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ABSTRACT

Strategic placement of ambulances is important to the efficient functioning of emergency services.

As part of an ongoing collaboration with Wayne County 911, we developed a strategy to optimize

the placement of ambulances throughout Wayne County based on de-identified call and response

data from 2016 and 2017. The primary goals of the optimization were minimizing annual

operating cost and mean response time, as well as providing a constructive solution that could

naturally evolve from the existing plan. This thesis details the derivation and implementation of

one of the optimization strategies used in this project. It is based on parametric statistical

inference and the “Branch and Bound” pattern that is often used in non-linear global

optimization.
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CHAPTER 1

AMBULANCE PLANNING AND OPTIMIZATION

In the spring of 2016, faculty at Marshall University were approached by Wayne County

911 to collaborate on finding ways to improve the planning of their ambulance services, following

the recommendations of the EMS white paper [18]. Over the course of 2016 and 2017, this

developed into a project aimed at determining an efficient plan that describes where ambulances

should be located throughout the county, and during what times they should be active, so that

the cost and response time are simultaneously minimized. There are many possible approaches for

this optimization, and in many cases the optimal plans may not always exhibit a clear

progression. For instance, it is possible that an optimal solution for planning the distribution of 3

ambulances has no placements in common with an optimal solution for planning the distribution

of 5 ambulances. For this reason, in this thesis we develop an algorithm that constructs an

optimal plan for k ambulances by placing ambulances one-by-one until the desired number of

ambulances is reached. Such a model can be used to inform the growth of the existing ambulance

system toward an optimal plan with more ambulances. It also sheds light on the relative

importance of each ambulance placement, which can be used to inform the design of contingency

plans in the event that an ambulance must be removed from service.

In this thesis, we describe factors related to solving this planning problem, motivate and

develop a technique for finding well-optimized solutions with a natural progression, and briefly

discuss the results of this method. In Chapters 2, 3, and 4, we discuss a variety of mathematical

topics that will be important in the development of our optimization method. Minor

simplifications have been made throughout for the sake of brevity. In Chapters 5, 6, and 7, we

construct a routine for solving single-objective derivative-free optimization problems with mild

assumptions on the structure of the solution space. In Chapters 8 and 9, we apply that routine to

several optimization problems, including the ambulance planning problem, and analyze the

results.
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CHAPTER 2

TOPICS FROM OPTIMIZATION

2.1 Multi-Objective Optimization

Multi-objective optimization is the process of finding acceptable solutions to an

optimization problem when those solutions must be evaluated against more than one goal, or

objective. It is conventional to refer to an optimization problem as multi-objective only when the

goals conflict; that is, when the partial ordering of solutions that is induced by one goal

sometimes disagrees with the partial ordering induced by another goal. A handy example is given

by Bader [1], in the form of purchasing a device to be used as a word processor. Objectives in

that problem might include both to maximize the comfort with which one can type on the device,

and to maximize the mobility of the device. Ideally, achievement of these two goals would be

correlated, as in the case when comparing an antique typewriter to a modern laptop, where the

laptop is both more portable and more comfortable to type on. Commonly, however, these goals

are in conflict. A desktop PC may be easier to type on but less portable than a laptop, which is

likewise easier to type on but less portable than a smart phone. As this example demonstrates, it

may be the case that no solution will be simultaneously optimal with respect to every objective,

so the process of selecting a single “best” solution necessarily involves deciding on appropriate

tradeoffs between the objectives, which is something that can be difficult to define

mathematically. When making that decision, it is informative to have a sense of what the best

possible outcomes are for each objective and for each combination of objectives. With this in

mind, the goal of a multi-objective optimization is to find a representative set of solutions that

describe the best possible outcomes with respect to all conceivable weightings of the objectives -

usually referred to as the solution set. Ideally, a solution set should satisfy three minimal

requirements. First, the solution set should not be too large, so that a decision maker can readily

consider the solutions together without being overwhelmed. Secondly, the solution set should be

diverse, so that a sense of the available alternatives can be obtained from observing only it.

Lastly, the solution set should be a subset of the Pareto-optimal set, as defined in the proceeding

subsection. In our brief description of multi-objective optimization, we will focus on two of the

2



most accessible and relevant topics: Pareto optimality and aggregative scoring.

2.1.1 Pareto Dominance and Pareto Optimality

Let A and B be solutions of an n-objective optimization in a solution space Ω, which is

the set of all feasible solutions. Pareto dominance is a relation on the solution space that

describes when one solution is clearly preferable to another. Denote the event that A is preferred

to B in the ith objective by Ai ≺ Bi. It is said that A Pareto-dominates B, written A ≺par B, if

and only if Ai ≺ Bi for some i = 1, 2, . . . , n and Bj 6≺ Aj for all j = 1, 2, . . . , n. In words, a

solution A Pareto-dominates a solution B if A is better than B in some way, and B is not better

than A in any way. If one had to decide only between these two solutions, A would be a good

choice no matter which objectives are considered, because A is never worse than B in any respect.

Furthermore, in a comparison where the ith objective is given positive weight, A will be

unambiguously preferable to B. The Pareto dominance relation induces a strict partial ordering

on Ω.

A related characteristic called Pareto optimality is used to identify solutions that are

potentially optimal before any tradeoffs between objectives are specified. A solution A ∈ Ω is

called Pareto optimal, or Pareto efficient, if for every other solution B ∈ Ω such that A is

worse than B in at least one objective, A is also better than B in at least one objective. If a

solution B is chosen over the Pareto optimal solution A, it can be a tradeoff or a downgrade, but

can never be an overall upgrade - any improvement in one objective will come at the cost of

inferior performance in another objective. Pareto optimality is also characterized in terms of

Pareto dominance: A solution A is Pareto optimal if and only if there is no other solution B ∈ Ω

such that B ≺par A. In allusion to this characterization, it is common to refer to Pareto optimal

solutions as “non-dominated” solutions. The set of all Pareto optimal solutions in the solution

space is called the Pareto set.

2.1.2 Aggregative Scoring

One of the simplest methods for making multi-objective optimization problems more

soluble is to decide on a set of tradeoff functions that relate the objectives. The result is a

reduction of the problem to an optimization in fewer objectives - ideally just one - at the cost of

3



Item Weight Price Energy Content Enjoyment Nutrition
(lb) ($) (kCal) (1 to 5) (1 to 5)

Beef Shank 2 12 1160 4 3

Bag of Candy 0.5 2.5 850 5 1

Whole Watermelon 4 2 470 3 2

Box of Pasta Noodles 1 0.8 1600 2 2

Bunch of Kale 0.5 2.5 113 2 5

Table 1: Example of Aggregative Scoring in Comparing Foods for Purchase
Each food is listed with its estimated scores for each objective. Every item in the list is Pareto-
Optimal under our set of goals.

an arbitrary narrowing of the Pareto-optimal set. This is generally done by creating objective

functions, which each combine some set of measurements describing the quality of a solution

with respect to the objectives into a single number. Such methods are referred to as aggregative

scoring, as they aggregate quality metrics for several objectives into one score. This reduction

simplifies the problem, but it also reduces the level of detail with which we view relationships

between solutions. If a solution A is better than a solution B in one way, but worse in another,

then they are incomparable under the Pareto dominance relation. However, aggregative scoring

will assign each of them to a single score, which may prescribe that A is better or worse than B.

The following example illustrates how this affects the relative optimality of solutions.

When shopping for groceries, we must balance the need to minimize price, minimize

energy content, maximize enjoyment, and maximize nutritional benefit. Table 1 lists a variety of

foods that are available, as well as their prices and estimates of their energy content, enjoyability,

and nutritional benefit.

One way to score these is to prioritize getting the greatest immediate enjoyment per

dollar. Under this scoring method, we have

f(food) =
cost

enjoyment
. (2.1)

This induces the ordering

Noodles ≺ Candy ≺Watermelon ≺ Kale ≺ Beef.
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Somewhat counter-intuitively, despite prioritizing enjoyment, we prefer noodles to candy and kale

to beef because cost is equally a priority. If the score is further weighted by the amount (in

pounds) of the item purchased, a different ordering is obtained:

f(food) =
cost

weight× enjoyment
. (2.2)

The associated ordering is

Watermelon ≺ Noodles ≺ Candy ≺ Beef ≺ Kale.

This scoring method assigns lower preferences to more nutritious foods. A shopper who values

enjoyment equally with a healthy diet might instead use

f(food) =
cost× energy

weight× (enjoyment + nutrition)
. (2.3)

We assume for this example that the units of preference given for enjoyment and nutrition are of

similar magnitude. This yields the ordering

Watermelon ≺ Kale ≺ Noodles ≺ Candy ≺ Beef.

Each of these aggregative scoring methods makes a clear indication about which foods are

more optimal than others, even though they are incomparable by Pareto dominance. Each scoring

method induces a total ordering on the solution space, and this ordering is often inconsistent

between scoring methods. Not every Pareto optimal solution will be optimal under an aggregative

scoring method. However, any solution that is optimal under an aggregative scoring method must

be Pareto optimal. As a result, the set of optimal solutions under an aggregative scoring method

can be viewed as a narrowing of the Pareto set, and can be obtained by finding the subset of the

Pareto set that is preferred under the scoring method. Aggregative scoring methods are

simplifications through which we can more easily make sense of the complex relationships between

solutions. The utility of an aggregative scoring method is determined by how well the total
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ordering it induces on Ω reflects our preferences in the comparisons we want to perform.

2.2 Branch and Bound

Suppose we are interested in solving a global optimization problem with one objective. In

general, this means we want to minimize an objective function f : Ω→ R operating on elements

of the solution space Ω. If |Ω| is finite and small, and evaluating f is acceptably fast, the

minimum can be computed with absolute certainty by performing an exhaustive search. If,

instead, |Ω| is very large, and we may evaluate f for only a small fraction of the elements of Ω in

the available time, we must decide which elements we evaluate and which others we ignore.

Branch and Bound is a pattern in algorithm design that provides a reasonable way to decide

which elements to ignore. It was originally proposed by Land and Doig in 1960 [13].

Appropriately enough, it is composed of the repeated application of two processes, which are

called branching and bounding.

The branching process splits a solution set S into a collection of proper subsets,

Branch(S) = {S1, S2, . . . , Sn}, that forms a cover of S. Each of these subsets is called a branch.

Ideally, this can be recursed on the subsets as well, so that S1 can be branched into

S1,1, S1,2, . . . , S1,n and likewise for the other branches of S. The number of times this recursion

must be able to be performed is problem-specific. The function Branch(S) need not be defined for

every conceivable set S; it only needs to be defined for the sets to which it will be applied.

Branching by partition, so that the branches are disjoint, is often desirable so that the differences

between the branches are clearer. It can be convenient to think of Branch(S) as forming a

partition of S, but the output generally only needs to be a cover of S.

The bounding process determines whether or not each branch should be kept or discarded.

It can be defined as a function Bound(S) that maps a set of branches S = {S1, S2, . . . , Sn} to a

subset of itself. Each branch in Bound(S) is kept, while each branch in S \ Bound(S) is

“discarded”, which means it will not be branched further. Bounding is often performed by

estimating bounds on the properties of the optimal solution, and using that to decide whether or

not a branch is likely to contain elements that satisfy those bounds. If it is determined that a

branch probably does not contain optimal elements, then that branch is discarded. Some of its
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elements may still be eligible to be evaluated, however, if they also belong to another branch that

was not discarded. This approach of culling less promising branches is used in Chapter 3.

Alternatively, if only one optimal solution is desired, and the bounding process can determine

with confidence that one or more branches contain optimal elements, then all other branches may

be discarded so that the search space can be reduced to those branches only. This is the approach

used in bisection search [21].

In the slightly simplified case where branching yields a partition, the branching process

can be thought of as creating a tree from subsets of the set of feasible solutions, with every

solution belonging to the root node and where for a set of solutions A, Branch(A) generates a new

set of nodes that are linked to A. The efficiency of the branch and bound pattern arises from the

judicious pruning of this tree, so that only the most worthwhile branches are examined in detail.

The specifics of both branching and bounding are determined by the problem; there is

often more than one feasible method for branching, and many possible bounding criteria. The

choice of branching pattern for a set of solutions may be influenced, for example, by the desire to

construct a solution in a particular step-by-step way. Another goal may be to avoid overlapping

elements between the branches, so that the process can be visualized as generating a tree.

Bounding criteria may be informed by prior knowledge about the problem, or come entirely from

ad-hoc heuristics.

Additional details on branch and bound optimization can be found in Mehlhorn and

Sanders [17].

2.2.1 The Structure of the Algorithm

The basic structure of branch and bound optimization is given by the following

instructions:

Step 1: Initialization.

Set S = {Ω}, so that S is a collection containing the set of all feasible solutions, Ω.

Step 2: Branching.

Set S =
⋃
S∈S

Branch(S), so that S is now the set of all the branches of its previous

elements.
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Step 3: Bounding.

Set S = Bound(S). This generally involves evaluating the solution sets in S, comparing

them in some manner, and then removing any branches that are determined to be

unfavorable from the search process.

Step 4: Condition Checking.

If termination conditions are met, the result is S. Otherwise, go to step 2 (Branching).

General termination conditions may include

1. Being unable to continue to branch. If the Branch() function is undefined for some of the

elements of S, then the algorithm cannot proceed.

2. Having too many solution sets in S to evaluate all of their branches in the available time

during the next bound step. If the bounding step requires a significant amount of

computation time, and it must be performed for a very large number of branches, then

completion of the routine may become unfeasible.

3. Few enough solutions remain in
⋃
S∈S

S that they can be evaluated exhaustively in a

reasonable timespan. If an exhaustive search of the remaining solutions can be performed, it

may be more reliable than the bounding function at locating optimal solutions.

Each of these conditions indicates that it may be beneficial to continue the optimization with an

alternative strategy. Additional termination conditions may depend on the specific problem being

solved.

2.2.2 Example: Minimization with Ideal Bounding

In this example, we demonstrate the overall process of branch and bound optimization.

Suppose we have the real-valued function f(x) = 1− cos
(
πx2

2

)
defined on the closed interval

[0, 3.2], and we want to use a branch and bound strategy to locate the set M of inputs that

minimize f ,

M = {s ∈ [a, b] | f(s) ≤ f(x) ∀ x ∈ [a, b]} . (2.4)
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Suppose we have a bounding function Bound(S) that discards a solution set S if and only if it

does not contain a minimum:1

Bound(S) = {S ∈ S | M ∩ S 6= ∅} . (2.5)

We define Branch(S) for a closed interval S = [a, b] to be

Branch(S) =

{[
a,
a+ b

2

]
,

[
a+ b

2
, b

]}
. (2.6)

Note that Branch() is only defined here for closed intervals. This is sufficient, since every time

Branch() is used, the input is a closed interval. The solution space Ω ≡ [0, 3.2] is a closed interval,

and Branch() always produces a set of closed intervals, so the first and every subsequent

evaluation of Branch() will be performed on a closed interval.

In the first two iterations of branch and bound, the solution space [0, 3.2] is branched into

[0, 1.6], [1.6, 3.2], and both intervals are kept during bounding because [0, 1.6] contains a minimum

at 0 and [1.6, 3.2] contains minima at 2 and 2
√

2. Each of these intervals is then branched to yield

S = {[0, 0.8], [0.8, 1.6], [1.6, 2.4], [2.4, 3.2]}. The interval [0.8, 1.6] does not contain a minimum, so

it is discarded, leaving S = {[0, 0.8], [1.6, 2.4], [2.4, 3.2]} at the end of the second iteration. For the

purpose of demonstration, let the termination condition be that five bounding steps have been

completed. The state of the process after each iteration is summarized by Figure 1. After the

third iteration, each additional iteration reduces the size of the remaining search space by half. If

the midpoint of the two bounds of each remaining interval is taken to be an estimate of the

location of a minimum, then these estimates will converge geometrically to the complete set of

minima.

