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ABSTRACT 

Skeletal muscle comprises approximately 30% of total body mass, and loss of muscle mass and 

dysfunctional muscle metabolism are implicated in multiple disease states, including type 2 

diabetes, heart failure, and septic shock. As such, understanding the mechanisms of skeletal 

muscle growth and atrophy, including pharmaceutical targets that may prove safe and effective, 

is therefore an important goal of current research on skeletal muscle physiology. One potential 

target in skeletal muscle development and function that has not been fully explored is the Na/K-

ATPase (NKA), especially the α1 isoform. This isoform has a unique signaling function that has 

previously been shown to regulate growth, metabolism, and organogenesis and comprises only 

10% of the total NKA in skeletal muscle. We therefore investigated the role of this signaling 

isoform in skeletal muscle. To accomplish this, we utilized a global NKA α1 haplodeficient 

mouse (α1+/-). The oxidative soleus muscles of skα1+/- were 10% smaller than controls, while 

the glycolytic extensor digitorum longus mass was unchanged. This prompted us to analyze the 

metabolism of cells lacking NKA α1, which revealed that the α1 isoform is necessary for 

metabolic reserve and flexibility. A second mouse model was generated with a skeletal muscle-

specific ablation of NKA α1. These mice had a 35% reduction in skeletal muscle mass and a 

switch from oxidative to glycolytic fibers. Paradoxically, these mice were protected from diet-

induced metabolic dysfunction including diet-induced insulin resistance. This provided the first 

genetic in vivo model of α1 signaling as a major regulator of metabolism and led to the 

hypothesis that the evolution of the Src binding sites in α1 in mammals may be linked to the 

development of increased metabolic reserve associated with the evolution of endothermy. These 

findings together confirm a vital role of NKA α1 in skeletal muscle development and 



xi 

metabolism, and link the evolution of endothermy to the evolution of the NKA α1 Src binding 

sites.
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CHAPTER 1 

INTRODUCTION 

Skeletal muscle is the largest organ in the body, on average comprising between 31% and 

38% of total body mass (Janssen, Heymsfield, Wang, & Ross, 2000). Furthermore, skeletal 

muscle accounts for an estimated 20-30% of metabolic flux at rest (Zurlo, Larson, Bogardus, & 

Ravussin, 1990), and is the tissue most responsive to insulin-stimulated glucose uptake (Honka 

et al., 2018), even when normalized to organ mass. Dysregulation of insulin signaling in skeletal 

muscle is sufficient to cause whole-body insulin resistance (DeFronzo & Tripathy, 2009), and 

muscle mass can largely predict a person’s susceptibility to diabetes (Son et al., 2017). 

Therefore, understanding the mechanisms which regulate skeletal muscle metabolism and 

growth are key to treating the growing global health concerns of obesity and insulin resistance, 

which affect 13% and 8.5% of adults worldwide, respectively (Collaboration, 2016, 2017). 

In addition to its role in metabolic regulation, skeletal muscle is vital for normal function 

and movement. Skeletal muscle atrophy due to aging (sarcopenia), cancer (cachexia), or disuse 

due to injury or bedrest impacts large numbers of people each year and currently has no 

approved treatment options besides physical therapy and exercise (Dhillon & Hasni, 2017; 

Sakuma, Aoi, & Yamaguchi, 2017; Theilen, Kunkel, & Tyagi, 2017; Weihrauch & Handschin, 

2018). These changes in muscle mass can have long-term impacts on patient outcomes, with 

higher muscle mass associated with better outcomes (Ishizu et al., 2017; Moorthi & Avin, 2017). 

Understanding the mechanisms of skeletal muscle growth and atrophy, including pharmaceutical 

targets that may prove safe and effective, is therefore an important goal of current research on 

skeletal muscle physiology. 
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One potential target in skeletal muscle development and function that has not been fully 

explored is the Na/K-ATPase (NKA), especially the α1 isoform. Although the oldest-known 

function of NKA is the active transport of Na+ and K+ across the cell membrane to create a 

membrane potential, the α1 isoform has a more recently discovered signaling function (Cui & 

Xie, 2017; Pierre & Xie, 2006; Z. Xie & Askari, 2002). These studies have linked NKA α1 

signaling to the regulation of such vital processes as mitochondrial reactive oxygen species 

(ROS) production (Yan et al., 2013), cell metabolism (Banerjee et al., 2018), cell proliferation 

(Lai et al., 2013; Liang, Cai, Tian, Qu, & Xie, 2006; Tian et al., 2009; Ye et al., 2013), and 

organogenesis (Fontana, Burlaka, Khodus, Brismar, & Aperia, 2013; Khodus, Kruusmagi, Li, 

Liu, & Aperia, 2011; J. Li et al., 2010; X. Wang et al., 2019). The signaling NKA α1 isoform has 

not been studied extensively in skeletal muscle, as it represents only about 13% of the total NKA 

in skeletal muscle (He et al., 2001). Considering the importance of skeletal muscle metabolism 

and growth regulation in human health and disease, we explored the potential role of NKA α1 as 

a regulator of skeletal muscle growth and metabolism.  

Molecular Properties of Na/K-ATPase Isoforms in the Skeletal Muscle 

Na/K-ATPase as an Ion Pump 

The Na/K-ATPase (NKA) is a P-type ATPase which transfers both Na+ and K+ across the 

cell membrane against their concentration gradients to generate a membrane potential and 

maintain cell volume (Blanco, 2005a; Skou & Esmann, 1992). As a P-type ATPase, NKA 

hydrolyzes ATP, phosphorylating the aspartate residue at position 369 on the third cytoplasmic 

domain of the catalytic α subunit (indicated by a star in Figure 2) (Kuntzweiler, Wallick, 

Johnson, & Lingrel, 1995). NKA undergoes conformational changes between the E1 and E2 

states to transport K+ out of and Na+ into the cells. These conformational changes were first 
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described by Siegel and Albers in 1967 and refined by Post et al. in 1969 and are known as the 

Albers-Post mechanism (Figure 1), which allows the active transport of Na+ and K+ out of and 

into the cell, thereby maintaining the electrochemical gradient (Post, Kume, Tobin, Orcutt, & 

Sen, 1969; Siegel & Albers, 1967). Since the discovery of NKA by Jens Skou in 1957 (Skou, 

1957), its role as an ion pump in a variety of tissues has been the focus of many studies (Blanco, 

2005a; Cougnon, Moseley, Radzyukevich, Lingrel, & Heiny, 2002; Gerbi et al., 1998; He et al., 

2001; P. F. James et al., 1999; Thompson & McDonough, 1996). 

α 
Isoform 

Tissue Distribution 
Associated 
β Isoform 

Na+ Affinity 
(K0.5, mM) 

K+ Affinity 
(K0.5, mM) 

Ouabain Inhibition 
(Ki, M) 

Ouabain Affinity 
(Kd, M) 

Species Kinetics Source 

α1 Ubiquitous 

β1 

16.4 ± 0.7 1.9 ± 0.2 4.3±1.9×10-5 N/A Rat 
(Blanco, Koster, Sanchez, & 

Mercer, 1995; Blanco, Sanchez, 
& Mercer, 1995) 

8.3 ± 0.6 0.92 ± 0.11 2.0±0.6×10-7 N/A Human 
(Sanchez, Nguyen, Timmerberg, 

Tash, & Blanco, 2006) 

β2 N/A 1.16 ± 0.02 N/A 1.98±0.21×10-8 Human (G. Crambert et al., 2000) 

β3 N/A 1.05 ± 0.12 N/A 1.91±0.20×10-8 Human (G. Crambert et al., 2000) 

α2 

Myofibers, 
cardiomyocytes, 

glial cells, smooth 
muscle, adipose 

tissue 

β1 
12.4 ± 0.5 3.6 ± 0.3 1.7±0.1×10-7 N/A Rat 

(Blanco, Koster, et al., 1995; 
Blanco, Sanchez, et al., 1995) 

12.8 ± 2.2 1.30 ± 0.17 N/A 3.69±0.31×10-8 Human (G. Crambert et al., 2000) 

β2 
8.8 ± 1.0 4.8 ± 0.4 1.5±0.2×10-7 N/A Rat 

(Blanco, Koster, et al., 1995; 
Blanco, Sanchez, et al., 1995) 

N/A 2.70 ± 0.3 N/A 2.65±0.65×10-8 Human (G. Crambert et al., 2000) 

β3 N/A 1.80 ± 0.10 N/A 2.90±0.65×10-8 Human (G. Crambert et al., 2000) 

α3 Neurons 

β1 
27.9 ± 1.3 5.3 ± 0.3 3.1±0.3×10-8 N/A Rat (Blanco, Sanchez, et al., 1995) 

24.7 ± 2.4 0.90 ± 0.27 N/A 1.43±0.08×10-8 Human (G. Crambert et al., 2000) 

β2 
17.1 ± 1.0 6.2 ± 0.4 4.7±0.4×10-8 N/A Rat (Blanco, Sanchez, et al., 1995) 

N/A 1.60 ± 0.10 N/A 1.76±0.20×10-8 Human (G. Crambert et al., 2000) 

β3 N/A 1.33 ± 0.17 N/A 1.25±0.20×10-8 Human (G. Crambert et al., 2000) 

α4 Sperm 

β1 

N/A N/A 1.0±0.3×10-8 N/A Human (Sanchez et al., 2006) 

13.5 ± 1.3 5.9 ± 1.1 6.4±2.1×10-9 N/A Rat 
(Blanco, Melton, Sanchez, & 

Mercer, 1999) 

β3 
N/A N/A 1.8±0.7×10-8 N/A Human (Sanchez et al., 2006) 

12.9 ± 0.6 5.0 ± 0.3 1.0±0.3×10-8 N/A Rat (Blanco et al., 1999) 

Table 1: NKA α isoform enzymatic properties  

List of human and rat NKA α isoforms affinities for Na+ and K+ (K0.5) and inhibitor constants 

(Ki) or affinities (Kd) for ouabain, depending on study design. 

NKA is comprised of a catalytic α subunit, a targeting β subunit, and in some tissues, a 

regulatory γ or FXYD subunit (Figure 1) (Blanco, 2005a). The α subunit is necessary for the 

transport of Na+ and K+  (Blanco, DeTomaso, Koster, Xie, & Mercer, 1994), while the β subunit 

is required for normal trafficking and to stabilize the α subunit, usually by targeting the α1 
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subunit to the plasma membrane and thereby preventing degradation (Geering et al., 1996). The 

γ subunit is expressed in a tissue-specific manner and can bind the catalytic α subunit at 

transmembrane segments 2 and 9 (see Figure 2). This association of the γ subunit with the 

functional αβ complex leads to decreased substrate affinity and thereby decreased ion transport 

activity (Gilles Crambert, Füzesi, Garty, Karlish, & Geering, 2002; G. Crambert et al., 2000). 

This inhibitory function is partially regulated by phosphorylation in at least some γ isoforms 

(Gilles Crambert et al., 2002; G. Crambert et al., 2000; Manoharan et al., 2015). 

Figure 1: NKA subunits and Albers-Post mechanism 

Schematic of the Albers-Post mechanism of NKA active Na and K and general structural 

representation of the catalytic α, targeting β, and regulatory γ subunit. 

Four isoforms of the catalytic α subunit have been identified in mammals, with a tissue-

specific distribution (Blanco, 2005a; Young & Lingrel, 1987). These isoforms differ slightly in 

enzymatic function, with decreased Na+ affinity in the α3 isoform and decreased K+ affinity in 

the α2 isoform (Blanco, Koster, et al., 1995; Blanco, Sanchez, et al., 1995; G. Crambert et al., 

2000; Jewell & Lingrel, 1991; Sanchez et al., 2006), two isoforms found in excitable tissues 

(Table 1). While ouabain binding affinity is similar among most mammalian isoforms, with 
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inhibitor constants (Ki) ranging from the 10-100 nM range (Table 1), the alteration of two amino 

acids on the second extracellular loop in rat and mouse α1 (L111R and N122D, positions 

indicated by red circles in Figure 2) decreases the binding affinity of cardiotonic steroids by two 

orders of magnitude, to a Ki of 43 µM (Blanco, Koster, et al., 1995; Blanco, Sanchez, et al., 

1995; Blanco, Xie, & Mercer, 1993; Dostanic et al., 2003). This difference has been proposed to 

alter calcium signaling and muscle fatigue (Despa, Lingrel, & Bers, 2012; Radzyukevich, 

Lingrel, & Heiny, 2009). While some have proposed that the tissue-specific distribution of these 

different α isoforms may be related to differences in enzymatic activities (Blanco, 2005a, 

2005b), these differences do not fully explain the distribution of α isoforms and the possibility 

that the tissue distribution may be related to other functions of NKA. For example, while 

excitable tissues such as skeletal muscle and neurons express multiple α isoforms, the α2 isoform 

is also expressed in adipocytes, which are not electrically excitable (Orlowski & Lingrel, 1988b). 

Additionally, although skeletal muscle contains both α1 and α2, only 10% of the total NKA is α1 

(He et al., 2001). Although the α2 isoform is necessary for normal muscle ion transport during 

muscle contraction (DiFranco, Hakimjavadi, Lingrel, & Heiny, 2015; Manoharan et al., 2015; 

Radzyukevich et al., 2013), it seems unlikely that this small amount of α1 performs a vital ion 

transport function that cannot be fulfilled by α2.  

The β and γ subunits also display tissue-specific isoform distributions (G. Crambert et al., 

2000; Orlowski & Lingrel, 1988b). The effects of different β isoforms on the enzyme kinetics of 

the catalytic α subunit could explain the distribution of the β isoforms in different tissues. 

Specifically, the expression of different β isoforms alters the Na+ and K+ affinities of the 

associated α isoform (see Table 1). Similarly, γ isoforms exhibit distinct regulation by protein 
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kinases (G. Crambert et al., 2000), suggesting that the tissue-specific distribution of the γ 

isoforms could facilitate the tissue-specific regulation of NKA activity.  

Na/K-ATPase and Skeletal Muscle Ion Homeostasis 

Skeletal muscle is an excitable tissue comprised of a heterogeneous mixture of myofibers 

with different contractile and metabolic properties (Goodyear, Hirshman, Smith, & Horton, 

1991; Gunning & Hardeman, 1991; Stuart et al., 2013; Templeton, Sweeney, Timson, Padalino, 

& Dudenhoeffer, 1988), from the oxidative type 1 fibers to mixed type 2a fibers and glycolytic 

type 2B/X fibers. Skeletal muscle contains only the ubiquitous α1 isoform and the α2 isoform 

(Blanco, 2005a; Cougnon et al., 2002; Fowles, Green, & Ouyang, 2004; He et al., 2001; O'Brien, 

Lingrel, & Wallick, 1994; Thompson & McDonough, 1996; Young & Lingrel, 1987). In rodents, 

the α1 isoform is primarily found in oxidative slow-twitch fibers, while the α2 isoform is most 

dominant in glycolytic slow-twitch fibers, with the α1 isoform primarily found on the 

sarcolemma and the α2 isoform localized to the T-tubules and neuromuscular junction (Murphy, 

Petersen, et al., 2006; Thompson & McDonough, 1996; L. Zhang, Morris, & Ng, 2006). 

However, in humans, there are conflicting reports, with Thomassen et al. reporting significantly 

increased α2 expression in glycolytic type 2 fibers (Thomassen, Murphy, & Bangsbo, 2013) 

while Wyckelsma et al. reported no difference in fiber type distribution between the α1 and α2 

isoforms (Wyckelsma et al., 2015). This discrepancy, however, appears to be at least in part due 

to larger variability in the Wyckelsma study. Importantly, neither study reported significantly 

lower expression of the α1 isoform in type 2 fibers as has been seen in rodents (Murphy, 

Petersen, et al., 2006; Thompson & McDonough, 1996; L. Zhang et al., 2006), although in the 

Thomassen study, there appears to be a statistically insignificant decrease in α1 expression in 



  7 

type 2 fibers and this, combined with the significantly higher expression of α2 in type 2 fibers, 

suggests a decreased α1/α2 ratio in human type 2 fibers as compared to type 1 fibers. 

