GN1,0(1) = µ2 − µ1α12 + µ1α12G0,N2(1). (2.60)

Substituting 1− λ
µ1

for G0,N2(1) in (2.60) we have

µ2GN1,0(1) = µ2 − µ1α12 + µ1α12

(
µ1 − λ
µ1

)
(2.61)

µ2GN1,0(1) = µ2 − α12λ. (2.62)

Thus

GN1,0(1) = 1− α12
λ

µ2
. (2.63)

Now, we obtain the probability generating function for this model by substituting (2.59) and

(2.63) into (2.57), to have

GN1,N2(z1, z2) =

µ1

[
(1− α12)(1− z−1

1 ) + α12(1− z2z
−1
1 )

]
µ1 − λ
µ1

+ µ2(1− z−1
2 )

µ2 − α12λ

µ2

λ(1− z1) + µ1

[
(1− α12)(1− z−1

1 ) + α12(1− z2z
−1
1 )

]
+ µ2(1− z−1

2 )

,

(2.64)

which reduces to

GN1,N2(z1, z2) =

[
(1− α12)(1− z−1

1 ) + α12(1− z2z
−1
1 )

]
(µ1 − λ) + (1− z−1

2 )(µ2 − α12λ)

λ(1− z1) + µ1

[
(1− α12)(1− z−1

1 ) + α12(1− z2z
−1
1 )

]
+ µ2(1− z−1

2 )

. (2.65)
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CHAPTER 3

MODEL II

3.1 Tandem Queue With Two Porous Service Stations

In this chapter, we model the probability of having n1, n2 units in station 1 and 2

respectively at time t+4t. Allowing arrival to and departure from both stations as seen in figure

6.

Pn1,n2(t+4t) = Pn1,n2(t)(1− λ14t)(1− α12µ14t)(1− µ1(1− α12))(1− µ24t)(1− λ2)

+ Pn1−1,n2(t)λ14t(1− α12µ14t)(1− µ1(1− α12))(1− λ2)(1− µ24t)

+ α12µ14tPn1+1,n2−1(t)(1− λ14t)(1− µ24t)

+ (1− α12)µ14tPn1+1,n2(t)(1− λ14t)(1− µ24t)

+ Pn1,n2+1(t)(1− λ14t)(1− α12µ14t)(1− µ1(1− α12))(1− λ24t)µ24t

+ Pn1,n2−1(t)(1− λ14t)(1− α12µ14t)(1− µ1(1− α12))λ24t(1− µ24t).

From the above equation, the probability that there are n1, n2 units in station 1 and 2 respectively

at time t+4t is equal to the probabilities of the following mutually exclusive events, namely;

(1) n1, n2 units in the system at time t and no arrival or service during 4t in both stations.

(2) n1 − 1, n2 units in the system at time t, one arrival and no service at station 1, no arrival

and no service at station 2 during 4t.

(3) n1 + 1, n2 − 1 units in the system at time t, no arrival and one service at station 1, one

arrival and no service at station 2 during 4t.

(4) n1 + 1, n2 units in the system at time t, no arrival and one service at station 1, no arrival

and no service at station 2 during 4t.

(5) n1, n2 + 1 units in the system at time t, no arrival and no service at station 1, no arrival and

one service at station 2 during 4t.
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α12
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Figure 6: Tandem Queue with 2 Porous Stations.

(6) n1, n2 − 1 units in the system at time t, no arrival at station 1 and one arrival at station 2.

Pn1,n2(t+4t) = Pn1,n2(1− µ1 − µ2 − λ1 − λ2)4t+ λ14tPn1−1,n2 + α12µ14tPn1+1,n2−1

+(1− α12)µ14tPn1+1,n2 + µ24tPn1,n2+1 + λ24tPn1,n2−1(t).

(3.1)

Pn1,n2(t+4t)− Pn1,n2(t)

4t
= −Pn1,n2(µ1 + µ2 + λ1 + λ2) + λ1Pn1−1,n2 + α12µ1Pn1+1,n2−1

+(1− α12)µ1Pn1+1,n2 + µ2Pn1,n2+1 + λ2Pn1,n2−1.

(3.2)

At steady state (i.e, when t →∞)
dPn1,n2

dt
= 0. Here Pn1,n2(t) is no longer a function of t.