1While it is convenient, this definition may not always be practical, as determining whether or not a solution set
contains a minimum may be very difficult depending on the choices of f , a, and b. We label this an “ideal” bounding
function to highlight that simplification.
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Iteration 2

Iteration 3

Iteration 4

Iteration 5

0 3.2

2

Figure 1: Progression Diagram of Branch and Bound Optimization
This is a visualization of branch and bound to minimize f(x) over [0, 3.2], with minima at 0, 2,
and 2

√
2. Discarded sets are greyed out, and an arrow is drawn from each retained set S to each

element of Branch(S) in the next iteration.
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CHAPTER 3

RESULTS FROM PROBABILITY AND STATISTICS

3.1 The Left-Continuous Inverse

For any nondecreasing function f , define the left-continuous inverse [7] of f to be

f←(x) := inf{y : f(y) ≥ x}. (3.1)

This is a convenient notation for inverting a cumulative distribution function (CDF), denoted by

F (x), into a quantile function F←(x) when the associated probability density function (PDF) f

has finite support. In agreement with the usual notation, this yields F−1(x) when f has

unbounded support.

3.2 Sampling and Error Distributions

Let S be a sample of size n from a random variable X. Suppose we want to estimate the

value of a parameter θ of X using an estimating statistic θ̂n computed from the S. Depending on

the particular observations in S, the resulting value of θ̂n may vary. The probability distribution

of the value of θ̂n is called the sampling distribution of θ̂n [24]. Perhaps the most intuitive

characterization of the sampling distribution of θ̂n is as the asymptotic distribution of θ̂n under

repeated observation. That is, if observations of θ̂n are made repeatedly by taking additional

samples of size n from X and computing θ̂n from a new sample each time, the sampling

distribution of θ̂n is the distribution of all values of θ̂n as the number of samples goes to infinity.

The signed error of an estimate θ̂ of a parameter θ is given by the difference

θ̂ − θ. (3.2)

Under repeated observation with a fixed sample size n, the estimator θ̂n is a random variable that

follows its sampling distribution and the difference (3.2) takes on a probability distribution called
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the error distribution of θ̂n, denoted here by the random variable en,

en = θ̂n − θ. (3.3)

Several common statistics have normal sampling and error distributions for large n, and of

particular importance in this work are the sampling distributions of the mean and the

non-extremal quantiles of a population.

Sampling Distribution of the Mean

Let P be a population with mean µ and finite variance σ2. An estimate of the mean of P

from a sample X1, X2, . . . , Xn is given by the sample mean X =
1

n

n∑
i=1

Xi, and the sampling

distribution of X is given by

X ∼ N
(
µ, σ2/n

)
(3.4)

with error distribution

X − µ ∼ N
(
0, σ2/n

)
(3.5)

for sufficiently large n. Exactly how large n must be to qualify as “sufficiently large” depends on

the distribution of the population. Wackerly et al. suggest a practical threshold of n ≥ 30 [24].

This result is often called the Central Limit Theorem (CLT).

Sampling Distributions of Quantiles

If a continuous random variable X has density f(x) and CDF F (x), then in the

estimation of the pth quantile Ϙp := F←X (p), where p ∈ (0, 1), the sampling distribution of the

sample quantile Ϙ̂p for sufficiently large n is given by

Ϙ̂p ∼ N
(
Ϙp,

p(1− p)
nf(Ϙp)2

)
(3.6)

with error distribution

Ϙ̂p − Ϙp ∼ N
(

0,
p(1− p)
nf(Ϙp)2

)
. (3.7)

Note that the sampling distributions of the extreme quantiles 0 and 1 are excluded from
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this definition. Indeed, error distributions for extreme quantiles tend not to be normally

distributed, as we discuss in Section 3.4. Since accurate estimation of the density f from sample

data is difficult unless additional information about the distribution is known ahead of time, it

may be more practical to obtain an estimate of the variance of this normal distribution via

bootstrap. It should be noted that “sufficiently large” is more and more difficult to achieve as p

gets close to 0 or 1. As such, while theoretically there is always a sample size beyond which (3.6)

holds, it may be impractically large for quantiles near the extremes. A proof of this result is given

by De Haan and Ferreira [7].

3.3 Linear Combinations of Independent Normal Distributions

The following result appears as Theorem 6.3 in Wackerly [24]. Let X1, X2, . . . , Xn be

independent, normally distributed random variables with means E(Xi) = µi and variances

V (Xi) = σ2
i for i = 1, 2, . . . , n, and let a1, a2, . . . , an be constants. If

U =

n∑
i=1

aiXi = a1X1 + a2X2 + · · ·+ anXn, (3.8)

then U is a normally distributed random variable with

E(U) =

n∑
i=1

aiµi = a1µ1 + a2µ2 + · · ·+ anµn (3.9)

and

V (U) =
n∑
i=1

a2
iσ

2
i = a2

1σ
2
1 + a2

2σ
2
2 + · · ·+ a2

nσ
2
n. (3.10)

Effectively, this means that the set of normally distributed random variables is closed under

addition and scalar multiplication.

3.4 Extreme Value Theory

3.4.1 Extreme Value Distributions and Domains of Attraction

The following definition is from De Haan and Ferreira [7], with minor reformatting. Let

X1, X2, . . . , Xn be independent, identically distributed random variables with a common
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underlying distribution function F , and define x∗ := sup{x : F (x) < 1}. Then

P (max (X1, X2, . . . , Xn) ≤ x) = P (X1 ≤ x,X2 ≤ x, . . . ,Xn ≤ x) = Fn(x),

so max (X1, X2, . . . , Xn) converges in probability to x∗ as n→∞. If there exists a sequence of

constants an > 0 and bn ∈ R, for n = 1, 2, . . . such that

max (X1, X2, . . . , Xn)− bn
an

has a nondegenerate probability distribution as n→∞; that is,

lim
n→∞

Fn(anx+ bn) = G(x) (3.11)

for every continuity point x of G, where G is a nondegenerate distribution function. Then G(x) is

an extreme value distribution.

In somewhat more practical terms: Let Gn(x) be the distribution of the maximum of a

sample of size n from a distribution X. If, after disregarding location and scale, the shape of

Gn(x) converges to G(x) as n→∞, then G(x) is an extreme value distribution. An enormous

body of literature is dedicated to showing that the shapes of the distributions of maxima and

minima for samples from nearly all distributions converge to extreme value distributions for

sufficiently large samples [12]. Such distributions X for which Gn(x)→ G(x) as n→∞ are said

to be in the domain of attraction of G, written X ∈ D(G).

3.4.2 Fisher-Tippett-Gnedenko Theorem

An extremely valuable theoretical result was obtained first by Fisher and Tippet (1928),

then later generalized by Gnedenko (1943) [12]. It fully characterizes the class of extreme value

distributions as Gγ(ax+ b), where a > 0 and b ∈ R, and

Gγ(x) = exp
(
−(1 + γx)−1/γ

)
, 1 + γx > 0. (3.12)

This means that if X ∈ D(G) (that is, the shape of the distributions of sample maxima
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converges for large n), then G must be Gγ for some real γ under an appropriate shift and

rescaling. These distributions Gγ are called generalized extreme value (GEV) distributions.

The GEV distributions generalize the Weibull, Frechét, and Gumbel distributions, with each

corresponding to different choices of γ. See De Haan and Ferreira for details [7].

3.4.3 Pickands-Balkema-De Haan Theorem

Another powerful theorem from Extreme Value Theory was formalized in 1974 by

Balkema and De Haan [2]. It states that if X ∈ D(G) - the same mild assumption as

Fisher-Tippett-Gnedenko - the upper tail of FX can be approximated using a generalized

Pareto distribution (GPD). The CDF of a GPD with location µ, shape parameter ξ, and scale

σ > 0 is given by

FGPD(x;µ, σ, ξ) =


1−

(
1 + ξ

(x−µ
σ

))−1/ξ
if ξ 6= 0, and

1− e−(x−µ)/σ if ξ = 0.

. (3.13)

If X1, X2, . . . , Xn are i.i.d. random variables with common distribution X and continuous

CDF F (x), and X ∈ D(G) for some GEV distribution G, then the conditional excess distribution

function,

Fu(x) = P (X − u ≤ x | X > u) =
F (u+ x)− F (u)

1− F (u)
, (3.14)

is well-approximated by the CDF of a GPD with location µ = 0 for suitably large u [12].

The parameter u can be interpreted as the transition point such that F (x) is

well-approximated by a transformed GPD CDF for x ≥ u. The difficulty in applying this model

arises from the need to find optimal choices for u, ξ, and σ so that the model fits the data as

closely as possible. This is nontrivial, as each of these parameters strongly influences the

optimality of the others. In the following year, Pickands [10] developed an efficient computational

method for estimating these optimal values in O(n2) time. This allows us to model the tail of a

distribution with a GPD approximation using observed values of X1, X2, . . . , Xn. Our

implementation builds on the approach outlined by Pickands. See Chapter 7 for details.
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3.5 Empirical Distributions

The empirical distribution of a univariate dataset D = {x1, x2, . . . , xn}, indexed so that

xi ≤ xi+1 for i < n, is a probability distribution with its CDF described by the piecewise step

function [7] given below:

F̂Emp(x) =


0 if x < x1,

i/n if xi ≤ x < xi+1, for i = 1, 2, . . . , n− 1, and

1 if x ≥ xn.

(3.15)

This CDF is called the empirical CDF of the data, often abbreviated as the ECDF. If

X1, X2, . . . , Xn are i.i.d. following a common distribution X, then the ECDF of observations

x1, x2, . . . , xn will converge pointwise to X as n→∞. As such, if a large sample is taken from a

population, the ECDF of the sample can be used as an approximation of the CDF of the

population.

The ECDF can be characterized as a step function that starts at 0 coming from the left,

increases by 1/n for each datapoint it travels over, and then continues on to the right at 1. Its

corresponding density function is the superposition of n Dirac delta functions that have each been

rescaled by a factor of 1/n. That is,

f̂Emp(x) =
1

n

n∑
i=1

δ(xi). (3.16)

The ECDF of a small dataset is demonstrated in Figure 2.

3.6 Bootstrap Estimation

Bootstrap estimation is a Monte Carlo method for estimating the distributions of the

parameters of a probability distribution using limited sample data. The pattern of logic behind

bootstrap is that since the empirical distribution of the sample can be treated as an

approximation of the distribution of the population, properties of a sample of size n taken from

the population can be modeled by observing the properties of samples of size n taken from the

empirical distribution. As it may be expensive to observe new values from the population, but
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Figure 2: The ECDF of a Sample
This is the ECDF of a sample given by the set {1, 2, 4, 6}.

sampling from already observed data takes little effort, a few hundred of these “bootstrap”

samples can be used to model the shape and spread of sampling distributions with a very modest

amount of computational effort. A practical guide to bootstrap is provided by Press et. al. [20],

and much of this information can be found in greater detail there.

Let S0 = X1, X2, . . . , Xn be a sample from a probability distribution X with parameter θ.

Suppose θ̂ is an estimator of θ. Computing θ̂ from S0, we have one value of θ̂, with an unknown

error of estimation θ̂ − θ. For j = 1, 2, . . . ,m define bootstrap samples Sj by drawing a sample

of n elements with replacement from S0. Note that the bootstrap samples S1, S2, . . . , Sm may

differ from S0 if n > 1. Let θ̂i be the value of θ̂ computed from Si. If the empirical distribution of

S0 is a good approximation of X for the purpose of estimating θ, then the distribution of θ̂ − θ

approximately follows that of θ̂j − θ̂0 for j = 1, 2, . . . ,m. Since we can choose m to be as large as

we want, we can cheaply sample from the approximate error distribution θ̂j − θ̂0 to develop an

image of how θ̂ − θ behaves.

The usefulness of this technique is dependent on the quality of the ECDF of S0 as an

approximation of the CDF of X in the computation of θ̂. For this reason, larger original sample

sizes (values of n) and statistics that are computed from a large number of values spread out over

the support tend to yield better bootstrap estimates. Conversely, the error distributions of

statistics computed from singular or closely-clustered points tend to be harder to bootstrap. After

a point, taking additional bootstrap samples (increasing m) yields little improvement in the

17



1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

Monte Carlo

Central Limit Theorem

Bootstrap

1 2 30−1−2

0.2

0.4

0.6

0.8

1.0

Monte Carlo

Central Limit Theorem

Bootstrap

Figure 3: Comparison of CLT and Bootstrap Error Estimates
(Left) A comparison of the CDFs of two estimates of the sampling distribution of the mean, as well
as the actual sampling distribution (via Monte Carlo). (Right) The CDFs of the corresponding
error distributions, centered at 0.

accuracy of parameter estimates from the approximate error distribution θ̂j − θ̂0. It is

conventional to choose m ≈ 200 for most computations [9].

3.6.1 Example: Error Distribution of the Sample Mean

As we mentioned in Section 3.2 the error in the sample mean x for sufficiently large n is

given by the Central Limit Theorem (CLT) (3.5) as

x− µ ∼ N
(
0, σ2/n

)
.

So we should expect the variance of the estimator to be close to σ2/n. Figure 3 details the

exact (via Monte Carlo), CLT, and bootstrap estimates of the sampling distribution of the mean

of an exponential distribution with λ = 0.5 with n = 30. The CLT and bootstrap models are

centered at the sample mean, which in this example is somewhat to the right of the true mean

at 2. This difference of location does not affect the estimated error distributions, which are good

models of the true error distribution even with our small sample size and the highly skewed shape

of the exponential distribution.
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CHAPTER 4

METHODS FROM NUMERICAL INTEGRATION

Numerical integration is the computational approximation of the value of a definite

integral. It is sometimes alternatively called quadrature. Much of the information in this section

is given in greater detail by Sauer [21]. In general, we want to evaluate

I(f) =

∫ b

a
f(x) dx (4.1)

for some function f that is integrable on a nondegenerate interval [a, b]. For the purposes of this

work, we will focus on the case where this interval of integration is closed and bounded, but many

of these methods can also be used on open or unbounded intervals. In much of the literature on

this subject, the interval is taken to be [−1, 1], and an appropriate transformation from [a, b] to

[−1, 1] is used to define a new function g(x) on [−1, 1] such that

I(f) =

∫ 1

−1
g(x) dx. (4.2)

Such a transformation can always be found, even if the integral is improper, so the interval of

integration may be chosen to be [−1, 1] without loss of generality [22]. A simple way to do this for

proper integrals is to define a function h : [−1, 1]→ [a, b],

h(x) =
1

2
((b− a)x+ b+ a) (4.3)

so that g = f ◦ h linearly maps [−1, 1] to f([a, b]). For improper integrals, things are somewhat

trickier. It is sometimes possible to truncate the interval of integration by discarding one or more

infinite subintervals. If this cannot be done, then Gauss-Laguerre or Gauss-Hermite quadrature

(for single and double-sided improper integrals, respectively) may work, but some argue that

Gaussian integration methods are not reliable for evaluating improper integrals [22]. Definite

integrals on nondegenerate intervals can be thought of as taking uncountably many points into

consideration, but computational methods can only involve finitely many steps, so it is necessary
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to determine a finite set of inputs x1, x2, . . . , xn at which the integrand should be evaluated. Each

function value g(xi) may then be scaled by an appropriate weight factor wi, and the result is

summed to approximate the definite integral as follows:

I(f) ≈
n∑
i=1

wig(xi) ≡ In(f). (4.4)

Intuitively, evaluating the function at a greater number of points will tend to yield a better

approximation of the integral.