In addition to their fiber type-specific distribution, the NKA α1 and α2 isoforms have 

distinct roles in the maintenance of skeletal muscle membrane potentials. The α1 isoform 

comprises only 10-15% of the total NKA content in skeletal muscle, with the α2 isoform making 

up the other 85-90% (He et al., 2001). The α2 isoform is localized to the neuromuscular junction 

and T-tubules, while the α1 isoform is localized to the sarcolemma (Cougnon et al., 2002; 

DiFranco et al., 2015; Heiny et al., 2010; Williams et al., 2001).  

Figure 2: Schematic diagram of α and β subunits of NKA  

Line structure of α and β subunits of NKA, with regions important for signaling highlighted in 

purple (caveolin binding motif), yellow (FXYD binding regions), green (Y260 Src binding 

region) and blue (NaKtide Src binding region). Additionally, the positions of amino acids 

conferring ouabain sensitivity are denoted by red circles, and the residue at which NKA is 

phosphorylated during ion pumping is denoted by an orange star. The sequences of the Y260 and 

NaKtide regions in different isoforms from various species can be found in Table 3. 

This subcellular distribution, along with the decreased K+ affinity of the α2 isoform 

compared to the α1 isoform (Table 1), leads to distinct roles for the two isoforms in maintaining 

the skeletal muscle membrane potential. The α1 isoform has been identified as responsible for 
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maintaining the resting membrane potential, while the α2 isoform is responsible for restoring 

membrane potential during muscle contraction (He et al., 2001). This role of the dominant α2 

isoform has been further explored with the use of a skeletal muscle-specific α2 knockout mouse 

model (skα2-/-). In the absence of α2, the α1 isoform is incapable of maintaining membrane 

potential during tetanic contractions in spite of significant compensatory upregulation of α1 

expression, leading to increased fatigability and dramatically decreased exercise tolerance 

(Radzyukevich et al., 2013). This failure to maintain the membrane potential was later attributed 

to the higher K+ affinity of the α1 isoform, which left its enzymatic activity saturated at 

physiological K+ concentrations, and to the localization of α1 to the sarcolemma instead of the T-

tubules, where extracellular K+ diffuses more slowly and NKA activity is necessary to restore 

membrane potential after each depolarizing action potential (DiFranco et al., 2015; Manoharan et 

al., 2015). In spite of these clear functional defects, the skα2-/- muscles were not reported to be 

different in size or morphology from wild type skeletal muscles (DiFranco et al., 2015; 

Manoharan et al., 2015; Radzyukevich et al., 2013). 

Hypothesized roles for the α1 and α2 isoforms in skeletal muscle 

While maintenance of the membrane potential in contracting muscles is important and α2 

functions as the ‘turbocharger’ to restore the membrane potential after the initiation of 

contraction, which isoform maintains the basal membrane potential is unclear. The basal 

membrane potential impacts contractility, with increased basal membrane potential correlating 

closely with force generation (Cairns, Hing, Slack, Mills, & Loiselle, 1997; Overgaard, Nielsen, 

& Clausen, 1997). Based on contractility studies in skeletal muscles from α1 haplodeficient 

mice, He et al.  hypothesized that the NKA α1 isoform is responsible for maintaining the basal 

membrane potential. However, while global α1 haplodeficiency did lead to decreased twitch 
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force of the extensor digitorum longus (EDL) in vitro (He et al., 2001), the membrane potential 

was not directly measured. This mouse model is a global knockdown model that has other 

abnormal phenotypes, including a cardiac phenotype (Moseley, Cougnon, Grupp, El Schultz, & 

Lingrel, 2004; Moseley et al., 2005), so it is possible that the decreased force generation 

observed in α1 haplodeficient muscles is a result of another aspect of their phenotype, for 

example, a hormonal or behavioral change that could lead to weaker muscles rather than a 

decrease in membrane potential. 

Src-Dependent Signaling Function 

In 1998, the lab of Zijian Xie identified a novel signaling function of the NKA when they 

discovered that the treatment of cardiomyocytes with the NKA-specific ligand ouabain induced 

cardiomyocyte hypertrophy via a dose-dependent activation of p42 MAPK (Huang, Li, & Xie, 

1997; Kometiani et al., 1998). Follow up studies determined that this Src-mediated signaling 

function was isoform-specific (Madan et al., 2017; J. Xie et al., 2015), and that reactive oxygen 

species (ROS) mediated this hypertrophic pathway (Z. Xie et al., 1999). This signaling cascade 

has since been expanded to include transactivation of the epidermal growth factor receptor 

(EGFR) (Haas, Askari, & Xie, 2000), the activation of mitogen activated protein kinase (MAPK) 

and Akt pathways (Huang et al., 1997), the activation of the inositol triphosphate (IP3) receptor 

and generation of Ca2+ oscillations (Yuan et al., 2005), and the generation of mitochondrial 

reactive oxygen species (ROS) (Liu et al., 2006; Z. Xie et al., 1999), linking it to both growth 

and metabolism. Additionally, a positive feedback loop in which ROS are capable of activating 

α1 signaling through Src has been identified (Yan et al., 2013), leading to the hypothesis that 

controlling this signaling pathway may allow for control of ROS stress in disease states.  
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The identification of the Src binding domains on NKA α1 led to the development of 

NaKtide, a peptide that mimics the ability of α1 to bind Src, thus acting as an inhibitor of CTS 

and ROS-stimulated activation of Src through NKA α1 (Z. Li et al., 2009). The drug candidate 

pNaKtide was derived from NaKtide, with the addition of positively charged cell-penetrating 

peptides, generating pNaKtide. This modification allowed the pNaKtide in the extracellular 

space to penetrate the membrane and inhibit Src, thus disrupting the NKA α1/Src signaling 

complex. In vivo studies with pNaKtide have revealed that inhibiting NKA α1 signaling through 

Src can be protective in such diverse conditions as aging (Sodhi et al., 2018), uremic 

cardiomyopathy (J. Liu et al., 2016), myocardial ischemia-reperfusion injury (H. Li et al., 2018), 

and diet-induced obesity, steatohepatitis, and insulin resistance (Sodhi et al., 2015; Sodhi et al., 

2017; Srikanthan, Shapiro, & Sodhi, 2016). In all of these studies, intraperitoneal administration 

of pNaKtide prevented the pathological increase in ROS and ultimately prevented the 

development of severe pathologies. 

While the in vivo studies with pNaKtide revealed a key role for α1 in regulating 

metabolism, the ubiquitous nature of α1 and the systemic administration of pNaKtide make it 

impossible to identify the tissue-specific impacts. In a recent study, Pratt et al. used a lentiviral 

transfection system to express pNaKtide specifically in adipocytes. This not only protected 

adipose tissue from Western diet-induced metabolic dysfunction, but also prevented the 

development of non-alcoholic steatohepatitis and neurodegeneration (Pratt et al., 2019). These 

results provide the first evidence that manipulation of α1 signaling can impact cross talk between 

tissues. However, much remains unclear about the importance of α1 and α1 signaling in other 

tissues, and no genetic models exist to date. 
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In addition to this role of NKA signaling in regulating metabolism and growth, signaling 

by NKA α1 has been recognized as a driver of development and organogenesis. In 2010, Li et al. 

identified the ouabain-stimulated generation of Ca2+ oscillations through NKA signaling as 

important for the development of rat kidneys (J. Li et al., 2010). This ouabain-mediated 

restoration of normal kidney development in malnourished fetal rats was attributed to the 

stimulation of the PI3K pathway through the IP3 receptor (Khodus et al., 2011; J. Li et al., 

2010). More recently, studies in our lab have revealed that the caveolin binding motif found in 

the first transmembrane segment of the α subunit (Figure 2), which is a critical component of the 

NKA α1/Src signaling scaffold (Bai et al., 2016; Cai et al., 2008; Quintas et al., 2010; H. Wang 

et al., 2004), plays a vital regulatory role in embryonic development, especially in neurogenesis 

(X. Wang et al.). Furthermore, studies with human induced pluripotent stem cells have shown 

that the loss of the caveolin binding motif leads to a loss of stemness and impaired differentiation 

(X. Wang et al., 2019). This control of differentiation and organogenesis by NKA α1 caveolin 

binding motif has been linked to Wnt/β-catenin signaling independent of Src, but it has only 

been partially investigated thus far and the involvement of Src in this regulation cannot be ruled 

out. 

These multiple signaling functions identified in other cell types offer an alternative 

explanation for the presence of the minor NKA α1 isoform in skeletal muscle. However, this 

signaling function of α1 has only been explored in skeletal muscle in two papers published by 

Kotova et al., who explored a role for the signaling function in cultured C2C12 cells (Kotova, 

Al-Khalili, et al., 2006; Kotova, Galuska, Essen-Gustavsson, & Chibalin, 2006). The 

differentiated myotubes were treated with ouabain, a NKA-specific ligand that stimulates α1 

signaling at low concentrations and inhibits ion pumping of all isoforms at high concentrations. 
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After ouabain treatment, cells showed increased glycogen synthesis via the Akt- and ERK-

mediated inactivation of glycogen synthase kinase 3β (GSK-3β) (Kotova, Al-Khalili, et al., 

2006; Kotova, Galuska, et al., 2006). Because GSK-3β is implicated in the regulation of skeletal 

muscle differentiation and the progression of skeletal muscle atrophy (Leger et al., 2006; van der 

Velden et al., 2007; Verhees et al., 2011; W. Yang, Zhang, Li, Wu, & Zhu, 2007), this suggested 

a link between NKA signaling and the regulation of skeletal muscle metabolism and 

development. Furthermore, glycogen content correlates with exercise endurance (Overmyer et 

al., 2015; Xu, Ren, Lamb, & Murphy, 2018), so this regulation of glycogen content by NKA 

signaling could have implications for exercise performance as well. However, these hypothetical 

links between NKA signaling and skeletal muscle metabolism and growth have not been tested 

in vitro, and the impact of NKA signaling in skeletal muscle in vivo remains unclear. 

Regulation of Na/K-ATPase in Skeletal Muscle Physiology 

Skeletal Muscle Development and Growth 

Myogenesis involves the progression from pluripotent stem cells to myoblasts to 

myotubes to myofibers, which is regulated in a time-dependent manner by skeletal muscle-

specific factors such as MyoD, MRF4, myogenin, and myostatin. As myoblasts differentiate and 

fuse into myotubes and myofibers, cell proliferation ceases, and cells develop rudimentary 

contractile machinery. In normal developmental conditions, they further mature into myofibers 

with all of the ultrastructure of skeletal muscle including T-tubules and highly coordinated and 

organized contractile apparatus (Chal & Pourquie, 2017). During myogenesis, myotubes begin to 

express the NKA α2 isoform while expression of NKA α1 begins to decrease (Higham, 

Melikian, Karin, Ismail-Beigi, & Pressley, 1993; Orlowski & Lingrel, 1988a, 1988b), a process 

that corresponds with the development of T-tubules (Cougnon et al., 2002).  
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Even after development, skeletal muscle remains highly plastic, with the ability to expand 

in size and cell number after reaching maturity in response to exercise or to injury (Frontera & 

Ochala, 2015; Le Moal et al., 2017). Myofibers hypertrophy when they expand in size, a process 

that may or may not include the mobilization of satellite cells and thus the integration of more 

nuclei/fiber (Murach et al., 2018). Many of the regulators of this process also impact the 

expression and activity of NKA in isoform-specific ways (see “Hormonal Regulation of Muscle 

Growth and Metabolism” and “Regulation by Exercise”). 

The opposite process, skeletal muscle atrophy, occurs in response to a variety of stimuli, 

including disuse, cancer-induced cachexia, muscular dystrophies, burn-induced cachexia, and 

aging-related sarcopenia (Kinugawa, Takada, Matsushima, Okita, & Tsutsui, 2015; Kravtsova, 

Matchkov, & Bouzinova, 2015; Matsuyama et al., 2015; Su et al., 2017). While the stimuli are 

different, the process of atrophy and the factors which mediate it are similar in all but muscular 

dystrophies. The skeletal muscle loses metabolic flexibility, becoming more glycolytic with 

fewer mitochondria and a disrupted mitochondrial network that leads to inefficient mitochondrial 

oxidation (Egawa et al., 2015; Leger et al., 2006; Su et al., 2017). Mechanistically, during 

skeletal muscle atrophy, mTORC is inactivated, leading to decreased AMPK activation and 

increased activation of GSK3β (Egawa et al., 2015; Leger et al., 2006; Verhees et al., 2011). 

Disuse-induced atrophy in the vastus lateralis of patients suffering from knee injuries was 

associated with a 20% decrease in NKA α1 expression and a 63% decrease in NKA α2 

expression (Perry et al., 2015), an effect which has been replicated in rats and the functional 

implications of which are not fully understood (Kravtsova et al., 2016). However, while these 

key pathways have been identified as important, the master regulators of this process remain 

unclear. 
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Hormonal Regulation of Muscle Growth and Metabolism 

Skeletal muscle has a uniquely plastic metabolism that responds to a variety of stimuli to 

adjust ATP production to the metabolic demands of the muscle when at rest and active, in both 

fed states and starvation periods. As such, skeletal muscle is a primary target of insulin, with 

skeletal muscle comprising approximately 30% of insulin-stimulated glucose uptake (Honka et 

al., 2018). In the skeletal muscle, insulin stimulates the translocation of glucose transporter type 

4 (GLUT4) to the sarcolemma, thus increasing glucose uptake (Camps et al., 1992). 

Simultaneously, insulin leads to increased glycogen storage via inhibition of glycogen synthase 

kinase 3β (GSK3β) and an increase in glucose utilization (Camps et al., 1992). In addition to 

these metabolic impacts of insulin signaling, the insulin-stimulated activation of a kinase 

signaling cascade, including PI3K and p42/44 MAPK, leads to increased anabolism, including 

the transcription of growth- and survival-associated proteins (Hoppeler, 2016; H. A. James, 

O'Neill, & Nair, 2017; Rhoads, Baumgard, El-Kadi, & Zhao, 2016). 

Insulin signaling is also a strong stimulator of NKA activity. Insulin acts on NKA by 

phosphorylating the NKA α2 isoform, resulting in increased membrane abundance (Chibalin et 

al., 2001). This is especially interesting given the dependence of NKA activity on glycolysis that 

has been reported by multiple laboratories in multiple tissues (Lynch & Balaban, 1987a, 1987b; 

Sepp et al., 2014) and that has been confirmed in skeletal muscle (J. H. James et al., 1996; J. H. 

James et al., 1999; Okamoto, Wang, Rounds, Chambers, & Jacobs, 2001). Interestingly, 

increased lactate release as a result of insulin stimulation has been linked to increased NKA 

activity in humans (Novel-Chate et al., 2001), which is consistent with the association of the 

NKA α2 isoform with both insulin-stimulated increases in NKA membrane abundance (Al-

Khalili et al., 2004; Chibalin et al., 2001).  
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In addition to insulin, thyroid hormone (T3) is an important regulator of skeletal muscle 

growth and development, as well as a known regulator of NKA abundance. Skeletal muscle is 

partially capable of self-regulating T3 activity through expression of iodothyronine deiodinase 2, 

which converts the prohormone T4 into the active T3, and iodothyronine deiodinase 3, which 

inactivates T3 (Brent, 2012). T3 then acts on nuclear thyroid receptors to initiate a variety of 

cellular processes, including myogenesis through activation of MyoD and Mrf4 (Salvatore, 

Simonides, Dentice, Zavacki, & Larsen, 2014) and a switch from fast glycolytic fibers to slow 

oxidative fibers (Simonides & van Hardeveld, 2008; D. Zhang et al., 2014). Furthermore, T3 has 

been found to regulate NKA activity (Harrison & Clausen, 1998), and muscles from hypothyroid 

rats have decreased NKA activity.  

The β adrenergic system is also involved in skeletal muscle hypertrophy and adaptation 

to exercise training, and inhibition of this hormonal axis is implicated in the development of 

skeletal muscle atrophy (Hoppeler, 2016). Skeletal muscle expresses both β1 and β2 adrenergic 

receptors, which are both G-protein coupled receptors and have largely overlapping signaling. 