Equation (3.2) becomes

Pn1,n2(µ1 + µ2 + λ1 + λ2) = λ1Pn1−1,n2 + α12µ1Pn1+1,n2−1 + (1− α12)µ1Pn1+1,n2

+µ2Pn1,n2+1 + λ2Pn1,n2−1.

(3.3)

Equation (3.3) is the steady-state difference or global balance equation for this model.

Now, the boundary conditions for this model are as follows;

When n1 = 0, (3.3) becomes

(µ2 + λ1 + λ2)P0,n2 = α12µ1P1,n2−1 + (1− α12)µ1P1,n2 + µ2P0,n2+1 + λ2P0,n2−1. (3.4)
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The meaning of each of the quantities in (3.4) is as follows:

• α12µ1P1,n2−1 is the probability that one person moved from station 1 to station 2 after been

served.

• (1− α12)µ1P1,n2 is the probability that one person left the system from station 1.

• µ2P0,n2+1 is the probability that one person left station 2 and there is no body in station 1.

• λ2P0,n2−1 is the probability that no body is at station 1, and one person entered the system

at station 2.

When n2 = 0, equation (3.3) becomes

(µ1 + λ1 + λ2)Pn1,0 = λ1Pn1−1,0 + (1− α12)µ1Pn1+1,0 + µ2Pn1,1. (3.5)

When n1 = 0, n2 = 0, (3.3) becomes

(λ1 + λ2)P0,0 = (1− α12)µ1P1,0 + µ2P0,1. (3.6)

Now we analyze the steady state equation for this model (3.3) using probability generating

function as we did in chapter two, we have

GN1,N2(z1, z2) =

µ1

[
(1− α12)(1− z−1

1 ) + α12(1− z2z
−1
1 )

]
G0,N2(z2) + µ2(1− z−1

2 )GN1,0(z1)

λ1(1− z1) + λ2(1− z2) + µ1

[
(1− α12)(1− z−1

1 ) + α12(1− z2z
−1
1 )

]
+ µ2(1− z−1

2 )

.

(3.7)
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Marginal Probability Generating Function

We obtain the first marginal probability generating function by setting z2 = 1 in (3.7),

GN1(z1) =
µ1

[
(1− α12)(1− z−1

1 ) + α12(1− z−1
1 )
]
G0,N2(1)

λ(1− z1) + µ1

[
(1− α12)(1− z−1

1 ) + α12(1− z−1
1 )
]

=
µ1

[
(1− α12)(z1 − 1) + α12(z1 − 1)

]
G0,N2(1)

z1λ1(1− z1) + µ1

[
(1− α12)(z1 − 1) + α12(z1 − 1)

]
=

µ1(z1 − 1)G0,N2(1)

z1λ1(1− z1) + µ1(z1 − 1)

=
µ1G0,N2(1)

µ1 − z1λ1

which implies that

µ1

µ1 − λ1
G0,N2(1) = 1 (3.8)

G0,N2(1) = 1− λ1

µ1
= 1− ρ1. (3.9)

This is the probability that station one is empty and there are n2 people at station 2. Equation

(3.9) can be written as P (N1 = 0, N2 = n2).

Now we obtain the second marginal probability generating function by setting z1 = 1 in

equation (3.7)

GN2(z2) =
µ1α12(1− z2)G0,N2(z2) + µ2(1− z−1

2 )GN1,0(z1)

(1− z2)λ2 + µ1α12(1− z2) + µ2(1− z−1
2 )

GN2(z2) =
−µ1z2α12(z2 − 1)G0,N2(z2) + µ2(z2 − 1)GN1,0(z1)

µ2(z2 − 1)− µ1α12z2(z2 − 1)− z2λ2(z2 − 1)

GN2(z2 = 1) =
µ2GN1,0(1)− µ1α12G0,N2(1)

µ2 − µ1α12 − λ2
= 1.

This implies that

µ2GN1,0(1) = µ2 − µ1α12 − λ2 + µ1α12G0,N2(1). (3.10)

Substituting 1− λ1
µ1

for G0,N2(1) in (3.10) we have

µ2GN1,0(1) = µ2 − µ1α12 − λ2 + µ1α12

(
1− λ1

µ1

)
(3.11)
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µ2GN1,0(1) = µ2 − µ1α12 − λ2 + µ1α12 − λ1α12. (3.12)

Thus

GN1,0(1) = 1− λ1α12 + λ2

µ2
= 1− ρ2. (3.13)

Equation (3.13) is the probability of having n1 in station 1 and station 2 is empty. It can also be

written as P (N2 = 0, N1 = n1). Hence the probability generating function of this model becomes.