This much is common to all of the quadrature techniques we will consider. The

computational differences between these techniques arise mainly from choosing different

evaluation points xi and weights wi for i = 1, 2, . . . , n.

It is worth noting that the theoretical efficiency of a quadrature technique is commonly

judged by the highest degree of polynomial with arbitrary coefficients that it can integrate exactly

using n evaluation points [21]. While interesting from an analytical standpoint, this metric can be

misleading [22] and was disregarded for this project.

In Chapter 6, we develop a specific set of integrals on which we may apply these methods.

For the purpose of demonstration, in this chapter we provide an example of each technique for the

definite integral ∫ 4

1

√
x dx, (4.5)

which evaluates to 4.6. Each example will use the same number of evaluation points so that a

comparison may be more clearly drawn between the methods.

4.1 Newton-Cotes Rules

Newton-Cotes quadrature techniques are obtained by interpolating a function’s values at

evenly spaced points with polynomials, and then analytically integrating the interpolant over the

interval of interest. They are closely related to Riemann integration. The evaluation positions

x1, x2, . . . , xn are defined to be evenly spaced on [a, b], with x1 taking the value of the left bound

of the interval and xn likewise taking the value of the right bound. Though others were also

examined for this project, two particularly effective Newton-Cotes rules are described in this
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x

y

1−1 0.5−0.5

0.5

0.25

Evaluation Points for the Trapezoid Rule

Nodes xi Weight wi

−1 0.166 666 666 666 667
−0.666 666 666 666 667 0.333 333 333 333 333
−0.333 333 333 333 333 0.333 333 333 333 333
0 0.333 333 333 333 333
0.333 333 333 333 333 0.333 333 333 333 333
0.666 666 666 666 667 0.333 333 333 333 333
1 0.166 666 666 666 667

Figure 4: Nodes and Weights for a 7-point Trapezoid Rule
The interval of integration is assumed to be [−1, 1] to allow comparison with other methods.

section.

4.1.1 Trapezoid Rule

The first Newton-Cotes rule we consider is the trapezoid rule - a relatively simple

numerical integration technique that is often mentioned in elementary calculus. In the trapezoid

rule, each adjacent pair of evaluation points is interpolated linearly to construct a trapezoidal

region under the interpolant. The value of the definite integral is the area under the curve defined

by the integrand, and this is approximated geometrically by summing the trapezoids’ areas. The

weights are given by w1 = wn = h/2, and w2 = w3 = · · · = wn−1 = h where h = (b− a)/(n− 1).

An example of the nodes and weights for a 7-point trapezoid rule is given in Figure 4. Despite

being relatively slow to converge for most expressions, this technique is famously efficient for

integrating periodic functions [23].

Applying this to the example integral (4.5) with 7 evaluation points, we have

I7(x) =

7∑
i=1

wi
√
xi = h

[
1

2

√
1 +
√

1.5 +
√

2 +
√

2.5 +
√

3 +
√

3.5 +
1

2

√
4

]
≈ 1

2
(9.32298) = 4.66149.

The error in this approximation is 5.178× 10−3, and the relative error is 1.11× 10−3.
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x

y

1−1 0.5−0.5

0.5

0.25

Evaluation Points for Simpson’s 3/8 Rule

Nodes xi Weight wi

−1 0.125
−0.666 666 666 666 667 0.375
−0.333 333 333 333 333 0.375
0 0.25
0.333 333 333 333 333 0.375
0.666 666 666 666 667 0.375
1 0.125

Figure 5: Nodes and Weights for a 7-point Simpson’s 3/8 Rule
The interval of integration is assumed to be [−1, 1] to allow comparison with other methods.

4.1.2 Simpson’s 3/8 Rule

Simpson’s 3/8 rule is another Newton-Cotes method, and it is usually much faster than

the trapezoid rule with similar reliability. It is obtained by interpolating sequences of four

consecutive points by cubic polynomials, and the number of evaluation points n must satisfy

n = 3k + 1 for some positive integer k. There are a few different variations of this rule, and the

one we implemented is defined by the weights in the following expression

wi =



3h
8 if i = 1 or i = n,

6h
8 if 1 < i < n and i mod 3 = 1, and

9h
8 otherwise,

(4.6)

where h is the fixed step size (b− a)/(n− 1).

Applying the nodes and weights in Figure 5 to the integral in (4.5) using a transformation

from [−1, 1] to [1, 4], a Simpson’s 3/8 Rule approximation of (4.5) using 7 evaluation points would
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be given by

∫ 4

1

√
x dx ≈

7∑
i=1

wi
√
xi

=
3h

8

[
1
√

1 + 3
√

1.5 + 3
√

2 + 2
√

2.5 + 3
√

3 + 3
√

3.5 + 1
√

4
]

≈ 3

8

(
1

2

)
(24.8878)

= 4.66646.

The error in this approximation is 2.058× 10−4, yielding a relative error of 4.41× 10−5.

4.2 Gaussian Quadrature

Gaussian quadrature is based on evaluating the transformed function g(x) at the roots of

orthogonal polynomials. For proper integrals, the Legendre polynomials are often used, while for

improper integrals the Laguerre and Hermite polynomials are standard [6].

4.2.1 Gauss-Legendre Quadrature

For Gauss-Legendre quadrature, the integral I(f) must be transformed so that the

interval of integration is over [−1, 1], as in (4.4).

The evaluation points x1, x2, . . . , xn of an n-point Gauss-Legendre rule are given by the

roots of the nth-degree Legendre polynomial, while the weights wi are computed from that

polynomial’s derivative. The 0th and 1st-degree Legendre Polynomials are P0 = 1 and P1 = x,

respectively, and higher degree Legendre polynomials can be obtained from these by the

recurrence relation

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x). (4.7)

An efficient method for computing the nodes and weights was developed by Bogaert [4]. Our

implementation of Gauss-Legendre quadrature uses an efficient wrapper of the C++ code that

was published alongside that paper to obtain the necessary nodes and weights.

For our example integral, first the standard interval of integration [−1, 1] is transformed to
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x

y

1−1 0.5−0.5

0.5

0.25

Evaluation Points for Gauss Legendre

Node xi Weight wi

−0.949 107 912 342 758 0.129 484 966 168 870
−0.741 531 185 599 394 0.279 705 391 489 277
−0.405 845 151 377 397 0.381 830 050 505 119
0 0.417 959 183 673 469
0.405 845 151 377 397 0.381 830 050 505 119
0.741 531 185 599 394 0.279 705 391 489 277
0.949 107 912 342 758 0.129 484 966 168 870

Figure 6: Nodes and Weights for a 7-point Gauss-Legendre Rule

Computations for Gauss Legendre on (4.8)

Node xi Weight wi h(xi)
√
h(xi) wi

√
h(xi)

−0.949 . . . 0.129 . . . 1.076 338 131 485 86 1.037 467 171 281 03 0.134 336 401 574 637
−0.741 . . . 0.279 . . . 1.387 703 221 600 91 1.178 008 158 545 99 0.329 495 233 163 667
−0.405 . . . 0.381 . . . 1.891 232 272 933 90 1.375 220 808 791 78 0.525 100 630 876 654

0 0.417 . . . 2.5 1.581 138 830 084 19 0.660 851 494 696 412
0.405 . . . 0.381 . . . 3.108 767 727 066 10 1.763 169 795 302 23 0.673 231 211 989 349
0.741 . . . 0.279 . . . 3.612 296 778 399 09 1.900 604 319 262 45 0.531 609 275 185 514
0.949 . . . 0.129 . . . 3.923 661 868 514 14 1.980 823 532 905 98 0.256 486 868 144 832

Table 2: Computations for Gauss-Legendre Quadrature
These are the computations for applying a 7-point Gauss-Legendre rule to the example integral
(4.5).

[1, 4] by the linear mapping h(x) = 1.5x+ 2.5. Then our integral (4.5) can be rewritten

∫ 4

1

√
x dx =

dh

dx

∫ 1

−1

√
h(x) dx ≈ 3

2

n∑
i=1

wi
√
h(xi). (4.8)

The nodes and weights for a 7-point Gauss-Legendre rule are given in Figure 6, and the

computations for (4.8) are demonstrated in Table 2. Applying these computations, we have

7∑
i=1

wi
√
h(xi) = 3.11111111563107,
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x

y

1 2 3−1−2−3

1

0.25

Evaluation Points for Gauss Hermite

Node xi Weight wi

−2.651 961 356 835 23 0.000 971 781 245 099
−1.673 551 628 767 47 0.054 515 582 819 127
−0.816 287 882 858 965 0.425 607 252 610 128
0 0.810 264 617 556 808
0.816 287 882 858 965 0.425 607 252 610 128
1.673 551 628 767 47 0.054 515 582 819 127
2.651 961 356 835 23 0.000 971 781 245 099

Figure 7: Nodes and Weights for a 7-point Gauss-Hermite Rule

and by multiplying by the derivative
dh

dx
, our approximation of the definite integral (4.5) becomes

In =
dh

dx

7∑
i=1

wi
√
h(xi) = 4.6666666734466.

This yields an error of 6.7799× 10−9 and a percent error of 1.452× 10−9.

4.2.2 Gauss-Hermite Quadrature

Gauss-Hermite quadrature computes an approximation of an integral over R of the form

∫ ∞
−∞

e−x
2
f(x) dx ≈

n∑
i=1

wif(zi). (4.9)

The nodes of an nth-order Gauss-Hermite quadrature rule are located at the roots of the

physicist’s Hermite polynomial with degree n. A reasonably efficient method for computing the

nodes and weights was implemented in C++ by J. Burkardt [5], and this implementation was

ported to C# for this project [16]. The nodes and weights for a 7-point rule are demonstrated by

Figure 7.

We examine this technique because it appears, at a glance, to be particularly well-suited

to evaluating integrals of the form encountered in Chapter 6. However, it is not well-suited to
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evaluating proper integrals. Nonetheless, we define the transformation

x : (−∞,∞)→ [1, 4], x(z) =
3

π
tan−1

(π
3
z
)

+ 2.5 (4.10)

and observe that

dx

dz
=

3

π
· 1

1 + (πz)2

9

· π
3

=
9

9 + (πz)2
. (4.11)

Then by a change of variables, we have that

∫ 4

1

√
x dx =

∫ ∞
−∞

√
x(z)

dx

dz
dz =

∫ ∞
−∞

√
x(z)

9

9 + (πz)2
dz. (4.12)

Since this lacks the required exponential term, we rewrite it as

∫ 4

1

√
x dx =

∫ ∞
−∞

e−z
2
ez

2√
x(z)

9

9 + (πz)2
dz. (4.13)

Then the function f in (4.9) is

f(z) = ez
2

√
3

π
tan−1

(π
3
z
)

+ 2.5
9

9 + (πz)2
. (4.14)

Approximations using this integrand with a large number of evaluation points do converge

to the correct value of the integral with sufficiently precise arithmetic, but not in

double-precision, where the exp(z2) term rapidly inflates the size of the subtotal to where

rounding errors become significant. It is possible there are alternative transformations x(z) which

enable faster convergence, though Gauss-Hermite is generally a poor choice for evaluating proper

integrals like (4.5). In contrast, this technique excels when the integrand is a polynomial in z

multiplied by ez
2
, and is a natural choice for improper integrals where the integrand already

contains e−z
2

as a factor. For this reason, a more appropriate example is

∫ ∞
−∞

e−x
2√|x| dx, (4.15)
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Computations for Gauss-Hermite on (4.8)

Node xi Weight wi f(xi) wif(xi)

−4.101 337 596 178 64 4.825 731 850 073× 10−8 2.025 175 942 030 38 9.772 956 045 457× 10−8

−3.246 608 978 372 41 2.043 036 040 270× 10−5 1.801 834 892 095 39 3.681 213 623 168× 10−5

−2.519 735 685 678 24 1.207 459 992 719× 10−3 1.587 367 533 269 54 1.916 682 790 164× 10−3

−1.853 107 651 601 51 2.086 277 529 616× 10−2 1.361 288 966 972 67 2.840 026 583 110× 10−2

−1.220 055 036 590 75 1.403 233 206 870× 10−1 1.104 561 015 331 77 1.549 956 695 727× 10−1

−0.605 763 879 171 06 4.216 162 968 985× 10−1 0.778 308 344 533 87 3.281 474 820 676× 10−1

0 6.043 931 879 211× 10−1 0 0
0.605 763 879 171 06 4.216 162 968 985× 10−1 0.778 308 344 533 87 3.281 474 820 676× 10−1

1.220 055 036 590 75 1.403 233 206 870× 10−1 1.104 561 015 331 77 1.549 956 695 727× 10−1

1.853 107 651 601 51 2.086 277 529 616× 10−2 1.361 288 966 972 67 2.840 026 583 110× 10−2

2.519 735 685 678 24 1.207 459 992 719× 10−3 1.587 367 533 269 54 1.916 682 790 164× 10−3

3.246 608 978 372 41 2.043 036 040 270× 10−5 1.801 834 892 095 39 3.681 213 623 168× 10−5

4.101 337 596 178 64 4.825 731 850 073× 10−8 2.025 175 942 030 38 9.772 956 045 457× 10−8

Table 3: Computations for Gauss-Hermite Quadrature
These are computations for applying a 13-point Gauss-Hermite rule to (4.15). Due to the integrand
being even, this only uses the information of 7 evaluation points, which is comparable to our
examples in the other methods.

which evaluates to approximately 1.22541670247. For this integral, the function f in (4.9) is

f(x) =
√
|x|. (4.16)

An approximation of (4.15) can be obtained by Gauss-Hermite quadrature as

I(f) ≈
n∑
i=1

wi
√
|xi|. (4.17)

The relevant computations are given by Table 3. Adding up the last column, we have an

approximate value of 1.02699402025491, which yields an error of 1.984× 10−1 and a relative error

of 1.619× 10−1.

4.3 Clenshaw-Curtis Quadrature

Developed in 1960 specifically for use in computer algorithms [6], Clenshaw-Curtis

quadrature is very similar to Gauss-Legendre in that it approximates a definite integral with an

assumed interval of integration of [−1, 1]. However, unlike in Gaussian quadrature methods,
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x

y

1−1 0.5−0.5

0.6

0.3

Evaluation Points for Clenshaw Curtis

Node xi Weight wi

−1 0.028 571 428 571 428
−0.866 025 403 784 438 0.253 968 253 968 254
−0.5 0.457 142 857 142 857
0 0.520 634 920 634 921
0.5 0.457 142 857 142 857
0.866 025 403 784 438 0.253 968 253 968 254
1 0.028 571 428 571 428

Figure 8: Nodes and Weights for a 7-point Clenshaw-Curtis Quadrature Rule

Clenshaw-Curtis nodes have the convenient property of “nesting”, which allows the evaluation

points of an n+ 1 point rule to be recycled when increasing the number of evaluation points to

2n+ 1, allowing the accuracy of the approximation to be refined very efficiently.

Clenshaw-Curtis quadrature rules require evaluating the integrand at Chebyshev points.