When epinephrine or norepinephrine binds to its receptor, adenylase cyclase is stimulated, 

leading to the generation of cyclic AMP (cAMP) (Glass, 2003). Increased intracellular cAMP 

concentrations then lead to the activation of protein kinase A (PKA), which in turn inhibits the 

glycogen synthase-mediated generation of glycogen and increases glycogen degradation by 

activating glycogen phosphorylase via activation of phosphorylase kinase. Simultaneously, 

glycolysis is increased in order to produce ATP quickly (J. H. James et al., 1999; McCarter et al., 

2001), although glucose transport is not impacted by β adrenergic stimulation (Clausen & 

Flatman, 1987). In addition to these short-term effects of β adrenergic stimulation, the activation 

of p42/44 MAPK via PKA activation of Rap1 and B-Raf can lead to protein transcription and 
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anabolic effects, making β adrenergic receptor agonists one of the preferred performance-

enhancing drugs (Glass, 2003). 

As in the case of insulin, stimulation of the β adrenergic receptors in skeletal muscle 

causes increased NKA activity (Clausen & Flatman, 1977, 1987; Kaibara, Akasu, Tokimasa, & 

Koketsu, 1985), which has been linked to changes in glutathionylation of specific subunits (Juel, 

Hostrup, & Bangsbo, 2015) and is caused specifically by the activation of β2 adrenergic 

receptors (Murphy, Bundgaard, & Clausen, 2006). Unlike insulin, where activation of NKA ion 

pumping is largely mediated by increasing the quantity of NKA on the sarcolemma (Chibalin et 

al., 2001), stimulation of NKA activity by β adrenergic agonists is largely mediated by increased 

Na+ affinity (Buchanan, Nielsen, & Clausen, 2002). This ability of β agonists to increase NKA 

activity allows for the retention of muscle contractile force at fatigue (Cairns & Dulhunty, 1993; 

Clausen, Andersen, & Flatman, 1993; Hostrup et al., 2014; Nielsen & Clausen, 1997), which 

under conditions which would elicit a fight-or-flight response could prove beneficial by 

preserving muscle function beyond the normal physiological scope. However, β agonist-

mediated activation of NKA is also associated with hyperlactatemia in sepsis and hemorrhagic 

shock (Bundgaard et al., 2003; Levy, Desebbe, Montemont, & Gibot, 2008; McCarter et al., 

2001; McCarter et al., 2002), and in fact blocking the activation of β adrenergic receptors or 

inhibiting NKA in skeletal muscle reduces circulating lactate in these conditions (J. H. James et 

al., 1996; Levy, Gibot, Franck, Cravoisy, & Bollaert, 2005; McCarter et al., 2001; McCarter et 

al., 2002).  

Regulation by Exercise 

In addition to the hormonal regulation of skeletal muscle metabolism, such physiological 

processes as muscle contraction, energy depletion within the muscle as during exercise, and 
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depletion of glycogen stores as in endurance exercise all serve to regulate the muscle metabolism 

(Baker, McCormick, & Robergs, 2010; Egan & Zierath, 2013). Skeletal muscle contraction 

stimulates glucose uptake independent of insulin action, and the depletion of ATP during 

repeated muscle contractions activates AMPK signaling, leading to both short-term and long-

term changes in muscle metabolism (Egan & Zierath, 2013). In addition to AMPK signaling, 

reactive oxygen species are released by increased mitochondrial metabolism and other, non-

mitochondrial sources such as NADPH oxidase and xanthine oxidase (Davies, Quintanilha, 

Brooks, & Packer, 1982). This leads to changes in muscle metabolism via the activation of 

transcription factors including NF-κB, NFAT, and PGC-1α, including an increased antioxidant 

response and increased mitochondrial capacity (Merry & Ristow, 2016).  

The physiological impacts of exercise on skeletal muscle also include changes in NKA 

isoform expression and activity. Training in humans induces increased plasma NKA distribution 

and decreased release of K+ into the blood with intense exercise, suggesting that this increased 

plasma distribution leads to increased NKA activity (Green, Chin, Ball-Burnett, & Ranney, 

1993). However, this study did not address which isoforms were impacted by the exercise 

training. Later studies revealed increased mRNA for α1, α2, and α3 in human vastus lateralis 

muscles after acute exercise in both trained and untrained individuals, but increased basal 

expression of mRNA only in the α3 isoform (Aughey et al., 2007) Furthermore, acute exercise 

was shown to decrease the NKA activity measured in skeletal muscle homogenates, which in 

acutely exercised rats has been associated with increased glutathionylation of the NKA (Juel et 

al., 2015). Acute treadmill exercise was shown to increase the plasma membrane localization of 

all NKA isoforms (α1 and α2, as well as β1 and β2) in both oxidative and glycolytic myofibers 

isolated from rats immediately post-exercise (Juel et al., 2001). This effect could be mimicked by 
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the in vivo stimulation of skeletal muscles but was reversed in all isoforms in oxidative fibers and 

α2 only in glycolytic fibers after 30 minutes of recovery. 

 However, the response of skeletal muscle metabolism to exercise is largely influenced by 

the effect of exercise on the acute and chronic endocrine effects of exercise, such as increased β 

adrenergic signaling during acute exercise (Pedersen, 2019) and increased long-term insulin 

sensitivity in exercise-trained animals (Egan & Zierath, 2013). As discussed above, these 

hormonal changes can have a profound impact on skeletal muscle growth and metabolism and 

must be included in any attempts to explain exercise-mediated changes in skeletal muscle. 

Additionally, exercise increases circulating levels of endogenous cardiotonic steroids (Bauer et 

al., 2005) but the relevance of this to physiology is only speculative. It could be involved in the 

regulation of skeletal muscle contractility via inhibition of the α2 isoform of NKA 

(Radzyukevich et al., 2009), but due to the very low levels of endogenous cardiotonic steroids in 

exercising animals, there could be a role of cardiotonic steroid signaling through the NKA α1/Src 

pathway that functions even in the absence of significant ion pump inhibition and has been 

linked to metabolism in other systems  

A New Role for NKA α1 in Skeletal Muscle Physiology 

In light of the NKA α1 signaling pathways identified by multiple laboratories (Cui & Xie, 

2017), the classical hypothesis for the role of α1 in skeletal muscle as a regulator of basal 

membrane potential needs to be revisited. NKA isoform expression is regulated by the same 

hormones that regulate skeletal muscle growth and metabolism, and the one signaling pathway 

that has been associated with skeletal muscle NKA α1 signaling is the activation of GSK3β 

(Kotova, Al-Khalili, et al., 2006; Kotova, Galuska, et al., 2006), which is associated with 

increased muscle atrophy (Leger et al., 2006; Verhees et al., 2011) and decreased proliferation 
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with increased differentiation (Agley et al., 2017; van der Velden et al., 2007; W. Yang et al., 

2007). Furthermore, the differential regulation of α1 expression in a fiber-type specific manner, 

with higher expression in oxidative, slow-twitch type 1 fibers with smaller twitch force 

generation and lower expression in glycolytic, fast-twitch type 2 fibers with larger twitch force 

generation challenges the hypothesis that the primary role of NKA α1 in skeletal muscle is basal 

membrane maintenance, since larger membrane potentials are associated with larger twitch force 

generation (Murphy, Bundgaard, et al., 2006; Overgaard et al., 1997; Overgaard, Nielsen, 

Flatman, & Clausen, 1999; Thompson & McDonough, 1996; L. Zhang et al., 2006). Taken 

together, these studies suggest that the NKA α1 isoform may have a unique, ion pumping-

independent role in skeletal muscle, and may be associated with the regulation of skeletal muscle 

processes as diverse as growth, development, and metabolism.  
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Abstract 

The distribution of Na/K-ATPase α isoforms in skeletal muscle is unique, with α1 as the 

minor (15%) isoform and α2 comprising the bulk of the Na/K-ATPase pool. The acute and 

isoform-specific role of α2 in muscle performance and resistance to fatigue is well known, but 

the isoform-specific role of α1 has not been as thoroughly investigated. In vitro, we reported that 

α1 has a role in promoting cell growth that is not supported by α2. To assess whether α1 serves 

this isoform-specific trophic role in the skeletal muscle, we used the Na/K-ATPase α1 

haploinsufficient (α1+/-) mice. A 30% decrease of Na/K-ATPase α1 protein expression without 

change in α2 induced a modest yet significant decrease of 10% weight in the oxidative soleus 

muscle. In contrast, the mixed plantaris and glycolytic extensor digitorum longus (EDL) weights 

were not significantly affected, likely due to their very low expression level of α1 compared to 

the soleus. The soleus mass reduction occurred without change in total Na/K-ATPase activity or 

glycogen metabolism. Serum analytes including K+, fat tissue mass, or exercise capacity were 

not altered in α1+/- mice. The impact of α1 content on soleus muscle mass is consistent with a 

Na/K-ATPase α1-specific role in skeletal muscle growth that cannot be fulfilled by 2. The 

preserved running capacity in α1+/- is in sharp contrast with previously reported consequences of 

genetic manipulation of α2. Taken together, these results lend further support to the concept of 

distinct isoform-specific functions of Na/K-ATPase α1 and α2 in skeletal muscle. 

Introduction 

The Na/K-ATPase was discovered over 60 years ago as the membrane-bound protein 

complex that catalyzes the active transport of K+ into and Na+ out of the cell, thereby 

maintaining the resting membrane potential and excitability. The minimal functional Na/K-

ATPase unit is made up of two subunits, α and β. The α-subunit is the catalytic subunit and bears 
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the binding sites for ATP, ions and cardiotonic steroids (CTS) (Pierre & Xie, 2006). In addition 

to the ubiquitously present α1, three isoforms of the catalytic subunit have been characterized. 

Na/K-ATPase α2 is found mainly in muscle, adipose and glial cells, α3 mainly in neurons, and 

α4 expression is restricted to sperm (Blanco, 2005a). This highly tissue-specific expression 

pattern and isoform-specific response to both physiological and pathological stimuli have long 

suggested that they must be serving tissue-specific functions.  

Over the last fifteen years, we and others have reported that Na/K-ATPase α1 serves 

important scaffolding and signaling functions in addition to its role as an ion pump (Pierre & 

Xie, 2006). Specifically, α1 can interact with and modulate Src activity, which in turn affects 

EGF receptors through transactivation. This subsequently adjusts the assembly and activation 

levels of multiple protein/lipid kinases as well as the generation of reactive oxygen species 

(ROS) and other intracellular messengers, allowing endogenous CTS to regulate cell growth 

(e.g., kidney development) (Fontana et al., 2013; Kometiani et al., 1998; Yan et al., 2013). On 

the other hand, sustained and dysregulated activation of this signaling mechanism causes ROS 

stress and pathological remodeling in the heart and kidneys (Liu et al., 2006; Tian et al., 2009; 

Wansapura, Lasko, Lingrel, & Lorenz, 2011). 

In the skeletal muscle, the role of the ion-pumping function of the dominant α2 isoform 

in maintaining the membrane potential during contraction has been studied extensively 

(DiFranco et al., 2015; He et al., 2001; Heiny et al., 2010; Manoharan et al., 2015; Radzyukevich 

et al., 2009; Radzyukevich et al., 2013). Additionally, Radzyukevich et al. have described an 

improvement in exercise performance in mice expressing a ouabain-resistant mutant α2 isoform, 

suggesting a role of endogenous CTS in the regulation of muscle contraction via the α2 isoform 

(Radzyukevich et al., 2009). Interestingly, expression of ouabain-resistant α2 or even α2 
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knockout did not affect skeletal muscle mass (DiFranco et al., 2015; Heiny et al., 2010; 

Manoharan et al., 2015; Radzyukevich et al., 2009; Radzyukevich et al., 2013). In a renal 

epithelial cell knockdown and rescue system, we have obtained evidence that the α1 isoform is 

important for cell growth, and that rescue with α2 restores ion-pumping capacity but does not 

restore growth or Src-dependent signal transduction in response to ouabain binding at 

concentrations too low to impair enzymatic activity (J. Xie et al., 2015). Taken together, the 

apparent lack of impact of α2 in skeletal muscle mass in genetic mouse models and the inability 

to support cell growth in the absence of α1 in vitro are consistent with a model whereby α1, but 

not α2, plays a role in the regulation of skeletal muscle mass. To test this model, we investigated 

the impact of α1 reduction on muscle mass in Na/K-ATPase α1 haplodeficient mice (α1+/-) and 

control littermates (α1+/+). This mouse model has been previously used to examine α1 and α2-

isoform specific functions in the heart (P. F. James et al., 1999; Moseley et al., 2004; Moseley et 

al., 2005) and the skeletal muscle (He et al., 2001). While the latter study specifically focused on 

the glycolytic Extensor Digitorum Longus (EDL) muscle and the respective roles of α1 and α2 in 

the maintenance of ion homeostasis during contraction, we extended our search for a trophic role 

of α1 to the three muscle types (oxidative, mixed and glycolytic).  

Materials and Methods 

Reagents.  

The polyclonal anti-Na/K-ATPase α1 antiserum NASE and polyclonal anti-Na/K-

ATPase α2 antiserum HERED used for Western blots were raised in rabbits and were generous 

gifts from Drs. T. Pressley and P. Artigas at Texas Tech University Health Sciences Center 

(Pressley, 1992). Antibodies for phospho-serine 9 glycogen synthase kinase 3β and total 

glycogen synthase kinase 3β were from Cell Signaling (catalog number 9322S and 9315S, 
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respectively). Anti-α tubulin antibody (Sigma, catalog number T5168) or anti-β actin antibody 

(Santa Cruz, catalog number sc-7210) were used as a loading control. Secondary antibodies were 

horseradish peroxidase-conjugated anti-rabbit and anti-mouse from Santa Cruz Biotechnology 

Inc (catalog number sc-2004 and sc-2005, respectively).  

Animals.  

Mice heterozygous for the Na/K-ATPase α1 isoform were developed by Dr. J Lingrel’s 

group at the University of Cincinnati (P. F. James et al., 1999). The colony was backcrossed to 

C57J/Bl6 mice from Jackson Labs and maintained through a heterozygous x wild type breeding 

scheme, resulting in α1+/- experimental animals and littermate controls. Male α1+/- mice and 

control littermates were housed in 12-hour light and dark cycles at constant temperature and 

humidity until 6 months of age. All animal procedures were approved by the Marshall University 

Institutional Animal Care and Use Committee. 

Treadmill testing.  

Six-month-old male α1+/- mice and litter mate controls were placed in the six lanes of an 

Exer 3/6 treadmill from Columbus Instruments equipped with a shock detection system. Animals 

were acclimated to the treadmill for 3 days at 5 m/min for 5 minutes at a 5° angle and were 

subjected to the testing protocol on the fourth day. Mice began the testing protocol running at 5 

m/min for five minutes and increased by 2 m/min each minute up to 25 m/min, then continued 

running at 25 m/min until they reached fatigue. Each shock administered and each visit to the 

shock grid was recorded for each animal. Fatigue was defined as 10 consecutive seconds spent 

on the shock grid, and the shock was discontinued to each mouse upon reaching fatigue.  
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Tissue collection.  

Mice were anesthetized with 50 mg/kg pentobarbital administered via IP injection. 

Tissues were dissected and weighed. Muscles used for Western blot analysis or enzymatic 

activity assays were flash frozen in liquid nitrogen then stored at -80° C until later use. Muscles 

used for histological analysis were fixed in 10% neutrally buffered formalin for 24 hours then 

stored in 70% ethanol until they were embedded in paraffin blocks. 

Western blot. 

 Left and right muscles of the same type from the same mouse were homogenized 

together in ice-cold radioimmunoprecipitation (RIPA) buffer (0.25% sodium deoxycholate, 1% 

Nonidet P-40, 1mM EDTA, 1mM PMSF, 1mM sodium orthovanadate, 1mM Sodium fluoride, 

150 mM NaCl, 50 mM Tris-HCl, pH 7.4 and 1% protease inhibitor cocktail) with a Fisher 

TissueMeiser homogenizer. Homogenates were centrifuged at 14,000 X g for 15 min, 

supernatants were collected, and the protein content was measured using DC Protein Assay Kit 

from BioRad (catalog number 500-0114 and 500-0113). Equal amounts of protein of each 

sample were loaded, separated by SDS-PAGE, and transferred to nitrocellulose membranes. 