GN1,N2(z1, z2) =

µ1

[
(1− α12)(1− z−1

1 ) + α12(1− z2z
−1
1 )

]
µ1 − λ1

µ1
+ µ2(1− z−1

2 )
µ2 − λ1α12 + λ2

µ2

λ1(1− z1) + λ2(1− z2) + µ1

[
(1− α12)(1− z−1

1 ) + α12(1− z2z
−1
1 )

]
+ µ2(1− z−1

2 )

,

(3.14)

which finally becomes

GN1,N2(z1, z2) =

[
(1− α12)(1− z−1

1 ) + α12(1− z2z
−1
1 )(µ1 − λ)

]
+ (1− z−1

2 )(µ2 − α12λ1 + λ2)

λ1(1− z1) + λ2(1− z2) + µ1

[
(1− α12)(1− z−1

1 ) + α12(1− z2z
−1
1 )

]
+ µ2(1− z−1

2 )

.

(3.15)

We may now obtain the steady state probability P (N1 = n1, N2 = n2) from equation (3.15) by

the usual approach. That is,

P (N1 = n1, N2 = n2) = Pn1,n2 =
G(n1+n2)

n1!n2!
|z1=0=z2 .
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3.1.1 Statistical Properties of A Tandem Queue With Two Service Stations

The expected number of people in the system at steady state for model with two service

stations can be obtained as follows:

E(N1N2) =

∞∑
n1=0

∞∑
n2=0

n1n2Pn1,n2 . (3.16)

Because of the Markov property of the two queues, the joint probability

P (N1 = n1, N2 = n2) = Pn1,n2 = P (N1 = n1) · P (N2 = n2) = Pn1 · Pn2 .

From equation (2.22), we have Pn1 = ρn1
1 (1− ρ1) = ρn1

1 G0,N2(1), and

Pn2 = ρn2
2 (1− ρ2) = ρn2

2 GN1,0(1),

Thus, equation (3.16) can be written as

E(N1N2) =
∞∑

n1=0

∞∑
n2=0

n1n2ρ
n1
1 G0,N2(1)ρn2

2 GN1,0(1). (3.17)

From equation (3.9) and (3.13) G0,N2(1) = 1− ρ1 and GN1,0(1) = 1− ρ2. Where G0,N2(1) is the

marginal probability of having no customer in station 1 and n2 customers in station 2 and

GN1,0(1) is the marginal probability of having n1 customers in station 1 and none in station 2.

Thus, equation (3.17) becomes

E(N1N2) = (1− ρ1)(1− ρ2)

∞∑
n1=0

∞∑
n2=0

n1n2ρ
n1
1 ρn2

2

= (1− ρ1)(1− ρ2)

∞∑
n1=0

n1ρ
n1
1

∞∑
n2=0

n2ρ
n2
2

= (1− ρ1)(1− ρ2)ρ1ρ2

[ ∞∑
n1=1

n1ρ
n1−1
1

∞∑
n2=1

n2ρ
n2−1
2

]
(3.18)

Note that
∑∞

n1=1 n1ρ
n1−1
1 and

∑∞
n2=1 n1ρ

n2−1
1 are the derivatives of

∑∞
n1=0 ρ

n1
1 and

∑∞
n2=0 ρ

n2
2
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with respect to ρ1 and ρ2 respectively. Thus, equation (3.18) becomes

E(N1N2) = (1− ρ1)(1− ρ2)ρ1ρ2

[ d
dρ1

∞∑
n1=0

ρn1
1

d

dρ2

∞∑
n2=0

ρn2
2

]
, (3.19)

we know that
∑∞

n1=0 ρ
n1
2 = 1

1−ρ1 and
∑∞

n2=0 ρ
n2
2 = 1

1−ρ2 . Hence, (3.19) becomes

E(N1N2) = (1− ρ1)(1− ρ2)ρ1ρ2

[
d
dρ1

( 1
1−ρ1 ) · d

dρ2
( 1

1−ρ2 )
]

= (1− ρ1)(1− ρ2)ρ1ρ2

[
1

(1−ρ1)2
· 1

(1−ρ2)2

]
=

ρ1ρ2

(1− ρ1)(1− ρ2)
. (3.20)

Covariance

Covariance is the measure of linear dependence between N1 and N2 (number of customers

in station 1 and station 2), is defined

Cov(N1, N2) = E
[
(N1 − E(N1)) · (N2 − E(N2))

]
= E(N1N2)− E(N1)E(N2). (3.21)

Recall from equation (2.29) that E(N1) =
ρ1

(1− ρ1)
, similarly E(N2) =

ρ2

(1− ρ2)
. Thus,

Cov(N1, N2) =
ρ1ρ2

(1− ρ1)(1− ρ2)
−
(

ρ1

1− ρ1

)
·
(

ρ2

1− ρ2

)
= 0. (3.22)

It implies that there is no linear dependence between the number of customers in station 1 and

station 2.