The nodes xk of an n+ 1 point rule are given by

xk = cos

(
kπ

n

)
, k = 0, 1, . . . , n. (4.18)

Geometrically, these are the abscissas of n+ 1 points evenly spaced along the upper half of a unit

circle centered at the origin. A method for efficiently computing the weights of Clenshaw-Curtis

rules using the discrete cosine transform was developed by Waldvogel [25], which gives the

following computations:

wk =
ck
n

1−
n/2∑
j=1

bj
4j2 − 1

cos

(
2jkπ

n

) , k = 0, 1, . . . , n (4.19)

where

bj =


1 if j = n/2, and

2 if j < n/2,

and ck =


1 if k = 0 mod n, and

2 otherwise.

(4.20)

Since this method performs integration over the same interval (4.2) as Gauss-Legendre, we

will re-use the transformed integrand from that method (4.8) for the example integral. Recall

28



Computations for Clenshaw-Curtis on (4.8)

Node xi Weight wi h(xi)
√
h(xi) wi

√
h(xi)

−1 0.028 . . . 1 1 0.028 571 428 571 428
−0.866 . . . 0.253 . . . 1.200 961 894 323 34 1.095 884 069 746 13 0.278 319 763 745 049
−0.5 0.457 . . . 1.75 1.322 875 655 532 30 0.604 743 156 814 764

0 0.520 . . . 2.5 1.581 138 830 084 19 0.823 196 089 313 673
0.5 0.457 . . . 3.25 1.802 775 637 731 99 0.824 126 005 820 340
0.866 . . . 0.253 . . . 3.799 038 105 676 66 1.949 112 132 658 52 0.495 012 605 119 625
1 0.028 . . . 4 2 0.057 142 857 142 857

Table 4: Computations for Clenshaw-Curtis Quadrature
These are computations for applying a 7-point Clenshaw-Curtis rule to the example integral (4.5).

Method Relative Error

Trapezoid Rule 1.11× 10−3

Simpson’s 3/8 Rule 4.41× 10−5

Gauss-Legendre 1.452× 10−9

Gauss-Hermite 1.619× 10−1

Clenshaw-Curtis 2.557× 10−7

Table 5: Comparison of Relative Errors for 7-point Quadrature Rules
This is a summary of the relative errors for each integration technique applied to (4.5) with 7
evaluation points.

that this gave us ∫ 4

1

√
x dx ≈ 3

2

n∑
i=1

wi
√

1.5xi + 2.5. (4.21)

Applying the Clenshaw-Curtis nodes and weights given in Figure 8, we obtain Table 4.

Adding up the last column of 4 and multiplying by
dh

dx
=

3

2
, we have

dh

dx

n∑
i=1

wi
√
h(xi) =

3

2
(3.11111190652774) = 4.66666785979161. (4.22)

This result has an error of 1.193× 10−6, and a relative error of 2.557× 10−7.

Table 5 summarizes the relative errors we observed for each integration method.
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CHAPTER 5

OVERVIEW OF INFERENCE-DRIVEN BRANCH AND BOUND

Suppose we have a global optimization problem in n variables,

minimize
x∈Ω

f(x) where x = (x1, x2, . . . , xn),

which satisfies the following two conditions:

• The solution space Ω is branchable. That is, there is an operation Branch(S) by which

some sets S ⊆ Ω can be split into subsets called branches, as in Section 2.2, where elements

of a branch share one or more properties that may affect solution fitness. Furthermore, each

branch can again be divided into even smaller branches, within which elements share one or

more additional properties. Ideally, this branching process can be recursed until some

favorable subset of the branches contains few enough solutions that they can be evaluated

directly.1

• The optimization problem is structured. By this, we mean that there is some correlation

between the branch membership of optimal elements of Ω and a parameter γ of the branch

chosen so that it has an estimator γ̂ whose sampling distribution can be estimated from a

relatively small sample of a branch. We will call γ the guiding parameter, and γ̂ the

guiding statistic, because we will use them to decide where to look for optimal solutions.2

Whether or not a problem is structured depends jointly on the solution space, the objective

function f , and the choice of branching operation. We will adopt the convention that

smaller values of γ are associated with higher likelihood of optimality; that is, the

correlation between branch membership of optimal elements and γ is negative.3

1If this does not happen, random sampling of these branches may still tend to produce a more optimal result
than a comparably sized random sample from the whole solution space. Likewise, local optimizations within these
branches may also be fruitful.

2This requirement is to avoid “needle in a haystack” scenarios, where there is no correlation between the fitness
of the optimal solution and that of other solutions – regardless of any similarities in their properties or composition.

3In a similar manner to the convention for objective functions, this choice of “smaller is better” comes with no
loss of generality.
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5.1 The Bounding Criterion

As we desire to follow a branch and bound pattern, and the branch operation is provided

by our assumptions, the rest of this chapter is focused on devising a criterion for bounding. Our

strategy for this is to use the guiding statistic γ to determine which branches to keep, and which

others to discard, by following a simple rule: if A and B are branches and γA < γB, then B can

be discarded. It is productive to think of γA as a proxy for the minimum of f(A). As membership

of optimal elements in a branch B is inversely correlated with γB, so that a smaller value of γB

may indicate a larger concentration of optimal elements in B, then if this indication is not

drowned out by noise from other factors that may affect the value of γB, we can find optimal

elements efficiently by exploring only the branches with the smallest γ values so far observed.

5.2 Guiding Parameters and Statistics

Using this bounding criterion, if we could make decisions by letting γB be the minimal

value of the objective function over all of the elements of a branch B, then eventual convergence

to a set of branches containing the complete set of global optima would be guaranteed. After all,

any branches containing a global optimum would have the lowest observable value of γ in any

comparison, so every other branch could be discarded.4

Choosing to use the minimal objective function value over the branch as a guiding

parameter requires evaluating the objective function for every element of the branch, as no sample

smaller than the entirety of the branch can guarantee that we observe any information about the

minimum. This ideal scenario demands that we perform an exhaustive search of the solution

space. That is why we require that the error distribution of the estimating guiding statistic for a

branch B must be able to be estimated from a random sample drawn from B. Intuitively, we want

γ to be sensitive to a branch’s minimum, and relatively insensitive to the less optimal elements of

a branch. We want the parameter to behave like the branch minimum when used in our bounding

criterion, while not requiring the whole branch to be evaluated to estimate its value.

The following are four examples of a reasonable choice for the guiding statistic. For each

of these examples, let B ⊆ Ω be any branch and let S be a sample consisting of n elements taken

4This is precisely the “ideal” bounding behavior we examined in Chapter 2.
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from B uniformly at random with replacement.

5.2.1 Arithmetic Mean

The arithmetic mean works well when there are not relatively large objective function

values present in each branch. The following logic is a direct application of the classic sampling

distribution of the mean, the Central Limit Theorem, which was described briefly in Chapter 2.

The guiding parameter is defined as the population mean,

γ = µB =
1

|B|
∑
x∈B

x. (5.1)

An unbiased estimate of γ can be computed from S by the formula for the sample mean,

γ̂ = µS =
1

n

∑
x∈S

x. (5.2)

For sufficiently large n, the distribution of the signed error of estimation γ̂ − γ is given by

γ̂ − γ = µS − µB ∼ N (0, σ2
B/n). (5.3)

Solving for the unknown parameter γ, this gives us a distribution for where γ is likely to be

located based on an observation of γ̂, by the relation

γ ∼ γ̂ +N (0, σ2
B/n) = N (γ̂, σ2

B/n). (5.4)

It should be noted that how large the sample size n must be before it is “sufficiently

large” is problem-specific. One may choose n to be appropriately large for a given problem by

trial and error, or more robustly by increasing n for a given branch until its bootstrapped error

distribution is passably normal under a distribution comparison such as the Lilliefors test [14].

The conventional heuristic is that n > 30 is usually sufficient5.

5Some textbook authors prefer larger numbers than 30 for this, and the number tends to be somewhere between
30 and 80. Our sample sizes in practice are generally well in excess of these minimal sufficient sizes.
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5.2.2 Small Quantiles

Elements of B that are relatively small under evaluation by f may be sufficiently close to

the minimum of f(B) that their values can serve as a guiding statistic for some problems. For

example, if the fitness of solutions in B is continuous with respect to some metric d defined on B,

then it is intuitive that the solutions that have f scores close to the 1st percentile of f(B) will

tend to be relatively close under d to solutions with the minimal f score. In this approach, we

choose a number p ∈ (0, 0.5] and obtain an estimate of the pth quantile of f(B) from a sample S0

by computing the pth quantile of S0. If X is the random variable such that f(B) ∼ X under

independent sampling from B with replacement, and FX is the CDF of X, a convenient definition

for the pth quantile of f(B) is

Ϙp = F←X (p). (5.5)

A corresponding estimate of the pth quantile computed from S0 can be defined as

Ϙ̂p = F̂←S (p), (5.6)

where F̂S is the ECDF of the sample S. Note that the proportion p is effectively rounded down to

the next k/n by F̂S , where k = 1, 2, . . . , n, and interpolation may be used to estimate quantiles

between these values. Recall (3.7), which said that the error distribution of this estimate is

asymptotically normal with mean 0. The variance, though given in terms of an unknown density

f(Ϙp)
2, can be estimated easily via bootstrap, as discussed in Section 3.6.

5.2.3 Sub-Quantile Means

This approach is a combination of the previous two. When using the arithmetic mean,

large deviations affect γ more strongly than small ones, which makes it more sensitive to the

minimum than to other negative deviations. However, this is equally true for both positive and

negative deviations, so the effects of large positive deviations may dominate the value of γ. To

avoid this, we can choose a small quantile p ∈ (0, 0.5], and let γB be the arithmetic mean of the

elements x ∈ B for which f(x) is less than the pth quantile of f(B). This allows γ to ignore some

of the more positive values in f(B) while remaining sensitive to extreme lower values - all at the
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cost of requiring more points to achieve a sufficient sample size. Intuitively, the estimator γ̂ is

given by the arithmetic mean of the sample elements s ∈ S such that f(s) is less than the pth

quantile of f(S). As in the previous method, the error of estimation is asymptotically normal,

and the variance of the error distribution can be estimated by bootstrap. The asymptotic

normality of the sampling distribution in this method is a direct consequence of the Central Limit

Theorem, as this guiding statistic is the mean of a large sample from a subset of the population.

A straightforward procedure for sampling from this lower subset of the population is to

choose a target sample size n and sample from the population until there are at least n elements

below the pth quantile of the sample. For large n and moderate p, the pth quantile of the sample

will converge to the pth quantile of the population, which makes it an effective threshold for this

purpose. The mean of the elements below the pth sample quantile can then be used as the guiding

statistic. Naturally, the number of sample points below the pth population quantile in a sample of

size n is well-modeled by a binomial CDF with success probability p and number of

observations n.

5.2.4 1/nth Quantile and the Sample Minimum

The 1/nth quantile of the population is a particularly strong choice of guiding parameter,

as it converges to the population minimum as n→∞. The sample minimum is a biased estimator

of the 1/nth quantile. Unlike the previous three guiding parameters we discussed, estimating the

distribution of the error of estimation cannot be achieved easily by bootstrap without knowledge

of the distribution of the population. We discuss why this issue arises in Section 7.1, and develop

an effective method of estimating the error distribution in the rest of Chapter 7. The eventual

result is a GEV model that approximates the error distribution Ϙ̂0 − Ϙ1/n. As the guiding statistic

Ϙ0, the sample minimum, is a single point, it is very sensitive to errors in the computation or

measurement of the objective function f . Future research on the robustness of methods using this

guiding statistic may shed light on this issue.

5.3 Inputs and Outputs

The inference-driven branch and bound algorithm described in this thesis can be used as a

black-box solver for a variety of optimization problems. An implementation is available on
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GitHub [16]. For fast, high quality pseudo-random numbers, we utilize Blackman and Vigna’s

wonderful Xoshiro256** algorithm [3].

As input, the user must supply the following:

• Define a class inheriting from Branch that represents the solution space with a

GetBranches() method and a Sample() method.

• Provide a fitness function that takes an element from a branch as an input, and returns a

double.

• Select a guiding parameter, a sample size, and a confidence level for use in discarding

branches.

Example Branch classes for intervals of the real line and rectangular regions of R2 are provided

for use with the test functions in Chapter 8, as well as a PartialEMSPlanBranch class that allows

our optimization algorithm to interface with the ambulance simulation described in Chapter 9.

The output is the set of branches S after the last bounding step. These branches

constitute a reduction of the search region, on which other optimization routines can then be run.

A likely use case may be to begin with a problem that has 1018 solutions, use branch and bound

to reduce the search space to around 103 solutions, and then perform an exhaustive search on

that reduced search space. Our implementation additionally keeps track of the best solution

observed throughout the optimization process, and this can be used instead of another

optimization routine if desired.
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CHAPTER 6

COMPARING BRANCHES

6.1 Overview

Let B1, B2, . . . , Bn be branches, and denote the guiding parameter of Bi by γi. Similarly,

let γ̂i be a guiding statistic computed from a large sample from Bi, and let Yi be the error

distribution Yi = γ̂i − γi. The previous section described how to compute γ̂i and estimate Yi for

each branch. This gives us a method of estimating the likelihood of each potential value of the

guiding parameter γi for each branch by the relation

γi ∼ γ̂i − Yi (6.1)

We want to use this information to decide which branches to discard, and which to branch

further. Recall that our bounding criterion tells us to discard a branch Bj whenever there is

another branch Bk with a preferable guiding parameter; that is, whenever γk < γj . Since Yj and

Yk are random variables, we generally cannot be absolutely certain that γk < γj ; instead, we must

estimate the probability with which that inequality holds. Let Di be the event in which we

discard the branch Bi. Then

P (Di) = P (γ1 < γi ∪ γ2 < γi ∪ · · · ∪ γi−1 < γi ∪ γi+1 < γi ∪ · · · ∪ γn < γi). (6.2)

This can be expressed more concisely in complement form, where the probability of keeping the

branch Bi, given by 1− P (Di), is simply the probability that γi is the smallest value of γ among

all our branches. Hence

1− P (Di) = P

(
γi ≤ min

j 6=i
γj

)
. (6.3)

If the error distributions Y1, Y2, . . . , Yn are assumed to be continuous, then P (γj = x) = 0 for any

real value x.1 Since the samples were taken independently, it follows that the error distributions

1 As the solution space is assumed to be very large, a continuous approximation of the error distributions will be
reasonable unless the objective function is insensitive to small changes in the input. This is one of several reasons
not to use a boolean indicator as an objective function.
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Y1, Y2, . . . , Yn are mutually independent. Then we have

P (γj = γk) = P (γj = x ∩ γk = x) = 0, (6.4)

so the probability that two branches share the lowest value of γ is negligible. That means exactly

one branch must have the lowest γ, so the set of events
{
D{

1, D
{
2, . . . , D

{
n

}
forms a partition of the

possible outcomes. For this reason, the complement discard probabilities have the convenient

property of summing to unity. That is,

n∑
i=1

(1− P (Di)) = 1. (6.5)

Three of the four guiding statistics we have described have error distributions that are

asymptotically normal. In addition to two more general methods, we give special consideration to

the case where the sampling distributions of the guiding statistics are all normal.