Membranes probed for α1 and α2 were blocked in 5% milk, then primary antibodies were added 

overnight at 4°C. Membranes were visualized with Western Lightning® Plus-ECL (Western 

Lightning) and radiographic film. Densitometric quantification was performed using ImageJ 

software from the National Institute of Health.  

Membrane fractionation.  

Crude membrane fractions were prepared from frozen α1+/- and α1+/+ gastrocnemius 

muscles following a procedure modified from Walas and Juel (Walas & Juel, 2012). Frozen 

muscles were ground into a fine powder with a mortar and pestle. The resulting powder was 
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homogenized in ice-cold fractionation buffer (250 mM mannitol, 30 mM L-histidine, 5 mM 

EGTA and 0.1% deoxycholate, adjusted to pH 6.8 with Tris-base) for 30 seconds with a Fisher 

Tissue Meiser handheld homogenizer. The crude homogenate was centrifuged at 3000xg for 30 

minutes and the supernatant was then centrifuged at 190,000xg for 90 minutes. The pellet was 

resuspended in 30 mM histidine, 250 mM sucrose, and 1 mM EDTA, pH 7.4, and protein 

concentration was determined using the DC Protein Assay Kit from BioRad (catalog number 

500-0114 and 500-0113).  

ATPase activity assay.  

Ouabain-sensitive ATPase activity in crude membrane fractions was determined by 

measuring ATP hydrolysis as previously described (Belliard et al., 2016; Belliard, Sottejeau, 

Duan, Karabin, & Pierre, 2013). Released inorganic phosphate (Pi) was detected using a 

malachite-based Biomol Green reagent. Samples containing 10 µg of protein were added to a 

reaction mix containing 20 mM Tris-HCL, 1 mM MgCl2, 100 mM NaCl, 20 mM KCl, and 1 

mM EGTA-Tris, pH 7.2. Ouabain was added to the samples to a final concentration of 1 mM to 

completely inhibit both α1 and α2 isoforms of the Na/K-ATPase. After 10 minutes of 

preincubation at room temperature, the reaction was started by adding Mg-ATP at a final 

concentration of 2.25 mM and incubation at 37°C with shaking for 30 minutes. The reaction was 

stopped with the addition of ice-cold 8% TCA, and the concentration of Pi was measured 

spectrophotometrically at OD 620 nm using Biomol Green as an indicator (Enzo Life Sciences 

catalog # BML-AK111-250). Maximal Na/K-ATPase activity was calculated as the difference 

between ATPase activity obtained in the absence or presence of 1 mM ouabain.  
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Immunohistochemistry.  

Muscles were collected and then washed twice with ice-cold PBS, fixed with 10% 

neutrally buffered formalin for 24 hours, and embedded in paraffin. Transverse sections of the 

midbelly were immunostained for myosin heavy chain (Myhc) fast and Myhc slow by Wax-It, 

Inc., as described by Behan et al. (Behan, Cossar, Madden, & McKay, 2002) to differentiate 

between type 1 and type 2 fibers. Additional sections were stained for Na/K-ATPase α1 by Wax-

It, Inc. (Vancouver, Canada). The samples were examined on a Leica confocal SP5 microscope 

(Leica Microsystems,Wetzlar, Germany). The images were processed with the Leica Application 

Suite Advanced Fluorescence (LAS/AF) suite (Leica Microsystems, Wetzlar, Germany), FIJI 

platform, and the GNU Image Manipulation Program (GIMP) to obtain maximum projections, 

extract lateral slices, and construct figures. 

Morphometric tissue analysis (CSA and fiber types).  

Images of muscles stained for fast and slow myosin heavy chain were obtained by Wax-

It, Inc. with digital whole-slide scanning. Aperio ImageScope software was used to determine the 

cross sectional area (CSA) of each fiber. Fibers that had been damaged were excluded from CSA 

analysis. Every fiber of each type in each muscle was counted to determine the average number 

of fibers per muscle. 

Glycogen content analysis.  

Glycogen was assayed in whole-muscle homogenates using a colorimetric glycogen 

assay kit from Abcam (catalog number ab169558) according to manufacturer’s instructions. 

Serum analytes. 

Whole blood was collected from the hepatic portal vein then allowed to clot for 15 

minutes in 0.8 mL SST-MINI tubes with clot activator and gel. The blood was then centrifuged 
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at 2000 rpm for 15 minutes. Clear serum was transferred to 1.5 mL transport tubes and analyzed 

by IDEXX Bioresearch using a Beckman AU680 Chemistry System. 

Data Analysis.  

Data presented are mean ± S.E.M, and statistical analysis was performed using the 

Student’s t test. When more than two groups were compared, one-way ANOVA was performed 

prior to post-hoc comparison of individual groups using Dunnet’s multiple comparison test. 

Significance was accepted at P < 0.05.  

Results  

Skeletal muscle Na/K-ATPase in α1 haplodeficient mice 

He et al. first reported a significant decrease in Na/K-ATPase α1 expression in α1+/- 

muscle, but their study focused on one of the three main types of muscle, the glycolytic Extensor 

Digitorum Longus (EDL) (He et al., 2001). In the present study, the extent of Na/K-ATPase α1 

expression decrease was assessed in all muscle types. Specifically, western blot analyses were 

performed in a representative oxidative (soleus), a mixed (plantaris) and a glycolytic (EDL) 

muscle. As shown in Figure 3A, α1 expression in α1+/- mice was decreased by 30-40% in all 

muscle examined (p<0.05 vs α1+/+). Further, no compensatory increase in α2 expression was 

observed (Figure 3A), and the expression of the regulatory FXYD1 subunit was also unchanged 

(data not shown). The decrease of Na/K-ATPase α1 was also clear after immunofluorescence 

labeling using a α1-specific antibody in histological preparations of soleus and EDL muscles (1B 

and C). To assess the impact of this reduction of α1 on total Na/K-ATPase activity, a preparation 

of the gastrocnemius, a mixed muscle of larger size, was used. A decrease of α1 without 

detectable change in α2 expression comparable to that of the three other muscles tested was 

observed by Western blot (2A). As shown in Figure 4B, maximal Na/K-ATPase activity was not 
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different between α1+/+ and α1+/- crude membrane fractions (ouabain-inhibited ATPase activity 

of 1.91 ± 0.23 μmol/µg protein/hr in α1+/+ membrane fractions compared to 2.01 ± 0.40 

μmol/µg protein/hr in α1+/- membrane fractions).  

 Figure 3. Na/K-ATPase α-isoform abundance in skeletal muscles from Na/K-ATPase α1 

haplodeficient mice (α1+/-) and control littermates (α1+/+).  

A. Representative Western blots for Na/K-ATPase α1 and α2 isoforms in soleus (oxidative), 

plantaris (mixed), and EDL (glycolytic) muscle homogenates are shown with n=2/genotype. The 

quantitative data are means ± S.E.M. from 7-9 specimens/group normalized to the average of the 

α1+/+ controls on each gel. B and C. Representative immunohistochemical staining for Na/K-

ATPase α1 isoform in soleus (B) and EDL (C) from α1+/+ and α1+/- mice. 

Na/K-ATPase α1 reduction affects oxidative but not mixed or glycolytic muscle size.  

Based on the recent finding that removing α1 causes decreased growth in an in vitro 

system (J. Xie et al., 2015), we investigated the impact of reduced α1 expression on skeletal 

muscle size in α1+/- mice compared to α1+/+. Mice were age-matched at 6 months and exhibited 

no differences in body weight. Consistent with previous studies (P. F. James et al., 1999), there 

were no major abnormalities detected in basal conditions and kidney weight/body weight ratio 

and heart weight/body weight ratios were comparable (Table 2). Consistent with previous 
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observations in these animals (He et al., 2001), the mass to body weight ratio of the glycolytic 

EDL did not change in α1+/- mice (Figure 5). Likewise, the mass of the mixed-type plantaris 

was comparable (Figure 5). In contrast, the mass-to-body weight ratio of the oxidative soleus 

muscle was decreased by 9%, from 0.230 ± 0.009 mg/g for α1+/+ mice to 0.209 ± 0.006 mg/g 

for α1+/- mice (P<0.05).  

Table 2: Selected physiological parameters in Na/K-ATPase α1 +/+ vs α1 +/- mice.  

Data are presented as means ± SEM. For body weight, age, and tibia length, n=30-40. For heart 

and kidney weight/body weight (BW), n=20-33. Adipose weight represents the combined 

weights of the epidydimal and inguinal fat pads (n=7-8). Serum concentrations of K+, Na+, and 

glucose were measured in blood collected from the hepatic portal vein of fed mice (n=4). No 

significant difference was observed.  

Expression of Na/K-ATPase α1 in skeletal muscle types.  

Previous studies of Na/K-ATPase isoforms have described a muscle-type specific 

distribution of α1 and α2 in rats, with the oxidative soleus containing more α1 than any other 

muscle type studied and the glycolytic EDL expressing the least (Thompson & McDonough, 

1996). Hence, higher expression level could explain the relative high impact of α1 depletion in 

the soleus compared to other muscle types in the mouse. This was evaluated by western blot in 

the oxidative soleus and red gastrocnemius, the glycolytic EDL and white gastrocnemius, and 

mixed plantaris muscles of C57Bl6 mice. As shown in Figure 6, expression of α1 decreases as 

muscles become increasingly glycolytic, with the oxidative soleus expressing significantly more 

α1 than either the mixed plantaris or the glycolytic EDL. The sharp contrast between α1 

expression in the soleus vs. EDL was confirmed by immunofluorescence (4C), and is consistent 

with a relative lack of detectable impact on growth upon reduction by 30%.  A difference in α2 
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expression between muscle types was also detected, although not as pronounced and less 

systematically correlated with muscle type.  

Figure 4. Na/K-ATPase activity.  

A. Representative Western blots for Na/K-ATPase α1 and α2 isoforms in gastrocnemius muscle 

homogenates are shown with n=2/genotype, and the quantitative data are means ± S.E.M. from 4 

specimens/group normalized to the average of the α1+/+ controls on each gel. B. Maximal 

ATPase activity in crude membrane fractions from α1+/+ and α1+/- gastrocnemius muscles. 

ATPase activity was measured by Pi release with a colorimetric indicator. (n=6-7) 

Decreased cross-sectional area without change in muscle fiber number in the soleus 

To determine which structural changes were associated with the decreased muscle mass 

in the soleus, we examined the number and size of myofibers in α1+/- vs. α1+/+ soleus muscles 

after staining for fast and slow myosin heavy chain from 4 muscles per group. As shown in 

Figure 7A, fiber composition of the α1+/- soleus was not different from α1+/+. However, fiber 
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cross sectional area was significantly decreased by 10% in α1+/- soleus muscles, suggesting that 

the decrease in muscle mass was due to changes in fiber size rather than number. This change in 

fiber size was observed in both type 1 and type 2a fibers of the soleus (Figure 7A). In contrast, 

the EDL exhibited no change in either fiber number or fiber cross sectional area, which is 

consistent with the lack of impact on overall muscle size (Figure 7B).  

Figure 5. Changes in muscle mass in α1+/- mice.  

Muscle mass of soleus, plantaris, and EDL in α1+/+ and α1+/- mice. The quantitative data are 

means ± S.E.M. from 23 α1+/+ or 40 α1+/- mice. *p<0.05. 

Glycogen content and GSK3β status in the soleus  

Na/K-ATPase α1 signaling pathway is a modulator of glycogen synthesis and glycogen 

synthase kinase 3β (GSK3β) in skeletal muscle cells (Kotova, Al-Khalili, et al., 2006) and may 

therefore lead to a change in size, growth and differentiation in the soleus of α1+/-  mice (Agley 

et al., 2017; Leger et al., 2006; van der Velden et al., 2007; Verhees et al., 2011). Accordingly, 

we compared glycogen content and GSK3β in α1+/-  and α1+/+ soleus muscles. As shown in 

Figure 8A, Western blot analysis did not reveal any difference in GSK3β content or serine 9 

phosphorylation between α1+/+ and α1+/-  muscles from fed mice. Consistent with this result, 

glycogen content was comparable in α1+/+ and α1+/- soleus muscles (Figure 8B).  
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Figure 6. Na/K-ATPase α-isoform abundance in skeletal muscles from C57Bl6 mice.  

A. Representative Western blots for Na/K-ATPase α1 and α2 isoforms in oxidative (soleus and 

red gastrocnemius (R Gastroc)), mixed (plantaris), and glycolytic (EDL and white gastrocnemius 

(W Gastroc)) muscles are shown with n=2/muscle type. B. Quantitative data are means ± S.E.M. 

from 6 specimens/group normalized to the average of the soleus on each gel. * p<0.05 and 

***p<0.0001 vs soleus. C. Representative micrographs of immunohistological staining for Na/K-

ATPase α1 in soleus (left) and EDL (right), with quantification of 3 samples/group. **p<0.001. 

Exercise performance  

As shown in Table 2, the 10% change in muscle mass observed in some but not all 

muscles of the α1+/- mouse was not accompanied by a noticeable change in physiological 

parameters related to growth (tibia length) or metabolic dysregulation (glycaemia, adipose tissue 

mass), or K+ homeostasis in basal conditions. To test whether the observed structural changes in 

α1+/- soleus size affected exercise performance in 6-month-old mice, two treadmill exercise 

paradigms were used. A gradual increase in velocity allowed us to assess changes in tolerance to 

high speeds and high intensity exercise, and a prolonged time at 25 meters per minute allowed us 

to determine whether endurance exercise was affected. As shown in Figure 9, the number of 
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shocks at each speed remained unchanged, suggesting that the reduced amount of α1 present in 

the α1+/- muscle did not prevent animals from running at high speeds. Furthermore, the distance 

to fatigue was unchanged.  

Figure 7. Structural changes in the soleus muscle of Na/K-ATPase α1 haplodeficient mice.  

Soleus and EDL muscles were dissected and weighed, then cross sections of the midbelly of 

paraffin-embedded soleus muscles were stained for fast and slow myosin heavy chain (Myhc). 

Cross sectional areas (CSA) of the fibers were determined using Aperio ImageScope software. 

A. Representative micrographs of α1+/+ and α1+/- soleus muscles, with type I and type II fibers 

shown with white and black arrows respectively. Quantifications of cross sectional areas of type 

I and type II fibers from 4 soleus muscle/group and total number of fibers of each type in each 

soleus muscle (n=4). ** p<0.005 and ***p<0.0001 vs cross sectional area in α1+/+ littermates. 

B. Representative micrographs of α1+/+ and α1+/- soleus muscles. Quantifications of cross 

sectional areas of type II and total number of fibers of each type in each EDL muscle (n=4-5). 

No significant difference was observed.  

Discussion  

Based on our observations in renal epithelial cell lines, Na/K-ATPase α1 possesses 

isoform-specific functions that are not supported by α2, which results in a sizable effect on cell 

growth rate (J. Xie et al., 2015). Since renal epithelial cells do not normally express Na/K-

ATPase α2, we took the next step of investigating this issue in a tissue expressing both isoforms. 