3.1.2 Generalization

From figure 7, note that the proportion of customers or units that enters the system at a

particular service station must be equal to the proportion that moved to the next station plus

those that leave the system from that service station. For instance, for station 1, the rate of

moving into the system is λ1 which equals to the sum of the rate (1− α12)λ1 withdrawing from
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1 2 3 · · · kArrival

(1− α12)λ1 (1− α23)(λ1α12 + λ2)

Arrival Arrival Arrival

Departure Departure

λ1 α12λ1

λ2 λ3 λk

Figure 7: Tandem Queue With k Service Stations.

station 1, and proportion α12λ1 that moves to service station 2 from station 1. Also, for station 2,

the rate of moving into the system is α12λ1 + λ2 which equals to the proportion that moved out of

the system at this station (1− α23)(λ1α23 + λ2) and the proportion that moved to station 3

α23(α12λ1 + λ2). For M/M/1 with one service station, we obtained the probability generating

function as

G(z) =
µ(1− z−1)P0

λ(1− z) + µ(1− z−1)
.

Also for M/M/1 tandem queue with two service stations, we obtain the PGF as

GN1,N2(z1, z2) =

µ1

[
(1− α12)(1− z−1

1 ) + α12(1− z2z
−1
1 )

]
G0,N2(z2) + µ2(1− z−1

2 )GN1,0(z1)

λ1(1− z1) + λ2(1− z2) + µ1

[
(1− α12)(1− z−1

1 ) + α12(1− z2z
−1
1 )

]
+ µ2(1− z−1

2 )

.

For three service stations, the numerator of the probability generating function

GN1,N2,N3(z1, z2, z3) is

µ1

[
(1− α12)(1− z−1

1 ) + (1− α23)(1− z−1
2 ) + α12(1− z2z

−1
1 ) + α23(1− z3z

−1
1 )

]
G0,N2,N3(z2, z3)

+ µ2

[
(1− α23)(1− z−1

2 ) + α23(1− z3z
−1
2 )

]
GN1,0,N3(z1, z3) + µ3(1− z−1

3 )GN1,N2,0(z1, z2),
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Arrival Rate State

α12λ1 Q1 → Q2

α23(α12λ1+λ2)=α12α23λ1+α23λ2 Q2 → Q3

α12α23α34λ1+α23α34λ2 + α34λ3 Q3 → Q4

α12α23α34α45λ1+α23α34α45λ2 + α34α45λ3 + α45λ4 Q4 → Q5

α12α23α34α45α56λ1+α23α34α45α56λ2 + α34α45α56λ3 + α45α56λ4 + α56λ5 Q5 → Q6

...
...

∑k−1
j=1 λj

∏k−1
i=j αi,i+1 Qk−1 → Qk

Table 1: Flow Rate Within Service Stations.

Queue Traffic Intensity

Q1
λ1

µ1

Q2
λ1α12 + λ2

µ2

Q3
λ1α12α23 + λ2α23 + λ3

µ3

Q4
λ1α12α23α34 + λ2α23α34 + λ3α34 + λ4

µ4

...
...

Qk

∑k−1
j=1 λj

∏k−1
i=j αi,i+1 + λk

µk

Table 2: Generalized Traffic Intensity.
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and the denominator is

λ1(1− z1) + λ2(1− z2) + λ3(1− z3)

+ µ1

[
(1− α12)(1− z−1

1 ) + (1− α23)(1− z−1
2 ) + α12(1− z2z

−1
1 ) + α23(1− z3z

−1
1 )

]
+ µ2

[
(1− α23)(1− z−1

2 ) + α23(1− z3z
−1
2 )

]
+ µ3(1− z−1

3 ).