6.2 Comparison by Monte Carlo Estimation of Proportion

Perhaps the simplest and most general method for computing the probability that each

branch has the smallest guiding parameter is a direct, frequentist approach. The probability with

which a branch Bi contains the lowest value of γ can be approximated by the long-run proportion

of observations in which γi is the smallest element of a set of point samples taken from the

estimated distributions of γ for each branch. Specifically, for observations j = 1, 2, . . . ,m, we

draw a point sample from each distribution (6.1) describing the position of γi for every branch

index i = 1, 2, . . . , n. This gives us a list of simulated parameter values

[
γj1, γ

j
2, · · · , γjn

]
for the jth

observation ordered by their branch indices. The number of times each branch is associated with

the smallest simulated value of γ in an observation j is counted over all m observations, and the

resulting counts are divided by m to produce estimates of the proportion of time that each branch

will produce the lowest value of γ. As m→∞, this proportion converges to the complement

discard probability 1− P (Di) for each branch Bi. While slow, this method is easy to implement

and useful for sanity-checking other computations.
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6.3 Pairwise Comparisons

In many cases, it may be expedient to consider pairwise comparisons between two

branches - computing the probability of discarding one branch in light of exactly one other

branch, rather than evaluating it with respect to the entire set of branches S. Intuitively, since

1− P (Di) is the probability that a branch has the lowest guiding parameter, and each additional

branch considered is another competitor for this rank, pairwise comparisons necessarily give an

overestimate of 1− P (Di) and a corresponding underestimate of P (Di). Bounding performed

based on such an estimate will therefore be more conservative - but not less reliable - than when

using the entire set of branches. Symbolically, by applying the inequality P (A) ≤ P (A ∪B) for

any events A and B to (6.2), we can express this as

P (Di) ≥ P (γj < γi) for all j 6= i. (6.6)

As this decreases our certainty in discarding Bi, we seek to minimize this loss by choosing

to keep the element of the union that gives us the greatest lower bound on P (Di), as

P (Di) ≥ max
j 6=i

P (γj < γi). (6.7)

Let the event that γj < γi for a branch Bj be denoted by Di,j . Then the previous inequality may

be written as

P (Di) ≥ max
j 6=i

P (Di,j). (6.8)

6.3.1 Guiding Statistics with Normally Distributed Errors

If the error distributions of the parameter estimates Yi are normally distributed, we have

γi ∼ N (γ̂i, σ
2
i ) for each branch Bi. Observe that

P (Di,j) = P (γj < γi) = P (γj − γi < 0). (6.9)
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By the result in Section 3.3, since a linear combination of independent normally distributed

random variables is normally distributed, we have

Z := γj − γi ∼ N
(
γ̂j − γ̂i, σ2

i + σ2
j

)
. (6.10)

Then we can rewrite (6.9) as

P (Di,j) = P (Z < 0) = FZ(0). (6.11)

There are

(
n

2

)
possible comparisons among the n branches, and computing one normal

CDF for each comparison to find max
i 6=j

P (Di,j) is an O(n2) process in terms of the number of

special function evaluations required. The number of necessary comparisons can be reduced by

first finding two sets of non-dominated branches:

• The set L ⊆ S of branches which are Pareto optimal under the minimization of both their

means and variances.

• The set U ⊆ S of branches which are Pareto optimal under maximization of their means

and minimization of their variances.

We then have only to find the largest P (Di,j) where i comes from U and j comes from L. To see

why this is true, we will need Theorem 6.3, which provides us with a useful result for comparing

normal distributions.

Lemma 6.1. If A,B, and C are independent normally distributed random variables with

µB < µC and σ2
B = σ2

C , then P (A < B) < P (A < C).

Proof. Suppose µB < µC and σ2
B = σ2

C . Since A,B, and C are independent and normal, by the

result in Section 3.3, any linear combination of them will be normally distributed. Let D = A−B

so that D ∼ N (µA− µB, σ2
A + σ2

B) and let E = A−C so that E ∼ N (µA − µC , σ2
A + σ2

C). Observe

that since µD − µE = µA − µB − (µA − µC) = µC − µB, we have fE(x) = fD(x+ (µC − µB)),
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because

fE(x) =
1√

2πσ2
E

e
− (x−µE)2

2σ2
E

=
1√

2πσ2
D

e
− (x+µD−µE−µD)2

2σ2
D

=
1√

2πσ2
D

e
− (x+µC−µB−µD)2

2σ2
D

= fD(x+ (µC − µB)).

Then since µB < µC , we have µC − µB > 0, so

FE(0) =

∫ 0

−∞
fE(x)dx

=

∫ 0

−∞
fD(x+ (µC − µB))dx

=

∫ µC−µB

−∞
fD(x)dx

=

∫ 0

−∞
fD(x)dx+

∫ µC−µB

0
fD(x)dx,

and as fD(x) > 0 for all x ∈ R, we have

FE(0) =

∫ 0

−∞
fD(x)dx+

∫ µC−µB

0
fD(x)dx >

∫ 0

−∞
fD(x)dx = FD(0).

Then since FE(0) > FD(0), we have P (A− C < 0) > P (A−B < 0), therefore

P (A < C) > P (A < B) as desired.

Lemma 6.2. If A,B, and C are independent normally distributed random variables with

µB = µC and σ2
B > σ2

C , then P (A < B) < P (A < C) if and only if µA < µB.

Proof. Suppose that µB = µC and σ2
B > σ2

C . As in the previous lemma, since A,B, and C are

independent and normal, any linear combination of them will be normally distributed. Let

D = A−B so that D ∼ N (µA − µB, σ2
A + σ2

B) and let E = A− C so that
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E ∼ N (µA − µC , σ2
A + σ2

C). Since µB = µC , we know µD = µA − µB = µA − µC = µE . Also, as

σ2
B > σ2

C , we have σ2
D = σ2

A + σ2
B > σ2

A + σ2
C = σ2

E . Note that since σ2
E and σ2

D are also both

non-negative, we can say σE < σD. Let ZD =
D − µD
σD

and ZE =
E − µE
σE

so that ZD and ZE

both follow a standard normal distribution. Then

FD(0) =

∫ 0

−∞
fD(x)dx =

∫ −µD
σD

−∞
fZD(z)dz = Φ

(−µD
σD

)
,

and by the same logic, FE(0) = Φ

(−µE
σE

)
= Φ

(−µD
σE

)
. Since the standard normal CDF Φ(x) is

a strictly increasing function, we know that a < b if and only if Φ(a) < Φ(b) for any real numbers

a and b. Suppose µA < µB, so that µE = µD < 0. Then the quantities −µDσD
and −µDσE must be

positive. Then since σE < σD, we have
1

σE
>

1

σD
so

µD
σE

<
µD
σD

and
−µD
σE

>
−µD
σD

. Then

Φ

(−µD
σE

)
> Φ

(−µD
σD

)
therefore FE(0) > FD(0). Then P (A− C < 0) > P (A−B < 0), so

P (A < C) > P (A < B) as desired. Suppose instead that P (A < C) > P (A < B). Then

P (A− C < 0) > P (A−B < 0), so FE(0) > FD(0) and Φ

(−µD
σE

)
> Φ

(−µD
σD

)
. As Φ is strictly

increasing, we have
−µD
σE

>
−µD
σD

and since σE < σD this is only possible if µD < 0. Thus

µD = µA − µB, so µA < µB as desired.

Theorem 6.3. If A,B, and C are independent normally distributed random variables with

µA < µB and µA < µC , then if any of the following conditions hold,

(a) µB < µC and σ2
B ≥ σ2

C or

(b) µB ≤ µC and σ2
B > σ2

C ,

then P (A < B) < P (A < C).

Proof. Suppose (a) holds, so µB < µC and σ2
B ≥ σ2

C . Let D be a normally distributed random

variable independent from A with mean µB and variance σ2
C . Then by Lemma 6.2, we have

P (A < D) > P (A < B), and by Lemma 6.1 we have P (A < C) > P (A < D). Therefore

P (A < C) > P (A < B). Suppose instead that (b) holds, so µB ≤ µC and σ2
B > σ2

C . Let E be a

normally distributed random variable independent from A with mean µC and variance σ2
B. Then
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Figure 9: Example of the Sets L and U .
This is an example of L and U for normally distributed parameter distributions X1, X2, . . . , X8.
Their union forms a convex “basket” shape holding all of the other solutions.

by Lemma 6.1, we have P (A < E) > P (A < B), and by Lemma 6.2, P (A < C) > P (A < E).

Therefore P (A < C) > P (A < B). In every case, the result holds.

Let Xi = N
(
γ̂i, σ

2
i

)
be the estimated distribution of the guiding parameter γi for a

branch Bi. Applying Theorem 6.3 to the set {X1, X2, . . . , Xn}, we have that if for some integers j

and k, γj ≤ γk and σ2
j ≤ σ2

k, then P (Di,j) ≥ P (Di,k) for any choice of i. This means that when

searching for the largest pair-wise discard probability P (Di,j), if a distribution has smaller mean

or variance, it will be a stronger choice for the distribution Xj against which Xi will be compared.

Likewise, if there are integers h and i for which γi ≥ γh and σ2
i ≤ σ2

h, then P (Di,j) ≥ P (Dh,j) for

any choice of j. Distributions with larger means and smaller variances will therefore be stronger

choices for the distribution Xi in our comparison. This allows us to efficiently find the strongest

pairwise comparison among all possible pairs of distributions by comparing elements of U to

elements of L:

max
i 6=j

P (Di,j) = max {P (Di,j) | i ∈ U, j ∈ L} . (6.12)

An example of this is given by Figure 9.

6.4 Comparisons Involving More Than Two Branches

In this section, we develop and refine a general method for computing discard probabilities

given parameter distributions for each of the branches.
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6.4.1 Derivation of the Discard Probability Integral

The computation of P (Di) for a branch Bi requires us to compare it against all of the

other branches simultaneously, as any one of them might have a better guiding parameter. Let

Xi := γ̂ − Yi be the parameter distribution for the branch Bi estimated from the sample Si0, so

that γi ∼ Xi by (6.1). Taking the complement of (6.2) and applying De Morgan’s law, we have

1− P (Di) = P (γ1 ≥ γi ∩ γ2 ≥ γi ∩ · · · ∩ γi−1 ≥ γi ∩ γi+1 ≥ γi ∩ · · · ∩ γn ≥ γi). (6.13)

Using our definition for Xi, we can rewrite this as

1− P (Di) = P (Xi < X1 ∩Xi < X2 ∩ · · · ∩Xi < Xi−1 ∩Xi < Xi+1 ∩ · · · ∩Xi < Xn), (6.14)

where the cases in which Xi = Xj for j 6= i have been disregarded, as the probability of this is

vanishingly small. This is in agreement with (6.3) and (6.4).

Since the parameter distributions Xi are independent2, the joint probability is simply the

product of the individual probabilities,

1− P (Di) =
∏
j 6=i

P (Xi < Xj). (6.15)

Another way of looking at this product takes an approach similar to the usual derivation of

extreme order statistics, which is given by Wackerly [24]. Let Mi = min
j 6=i

Xj , and denote the CDF

and PDF of Xk by Fk and fk, respectively, for k = 1, 2, . . . , n. Then

P (Mi > x) = P (X1 > x ∩X2 > x ∩ · · · ∩Xi−1 > x ∩Xi+1 > x ∩ · · · ∩XN > x) (6.16)

= P (X1 > x)P (X2 > x) · · ·P (Xi−1 > x)P (Xi+1 > x) · · ·P (XN > x) (6.17)

=
∏
j 6=i

P (Xj > x) =
∏
j 6=i

(1− Fj(x)). (6.18)

2The independence of these distributions comes from the pairwise independence of the error distributions Yi,
i = 1, 2, . . . , n, which in turn comes from our sampling procedure for obtaining Si0.
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By (6.3), we can say 1− P (Di) = P (Xi < Mi). Conditioning on Xi, we have

1− P (Di) =

∫
RXi

P (Xi = x)P (Mi > x | Xi = x) dx (6.19)

where RXi is the support of Xi. Since Xi is pairwise independent with Xj when j 6= i, we know

that Xi and Mi are independent. Then we have

∫
RXi

P (Xi = x)P (Mi > x | Xi = x) dx =

∫
RXi

P (Xi = x)P (Mi > x) dx (6.20)

=

∫
RXi

fi(x)
∏
j 6=i

(1− Fj(x)) dx. (6.21)

Thus

1− P (Di) =

∫ ∞
−∞

fi(x)
∏
j 6=i

(1− Fj(x)) dx. (6.22)

This tells us exactly how to compute the probability of discarding Bi. We simply need to know

the PDF fi and the CDFs Fj for j 6= i, which were determined for each of our four examples of

guiding parameters in Section 5.2.

6.4.2 Alternative Forms for The Discard Probability Integral

For each of our four guiding statistics, the integrand (6.22) is continuous on R and

therefore integrable. However, evaluation of the integral may not be tractable analytically.

Instead, we do that numerically using the quadrature techniques in Chapter 4. This exposes our

calculations to some issues that are common in numerical methods, most notably the need to

minimize the required computation time and the cumulative effects of representation error on the

result.

The accumulation of representation error can be largely mitigated by eliminating all of the

subtractions from the product. To achieve this, we define negated parameter distributions

Nj = −Xj for each j = 1, 2, . . . , n. Then Di occurs whenever the observation from Ni is less than
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the observation from Nj for some j 6= i, which means

1− P (Di) = P (Ni > max
j 6=i

Nj). (6.23)

Define Mi = max
j 6=i

Nj . Following the usual derivation of the distribution of the maximum, we have

P (Mi < x) = P (N1 < x ∩N2 < x ∩ · · · ∩Ni−1 < x ∩Ni+1 < x ∩ · · · ∩Nn < x) (6.24)

= P (N1 < x)P (N2 < x) · · ·P (Ni−1 < x)P (Ni+1 < x) · · ·P (Nn < x) (6.25)

=
∏
j 6=i

P (Nj < x) (6.26)

=
∏
j 6=i

FNj (x). (6.27)

Conditioning on the value of Ni, we have

P (Mi < Ni) =

∫
RNi

P (Ni = x)P (Mi < x | Ni = x) dx. (6.28)

Since X1, X2, . . . , Xn are pairwise independent, it follows that N1, N2, . . . Nn are also independent.

Then we have

P (Mi < Ni) =

∫
RNi

P (Ni = x)P (Mi < x) dx. (6.29)

Combining this with (6.23) and (6.27) gives us

1− P (Di) =

∫ ∞
−∞

fNi(x)
∏
j 6=i

FNj (x) dx. (6.30)

Quadrature computations using this integral are less prone to accumulating representation errors

than those which use (6.22).

6.4.3 Fast Computation of the Discard Probability Integral

To compute the discard probability P (Di) for each branch Bi, (6.22) and (6.30) will both

require an evaluation of the PDF of Ni and the CDFs of the remaining n− 1 distributions, for a
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total of n special function calls per evaluation point. The task of computing all of the discard

probabilities for the complete set of branches B1, B2, . . . , Bn using a quadrature rule with m

evaluation points will therefore involve mn2 special function calls. Significant time savings may

be obtained by altering the integrand to contain a product that is invariant over each of the

discard probability computations, as in

1− P (Di) =

∫ ∞
−∞

fNi(x)

FNi(x)

n∏
j=1

FNj (x) dx. (6.31)

Applying the general quadrature approximation (4.4), with m evaluation points, we have

1− P (Di) ≈
m∑
k=1

wk
fNi(xk)

FNi(xk)

n∏
j=1

FNj (xk). (6.32)

On the first use of an evaluation point xk, a total of n+ 1 special function calls are performed,

and the value of the weighted product of CDFs wk

n∏
j=1

FNj (xk) is stored. Every subsequent use of

that evaluation point will require only one or two special function calls, depending on whether or

not the individual CDF values are stored as well. If a sufficiently broad interval of integration

that covers all of the intervals RNj , j = 1, 2, . . . , n, can be determined, then a subset of the same

m evaluation points can be reused for all n discard probability computations by integrating over

that same interval each time. Instead of mn2 special function evaluations, only mn are required.