We focused on the skeletal muscle, a tissue where α2 expression uniquely predominates over the 

minor α1 isoform and with a regenerative process that occurs throughout life. Specifically, we 
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used the Na/K-ATPase α1+/- mouse model to investigate whether a downregulation of the minor 

pool of Na/K-ATPase α1 expressed in skeletal muscle could affect muscle mass. The data 

indicate that a 30-40% decrease of Na/K-ATPase α1 protein expression, which does not 

noticeably decrease total maximum Na/K-ATPase capacity of the muscle, induces a modest yet 

significant decrease of 10% in the mass of the oxidative soleus (Figure 5). In contrast, the mass 

of the glycolytic EDL was not affected, nor was that of the mixed-type muscle plantaris (Figure 

5). The very low level of α1 expression in the EDL and the plantaris compared to the soleus may 

explain this intriguing muscle-type specific effect. Indeed, as shown in Figure 6 and consistent 

with previous studies in rats by Thompson and McDonough (Thompson & McDonough, 1996) 

and others (Chaillou et al., 2011; Fowles et al., 2004), the oxidative soleus expresses 

substantially more α1 than the glycolytic EDL in wild-type mice. Moreover, when the western 

blot analysis was extended to additional representative muscles of each type, a positive 

correlation between α1 content and oxidative metabolism was observed, suggesting that the role 

of α1 could be particularly important in oxidative fibers. Mechanistically, we speculate that 

endogenous cardiotonic steroid (CTS) signaling through α1 may have a role in maintaining the 

growth of the soleus, and the lack of this ouabain signaling could be responsible for the reduced 

soleus mass in α1+/- mice (Figure 5). It should be noted that the mouse α1 isoform has a much 

lower affinity for ouabain than α2, and only 0.05% of the α1 isoform is bound to ouabain at the 

reported endogenous ouabain concentrations (Bauer et al., 2005; O'Brien et al., 1994). However, 

through amplification of signaling cascades, concentrations of ouabain comparable to circulating 

endogenous ouabain can activate signaling in cells and tissue expressing such low affinity α1 

(Aydemir-Koksoy, Abramowitz, & Allen, 2001; Dvela-Levitt et al., 2015; Dvela, Rosen, Ben-

Ami, & Lichtstein, 2012; Fontana et al., 2013). In contrast, pumping inhibition is directly related 
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to the number of pumps bound to ouabain, which means that signaling could have a long-lasting 

impact at concentrations too low to affect the membrane potential or ion homeostasis. Although 

this remains to be specifically tested, a plausible model is that the higher expression level of α1 

in the soleus enables endogenous CTS-stimulated signaling, as seen in other cell lines and tissue 

types (Aydemir-Koksoy et al., 2001; Cui & Xie, 2017; Fontana et al., 2013; Kometiani et al., 

1998; Tian et al., 2009). Consistent with our observation that a 50% reduction in α1 expression 

prevents ouabain from stimulating signaling and growth in renal epithelial cells (Tian et al., 

2009), α1 expression in the EDL (6% of soleus) or plantaris (23% of soleus) may not allow CTS-

stimulated growth through stimulation of Na/K-ATPase α1 signaling. Although signaling of the 

CTS ouabain through Na/K-ATPase α1 modulates glycogen synthesis through GSK3β signaling 

in skeletal muscle cells (Benziane et al., 2012) and may therefore lead to a change in size, growth 

and differentiation in the soleus of  α1+/-  mice (Agley et al., 2017; Leger et al., 2006; van der 

Velden et al., 2007; Verhees et al., 2011), we did not detect a significant change in the 6 month 

old mouse (Figure 8). This result certainly warrants further investigation, as a dysregulation of 

GSK3β may have occurred at an earlier time point and/or may only be discernible under agonist 

stimulation.  

Skeletal-muscle specific ablation of Na/K-ATPase α2 does not affect muscle mass 

(DiFranco et al., 2015; Manoharan et al., 2015; Radzyukevich et al., 2013), which suggests that 

the observed decrease in soleus mass in the α1+/- is likely unrelated to altered ion-pumping 

capacity of the cell. Consistently, we did not detect any significant decrease in Na/K-ATPase 

activity in crude membrane preparations from α1+/- muscles. Based on an α1 contribution of 

about 15% of total skeletal muscle Na/K-ATPase (He et al., 2001) and a decrease of about 40% 

of α1 in the α1+/- skeletal muscle, the expected decrease in Na/K-ATPase activity would have 



  37 

been minimal (about 6%), and may have remained below the limit of detection of the assay 

(Heiny et al., 2010; Ingwersen et al., 2011; Walas & Juel, 2012). On the other hand, it is well 

established that most cells have a large reserve pump capacity and that a decrease in the number 

of Na/K-ATPase expressed at the cell membrane can be compensated by either a substrate-

mediated stimulation of existing pumps or a mobilization of the reserve pump pool (T. Akera & 

Brody, 1982; Tai Akera & Brody, 1985). Finally, although we consider it unlikely because a 

decreased myofiber diameter as observed in α1+/- muscles is not expected as a secondary 

adjustment for optimization of ion pumping capacity and maintenance of the membrane potential 

(in fact, fibers with larger rather than smaller diameters require significantly less energy to 

maintain their membrane potential (Jimenez, Dasika, Locke, & Kinsey, 2011; Jimenez, 

Dillaman, & Kinsey, 2013)), it should be noted that a change in Na/K-ATPase ion-transport 

activity secondary to α1 depletion has not been specifically excluded in this study.  

Figure 8. A. GSK3β and glycogen content in the soleus muscle of Na/K-ATPase α1 

haplodeficient mice.  

Representative Western blots for phospho serine 9 glycogen synthase kinase 3β (p-Ser9 GSK3β) 

and total glycogen synthase kinase 3β (GSK3β) in α1+/+ and α1+/- soleus muscles. Quantitative 

data are means ± S.E.M. from 4 specimens/group. Phospho-Ser9 GSK3β /total GSK3β ratios 

were normalized to the average of the α1+/+ controls on each gel. B. Glycogen content of soleus 

muscles presented as means ± S.E.M. from 6-7 samples per group. 
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This model of a change in muscle mass related to α1-specific signaling function is also 

consistent with the concept of distinct and specific roles for α1 and α2 in skeletal muscle initially 

suggested by He et al. Indeed, the authors first proposed that α1 is primarily responsible for 

establishing a baseline membrane potential, and α2 maintains the membrane potential during 

contraction (He et al., 2001). This role for α2 was subsequently confirmed by a series of studies 

using skeletal muscle specific ablation of α2 in mice. In those studies, muscle mass of both EDL 

and soleus was unchanged, but maintenance of the membrane potential during contraction was 

severely impaired due to an inability to clear the excitation-dependent increase in extracellular 

[K+]o (DiFranco et al., 2015; Manoharan et al., 2015; Radzyukevich et al., 2013). Taken together, 

those studies and the results presented here support a model where skeletal muscle α2 has an 

isoform-specific role in the maintenance of membrane potential during contraction related to its 

enzymatic activity, whereas α1 has, in addition to its transport function, an isoform-specific role 

in growth that is independent of its ion-pumping activity.  

Figure 9. Distance to fatigue in Na/K-ATPase α1 haplodeficient mice (α1+/-) and control 

littermates (α1+/+) during forced treadmill running.  

A. Number of shocks administered per animal per minute at increasing speeds during testing of 

6-month-old mice (n=7-9/group; α1+/+ black circles; α1+/- grey squares). B. Distance to fatigue 

for 6-month-old α1+/+ and α1+/- animals (n=7-9).  
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While the effect of α1 haplodeficiency on muscle growth may seem modest at first, it is 

important to note that it is relevant to reported models of skeletal muscle atrophy. The soleus-

specific decrease in muscle mass, accompanied by a reduction of fiber size but not fiber number, 

is a feature of disuse-induced atrophy induced by hind limb suspension (Egawa et al., 2015; 

Kravtsova et al., 2016). Although this decrease in size is relatively minor compared to some 

forms of atrophy, it is comparable to the 10-15% decrease in gastrocnemius mass in burn 

cachexia reported by Pedroso et al. (Pedroso et al., 2012). Similarly, the commonly used 

subcutaneous inoculation model of cancer cachexia consistently decreases muscle mass by 6-

15% (Choi et al., 2013; Matsuyama et al., 2015; Murphy et al., 2011; X. Wang, Pickrell, 

Zimmers, & Moraes, 2012). As may have been expected with a relatively modest decrease, the 

α1+/- mouse model does not present with major metabolic abnormalities in basal conditions 

(Table 2). Perhaps more surprising is the lack of defects in exercise capacity (Figure 9), given 

that He et al. found that the tetanic force of isolated α1+/- EDL muscles is decreased in vitro (He 

et al., 2001). This apparent discrepancy is likely due to the global haplodeficiency of the α1+/- 

mouse model, which affects other systems involved in exercise, including the nervous, 

cardiovascular, and endocrine systems.  

Clearly, inherent limitations due to global and incomplete reduction of Na/K-ATPase α1 

in the α1+/- model warrant future studies in a skeletal muscle-specific model. While such model 

seems required to fully assess the scope and significance of the proposed new isoform-specific 

trophic role for Na/K-ATPase α1 in the skeletal muscle, several important conclusions can be 

drawn from the present study. First, the α1-specific trophic role observed in vitro is relevant in 

vivo. Second, manipulation of Na/K-ATPase α1 content leads to morphological changes in the 

skeletal muscle that do not impact maximal running capacity, in contrast to manipulation of α2 
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which did not affect muscle size but affected running capacity. These lend further support for the 

concept that Na/K-ATPase α1 and α2 serve distinct and isoform-specific functions in the skeletal 

muscle. Finally, the findings presented here suggest a novel mechanism for exercise-induced 

changes in muscle size and metabolism. Physiologically, exercise increases serum concentrations 

of endogenous Na/K-ATPase ligands such as ouabain and leads to modifications of skeletal 

muscle structure and function (Bauer et al., 2005; Egan & Zierath, 2013). Alteration of muscle 

activity during exercise through modulation of α2 by endogenous Na/K-ATPase ligands has been 

demonstrated (Radzyukevich et al., 2009), and the present study now suggests that they may also 

modulate changes in oxidative skeletal muscle structure in response to exercise training through 

the modulation of α1 signaling. These new findings suggest a possible impact of endogenous or 

pharmacological administration of CTS on muscle growth, which could be further investigated 

using the established mouse line expressing ouabain-sensitive α1 (Dostanic-Larson et al., 2006).  
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Summary 

Mammals have acquired increased metabolic capacity to support growth and endurance. 

Paradoxically, they also become insulin resistant when fed with Western diet. We find that the 

acquisition of Src binding sites in the α1 Na/K-ATPase (NKA) occurred during endothermy 

evolution. The loss of Src binding diminishes metabolic capacity in cell culture, which is 

confirmed by phenotypic changes observed in a skeletal muscle-specific α1 knockout (skα1-/-) 

mouse model. However, skα1-/- mice are resistant to diet-induced insulin resistance. Similar 

protection is observed in wild type mice treated with pNaKtide, an inhibitor of α1 NKA/Src 

complex. These results suggest that the acquisition of Src binding by α1 NKA is responsible for 

the dichotomy of increased metabolic capacity at the cost of decreased tolerance for Western 

diet. Therefore, we suggest that the α1 NKA/Src complex may underlie the molecular basis of 

endothermy evolution and serve as a new target for metabolic syndrome therapeutics. 

Introduction 

Metabolic capacity, comprised of reserve and flexibility, is vital for maintaining 

homeostasis when faced with changing energy demands and fuel availability. As endotherms, 

mammals have increased metabolic capacity compared to ectothermic animals. The aerobic 

scope hypothesis posits that the evolution of endothermy relied on increased metabolic capacity 

to facilitate not only endothermy but the increased ambulatory endurance associated with 

endothermy (Griffin, Humphries, Kinter, Lim, & Szweda, 2016). However, mammals also 

developed intolerance to overnutrition. The development of diet-induced metabolic syndrome in 

mammals is associated with the loss of metabolic flexibility and involves the overproduction of 

reactive oxygen species (ROS) and the development of chronic inflammation, leading to insulin 

resistance, glucose intolerance, hepatic steatosis, and obesity. Furthermore, the loss of metabolic 
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capacity is observed in many end-stage chronic human diseases such as heart failure, liver 

failure, and steatohepatitis (Galgani, Moro, & Ravussin, 2008; Peterzan, Lygate, Neubauer, & 

Rider, 2017; Poussin et al., 2011; Su et al., 2017; Z. V. Wang, Li, & Hill, 2014). Conversely, 

increased metabolic capacity is linked to improved health outcomes (Apostolopoulou et al., 

2016; Carson, Hardee, & VanderVeen, 2016; Goodpaster & Sparks, 2017; Koves et al., 2008; 

Meex et al., 2010; Overmyer et al., 2015; Peterzan et al., 2017). Despite the importance of 

metabolic reserve and flexibility in mammalian pathophysiology, the mechanisms by which they 

are regulated are only minimally understood and the mechanism of increased metabolic capacity 

in mammals has yet to be identified (Goodpaster & Sparks, 2017). 

Figure 10: Evolutionary relationships between vertebrate groups listed in Table 3. 

Endotherms are written in red, ectotherms in blue. 

In addition to its role as an ion transporter, the ubiquitous mammalian Na/K-ATPase 

(NKA) α1 isoform encoded by the ATP1A1 gene has been identified as an important signaling 

platform due to its ability to form a functional receptor complex with Src (Cui & Xie, 2017). The 

four mammalian isoforms of the α subunit evolved from the invertebrate α subunit and form their 

own clade, with mammalian ATP1A1 as the most recently evolved isoform (Kakumura et al., 

2015; Saez, Lozano, & Zaldivar-Riveron, 2009; W.-K. Yang et al., 2019). Among the processes 
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regulated by α1 NKA/Src signaling are the Warburg effect, a switch to anaerobic metabolism in 

cancer (Banerjee et al., 2018), and increased mitochondrial ROS production, which can further 

activate the α1 NKA/Src pathway and generate a positive feedback loop (Yan et al., 2013). 

Targeting this signaling through α1 NKA has been shown to attenuate metabolic syndrome 

(Sodhi et al., 2015; Sodhi et al., 2018; Sodhi et al., 2017; Srikanthan et al., 2016), and decreased 

α1 NKA expression is involved with multiple disease states associated with metabolic 

disturbances, including heart failure (Liu, Wu, & Kennedy, 2016), cancer (Banerjee et al., 2018; 

Zhuang et al., 2015), diabetic neuropathy (Gerbi et al., 1998), and polycystic ovarian syndrome 

(Tepavcevic et al., 2015). In contrast to α1 NKA, the expression of other mammalian isoforms 

which do not signal through Src (α2, α3, and α4) is restricted to specific tissues (Blanco, 2005a). 

In view of its links to mitochondrial ROS production and the highly conserved nature of Src 

binding sites in mammalian ATP1A1, we postulate that the acquisition of Src binding sites in α1 

NKA affords a fundamental regulatory mechanism of metabolic capacity, which supports 

growth, endurance, and other physiological characteristics of endothermy. Conversely, it may 

also represent a fundamental mechanism of metabolic dysregulation when animals are in a 

chronic state of nutritional over-supply.  

To test these hypotheses, we developed an in vitro system to compare the metabolic 

profiles of cells expressing the wild-type Src binding α1 isoform, the wild-type non-Src binding 

α2 isoform, a previously characterized loss-of-function Src binding mutant α1 isoform (Lai et al., 

2013), and a previously characterized Src binding, gain-of-function α2 mutant (Yu et al., 2018). 

We then generated a mouse model with a skeletal muscle-specific ablation of ATP1A1, taking 

advantage of the prior observation that the α2 isoform is the primary driver of ion-pumping 

during skeletal muscle contraction (DiFranco et al., 2015). Moreover, in view of the well-
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established role of skeletal muscle in the regulation of glucose metabolism and insulin sensitivity 

(Camps et al., 1992; DeFronzo & Tripathy, 2009; Holmstrom, Iglesias-Gutierrez, Zierath, & 

Garcia-Roves, 2012; Honka et al., 2018; Koves et al., 2008; Meex et al., 2010; Neufer, Carey, & 

Dohm, 1993; Son et al., 2017; Zurlo et al., 1990), we further utilized this model to address the 

role of Src binding α1 NKA in the development of metabolic syndrome. These genetic studies 

reveal a novel mechanism regulating metabolic reserve and flexibility. Moreover, they reveal a 

trade-off phenotype of increased endurance at the cost of increased susceptibility to Western diet 

and the consequent development of glucose intolerance and insulin resistance. 

 

Results 

The impact of Src binding sites in ATP1A1 on metabolic capacity in vitro.  

Previous studies have identified two ATP1A1-specific Src binding sites (the NaKtide 

sequence and Y260, Table 3) (Banerjee et al., 2018; Lai et al., 2013; Z. Li et al., 2009; Yu et al., 

2018) which are completely conserved within mammalian species. One of these binding sites, 

the NaKtide sequence, also appears in birds, which evolved endothermy in parallel with 

mammals. NaKtide contains 20 amino acid residues, the first ten of which (415S-424I) form a 

helical structure important for Src binding (Lai et al., 2013). While ectothermic animals (Table 

3) have amino acid substitutions that disrupt the formation of the helical structure (Lai et al., 

2013), most bird species contain one substitution (L419S/T) and a conserved substitution 

(I424V). We therefore conclude that the Src binding function of NKA α1 is convergently 

acquired in birds and mammals and coincides with the evolution of endothermy. 
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Table 3: Conservation of the NKA α1/Src binding sites in mammals. Bold letters indicate 

residues that differ from mammalian α1. 