The generalization of this PGF GN1,N2,...,Nk
(z1, z2, ..., zk) is analytically demanding.
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CHAPTER 4

THE FLOW CAPACITY, SAMPLE PATH AND RESIDENCE TIME IN QUEUE

The dynamics of the random arrivals and memoryless services in each of the queues in

tandem giving rise into the flow capacity, the sample path and the residence time are discussed in

this chapter.

We simulate a system of three queues in tandem at various time epochs. Figures 8 and

figure 11 show the cumulative number of arrivals and departures in the network. The top (blue)

line shows the cumulative number of arrivals and the bottom (red) line shows the cumulative

number of departures from the system. The vertical distance between the two lines gives the

number of customers present in the system at each time epoch, while the horizontal distance

between the lines represents the waiting time in the system, which represents the waiting time in

queue plus service time.

Figure 9 and figure 12 show the histograms of the average residence or waiting time in the

system. The histograms are generated with 10,000 customers and 10,000 simulations. As

expected, the histogram shows a normal distribution at steady state.

Figure 10 and figure 13 are the sample paths for queuing process with first-come

first-served discipline. For figures 8, 10, 11 and 13, we have used the number of customers N=20,

and service rate µj = 4
3 , (j = 1, 2, 3) in each of the queues. The values of the parameters

α12, α23, λ1, λ2 and λ3 in each of the queues are indicated in respective figures.

Figures 8A, 9A and 10A are for cases with only one queue. On the other hand, figures 8B,

9B and 10B describe systems with three queues with porous medium, where customers are

allowed into the system through each of the service stations.

It is obvious from figure 8A how easy and fast a waiting line is formed in a system with

one queue. The congestion is reduced by increasing the number of service points and allowing

withdrawals within queues.
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Figure 8: Cumulative Number of Arrivals and Departures from Queue 1.
For (A) λ1 = 1, λ2 = 0, λ3 = 0 and α12 = 0. For (B): λ1 = 1, λ2 = 0.5, λ3 = 0.5, and α12 = 4

3 ,
α23 = 4

3 .

Figure 9: Histogram of Average Residence Time in Queue 1.
For (A) λ1 = 1, λ2 = 0, λ3 = 0 and α12 = 0. For (B): λ1 = 1, λ2 = 0.5, λ3 = 0.5, and α12 = 4

3 ,
α23 = 4

3 .
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Figure 10: Sample Path for Queue 1.
For (A) λ1 = 1, λ2 = 0, λ3 = 0 and α12 = 0. For (B): λ1 = 1, λ2 = 0.5, λ3 = 0.5 and α12 = 4

3 ,
α23 = 4

3 .

Figure 11: Cumulative Number of Arrivals and Departures.
For (A) λ1 = 1, λ2 = 0.5, λ3 = 0.5, α12 = 0.75 and α23 = 0.5. For (B): λ1 = 1, λ2 = 0.5, λ3 = 0.5.
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Figure 12: Histogram of Average Residence Time in Queue 2 and Queue 3.
For (A) λ1 = 1, λ2 = 0.5, λ3 = 0.5, α12 = 0.75 and α23 = 0.5. For (B): λ1 = 1, λ2 = 0.5, λ3 = 0.5.

Figure 13: Sample Path for Queue 2 and 3.
For (A) λ1 = 1, λ2 = 0.5, λ3 = 0.5, α12 = 0.75 and α23 = 0.5. For (B): λ1 = 1, λ2 = 0.5, λ3 = 0.5.
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CHAPTER 5

CONCLUSION

The mechanism of a system of tandem queue with k ≥ 1 service stations was described in

this thesis using some tools in stochastic process and queuing theory. For example, the

birth-and-death process is used to model the movement of customers or units into and out of a

queuing system. We start with the theoretical analysis of M/M/1 tandem queue with poisson

arrival and exponential service time, first-come first-served FCFS discipline and one service

station. We compute some statistical properties of tandem queue and the global balance equation.

From the global balance equation, we compute the probability of having n customers or units in

the system at steady state using an iterative method as well as a probability generating function.

We consider a tandem queue with two service stations, and allow arrival to the second

service station only from the first. The global balance equation for this model is analyzed using

the generating function to obtain the probability of having given numbers of customers or units in

the system at steady state. We further consider tandem queue with two service stations and allow

arrivals and departure into and from the two service stations.

Finally, we simulate a queue network of 10,000 customers, we generalize the traffic

intensity, the proportion of customers moving from one station to another and the marginal

probability generating function for tandem queue with n service stations.
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