6.4.4 Determining the Interval of Integration

If pairwise discard probabilities can be computed efficiently for the guiding statistic used,

we can pre-emptively discard any branch Bi for which 1− P (Di,j) < εM for some other

branch Bj , where εM is the unit roundoff error of the number system with which we compute the

discard probabilities. The actual discard probability P (Di) will be greater than P (Di,j), as

described in Section 6.3, so we can confidently discard these branches preemptively without it

meaningfully affecting the total probability.3 The parameter distributions for the subset of

branches that were not preemptively discarded can then be used to construct a common interval

3The complement discard probabilities must sum to one by (6.5). In double precision arithmetic, with collections
of 10k or fewer branches, there will be at least 15 − k orders of magnitude between the scale of the most significant
discard probabilities and the scale at which these preemptive discards affect the total probability.
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of integration [a, b]. The lower bound of the interval is given by

a := max
j

{
F←Nj (εM )

}
, j = 1, 2, . . . , k, (6.33)

and the corresponding upper bound is

b := max
j

{
F←Nj (1− εM )

}
, j = 1, 2, . . . , k, (6.34)

where the branches have been indexed so that B1, B2, . . . , Bk are the branches kept after

preemptive discarding, and Bk+1, Bk+2, . . . , Bn are branches that were preemptively discarded

during this pairwise step. For guiding statistics with normal sampling distributions given by

Nj ∼ N (µj , σ
2
j ), the lower bound will be the largest of µj − ZεMσj over all possible choices of j.

Likewise, the upper bound will be the largest of µj + ZεMσj . We believe stronger bounds can

likely be obtained for many integrands (6.31), which would speed up the convergence of the

quadrature computation.4 This could merit further research, though our bounds (6.33) and (6.34)

are sufficient for our purposes.

6.5 Comparison of Quadrature Methods for Computing Discard Probabilities

Each of the quadrature methods in Chapter 4 can be used to evaluate (6.30). In the case

of the Newton-Cotes methods, the integral requires no alteration. For Gauss-Legendre and

Clenshaw-Curtis, the integral must be transformed to be over the interval [−1, 1], which is easily

achieved by applying (4.3). In the case of Gauss-Hermite, if the guiding parameter estimates are

normally distributed, it is a natural choice to use a change of variables z =
x− µi√

2σi
, with

dx =
√

2σi dz to get

fi(x) =
e−z

2√
2πσ2

i

, (6.35)

4Any evaluation points at which the integrand is less than εM are wasted, as they will not contribute a meaningful
amount of information to the discarding process, in which comparisons are made at a scale of around 10−2. These
integrands are generally less than εM over much of [a, b], so computational savings could be obtained from tighter
bounds.
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which changes (6.30) into

1− P (Di) =
1√
π

∫ ∞
−∞

e−z
2
n∏
j 6=i

Fj(µi +
√

2πσiz) dz. (6.36)

The Gauss-Hermite approximation of this integral with m evaluation points is given by

1− P (Di) ≈
1√
π

m∑
k=1

wk

n∏
j 6=i

Fj(µi +
√

2πσixk). (6.37)

This is sufficient for the computation of a single discard probability. However, since these xk are

z-values, and therefore depend on µi and σi from the distribution Ni, this approach cannot be

used to recycle evaluation points for efficient computation of discard probabilities for multiple

branches. An alternative would be to define a Gaussian

g(x) = e
−
(
x−c1
c2

)2

, (6.38)

where c1 and c2 are chosen so that g(x) ≥ εM on [a, b]. This can be achieved by choosing

c1 = (a+ b)/2 and c2 = (b− a)/(2ZεM ). Multiplying the integrand in (6.31) by g(x)/g(x), we have

1− P (Di) =

∫ ∞
−∞

e
−
(
x−c1
c2

)2

e

(
x−c1
c2

)2
fNi(x)

FNi(x)

n∏
j=1

FNj (x) dx. (6.39)

Let z =
x− c1

c2
. Then we have

1− P (Di) = c2

∫ ∞
−∞

e−z
2
ez

2 fNi(c1 + c2z)

FNi(c1 + c2z)

n∏
j=1

FNj (c1 + c2z) dz. (6.40)

The Gauss-Hermite approximation of this integral with m evaluation points is given by

1− P (Di) ≈ c2

m∑
k=1

wke
x2k
fNi(c1 + c2xk)

FNi(c1 + c2xk)

n∏
j=1

FNj (c1 + c2xk). (6.41)
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The values of c2wke
x2k

n∏
j=1

FNj (c1 + c2xk) can be computed once for each k = 1, 2, . . . ,m, and then

reused for every computation of P (Di) for Bi ∈ S. The CDF values FNi(c1 + c2xk) may also be

recorded and reused at the cost of requiring significantly more storage space.

Figure 10 shows comparisons of per-evaluation performance for computing one discard

probability for collections of branches with arrangements of parameter distributions that are

progressively more difficult to integrate numerically. For the hardest and most realistic

conditions, Gauss-Legendre and Clenshaw-Curtis are the most efficient, and the nesting property

of Clenshaw-Curtis makes it an excellent choice for our implementation. The trapezoid rule is

surprisingly efficient for this integral, and developing a well-optimized adaptive trapezoid rule

implementation for this integral may be a direction for future research.

6.6 Discarding with a Confidence Level

We desire to discard as many branches as possible in each bounding step, while

maintaining a high level of confidence that the set of branches we have not discarded contains the

branch with the best value of the guiding parameter. Let S = {B1, B2, . . . , Bn} be a set of

branches indexed in decreasing order of P (Di), so that P (D1) ≥ P (D2) ≥ · · · ≥ P (Dn), and let

α ∈ (0, 1). Recall from (6.3) that 1− P (Di) can be interpreted as the probability that Bi has the

best value of the guiding parameter γ. Furthermore, (6.5) states that these complement discard

probabilities sum to unity. With these results in mind, when a branch Bj is discarded, it still has

a probability of having had the best value of γ given by 1− P (Dj), so our confidence that the

collection of remaining branches S \ {Bk} contains the branch with the best value of γ decreases

by 1− P (Dj). Let m be the largest number of branches that can be discarded while maintaining

a confidence level 1− α that the best branch is being kept. One way to obtain m is by first

discarding the distribution that is least likely to have the best parameter value, which is B1, then

discarding the next least likely, which is B2, and so on until the accumulated complement discard

probability would exceed α if any additional branches were discarded. In symbols, we define m to

be

m = max
k


k∑
j=1

(1− P (Dj)) ≤ α

 . (6.42)
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Figure 10: Convergence Rate Comparison of Quadrature Methods
These graphs give the logarithm of the error of each discard probability approximation by numbers
of evaluation points used. All parameter distributions used were normal. “Pairwise” uses only two
branches. “Easy” uses a set of 8 branches with distributions having µ ∈ [1, 5] and σ ∈ [0.2, 1.2].
“Medium” uses a set of 20 branches with µ ∈ [47, 90] and σ ∈ [0.3, 8]. “Hard” uses 120 branches
with µ ∈ [30, 120] and σ ∼ |K|+ 0.3 where K ∼ N(20, 15).
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The branches B1, B2, . . . , Bm are discarded, while Bm+1, Bm+2, . . . , Bn are retained for further

examination.

In the situation that all the branches have very similar distributions of their guiding

parameters, this definition of m may indicate that some branches should be discarded, even

though they are all equally fit, if there are enough branches so that 1/n < α. However, if the

parameter distributions cannot distinguish any branches as being preferable to others, we want to

retain all of the branches with the hope that in later steps we can be more selective. This

behavior can be achieved by choosing only to discard branches Bi such that P (Di)� P (Dn).

It should be noted that this computation applies to the set of branches under

consideration only - not to those of any previous bounding step. Moreover, it makes comparisons

using the probability with which each branch has the best guiding parameter value, and not

necessarily a global minimum. As this is applied once for every branching step in the algorithm,

our confidence may, in the worst case, decay exponentially with each iteration of branch and

bound. In practice, however, keeping the best branch during each bounding step is not always an

independent trial with probability of success (1− α). When using the 1/nth quantile guiding

parameter, for instance, if S is converging toward better and better collections of branches, we

can be more and more certain at later steps that our previous bounding decisions were good; that

is, that the branches we previously discarded did not contain the best available value of the

guiding parameter. This is because as S improves in this way, the spread of the distribution of

the guiding parameter for retained branches will decrease, offering a clearer picture of the fitness

of the best solutions. Previous discards based on conservative estimates of the parameter

distributions will therefore only become more certain in light of new data.

Better quantifying the confidence level over multiple steps of branch and bound is a topic

for future research. For our present purpose, it is sufficient to set a confidence level and use it in

each bounding step without consideration for how errors may compound over multiple steps.
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CHAPTER 7

MODEL FITTING METHOD FOR EXTREME QUANTILE GUIDING

PARAMETERS

7.1 On Bootstrapping the Error Distribution of the Sample Minimum

Let X be a random variable, and suppose −X ∈ D(G) for some GEV distribution G with

parameters µ, σ, and ξ. Let S = {X1, X2, . . . , Xn} be a set of independent random variables with

common distribution X. Then by the Fisher-Tippet-Gnedenko theorem,

Mn = max
i=1,2,...,n

(−Xi) ∼ G (7.1)

for sufficiently large n. Then the distribution of

mn = min
i=1,2,...,n

(Xi) = −Mn (7.2)

can be obtained from the CDF of G, denoted FG(x), by the relation

Fmn(x) = 1− F−mn(−x) = 1− FMn(−x) = 1− FG(−x). (7.3)

We can therefore model the distribution of the minimum mn of a large sample taken from X by

estimating G. Bootstrap estimation using S is a natural next step. However, if we observe the

minima of bootstrap samples taken from S, then the distribution of these minima does not

effectively model the distribution of sample minima taken from the population. Suppose we

construct bootstrap samples Sb from S by drawing n observations from S uniformly at random

with replacement. The probability of the minimum of Sb being the minimum of S is the

probability that the minimum of S was observed during sampling, which can be modeled with a

binomial distribution. We have n opportunities to observe the minimum of S during the

construction of the bootstrap sample Sb, and in each opportunity we have probability 1/n of

selecting the minimum. As such, the probability of not selecting the minimum at all will be given

by
(
n−1
n

)n
, so the probability of observing the minimum of S during the construction of Sb is
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Figure 11: Graph of f(n) =
(
n−1
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)n
for n up to 20

The value of f rapidly coverges to 1/e ≈ 37% as n→∞.

exactly 1−
(
n−1
n

)n
. This proportion converges to 63% of all bootstrap samples, regardless of the

underlying distribution. Figure 11 demonstrates the rapid convergence of this proportion, even

for very modest sample sizes.

A similar argument shows that of the remaining 37% of the samples, about 63% have the

second smallest observation from the original sample as their minimum, and so on. For large n,

this line of reasoning characterizes the bootstrapped distribution of the sample minimum in terms

of the sample data without computing it. Furthermore, it tells us effectively nothing about the

sampling distribution that we want to model.

The problem with this approach is that bootstrap cannot select values that are between

adjacent sample elements or outside of the sample range. This restricts the variety of values that

can be observed near the minimum, and imposes a binomial pattern for observing the sample

minimum in each bootstrap sample. To get around this, we can replace the standard ECDF

model of the population CDF that is used in bootstrap with a new model that provides a

smoother approximation of the population’s lower tail. Toward that end, we will apply the

Pickands-Balkema-De Haan theorem to construct a model of the lower tail, and use method of

moments to estimate the parameters of that model.

7.2 Estimating Upper Tail Moments

Let Y = −X, so that an estimate of the upper tail of Y is an estimate of the lower tail of

X under a reflection. Let D = {y1, y2, . . . , yn} be a sample drawn from Y , indexed so that

yi ≤ yi+1 for i = 1, 2, . . . , n. Since Y ∈ D(G), by the Pickands-Balkema-De Haan theorem, there
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exist u ∈ [y0, yn), a > 0 and c ∈ R such that for x > u,

Fu(x) =
FY (u+ x)− FY (u)

1− FY (u)
≈ FGPD(x; 0, a, c). (7.4)

Define the “tail distribution” T by the CDF

FT (x) = FGPD(x;u, a, c) (7.5)

so that T is a translated and rescaled form for our model of the upper tail of Y .

We can characterize u as the threshold beyond which the CDF of Y is well-modeled by a

GPD.1 Let the value of the model parameter u be given. Define Z = {z1, z2, . . . zk} to be the set

of sample points y ∈ D such that y > u, indexed so that zi ≤ zi+1 for i = 1, 2, . . . , k. The ECDF

of the points in the subset Z may be used as a model of the conditional excess distribution Fu(x).

Rather than using the standard ECDF, we will perform some modifications to improve the fit of

the ECDF with a GPD model before using it to estimate the moments of the tail distribution

with CDF FT (x).

The ECDF of Z specifies the locations at which the modeled CDF reaches 0 and 1 to be

z1 and zk, respectively. However, based on our choice of u, along with FGPD, the model should

reach 0 at u rather than z1. Furthermore, depending on the shape parameter c, we may not want

to specify that it reaches 1 at all.2 Define a new CDF, denoted L(x), by

L(x) =



0 if x < u,

x−u
k(z1−u) if u ≤ x < z1,

i
k + x−zi

k(zi+1−zi) if zi ≤ x < zi+1 for i ∈ {1, 2, . . . , k − 1}, and

1 if x ≥ zk.

(7.6)

This function L(x) linearly interpolates from the point (u, 0) to the top of the first step of the

ECDF of Z at (z1, 1/k), then between the tops of the remaining steps over the interval [z1, zk].

1Informally, we can think of u as being the location at which the tail of the distribution begins.
2If c ≥ 0, the tail estimate is unbounded above, so specifying an x at which the CDF should be 1 is inappropriate.
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Figure 12: Graph of the Modified Excess ECDF for Fitting an Upper-Tail Estimate
This is a graph of the modified ECDF L(x) with 3 points z1, z2, z3 > u. An MSE-fit GPD tail CDF
is shown as a dotted line, and our conservative WMSE-fit tail CDF is given by the thick line.

An example of L(x) for a very small set Z is given in Figure 12. Note that our tail estimate is

very conservative. Without the weighting, a purely MSE-fit tail may, for instance, assign zero

probability density to zk, which can be seen in Figure 12.

To estimate the first two moments of the tail CDF model, we will compute the exact first

and second moments of a random variable L with CDF given by L(x). For the convenience of

notation, let z0 = u. The first moment of L is given by

E(L) =

∫ zk

z0

x
dL

dx
dx

=
1

n

k∑
i=1

1

zi − zi−1

∫ zi

zi−1

x dx

=
1

n

k∑
i=1

z2
i − z2

i−1

2(zi − zi−1)

=
1

2n

k∑
i=1

zi + zi−1

=
1

n

(
u+ zk

2
+

k−1∑
i=1

zi

)
.
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This is a weighted mean of the set Z ∪ {u}, where the endpoints are given half of the usual unit

weight. For the second moment, we have

E(L2) =

∫ zk

z0

x2dL

dx
dx

=
1

n

k∑
i=1

1

zi − zi−1

∫ zi

zi−1

x2 dx

=
1

n

k∑
i=1

z3
i − z3

i−1

3(zi − zi−1)

=
1

3n

k∑
i=1

z2
i + zizi−1 + z2

i−1

=
1

3n

(
u2 + z2

k +

k∑
i=1

zizi−1 + 2

k−1∑
i=1

z2
i

)
.