Sequences of Src binding regions of mammalian NKA α1 and homologous regions in other 

classes of animals and in mammalian α2. 

To assess the physiological significance of ATP1A1 Src binding, we generated 3 cell 

lines from LLC-PK1, a porcine renal epithelial cell line, using a well-established knock down 

and rescue approach (Liang et al., 2006; Liang et al., 2007). AAC-19 cells expressed wild-type 

rat α1, LX-α2 cells expressed rat α2 that lacks the Src binding sites, and LY-a2 expressed a  

mutant rat α2 that was engineered to contain both Src binding sites (Table 4). Western blotting 

confirmed expression of these genes (Figure 13A). Detailed characterizations of these cell lines  

Class Species Y260 NaKtide 

Mammals 

Mouse α1 255 RGIVVYTGDRT 265 415 SATWFALSRIAGLCNRAVFQ 434 

Rat α1 255 RGIVVYTGDRT 265 415 SATWFALSRIAGLCNRAVFQ 434 

Pig α1 253 RGIVVYTGDRT 263 413 SATWLALSRIAGLCNRAVFQ 432 

Whale α1 253 RGIVVYTGDRT 263 413 SATWLALSRIAGLCNRAVFQ 432 

Dolphin α1 253 RGIVVYTGDRT 263 413 SATWLALSRIAGLCNRAVFQ 432 

Bat α1 253 RGIVVYTGDRT 263 413 SATWLALSRIAGLCNRAVFQ 432 

Birds 

Chicken α1 253 VGIVISTGDRT 263 413 SATWLALSRIAGLCNRAVFQ 432 

Finch α1 253 RGIVISTGDRT 263 413 SATWTALSRIAGLCNRAVFQ 432 

Hummingbird α1 224 RGIVISTGDRT 234 384 SATWTALSRVAGLCNRAVFQ 403 

Eagle α1 254 RGIVISTGDRT 264 414 SATWSALSRVAGLCNRAVFQ 431 

Penguin α1 224 RGIVISTGDRT 234 384 SATWTALSRVAGLCNRAVFQ 403 

Reptiles 

Bearded Dragon α1 224 RGVVINTGDRT 234 284 SPTWTALARIAGLCNRAVFQ 403 

King Cobra α1 253 RGVVINTGDRT 263 414 SPTWTALAKIAGLCNRAVFQ 433 

Tiger Snake α1 257 RGVVINTGDRT 267 417 SPSWTALAKIAGLCNRAVFQ 436 

Sea Turtle α1 256 RGVVINIGDNT 266 416 SLTWVALSRVAGLCNRAVFQ 435 

Amphibia

ns 
Frog α1 255 RGIVVNTGDRT 265 415 SPTWTALSRIAGLCNRAVFQ 434 

Fish 

Catfish α1 224 RGIVISTGDHT 234 384 SLTWTSLARIAGLCNRAVFL 403 

Herring α1 258 RGIVISTGDKT 268 418 SSTWSSLARIAGLCNRAVFL 437 

Freshwater Whipray α1 250 RGVVIFTGDRT 260 410 SPTWSALSRIAALCNRAVFK 429 

Zebrafish α1 256 RGIVISTGDRT 266 416 SATWASLARVAGLCNRAVFL 435 

 

Mammals 

Human α2 253 RGIVIATGDRT 263 413 SPTWTALSRIAGLCNRAVFK 432 

Mouse α2 253 RGIVIATGDRT 263 413 SPTWTALSRIAGLCNRAVFK 432 

Rat α2 253 RGIVIATGDRT 263 413 SPTWTALSRIAGLCNRAVFK 432 

Pig α2 253 RGIVIATGDRT 263 413 SPTWTALSRIAGLCNRAVFK 432 

Whale α2 253 RGIVIATGDRT 263 413 SPTWTALSRIAGLCNRAVFK 432 

 

Insect Drosophila α 273 KGVVISCGDHT 283 433 SPGFKALSRIATLCNRAEFK 452 



  47 

were previously reported (Lai et al., 2013; J. Xie et al., 2015; Yu et al., 2018), and revealed that 

the expression of these transgenes further reduced the expression of endogenous pig α1 to an 

undetectable level, making it possible to probe the properties of transgenes without interference 

from the endogenous α1 NKA (Banerjee et al., 2018; Liang et al., 2006; Liu et al., 2006; J. Xie et 

al., 2015; Yu et al., 2018) .  

Table 4. Amino acid sequences of the Src binding sites of the WT rat α1, WT rat α2, and 

gain-of-function signaling mutant α2 NKA expressed by the AAC-19, LX-α2, and LY-a2 

cell lines.  

Underlined letters indicate residues that have been changed in mutant α1 and α2, while bold 

letters indicate residues that differ from wild-type rat α1. 

In routine culture of these cells, we noted a rapid acidification of LX-α2 cells’ culture 

medium (Figure 13B), which led us to compare glucose metabolism between these cell lines. As 

depicted in Figure 11A, LX-α2 cells consumed nearly 2-fold more glucose than AAC-19 cells. 

Interestingly, expression of the gain-of-function Src binding mutant α2 in LY-a2 cells restored 

glucose consumption to the level of AAC-19 controls (Figure 11A). This was substantiated by 

increased lactate production in LX-α2 compared to AAC-19 cells (Figure 11B), confirming that 

the increase in glucose consumption correlated with an increase in aerobic glycolysis. Again, 

LY-a2 cells exhibited a metabolic profile similar to that of control AAC-19 cells. 

To identify whether α1 NKA-mediated regulation of Src is responsible for enhanced 

metabolic flexibility and thus, a decreased reliance on glycolysis, cells were grown in glucose-

deprived media and their proliferation was recorded. Both AAC-19 and LY-a2 cells, which 

express a NKA capable of binding and regulating Src, were able to proliferate under glucose-

deprived conditions. In contrast, LX-α2 cells failed to survive altogether (Figure 11C). To 

Cell Line Isoform Y260 NaKtide 

AAC-19 Rat α1 255 RGIVVYTGDRT 265 415 SATWFALSRIAGLCNRAVFQ 434 

LX-α2 Rat α2 253 RGIVIATGDRT 263 413 SPTWTALSRIAGLCNRAVFK 432 

LY-a2 Mutant α2 250 RGIVVYTGDRT 260 410 SATWFALSRIAGLCNRAVFQ 429 

A420P Mutant α1 255 RGIVVYTGDRT 265 415 SATWPALSRIAGLCNRAVFQ 434 
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determine the degree to which LX-α2 cells were reliant upon glycolysis for ATP production, we 

treated cells with increasing doses of the competitive glycolytic inhibitor 2-deoxy-D-glucose (2-

DG) and measured the impact of inhibited glycolysis on cellular ATP levels. At low 

concentrations of 2-DG, only LX-α2 exhibited a significant decrease in cellular ATP (Figure 

11D). These data reveal that the α1 NKA/Src interaction plays a key role in regulating metabolic 

flexibility, but they do not address the question of metabolic reserve. 

Figure 11: Importance of NKA α1 signaling for cell growth and metabolism.  

A. Glucose consumption of AAC-19, LX-α2, and LY-a2 cells (n=6, ** p<0.01). B. Lactate 

measured in the media of AAC-19, LX-α2, and LY-a2 cells after 72 hours cell growth (n=3, ** 

p<0.01, **** p<0.0001). C. Growth of AAC-19 (squares), LX-α2 (triangles), and LY-a2 

(circles) cells in glucose-deprived media (n=6, ** p<0.01 vs AAC-19, **** p<0.0001 vs AAC-

19). D. ATP production in AAC-19, LX-α2, and LY-a2 cells in the presence of increasing 

concentrations of the glycolysis inhibitor 2-DG (n listed at the base of each bar, * p<0.05 vs 0 

mM 2-DG, **** p<0.0001 vs 0 mM 2-DG). 

For this reason, we subjected these cells to Seahorse metabolic flux analyses (Figure 12). 

When LX-α2 cells were subjected to the mitochondrial stress test, both basal and maximal 

oxygen consumption rates were decreased (OCR, Figure 12B-C). Most significantly, a 65% 

reduction in spare capacity (Figure 12D) was noted. On the other hand, LY-a2 cells displayed a 

metabolic profile identical to that of α1-expressing AAC-19 cells. To probe whether the gain of 

Src binding also affects glycolytic properties, we measured the extracellular acidification rate of 
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LX-α2 cells (ECAR, Figure 12E). Although LX-α2 and AAC-19 cells exhibited similar basal 

glycolysis levels, their maximum ECAR measured in the presence of oligomycin decreased. This 

was in sharp contrast to AAC-19 cells in which ECAR increased (Figure 12F-G) and indicates a 

complete loss of metabolic reserve in LX-α2 cells (Figure 12H). In all cases, LY-a2 cells 

exhibited a metabolic profile identical to AAC-19 controls, indicating that the loss of metabolic 

reserve and flexibility in the LX-α2 cells was due specifically to the lack of the Src binding and 

not to other differences between the isoforms.  

Figure 12: Seahorse metabolic analysis of AAC-19, LX-α2, and LY-a2 cells.  

A. Representative trace of mitochondrial stress test of AAC-19 (squares), LX-α2 (triangles), and 

LY-a2 (circles). B. Basal mitochondrial respiration of AAC-19 (n=30), LX-α2 (n=6), and LY-a2 

(n=6). C. Maximum mitochondrial respiration of AAC-19 (n=30), LX-α2 (n=6), and LY-a2 

(n=6). D. Spare respiratory capacity of AAC-19 (n=30), LX-α2 (n=6), and LY-a2 (n=6). E. 

Representative trace of glycolytic stress test of AAC-19 (squares), LX-α2 (triangles), and LY-a2 

(circles). F. Basal glycolysis rate of AAC-19 (n=30), LX-α2 (n=6), and LY-a2 (n=6). G. 

Maximum glycolysis rate of AAC-19 (n=30), LX-α2 (n=6), and LY-a2 (n=6). H. Spare 

glycolytic capacity of AAC-19 (n=30), LX-α2 (n=6), and LY-a2 (n=6). * p<0.05, ** p<0.01, *** 

p<0.005, **** p<0.0001. 

To assess the significance of acquiring the NaKtide sequence in birds, we measured both 

OCR and ECAR parameters in cells expression a mutant α1 in which a mutation in the NaKtide 

sequence (A420P) disrupts the NaKtide/Src interaction (Lai et al., 2013). In view of the fact that 
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avian and mammalian NKA α1 contain highly or completely conserved NaKtide sequences 

(Table 3), the evolutionary significance of this acquisition of Src binding was intriguing. 

Because birds and mammals evolved separately (Figure 10), the acquisition of this Src binding 

ability appears to be an example of convergent evolution between birds and mammals (Clarke & 

Pörtner, 2010; Wu & Wang, 2019). To assess the significance of acquiring the NaKtide sequence 

in birds, we measured both OCR and ECAR parameters in A420P cells, in which a mutation in 

the NaKtide sequence (A420P) disrupts the NaKtide/Src interaction (Lai et al., 2013). As 

depicted in Figure 14, loss of the NaKtide binding site in ATP1A1 significantly reduced 

metabolic reserve and flexibility. It abolished spare capacity of ECAR and decreased OCR by 

60%. However, although both A420P and LX-α2 cells lost reserve metabolic capacity in OCR 

and ECAR, the loss in A420P cells, especially in ECAR, was less severe than that of LX-α2 

cells. Additionally, there was no change in basal OCR and an increase in ECAR in A420P cells, 

which was in sharp contrast to those of LX-α2 cells (Figure 14). These findings led us to 

speculate that the acquisition of the Src binding site (NaKtide sequence) in birds facilitates the 

generation of metabolic reserve and flexibility, which is a major characteristic of endothermy 

(Clarke & Pörtner, 2010; Nespolo, Solano-Iguaran, & Bozinovic, 2017).  

Figure 13: Characterization of renal epithelial-derived cell lines.  

A. Western blot for α1 and α2 in AAC-19, LX-α2, and LY-a2 cells, as well as in the knock-down 

PY-17 cells. B. Representative photos of media with no cells, AAC-19 cells, and LX-α2 after 24 

hours of incubation. 
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Figure 14: Seahorse metabolic analysis of cells expressing a loss-of-function Src binding-

mutant NKA α1.  

A. A representative trace of the mitochondrial stress test with AAC-19 (black, squares) and 

A420P (grey, diamonds) cells. B. Spare mitochondrial capacity of AAC-19 (dark grey, squares) 

and A420P (light grey, diamonds) cells. C. Representative trace of the glycolytic stress test with 

AAC-19 (black, squares) and A420P (grey, diamonds) cells. D. Reserved glycolytic capacity of 

AAC-19 (dark grey, squares) and A420P (light grey, diamonds) cells. (n=6-8, **p<0.01, 

****p<0.001). 

Generation of an in vivo mouse model.  

To address the relevance of these findings in animal physiology, we used a 

MyoDiCre/Lox system to develop a skeletal muscle-specific α1 NKA knockout mouse (skα1-/-) 

as a model to assess the physiological significance of the α1 NKA/Src interaction in metabolic 

regulation (Figure 15). Skeletal muscle was chosen as a model because it is a metabolically 

dynamic tissue in which only 10% of NKA is the α1 isoform while the remaining 90% of NKA 

is the non-Src-binding α2 isoform (He et al., 2001; J. Xie et al., 2015). In addition, prior 

transgenic studies have documented that while skeletal muscle-specific knockout of α2 did not 

affect skeletal muscle size or fiber type composition, the resulting deficits in K+-transport 

abolished their ability to match force generation to contraction stimuli (DiFranco et al., 2015; 

Manoharan et al., 2015; Radzyukevich et al., 2013). Given these results, the knockout of α1 was 

expected to have a minimal effect on the pumping capacity of skeletal muscle. However, if α1 

NKA signaling is a key regulator of metabolic capacity as demonstrated by Figures 1 and 2, 
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genetic deletion of skeletal muscle α1 NKA would cause a switch to more glycolytic myofibers, 

causing decreased exercise endurance.  

Figure 15: Cre-Lox construct for the tissue-specific ablation of α1. 

 

The ablation of α1 NKA in skα1-/- skeletal muscles was confirmed with both Western 

blot and immunohistochemistry (Figure 16A-B). Expression of the α2 isoform was not changed 

in skα1-/- mice compared with skα1+/+ controls (Figure 16A) and the total NKA activity of 

crude membranes as measured by ouabain-sensitive ATPase activity was also unaffected (Figure 

16C), indicating that the muscles maintained their Na+/K+ transport capacity. 

Skα1-/- gastrocnemius muscles were more than 35% smaller than those of skα1+/+ 

control littermates (Figure 16D), revealing a role for α1 in growth in vivo that mirrors that 

observed in vitro (J. Xie et al., 2015). This decrease in muscle mass was further confirmed in the 

soleus (Figure 17). There was also a clear change in the ratio of oxidative to glycolytic muscle 

fibers. Further histochemical analysis revealed proportionately more glycolytic type IIB fibers in 

the skα1-/- white gastrocnemius muscle, with a corresponding decrease in the number of mixed-

oxidative type IIA fibers and a complete lack of oxidative type I fibers (Figure 16I). This fiber 

type switch suggests a transition to a metabolism reliant on glycolysis consistent with the in vitro 

cell culture data (Figures 1 and 2). Additionally, the number of fibers per muscle decreased in 

skα1-/- muscles (Figure 16E), with a corresponding hypertrophy of Type IIB glycolytic fibers 

(Figure 16F-G). This underscores the similarities between this animal model and the cell model 
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and further supports the notion of a shift from oxidative to glycolytic metabolism in skeletal 

muscle of skα1-/- mice (J. Xie et al., 2015).  

Figure 16: Development of skeletal muscle-specific NKA α1 KO mouse model.  