7.3 Estimating the Tail Distribution

Pickands provides an efficient method for estimating the model parameters u, a,

and c [10]. He uses a quantile-based argument to estimate a and c for a given value of u, and then

optimizes over a large number of convenient choices of u - keeping the estimate that fits the

ECDF of Z most closely under the L∞ norm. The structure of the method we develop in this

section is based on that approach.

In the previous section, given a value of u, we estimated the first two moments of the

upper tail from the set of datapoints Z. To construct our GPD model of the upper tail of Y for a

given u, we derive method of moments estimators for a and c, and plug in our values of E(L)

and E(L2).

The moment generating function of a GPD with location u, scale a, and shape c is given by

M(t) =

∞∑
j=0

(
(at)j∏j

k=0(1− kc)

)
, kc < 1. (7.7)

When we apply this model fitting to objective function values, since there are finitely many

solutions in the search space, the tail of the distribution cannot be infinite. As finite tails

correspond to negative values of the shape parameter c, we should expect c to be negative. Hence
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kc < 1 is satisfied. Let P ∼ GPD(u, a, c). Using the convention that 00 = 1, we obtain

E(P ) = u+
a

1− c , (7.8)

E(P 2) = u2 + 2u
a

1− c +
2a2

(1− c)(1− 2c)
, (7.9)

and

V (P ) =
a2

(1− c)2(1− 2c)
, (7.10)

which agree with well-known results for the mean and variance of this distribution [12]. Setting

E(P ) = E(L) and E(P 2) = E(L2), we obtain

ĉ = min

(
1

2

(
1− (E(L)− u)2

V (L)

)
, 0

)
(7.11)

and

â = (E(L)− u)(1− c) (7.12)

where V (L) = E(L2)− E(L)2. As the population fitness is bounded below, we can assert that

c < 0, which is why any positive estimate for ĉ is clamped to zero here.

Let F̂u be the CDF of a GPD with location u, scale â, and shape ĉ. Let the midpoints of

zi be denoted mi = (zi + zi+1)/2 for i = 1, 2, . . . , k − 1. We construct points p1, p2, . . . , pk−1 given

by pi = (mi, L(mi)). For each of n/4 choices of the threshold u, equally spaced over the interval

[y1, yn], we compute a figure of goodness of fit given by a weighted mean squared error evaluated

against the points p1, p2, . . . pk−1,

WMSE(u) =
e5|c|

n

k−1∑
i=1

(
F̂u(mi)− L(mi)

)2
. (7.13)

The weight e5|c| penalizes having a large magnitude in the shape parameter. This encourages

conservative estimation of the tail thickness. The value of u that minimizes the WMSE becomes

the estimate û, coupled with its associated values of â and ĉ. Additional local optimization over

nearby values of u may also be performed to refine the estimate. A convenient method is to let
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Figure 13: Example of an ECDF with a Tail Estimate
The function FPar for a sample of size n = 300 where Y ∼ Beta(2, 2). For x ≥ u, the approximation
(red) is given by a rescaled GPD CDF. The true distribution CDF (black) is shown for comparison.

δ = (yn − y1)/8, then perform some fixed number of optimization steps, in each of which: u is set

to the best of {u, u+ δ, u− δ}, and then δ is halved. In our implementation, ten of these steps are

applied after finding a reasonable estimate of u.

7.4 Estimating the Parameter Distribution

With our GPD parameter estimates û, â, and ĉ, we construct a modified ECDF of D that

takes the shape of the usual step function when x < û, and then switches to the smoother GPD

CDF when x ≥ û:

FPar =


0 if x < y1,

i/n if yi ≤ x < min{yi+1, û}, and

1− k(1−F̂û(x))
n if x ≥ û,

(7.14)

where k is the number of negated sample points yi such that yi > û. An example of FPar for a

Beta(2, 2) random variable is shown in Figure 13. Let R be a random variable with CDF given

by FPar(x). With probability 1− k/n, a random number sampled from R will fall in the region

defined by the step function, and with probability k/n it will fall in the region defined by the

GPD tail approximation. The quantile function F←R (p) is accordingly characterized in a piecewise

manner. By the Inverse Transform Theorem, if N ∼ U(0, 1), then F←R (N) ∼ R.

With the upper tail attached to our model, we proceed with bootstrap. However, we now
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use R instead of the empirical distribution of D as a model of Y . We draw 250 samples of n

observations from R, and record the maximum of each sample as Smax = {m1,m2, . . . ,mn}. By

the Fisher-Tippet-Gnedenko theorem, these sample maxima follow a GEV distribution for

large n. The tail shape parameter ĉ = ξ̂ is an estimate of the shape parameter ξ of our GEV

model. To estimate the remaining parameters µ and σ, method of moments estimation is once

again applied. Let H ∼ GEV (µ, σ, ξ). Then for ξ < 0, we have

E(H) = µ+
σ(Γ(1− ξ)− 1)

ξ
and (7.15)

V (H) =
σ2Γ(1− 2ξ)− Γ(1− ξ)2

ξ2
. (7.16)

This yields estimates for µ and σ given by

σ̂ = −ξ̂
√

V (Smax)

Γ(1− 2ξ̂)− Γ(1− ξ̂)2
and (7.17)

µ̂ = E(Smax)− σ̂(Γ(1− ξ̂)− 1)

ξ̂
. (7.18)

Let Yn be the distribution of the maximum of a sample of size n taken from Y . Define

Ŷn ∼ GEV (µ̂, σ̂, ξ̂) as our model of Yn. As a model of the error distribution Yn−F←Y (1− 1/n), we

choose Ŷn − µ̂. This choice is based on the observation that Ŷn is centered on µ̂, while the

distribution of the sample maximum Yn is centered on F←Y (1− 1/n). This gives us an estimate for

the distribution of the extreme quantile F←Y (1− 1/n) of Y , given the sample information D, as

F←Y (1− 1/n) ∼ yn + µ̂− Ŷn. (7.19)

Since Y = −X, we have F←Y (1− 1/n) = −Ϙ1/n. Then our parameter distribution estimate is

Ϙ1/n ∼ min(S) + Ŷn − µ̂. (7.20)

This distribution estimate provides a CDF and a PDF to be used in discard comparisons, as

described in Chapter 6.
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CHAPTER 8

TEST FUNCTIONS

8.1 Revisiting Ideal Bounding

In Chapter 2, we introduced branch and bound with an example that used “ideal”

bounding in Figure 1. The problem is given by

minimize
0≤x≤3.2

f(x) = 1− cos

(
πx2

2

)
. (8.1)

We revisit this example with our inference-based bounding method in this section. Branches are

once again closed intervals of R, and branching is performed by bisection. Our method is applied

using the 1/nth quantile as a guiding parameter, with confidence level 99% and sample

size n = 200. Figure 14 demonstrates the progression of our optimization on (8.1).

A major difference in behavior between this and the ideal bounding behavior we described

in Chapter 2 is that in our method, the second quarter is retained after the second bounding step.

This is because based on the other branches’ parameter distributions, and on the steepness and

height of the lower end of the distribution, a conservative estimate of the tail cannot confidently

rule out a minimum in [0.8, 1.6] during that step.

8.2 The Wicked Comb

Many of our inferential bounding methods are intuitively less decisive when particular

subsets of the branches have a high variance under the fitness function, and when the minima of

different branches are close in value. To explore these conditions, a test function was devised

where the number and closeness of local minima, as well as the variance within each subinterval,

are controlled by user-specified parameters. The optimization problem is given by

minimize
|x|≤0.2

f(x) = −a cos

(
1

|x|+ 1
(2(b+0.25)·π)

)
+ cx2 (8.2)

for some a, b, c ∈ R+.

The parameter b determines the number of local minima. For relatively small values of c,
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Figure 14: Progression Diagram for the Optimization from Chapter 2
In this visualization of the branches retained after each iteration of bounding on (8.1), discarded
regions are displayed darkened.
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Figure 15: Graph of the Wicked Comb Test Function
The parameters for this particular version are given by a = 0.2, b = 5, and c = 10.

there will be 2b many local minima, with b many of them on each side of x = 0. The cx2 term

applies a gradual increase to the locations of the minima, making them closer under f as c→ 0,

so that all local minima are global minima when c = 0. The parameter a rescales the function to

determine the amount of variation in the values of f .

Figure 15 shows a Wicked Comb with a = 0.2, b = 5, and c = 10, and Figure 16

demonstrates the convergence of the retained branches to the complete set of minima. The

guiding parameter is the 1/nth quantile, the confidence level for discarding is 99%, and the sample

size is n = 200. Branches are intervals of R, and branching is performed via bisection. Note that

despite having identical distributions of their function values, one of the two outer intervals in

Step 5 were retained, while the other was discarded. This is possible because the sample from

each interval is random, and if the tail estimate for one of these branches was longer, it may have

been kept “just in case”. Meanwhile, the other interval may have yielded a clearer image of its

distribution’s tail, and could therefore be discarded with greater confidence. Another possibility is

that each had, for instance, 0.6% probability of being the best, so that only one could be

discarded while remaining above 99% confidence of retaining the best, as described in Chapter 6.
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Figure 16: Progression Diagram for the Wicked Comb
In this visualization of the branches retained after each bounding step, discarded regions are shown
darkened. The last image skips ahead to after the 15th bounding step, and is zoomed to show the
remaining two branches.
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Figure 17: Perspective View of the Eggholder Test Function
The global minimum may be observed near the right-most corner of the figure.

8.3 The Eggholder Test Function

The Eggholder is a 3D surface commonly used to test methods for box-constrained

nonlinear optimization [11]. The optimization problem is given by

minimize
−512 ≤ x, y ≤ 512

f(x, y) = −(y + 47) sin

√∣∣∣x
2

+ y + 47
∣∣∣− x sin

√
|x− y − 47|. (8.3)

It has a single minimum at (512, 404.23,−959.64). A perspective view of the surface is given by

Figure 17. An example of the application of six steps of inference-driven branch and bound to the

Eggholder test function is given by Figure 18. The guiding statistic is the 1/nth quantile, the

confidence level used is 99%, and the sample size is n = 200. Branches are rectangular regions

of R2, and branching is performed by quartering a given branch. The solution set contains the

true minimum. Each of the regions retained overlap both high and low values, which encourages

the tail estimates to be longer and the corresponding GEV distributions to have greater spread.

As these intervals are steep, and also contain lower values that are competitive with the

minimum, our method is less certain that they can be discarded.
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Figure 18: Progression Diagram for the Eggholder
Retained branches after each step of the algorithm on the Eggholder test function. The top-left
image is the initial state, the top-right is after bounding iteration 1, and so on. Retained branches
are in color, and are emphasized by highlighted borders. Discarded regions are shown without
saturation. Warmer colors correspond to higher elevations, with the lowest elevations shown in
violet.
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CHAPTER 9

APPLICATION TO AMBULANCE PLANNING

In seeking a natural progression from an existing plan to an optimized plan with a higher

number of ambulances, the simplest and most robust choice would be to perform an exhaustive

search of all possible progressions, choosing one that results in an optimal plan and, secondarily,

performs well as it grows. Practically speaking, the number of such progressions is often too large

to exhaust, as it grows exponentially with the number of ambulances to be added. In the specific

case of Wayne County, there are ten possible locations to which we must consider adding an

ambulance during each placement, and each ambulance can have either a part time or full time

shift, so there are twenty options for each placement. Then the number of distinct progressions

for adding n ambulances to an existing plan is 20n.

If the number of possible progressions is too large to exhaust, it is a natural next choice to

try to perform local optimization - sometimes described as “hill-climbing” - where each new

ambulance is added in the location and schedule that immediately improves the current plan the

most. While this would produce a natural progression from the existing plan to one with more

ambulances, this approach might be characterized as near-sighted; the placements that effect the

greatest local improvement are not always the same as the placements that lead to the best

overall improvement when the plan has reached the desired number of ambulances. For instance,

if the geography of the region to be planned is circular, an early placement would likely be made

at a central location with a full-time shift under local optimization. Meanwhile, the optimal

solution after all placements have been made might require only circumferential placements.

Furthermore, if among the choices for the next placement, another option offers nearly as much of

an improvement as the best placement, it would still only use the best going forward without

exploring that other option. Hill climbing also says effectively nothing about the relative

importance of each placement to the performance of the final plan - indeed, only the last

placement involves considering the performance of the final plan at all. Nonetheless, if the

number of placements to be determined is small compared to the size of the existing plan, hill

climbing is a sound approach for attaching a small number of additional ambulances to an
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existing plan, and may be performed with different weightings on the objectives if greater variety

is desired in the results.

These potential shortcomings of local optimization motivate our interest in a more robust

approach. Ideally, we would add each ambulance with knowledge of how it will affect the

optimality of the final plan, and in order of greatest to least importance to the final plan’s

performance. If multiple placements appear to lead to near-optimal outcomes, we should explore

all of the most promising options rather than just one.

9.1 Data Used

Two sources of data were used in this project: Wayne 911 and OpenStreetMap.org. Two

years of de-identified ambulance response data were provided by Wayne 911, covering the years

2016 and 2017. A method for generating a rough estimate of the annual operating costs of a plan

was also provided based on historical expenses. Additionally, a graph describing the roads of

Wayne County and the surrounding region was obtained from OpenStreetMap.org and is used

under the OpenStreetMap Geodata Licence.

9.1.1 Wayne 911 Data

The following information was obtained from historical emergency response records for

each of 12,487 responses spanning the years 2016 and 2017:

• Time Received - The time at which the call for this response was received.

• Time Enroute - The time at which an ambulance began traveling to the scene of the call.

• Time On-Scene - The time at which the ambulance arrived at the scene of the call.

• Time Departed - If the ambulance transported someone to the hospital, the time at which

the ambulance departed the scene.

• Time Arrived - If the ambulance transported someone to the hospital, the time at which the

ambulance arrived at the hospital.

• Time Completed - The time at which the ambulance is finished responding to the call and is

available to respond again.
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• Call Latitude, Longitude - The approximate position of the scene of the call, shifted to a

nearby road for pathfinding purposes.

A rough cost estimate was also provided, which can be found in Section 9.2.

9.1.2 Open Street Map (OSM) Data

OpenStreetMap is a community-driven open-source service that provides map data for

various applications [19]. We used this resource to obtain a road map of Wayne County and the

surrounding region. Specifically, the data describe the roads in the region bounded by 37.8409◦N

to 38.4944◦N in latitude, and from 82.1853◦W to 82.6804◦W in longitude. The data is in XML

format, and is divided into two main parts: a list of nodes, which each have a unique 64-bit

identifier as well as a latitude and longitude, and a list of “ways”, which contain a sequence of

node identifiers that form a road as well as the name, zip code, county, and type of that road (eg

residential, highway, etc.).

9.2 Goals and Metrics

Early on in our collaboration, we identified two essential properties of a plan that must be

minimized in order for the plan to be considered optimal: response time and cost. The choice of

how these properties are measured was informed by a consensus of opinion and convention.

Response time is measured by the arithmetic mean of the time between a call being

received by the 911 center and the ambulance arriving on the scene on a per-response basis. That

is, if two ambulances are dispatched to the same call, then two response times are recorded. This

metric captures the actual travel time for the ambulance to arrive at the call, as well as any

latency involved in dispatching ambulances and calling for mutual aid from additional stations

and other counties. Other approaches using median response time or a trimmed mean were

considered, and preliminary testing demonstrated similar results under optimization between

mean and trimmed mean approaches. In the end, the arithmetic mean was chosen over the

trimmed mean for its simplicity and because it takes every response time into account equally. A

number of other summary statistics are also recorded, but they are not used directly as metrics of

plan quality.

The cost of a plan is measured as the number of dollars which must be spent annually to
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maintain it. This includes ambulance supplies, vehicle maintenance such as oil and tire changes,

fuel, pay and benefits for employees such as drivers and technicians, station rent, and so forth. We

worked with the 911 center to obtain a rough estimate of how these costs would likely scale given

a fixed number of ambulances running on a given shift schedule. In our model, we use the formula

224F + 109P + 10S,

where F and P are the number of full and part-time ambulances operated, respectively, and S is

the number of stations used by the plan. The result is interpreted in thousands of dollars

annually. While more detailed cost computations would later be performed for specific plans, this

formula gives us a “good enough” estimate for evaluating the cost of an arbitrary plan during

optimization.

While estimating the cost of a theoretical plan using existing data is reasonably

straightforward, estimating the mean response time of a plan is much harder. Wayne 911

provided us de-identified records of ambulance responses from the years 2016 and 2017, but those

data only describe a single plan - the one that was used over those two years. Though there is

some analysis that can be done with that information, it isn’t enough to estimate the likely

performance of other plans. Instead, we developed a simulation model that lets us “relive” those

two years of 911 calls using an alternative plan, and calibrated this model using the real-world

data. Though many assumptions and simplifications were necessary to enable it to run quickly,

the simulation model managed to recreate many of the trends we observed in the real-world data

and remains our best method of estimating the mean response time of a plan without trying it

out in real life. More information on the simulation model can be found in Section 9.3.

Intuitively, response time and annual cost are dependent objectives - improvement in one

often comes at some expense in the other. At one extreme, an empty plan will cost nothing and

have an infinite mean response time. At the other, a plan with 100 ambulances active at all hours

parked at every station will have a very low mean response time and exceedingly high costs. The

objectives of minimizing cost and response time are in direct competition with one another, which

is precisely the kind of relationship that merits phrasing the problem in the terms of
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multi-objective optimization. More information on multi-objective optimization and how it

relates to the ambulance planning problem can be found in Section 2.1.2.

The result of this consideration is a metric that describes the “fitness” of a plan for the

purpose of comparing two plans. The fitness of an ambulance distribution plan d is given by the

product

f(d) = R(d)C(d),

where R is a function that estimates the mean response time of d and C is a function that

estimates the annual cost of d. Intuitively, the smaller a plan’s fitness score, the more cost-efficient

the plan will be. This particular choice of fitness function was motivated by a desire to have a

proportional increase in each of the objectives weighted equally. For instance, a 10% improvement

in the cost of a plan results in exactly the same change to the plan’s fitness as a 10% improvement

in mean response time. Each would result in a 10% improvement in the fitness score.

9.3 EMS Simulation Model

The purpose of our simulation model is to use existing data that describe how the

ambulance services behaved in Wayne County during 2016 and 2017 to estimate how alternative

placements of ambulances would have performed over the same time period. First, it uses

historical response data and a road map to compute a matrix of estimated travel times to the

location of each call from each station. Then, it runs an event-driven re-enactment of the calls

that came in over the two years for which we have data, and simulates the behavior of

ambulances in response to these calls. During this, the simulation keeps track of ambulance

availability and measures response times, mutual aid coverage, the amount of time each

ambulance is in use, and so on. A complete list of output data is provided in Section 9.3.3. The

simulation can be performed with any arrangement of ambulances, and each ambulance can be

independently scheduled. This allows us to examine alternative station/parking locations and

shift schedules in addition to adding ambulances to existing locations.
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9.3.1 Assumptions and Simplifications

The behavior of ambulances is affected by many processes and factors that are not always

simple to predict. In order to model this behavior with a simulation, many simplifications were

made. This subsection lists the assumptions and simplifications that were used in the

development of the simulation model.

• All calls are equally important. In the simulation, calls are responded to in the order

that they are received by 911. All calls requiring an ambulance response are assumed to be

equally urgent.

• Recent data can describe present and future behavior. The years 2016 and 2017 are

assumed to be representative in terms of the frequency and location of calls. The potential

for a rapid change in the volume of incoming calls, or in the geographic regions from which

calls are most common, is not considered by the model.

• Dispatching an ambulance is instantaneous. It is assumed that if there are

ambulances available when a call begins, an ambulance will be dispatched immediately to

respond. There is no simulation of the delay involved in finding the most appropriate

ambulance to respond to the call and sending it out.

• The average speed of an ambulance is constant. Ambulances always travel at the

same average speed in the simulation. This speed was calibrated to 24 miles per hour by

choosing the speed that enabled the simulation to most closely match the observed response

times of real ambulances under the configuration used in 2016 and 2017. Vehicle

acceleration and traffic conditions are not simulated by the model.

• Stations do not proactively respond to the needs of other stations. In the real

world, if a station sends out all of its ambulances, and another station nearby has an

available ambulance, it may send that ambulance to halfway between the two stations so

that it can readily respond to incoming calls in either station’s service region. This potential

behavior is not modeled by the simulation.
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• The curvature of the earth can be ignored. The simulation models the roads of

Wayne county as a weighted graph on a flat surface.

• All roads are equally navigable. In reality, many roads in the county are sharply curved

and some are not paved. While such roads might be navigated more slowly than others in

the real world, we assume all roads can be traveled at the same speed for the simulation

model.

• Patients always choose the nearest hospital. All ambulances transporting someone to

a hospital are assumed to go to the nearest hospital. In the real world, the person being

transported can dictate the hospital to which they want to be delivered, but as we do not

have this information for most of the calls, it is assumed for the simulation that every

person being transported will choose the nearest hospital.

• Each ambulance responds from its station. In a previous version of the simulation, we

tracked each ambulance’s position on the road graph as it traveled. With this information, a

nearby ambulance could respond to an incoming call on its way back to the station from

another call. This diversion mid-path was observed to occur very rarely, however - usually

either the ambulance had a call to respond to immediately when it became available, or

made it back to the station before the next call came in. The simulation was sped up

significantly by simplifying this behavior in a later version, which we used in this project. In

this version, an ambulance always responds along a path from its station to the call location.

9.3.2 Implementation

The simulation model, along with most of the rest of the project, was written in C# as a

console application targeting the .NET Core platform for compatibility with both Windows and

Linux machines. This was chosen because some of the optimization methods we used involved

distributing the processing load over the nodes of a compute cluster, which is a Linux

environment, while the application itself was developed on Windows machines. While the overall

procedure followed by the simulation is outlined here, it is unavoidable that some nuances are

omitted for brevity’s sake. Additional information can be found in the source code, which is
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available on GitHub [15] and contains XML documentation.

The simulation begins by generating a table that describes the travel time from each call

location to each station and hospital. This table can alternatively be imported if it has been

generated for a previous run with the same data. Each travel time is computed by first

determining the distance to be traveled, then dividing by the average travel speed of an

ambulance, which is assumed to be constant. The distance to be traveled is computed by finding

the nearest nodes to the point of departure and destination, respectively, and pathfinding along

the road graph to obtain a sequence of nodes that connect them. Pathfinding is performed using

the A* algorithm [8]. A downscaled L1 norm is used for the pathfinding heuristic, given by

h(a,b) =

∣∣∣∣ax + ay − bx − by√
2

∣∣∣∣ ,
where a and b are nodes on the road graph with positions given by (ax, ay) and (bx, by),

respectively. The 1/
√

2 factor is included to prevent overestimation, which may result in

sub-optimal pathfinding if it occurs.

Once the table of travel times has been obtained, the simulation’s current time is set to

midnight on January 1, 2016, and a list of events that will occur during the simulation is

populated. Every call corresponds to an event that is scheduled to occur at the time the call was

received, at which point an ambulance response is attempted for that call. When an ambulance is

dispatched to respond to a call, its state is changed from “available” to “traveling to call,” and an

arrival event is added to the event list at the current time plus the travel time from that

ambulance’s station to the call. When this arrival event occurs, the ambulance’s state transitions

to “at call,” a departure event is added to the list, and so on. The behavior of ambulances in the

simulation is described by the finite state machine outlined in Figure 19.

During each event, appropriate records for each ambulance and station are updated. The

simulation progresses by advancing time to the next scheduled event and processing that event,

repeating this until there are no more events in the list.
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Figure 19: Flowchart of Simulated Ambulance Behavior
A flowchart of the finite state machine that governs ambulance behavior in the simulation model.

9.3.3 Generated Data

When the simulation model is run, it records data that can be used to gain insight into the

performance of various elements of the simulated ambulance distribution. The information that is

recorded in each run is summarized here.

• Call Response Times. Response time is measured as the duration between when a call is

received by 911 and when an ambulance arrives at the call’s location. The entire set of

response times can be exported for analysis, but usually only a summary is recorded. The

summary includes the arithmetic mean, inter-quartile mean, and percentiles at increments

of 10%. Additionally, the mean response time for each station is recorded.

• Call Counts. The total number of ambulance responses that are sent out from each station

is recorded.

• Queued Calls. When a call is received by 911 but no ambulances are currently available to

respond, it is momentarily enqueued until the next ambulance is available. The number of

times this happens is recorded.

• Mutual Aid. When a call is received and the closest station does not have any ambulances

74



available to respond, another station will cover the call. This process is referred to as mutual

aid, and the number of times each station covers each of the other stations is tabulated.

9.4 Optimization

In 2018, an exhaustive search optimization for the ambulance planning problem was run

on the Big Green Cluster - Marshall University’s high-performance computing solution. A

heatmap of the solution space for 10 ambulances is shown in Figure 20. We compare our branch

and bound results against the solutions found by the exhaustive search as a benchmark.

9.4.1 Branching

A solution in the context of the ambulance planning problem is a matrix P ∈ N10×2,

where the first column lists how many ambulances are allocated to the ith station on a full-time

schedule, and the second column describes in the same manner the placement of ambulances with

part time schedules.

We consider two approaches to defining Branch() for the ambulance planning problem.

Method A. Define

Branch(P ) = {P + 1i,j | 1 ≤ i ≤ 10, j = 1, 2} , (9.1)

where 1i,j is a 10× 2 matrix with all entries zero except for a 1 at position i, j. This corresponds

to looking at every way that it is possible to add one ambulance to the plan. This approach yields

20 new branches from each retained branch after bounding, though these new branches are not

guaranteed to be unique, as there will be some overlap if two or more branches are retained.

Optimization under this manner of branching can be characterized as attempting to determine

the appropriate position and schedule for the next ambulance to be added to the plan, with the

goal of later achieving an optimal plan for a larger number of ambulances. This method may

produce constructive solutions, but as there are some overlapping elements between the branches,

it is not always possible to uniquely determine the path that was taken to arrive at a given result.

Method B. Suppose there are c stations, and choose a permutation (s1, s2, · · · , s2c) of

station-shift pairs. Four ambulances is a practical upper bound on the number of ambulances that

could be allocated to a single station-shift pair. We begin, as before, with an empty or existing
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Figure 20: Heatmap of the Solution Space for Plans with 10 Ambulances
A boundary line (blue) is drawn along the outermost solutions. The Pareto set is located within
the wavy curve that forms the lower-left portion of the boundary line.
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plan. In the ith branching step, we consider adding 0, 1, 2, 3, or 4 ambulances to the ith

station-shift in the permutation, within the maximum number of total ambulances. This method

may be characterized as first deciding how many ambulances to place in s1, then deciding the

same for s2, and so on. The results are not constructive, as the order of ambulance placement is

determined by the permutation and not by their importance to the fitness of the plans in the

resulting branches. This branching method produces a partition of the search space, and fewer

branches are generated as the result of each branch retained during bounding, so it holds promise

for efficiently finding non-constructive solutions.

9.5 Results

The results of running a branch and bound optimization to place 10 ambulances are

detailed in Figure 21. These were obtained with a sample size of 1000, a confidence level of 95%,

and a guiding parameter given by the mean of the fitnesses that are less than the 10th percentile.

Branching was performed using Method A. The optimization ends after placing 8 ambulances,

and there are fewer than 800 solutions in the union of the resulting branches. Among these

solutions are multiple Pareto optimal solutions identified in the exhaustive search.

9.6 Future Work

The inference-driven branch and bound optimization method we have developed and

implemented in this work is at a proof-of-concept level of revision. We have demonstrated that

this method can be effective for solving optimization problems of both real and academic origin.

However, there are many directions through which future research may improve, or at least better

describe, the limitations of the method. A number of these have been mentioned in previous

chapters, and some salient topics for future study are listed here.

• Improved Tail Estimation and Model Fitting for Extreme Quantiles

Our present implementation uses method of moments estimation and a number of

simplifications, including assuming that the location parameter of a GEV error distribution

is always effectively zero. Better tail estimation and model fitting will significantly improve

the reliability of the 1/nth quantile and similar extreme quantile guiding parameters.
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Code Location Name Latitude Longitude

CK Ceredo-Kenova N 38.39144◦ W 82.56243◦

Crum Crum N 37.90289◦ W 82.44192◦

Dunlow Dunlow N 38.00035◦ W 82.40960◦

EastL East Lynn N 38.16207◦ W 82.39095◦

FortG Fort Gay N 38.11770◦ W 82.59370◦

KenS Kenova South N 38.35521◦ W 82.53152◦

Lav Lavalette N 38.33730◦ W 82.45180◦

Prich Prichard N 38.24173◦ W 82.59880◦

SV Spring Valley N 38.38353◦ W 82.51948◦

Wayne Wayne N 38.21277◦ W 82.45050◦

Figure 21: Progression Diagram for an Application of Branch and Bound
The progression diagram for an application of inference-driven branch and bound to the emergency
vehicle planning problem. The branches retained after each iteration are listed as rectangles, and
contain a list of their allocated ambulances. Each entry can be read as a station identifier, followed
by aFbP to denote a full-time and b part-time ambulances at that station.
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• Faster, Simpler, and More Reliable Integration of the Complement Discard

Probability Integral

The quadrature methods we considered trade between simplicity, efficiency, and reliability.

Extensive additional testing and broader consideration of alternative methods may yield

more reliable and efficient computational methods for this purpose.

• Automatic Branching

Presently, the user must specify a branching method for the solution space and subsequent

branches. While this permits the selection of branching methods that suit the user’s

preferences, an automated, data-driven approach to branching may be more effective for

optimization.

• Adaptive Guiding Parameters and Statistics

Additional guiding parameters and statistics may permit more effective convergence to

optimal solutions. In particular, estimates that adapt to make more effective decisions

during later iterations may improve the results of the optimization.

• Automatic and Adaptive Choice of Sample Size

The sample size is presently left to the user to determine, and does not change during the

optimization. Adaptive sample sizes may yield computational savings by judging that an

additional branch may be discarded with a modest augmentation of the branch samples, or

by determining that the same conclusions could have been achieved with a smaller sample.

• Analysis of Error Propagation

At present, each bounding operation uses a fixed confidence level for discarding branches,

without regard for the possibility that the optimal value of the guiding parameter may

belong to a branch that was discarded in previous iterations. A more careful analysis of how

confident we can be that the optimal value of the guiding parameter is being retained at

each step may illuminate useful improvements to the method.
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• Analysis of Robustness to Errors in the Objective Function for each Guiding

Parameter

Most of our work has assumed that the objective function f is correct. Our emergency

vehicle planning optimization is about minimizing f = RC, which is not necessarily using

the real world annual cost or mean response time, and the results of the optimization may

perform poorly in real applications if the models we use to measure those objectives are

inaccurate. Another reason we may not be able to fully trust the objective function could

be if it contains random measurement errors, which occur in many applications [24]. Some

guiding parameters may be more robust than others under these conditions.
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