A. Western blot for NKA α1 and α2 in skα1+/+ (n=8) and skα1-/- (n=10) muscles 

(****p<0.0001). B. Immunohistochemistry of α1 and α2 in skeletal muscle. C. Ouabain-

inhibited ATPase activity in crude membrane fractions from skα1+/+ (n=3) and skα1-/- (n=4) 

muscles. D. Gastrocnemius muscle size in skα1+/+ and skα1-/- male (n=5 and n=6, respectively) 

and female (n=11 and n=9, respectively) mice. (**** p<0.0001). E. Myofiber number in skα1-/- 

white gastrocnemius muscles. F. Representative micrographs of skα1-/- and skα1+/+ white 

gastrocnemius muscles. Blue arrows indicate type IIB and black arrows indicate type IIa fibers. 

G. Mean cross sectional areas of type IIa and type IIb fibers. H. Histogram of fiber CSA. I. 

Proportion of fibers which are type IIa, type IIb, and type 1.  
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Figure 17: Soleus mass in 16-week-old skα1+/+ (grey, squares) and skα1-/- (white, 

triangles) mice. 

 
Impact of metabolic deficits in skα1-/- muscles on exercise performance.  

Though the fiber type switch suggested a more glycolytic metabolism in skα1-/- muscles, 

we needed to determine the impact on muscle metabolism and performance. In a treadmill test at 

speeds up to 25 m/min, skα1-/- ran as well as skα1+/+ controls (Figure 18A), which contrasts 

sharply with the phenotype observed in the α2 knockout mouse (DiFranco et al., 2015; 

Manoharan et al., 2015; Radzyukevich et al., 2013). However, skα1-/- mice showed a 50% 

reduction in endurance as measured by distance to fatigue (Figure 18B), which suggests a lack of 

oxidative metabolic capacity and an inability to adapt to changing metabolic demands during 

exercise (Baker et al., 2010; Overmyer et al., 2015). Biochemically, we observed a 50% decrease 

in muscle glycogen content in skα1-/- gastrocnemius muscles compared to skα1+/+ mice, which 

could contribute to their decreased endurance (Figure 18C). Furthermore, GSK3β expression in 

the gastrocnemius of skα1-/- mice was significantly increased whereas the level of inhibitory 

phosphorylated serine 9 (pS9) was not affected (Figure 18D-E). Thus, it is most likely that the 

decreased amount of glycogen in skα1-/- gastrocnemius is due to the inhibition of glycogen 

synthesis rather than an accelerated use of glycogen by the muscle.  
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Figure 18: Exercise capacity of skα1-/- mice.  

A. Number of shocks administered per minute per mouse at each treadmill speed to skα1+/+ 

(squares, n=17) and skα1-/- (triangles, n=16) mice. B. Maximum distance run by skα1+/+ (grey, 

squares) and skα1-/- (white, triangles) male (n=10 and 17, respectively) and female (n=16 and 

11, respectively) mice. (*p<0.05, ****p<0.0001). C. Glycogen content of gastrocnemius 

muscles from male skα1+/+ (grey, squares) and skα1-/- (white, triangles) mice (n=5-6, *p<0.05). 

D. Representative Western blot for phosphorylated and total glycogen synthase kinase 3β. E. 

Quantification of Western blots for phosphorylated and total glycogen synthase kinase 3β in 

skα1+/+ (grey, squares) and skα1-/- (white, triangles) gastrocnemius muscles (n=5-6, **p<0.01). 

RNA sequencing analyses of metabolic defects and transcriptional regulation of key 

metabolic genes.  

To use an unbiased approach to probe for changes in signaling pathways involved in the 

regulation of skeletal muscle, we conducted RNA sequencing analyses of skα1-/- gastrocnemius 

muscles. As depicted in the heat map in Figure 19A, several groups of genes were altered in 

gastrocnemius of skα1-/- mice. We further analyzed the Gene Ontology enrichment of 

differentially expressed genes and visualized the result in a network map by Cytoscape. (Fig 

19B). The analyses revealed changes in signaling pathways related to cell metabolism, ROS 

production via changes in oxygen and hypoxia sensing, protein assembly, cytoskeleton 

organization, and cell differentiation and morphogenesis. 
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Figure 19: Analysis of mRNA expression of metabolic genes in renal epithelial cells and 

skeletal muscles.  
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A (pg 56). Heatmap of differentially expressed genes identified by RNA sequencing of skα1+/+ 

and skα1-/- gastrocnemius muscles. B (pg 56). Map of pathways including differentially 

expressed genes identified by RNA sequencing of skα1+/+ and skα1-/- gastrocnemius muscles. 

C-E. Expression of Ppargc1a (C), Atp5a1 (D), and Acadm (E) in skα1+/+ (grey, squares, n=4) 

and skα1-/- (white, triangles, n=4) white gastrocnemius muscles. F-H. Expression of Hk2 (F), 

Pkm (G), and Pfkm (H) in skα1+/+ (grey, squares, n=4) and skα1-/- (white, triangles, n=4) white 

gastrocnemius muscles. I-K. Expression of Ppargc1a (I), Atp5a1 (J), and Mcad (K) in AAC-19 

(dark grey, squares, n=6), LY-α2 (white, triangles, n=6), and LY-a2 (light grey, circles, n=6) 

cells. L-N. Expression of Hk2 (L), Pkm (M), and Pfkm (N) AAC-19 (dark grey, squares, n=6), 

LY-α2 (white, triangles, n=6), and LY-a2 (light grey, circles, n=6) cells.  

We then explored the transcriptional regulation of metabolic genes in skα1-/- and 

skα1+/+ muscles. Skα1-/- gastrocnemius muscles exhibited decreased expression of the master 

regulator of mitochondrial biogenesis, Ppargc1a (peroxisome proliferator activated receptor γ 

coactivator 1α, PGC-1α) (Figure 19C). Similarly, expression of Atp5a1 (ATP synthase F1 

subunit α) and Acadm (medium-chain acyl-CoA dehydrogenase) was decreased in skα1-/- 

gastrocnemius muscles (Figure 19D-E). Additionally, expression of the key glycolytic enzymes 

Hk2 (hexokinase 2), Pkm (pyruvate kinasr), and Pfkm (phosphofructo kinase was decreased in 

skα1-/- muscles compared to skα1+/+ muscles (Figure 19F-H). These data are further evidence 

of an overall decrease in metabolic capacity in skα1-/- gastrocnemius muscles. 

To further determine whether the metabolic defects observed in our in vitro studies and 

those suggested by the phenotype of skα1-/- mice could have similar transcriptional mechanisms, 

we analyzed the mRNA expression of the same metabolic genes in AAC-19, LX-α2, and LY-a2 

cells. Similar to our observations in skα1-/- muscles, expression of the mitochondrial 

metabolism-related genes Ppargc1a, Atp5a1, and Acadm were down-regulated in LX-α2 cells 

compared to AAC-19 cells, and these defects were partially restored in LY-a2 cells (Figure 19I-

K). In contrast, although expression of Pfkm was decreased in LX-α2 cells, we observed no 

change in Hk2 or Pkm expression in LX-α2 cells (Figure 19L-N). In contrast to the 

mitochondrial genes, LY-a2 expression did not rescue expression of Pfkm (Figure 19N). The 
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similarities in expression of key oxidative metabolic genes between the renal epithelial cells and 

skα1-/- muscles suggest a similar molecular mechanism underlying the regulation of 

mitochondrial metabolism in both models. In contrast, the differences in the expression pattern 

of the glycolytic genes in skα1-/- muscle and LX-α2 cells suggest distinct regulation of 

glycolysis in these systems. 

Figure 20: Oxidative stress and antioxidant response in skα1-/- mice on Western diet.  

A-D. Expression of Nrf2-related genes in gastrocnemius muscles from skα1+/+ (grey, squares) 

and skα1-/- (white, triangles) mice on normal chow (NC, filled symbols) and Western diet (WD, 

open symbols): Nuclear factor erythroid 2-related factor 2 (Nfe2l2, A), heme oxygenase 1 

(Hmox1, B), NAD(P)H quinone dehydrogenase 1 (Nqo1, C), and glutathione S-transferase mu 1 

(Gstm1, D) (n=4-6, *p<0.05, **p<0.01, ***p<0.005). E. Change in protein carbonylation in 

gastrocnemius muscles from skα1+/+ (grey, squares) and skα1-/- (white, triangles) mice on 

normal chow (NC, filled symbols) and Western diet (WD, open symbols) relative to NC controls 

(n=4-5, *p<0.05, ***p<0.005). F-I. Expression of cytokines in the livers of skα1+/+ (grey, 

squares) and skα1-/- (white, triangles) mice on normal chow (NC, filled symbols) and Western 
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diet (WD, open symbols): monocyte chemoattractant protein 1 (Ccl2, F), tumor necrosis factor α 

(Tnfa, G), interleukin 6 (Il6, H), and interleukin 1b (Il1b, I). J-L. Expression of Nrf2-related 

genes in livers of skα1+/+ and skα1-/- mice on NC (grey) and WD (white): Nuclear factor 

erythroid 2-related factor 2 (Nfe2l2, J), heme oxygenase 1 (Hmox1, K), and NAD(P)H quinone 

dehydrogenase 1 (Nqo1, L). M. Representative images of haematoxylin and eosin stained livers 

from skα1+/+ and skα1-/- mice fed NC or WD showing no clear evidence of steatosis. N. 

Expression of the cytokine tumor necrosis factor α (Tnfa) in visceral epidydimal adipose from 

skα1+/+ (grey, squares) and skα1-/- (white, triangles) mice on normal chow (NC, filled symbols) 

and Western diet (WD, open symbols). O. Expression of the Nrf2-related heme-oxygenase 1 

(Hmox1) in visceral epidydimal adipose from skα1+/+ (grey, squares) and skα1-/- (white, 

triangles) mice on normal chow (NC, filled symbols) and Western diet (WD, open symbols). 

Skeletal muscle α1 and susceptibility to diet-induced metabolic dysfunction.  

The above findings suggest that the acquisition of Src binding sites in ATP1A1 facilitates 

increased metabolic capacity in endotherms, which is consistent with the aerobic scope 

hypothesis of endotherm evolution (Clarke & Pörtner, 2010; Nespolo et al., 2017). On the other 

hand, this gain of metabolic reserve and flexibility may become a liability when mammals are 

fed a high-fat, high-fructose Western diet (WD), which increases pathological ROS stress, 

promotes tissue inflammation, and causes metabolic syndrome. Since skeletal muscle plays an 

important role in both glucose homeostasis and metabolic flux (Honka et al., 2018; Zurlo et al., 

1990), this prompted us to test whether expression of ATP1A1 links the benefits of enhanced 

muscle metabolic capacity and endurance to increased susceptibility to diet-induced metabolic 

dysfunction, specifically the development of glucose intolerance and insulin resistance. 

Therefore, we subjected skα1-/- mice to WD to observe how they adapted to the metabolic stress 

of chronic overnutrition (Sodhi et al., 2015). Baseline body mass and body composition were 

similar between skα1-/- and skα1+/+ mice assigned to normal chow (NC) or Western diet (WD) 

(data not shown). Due to their FVB-dominant mixed-strain background, even wild-type controls 

gained less weight than C57Bl6 mice on the same diet, a result of the well-documented FVB 

resistance to obesity (Nascimento-Sales et al., 2017). However, tissues collected after 12 weeks 

of WD revealed a significant increase in epidydimal and subcutaneous adipose tissues in control 
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skα1+/+ mice (Figure 21A-B). In contrast, although WD produced a modest increase in both fat 

tissues in skα1-/- mice, the apparent increase did not reach statistical significance (Figure 21A-B, 

p=0.4).  

Figure 21: Impact of skeletal muscle-specific ablation of NKA α1 on reaction to Western 

diet.  

A. Epidydimal fat pad mass to body weight (BW) ratio in skα1+/+ (grey) and skα1-/- (white) 

mice after 12 weeks on a Western diet (WD) or normal chow (NC) (skα1+/+ NC n=8, skα1 WD 

n=14, skα1-/- NC n=4, skα1-/- WD n=12). B. Subcutaneous fat pad (SubQ)/BW ratio in skα1+/+ 

(grey) and skα1-/- (white) mice after 12 weeks on WD or NC (skα1+/+ NC n=8, skα1 WD n=14, 

skα1-/- NC n=4, skα1-/- WD n=12). C. Liver mass to BW ratio in skα1+/+ (grey) and skα1-/- 

(white) mice after 12 weeks on a WD or NC (skα1+/+ NC n=8, skα1 WD n=14, skα1-/- NC n=4, 

skα1-/- WD n=12). D. Fasting blood glucose in skα1+/+ (grey) and skα1-/- (white) mice after 12 

weeks on WD or NC (skα1+/+ NC n=4, skα1 WD n=5, skα1-/- NC n=4, skα1-/- WD n=4). E. 

Glucose tolerance test and area under the curve of skα1-/- and skα1+/+ mice after 6 weeks on 

Western diet (skα1+/+ NC n=7, skα1 WD n=6, skα1-/- NC n=4, skα1-/- WD n=4). F. Insulin 

tolerance test of skα1-/- and skα1+/+ mice after 12 weeks on Western diet (skα1+/+ NC n=4, 

skα1 WD n=5, skα1-/- NC n=4, skα1-/- WD n=4). (* p<0.05, ** p<0.01, **** p<0.0001) 

Since activation of the α1 NKA/Src is associated with increased ROS production and 

ROS stress is central to the development of diet-induced metabolic dysfunction, we measured the 

activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway, which increases the 

expression of antioxidant enzymes on a WD (Devarshi, McNabney, & Henagan, 2017). As 

depicted in Figure 20, WD not only increased Nrf2 expression (Nfe2l2, Figure 20A) but also 
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increased the mRNA expression of the Nrf2 targets heme oxygenase 1 (Hmox1) and NAD(P)H 

quinone dehydrogenase 1 (Nqo1) (Figure 20B-C), indicating that WD-induced ROS stress 

elicited a robust antioxidant response in skα1+/+ muscles. This conclusion was further 

strengthened by the induction of glutathione S-transferase mu 1 (Gstm1) (Figure 20D). In 

contrast, no changes in the expression of these genes were observed in the gastrocnemius of 

skα1-/- mice, suggesting that the ablation of α1 attenuates ROS stress, consistent with what has 

been reported (Yan et al., 2013). To further assess ROS signaling, we also measured protein 

carbonylation, an indicator of an increase in H2O2. As depicted in Figure 20E, a comparable 

increase in protein carbonylation was noted in both skα1-/- and skα1+/+ mouse gastrocnemius.  

In addition to skeletal muscle, liver plays a critically important role in the progression of 

metabolic syndrome, with WD-induced inflammation and oxidative stress leading to non-

alcoholic steatohepatitis (NASH) and compensatory activation of the Nrf2 pathway and 

antioxidant responses (D. Xu et al., 2018). Therefore, we examined expression of Nrf2-targeted 

genes, cytokine expression, and liver morphology for evidence of oxidative stress, inflammation, 

and ultimately NASH. We found that the expression of the inflammatory cytokines monocyte 

chemoattractant protein 1 (Ccl2), tumor necrosis factor α (Tnfa), and interleukin 6 (Il6) was 

highly induced in the livers of control skα1+/+ mice (Figure 20F-H). In sharp contrast, these 

changes in the liver were blunted in skα1-/- mice. As depicted in Figure 20J, there was no 

increase in Nfe2l2 expression, and induction of Hmox1 expression did not reach statistical 

significance (Figure 20K). However, expression of Nqo1 increased in skα1+/+ WD livers but not 

in skα1-/- WD livers (Figure 20L), suggesting that skα1+/+ WD mice had begun the process of 

developing NASH but had not developed the severity seen in C57J/BL6 mice on the same diet 

(Sodhi et al., 2017). In accordance, there was no evidence of morphological changes in the liver 
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histology (Figure 20M), which is consistent with the unaltered liver weight/body weight ratio in 

both skα1-/- and skα1+/+ mice on WD (Figure 21C).  

Figure 22: Pharmacological targeting of α1 NKA signaling through Src in diet-induced 

metabolic dysfunction. 

A. Weight gain in C57J/BL6 over 12 weeks of WD or NC with pNaKtide injection or vehicle 

injection. (n=10, ##p<0.01, ### p<0.005, #### p<0.0005 NC+Vehicle vs WD+Vehicle; * p<0.05, ** 

p<0.005 WD+Vehicle vs WD+pNaKtide) B. Effects of pNaKtide on body composition after 12 

weeks WD. C-F. Hepatic expression of F4/80 (C.), Ccl2 (D.), Tnfa (E.), and Hmox1 (F.) after 

12 weeks diet treatment. G. Representative micrographs of liver sections stained with H&E to 

show lipid accumulation. (n=6, * p<0.05, ** p<0.01, *** p<0.005, **** p<0.0005) 

To complement the above studies, we repeated the above qPCR measurements of 

inflammatory cytokines and Nrf2-targeted genes in the epidydimal fat pad, another important 

tissue in the development of glucose intolerance and insulin resistance. Interestingly, the 

expression of Tnfa was comparably induced in both skα1+/+ and skα1-/- epidydimal fat (Figure 

20N), although expression of other cytokines was unchanged (data not shown). When the Nrf2 

pathway was evaluated, WD increased expression of Hmox1 three-fold in the epidydimal fat of 
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skα1+/+ but not skα1-/- mice (Figure 20O). However, unlike in skeletal muscle, WD did not 

alter the expression of other Nrf2-targeted genes (data not shown).  

To further probe the impact of skα1-/- on the development of metabolic syndrome, we 

measured fasting blood glucose and conducted glucose tolerance tests (GTT) and insulin 

tolerance tests (ITT). As depicted in Figure 21D, after 12 weeks of WD, fasting glucose was 

significantly elevated only in WD-fed skα1+/+ mice. A GTT administered after 6 weeks of WD 

showed increased glucose intolerance as measured by the area under the curve (AUC) only in 

skα1+/+ mice, while WD-fed skα1-/- mice maintained normal glucose clearance (Figure 21E). 

An ITT administered after 12 weeks revealed impaired insulin sensitivity in skα1+/+ mice but 

not in skα1-/- mice fed with WD as measured by AUC (Figure 21F). In both cases, glucose 

clearance was not different between skα1+/+ and skα1-/- mice fed with normal chow but was 

significantly decreased in skα1+/+ mice compared to skα1-/- mice fed with WD (Figures 7E-F).  

Pharmacological interruption of α1 NKA/Src binding attenuates the progression of 

non-alcoholic steatohepatitis.  

The above metabolic protection afforded by the genetic deletion of ATP1A1 in skeletal 

muscle provides compelling evidence for a role of α1 NKA-mediated Src signaling in developing 

diet-induced hepatic inflammation and oxidative stress, which ultimately leads to the 

development of NASH. To further test this hypothesis, and to evaluate whether pNaKtide, a 

peptide derived from α1 NKA that blocks the formation of the α1 NKA/Src complex, could be 

developed as a drug candidate for NASH, we treated WD-fed C57J/Bl6 mice with 5 mg/kg 

pNaKtide every other day. This treatment resulted in a significant decrease in weight gain and 

moderately improved body composition (Figure 22A-B). Like skα1-/-, pNaKtide treatment 

attenuated liver inflammation, normalizing the expression of Ccl2, Tnfa, and the macrophage 



  64 

marker F4/80 (Figure 22C-E). Furthermore, pNaKtide abolished the induction of the Nrf-2 target 

gene Hmox1 was decreased (Figure 22F). Finally, pNaKtide protected livers from WD-induced 

hepatic steatosis (Figure 22G). Because the no-observable-effect level of pNaKtide in mice is 25 

mg/kg/day, we conclude from these findings that pNaKtide, by disrupting the formation of α1 

NKA/Src complex, is not only effective in blocking WD-induced ROS stress, inflammation, and 

preventing the progression of NASH, but is also well-tolerated. 

Discussion 

In this study, we have made three important observations. First, we report for the first 

time that the evolutionary acquisition of Src binding in α1 NKA facilitates increased metabolic 

capacity. This represents a hitherto unidentified regulatory mechanism, most likely an important 

evolutionary event impacting endotherm physiology. It also illustrates how the NKA gained 

additional fundamental functions during the evolutionary process and provides molecular 

insights into NKA isoform heterogeneity. Second, we were able to demonstrate the metabolic 

importance of the α1 isoform in an in vivo model. The ablation of α1 NKA caused a switch from 

oxidative to glycolytic muscle and a significant hypertrophy of glycolytic Type IIB fibers in 

gastrocnemius muscles (Figure 16). Consequently, it significantly reduced endurance. 

Paradoxically, it also afforded protection against diet-induced glucose intolerance and insulin 

resistance by reducing ROS stress and inflammation in three vital metabolic tissues. Therefore, it 

is reasonable to propose that mammals’ enhanced metabolic reserve and flexibility and their 

susceptibility to WD-induced metabolic stress are triggered by a common mechanism – α1 

NKA-mediated Src regulation. Finally, these new findings, taken together with previous reports 

on the in vivo efficacy of pNaKtide in metabolic syndrome, validate the α1 NKA/Src interaction 

as a novel therapeutic target for metabolic syndrome.  
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The evolutionary nature of NKA signaling and its significance in animal physiology.  

In addition to the Src binding sites, we have also identified a caveolin binding motif in 

the α subunit of NKA, which is conserved in all NKA α subunits within the animal kingdom 

(unpublished data). Recent studies demonstrate that loss of the caveolin binding motif causes the 

arrest of stem cell differentiation and organogenesis in mammals and C. elegans (unpublished 

data). Thus, NKA evolved with multiple functionalities. Though all animal α isoforms contain 

the caveolin motif, Src binding is confined to endotherms, with birds possessing only the 

NaKtide sequence and mammals possessing both NaKtide and Y260 sequences (Table 3). 

Although the current work focused on the Src signaling role of ATP1A1, the possibility that 

other NKA isoforms have acquired other binding motifs that confer additional tissue and cell-

specific functions that are independent of ion pumping should be considered. 

It is important to recognize the unique nature of ATP1A1 signaling through Src for 

regulating metabolic capacity in mammalian cells. Specifically, our gain-of-Src-binding and 

loss-of-Src-binding studies indicate that the acquisition of Src binding by α1 NKA is essential 

for generating metabolic reserve (Figure 12). This contrasts with other recognized pathways such 

as PPARγ (Rodriguez-Cuenca et al., 2012), PGC-1α (Andrzejewski et al., 2017), AMPK 

(Schonke, Massart, & Zierath, 2018), and pyruvate dehydrogenases (S. Zhang, Hulver, 

McMillan, Cline, & Gilbert, 2014), which play important but nonessential roles in the generation 

of metabolic reserve. Similarly, NKA/Src interaction increased metabolic flexibility (Figures 1 

and 2). Together, these metabolic changes represent a significant increase in metabolic capacity, 

allowing locomotive endurance, which the aerobic scope hypothesis posits was a selective driver 

for the evolution of endothermy from ectothermy (Clarke & Pörtner, 2010; Nespolo et al., 2017). 
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Further, we demonstrated that the skeletal muscle-specific knockout of α1 produced a 

phenotype unique from the skeletal muscle-specific knockout of α2 (skα2-/-), which is the 

primary isoform necessary for the maintenance of skeletal muscle contraction, especially at high 

stimuli frequencies (DiFranco et al., 2015; Manoharan et al., 2015; Radzyukevich et al., 2013). 

This difference between skα1-/- and skα2-/- phenotypes supports the hypothesis that the α1 

isoform, and most likely its Src binding function, is responsible for the regulation of metabolic 

capacity. This was represented by the switch to more glycolytic muscle fibers (Figure 16I) and 

the decreased endurance (Figure 18A) in skα1-/- mice. Thus, we speculate that the evolution of 

Src binding in birds and mammals may have increased metabolic reserve and flexibility, which 

the aerobic scope hypothesis posits were necessary for the evolution of endothermy (Nespolo et 

al., 2017).  

Notably, both Src binding sites appear to be important for regulating metabolic capacity. 

In addition to the cell lines used in this study (LX-α2, LY-a2, AAC-19, and A420P), we also 

created a cell line expressing a Y260A mutant rat α1. The impact of the Y260A mutation on 

metabolic reserve and flexibility appears to be the mildest (Banerjee et al., 2018), followed by 

the A420P mutation and, finally, the complete loss of Src binding sites in the LX-α2 cell line. 

NKA/Src interaction as a molecular target for developing therapeutics for metabolic 

syndrome.  

The first evidence linking α1 NKA to ROS production came from our early studies of 

cardiotonic steroids in cultures of cardiac myocytes (Z. Xie et al., 1999). Subsequently, we 

documented that stimulation of the α1 NKA/Src receptor complex by cardiotonic steroids 

increased ROS production in multiple cell types via both mitochondria and NADPH oxidase 

activation (Banerjee et al., 2018; Liu et al., 2006; Sodhi et al., 2015; Sodhi et al., 2018; Sodhi et 
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al., 2017; Z. Xie et al., 1999; Yan et al., 2013). These ROS then stimulate the α1 NKA/Src 

complex, forming an amplification loop for the pathological production of ROS (Yan et al., 

2013). Targeting the α1 NKA/Src interaction with pNaktide, a peptide inhibitor of the signaling 

complex (Z. Li et al., 2009), terminates this amplification loop, thereby preventing the generation 

of pathological ROS stress (Z. Li et al., 2009). These in vitro studies were further supported by 

recent in vivo animal studies (H. Li et al., 2018; Sodhi et al., 2015; Sodhi et al., 2017). 

Administration of pNaKtide restored insulin sensitivity and glucose tolerance in animals 

subjected to WD (Sodhi et al., 2015; Sodhi et al., 2017; Srikanthan et al., 2016). However, it is 

important to note that pNaKtide was used at 25 mg/kg/week in these in vivo studies. Because the 

no-observable-effect level of pNaKtide in mice is 25 mg/kg/day, these studies failed to address 

the safety and drug development potential of pNaKtide.  

The skα1-/- phenotype provides strong genetic evidence for a role of α1 NKA/Src 

interaction in the development of diet-induced insulin resistance, glucose intolerance, and liver 

inflammation (Figures 6-7). These findings, taken together with the pharmacological studies of 

pNaKtide, validate the α1 NKA/Src interaction as a molecular target for the development of new 

therapeutics for metabolic syndrome. Moreover, the new pharmacological studies of pNaKtide at 

a much lower dose (5 mg/kg vs 25 mg/kg) provided compelling evidence of the potency and 

efficacy of pNaKtide in blocking liver ROS stress, inflammation, and the progression of NASH 

without the concern of significant side effects. Interestingly, our new findings indicate that the 

loss of α1-mediated Src signaling in skeletal muscle is sufficient to confer systemic protection 

from diet-induced glucose intolerance and insulin resistance and reduce oxidative stress and 

inflammation in target organs. These protective effects appear to be organ-specific, with most of 

the protection afforded to the liver. In view of the demonstrated role of cross-talk between 
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skeletal muscle, liver, and adipose, it is reasonable to suggest that skeletal muscle-specific 

delivery of pNaKtide might be sufficient to produce therapeutic benefits in metabolic syndrome. 

This will further reduce the potential of pNaKtide-induced systemic effects. 

In addition to ROS stress and inflammation, the potential contribution of elevated GSK-

3β expression in skα1-/- mouse skeletal muscles should be considered. High GSK-3β expression 

is not only consistent with the detected decrease in muscle glycogen content (Figure 18C), but 

could provide one of many links between the metabolic defects and decreased growth in skα1-/- 

muscles (Figure 16) (van der Velden et al., 2007). In addition to protecting skα1-/- mice from 

WD-induced insulin resistance (Figure 21), the absence of α1 NKA caused a significant decrease 

in muscle mass (Figure 16D), a switch to glycolytic muscle fibers, and a 50% decrease in 

running endurance (Figure 18B), all of which could be a result of decreased metabolic capacity 

(Baker et al., 2010; Overmyer et al., 2015). Therefore, we propose that the evolutionary 

acquisition of Src binding sites in ATP1A1 came with a tradeoff: the increased metabolic reserve 

and flexibility enhanced mitochondrial metabolism and increased exercise endurance came at the 

cost of increased susceptibility to diet-induced glucose intolerance and insulin insensitivity. 

Interestingly, this idea that both improved mitochondrial efficiency and severely reduced 

mitochondrial capacity can preserve glucose homeostasis in the face of a WD has been proposed 

before (Finck et al., 2005; Koves et al., 2008), with Koves et al. postulating that incomplete β-

oxidation of lipids rather than the lipids themselves leads to lipotoxicity-induced insulin 

resistance, a possibility that still needs to be explored in our models. Together, these new 

findings reveal α1 NKA signaling through Src as a novel regulator for generating metabolic 

reserve and flexibility in mammals as well as a validated drug target. Furthermore, this offers a 

novel explanation for exercise-induced increases in α1 NKA expression (Murphy, Petersen, et 
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al., 2006; H. Xu et al., 2018). This hypothesis is further supported by the reports that individuals 

with natural running ability have high basal levels of α1 in skeletal and cardiac muscle (Chen et 

al., 2001; Mohr, Thomassen, Girard, Racinais, & Nybo, 2016).  

Limitations.  

We recognize that there are a number of important unanswered questions. Decreased α1 

expression has been shown to decrease muscle size in a different mouse model (Kutz et al., 

2018), but the growth pathways have yet to be identified. It is also important to note that in 

addition to skeletal muscle, other cells such as cardiomyocytes, adipocytes, and glial cells also 

express both α2 and α1 NKA. Thus, it remains to be investigated whether ablation of α1 also 

causes a metabolic switch and reduced functionality in these cells. Moreover, although our in 

vitro studies of metabolic profile of A420P mutant α1 support the contention that the acquisition 

of NaKtide sequence by birds would most likely impact their metabolic reserve and flexibility, 

this postulation remains to be experimentally tested. Finally, because the skα1-/- mice were 

generated on a dominant FVB mixed-strain background, which caused them to accumulate less 

fat mass than C57BL6 mice fed a WD (Figure 22), we recognize that the genetic background of 

our transgenic animal model may influence or limit our conclusions about the impact of skeletal 

muscle α1 ablation on the development of metabolic syndrome (Nascimento-Sales et al., 2017; 

Sodhi et al., 2017). 

Additionally, there are a few contradictions between the skα1-/- phenotype and the 

current accepted links between increased running endurance to better health outcomes, including 

improvements in insulin sensitivity and glucose tolerance (Baker et al., 2010; Overmyer et al., 

2015). The association between severely attenuated mitochondrial metabolism and decreased 

susceptibility to diet-induced metabolic dysfunction is, however, consistent with the hypothesis 
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that incomplete β oxidation of lipids and not the lack of mitochondrial metabolism is responsible 

for insulin resistance (Finck et al., 2005; Koves et al., 2008). Moreover, the lack of exercise 

endurance in skα1-/- mice is consistent with studies that have clearly demonstrated a correlation 

between increased exercise endurance and α1 NKA expression in the muscle of inbred rats 

(Chen et al., 2001). 

In short, the data presented here describe a common mechanism underlying the following 

dichotomy: the generation of metabolic reserve and flexibility in the muscle, and consequently 

exercise endurance, comes at the cost of metabolic intolerance to a Western diet. These new 

molecular insights, together with the findings from previous studies utilizing pNaKtide, validate 

the α1 NKA/Src interaction as a novel molecular target for the development of new 

pharmacological approaches to treating metabolic disorders. To this end, our new 

pharmacological studies warrant further development of pNaKtide and its derivatives as drug 

candidates for NASH and other metabolic disorders. 
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Materials and Methods 

Reagents.  

The polyclonal anti-NKA α1 antiserum NASE and polyclonal anti-NKA α2 antiserum 

HERED used for Western blots were raised in rabbits and were generous gifts from Drs. T. 

Pressley and P. Artigas at Texas Tech University Health Sciences Center (40). Anti-α tubulin 

antibody (Sigma, catalog number T5168) was used as a loading control. Secondary antibodies 

were horseradish peroxidase-conjugated anti-rabbit and anti-mouse from Santa Cruz 

Biotechnology Inc (catalog number sc-2004 and sc-2005, respectively).  

Cell Culture.  

The parental LLC-PK1 cells were purchased from ATCC.  

Site-directed mutagenesis and generation of mutant-rescued stable cell lines. 

Mutant cell lines used in this work were derived from LLC-PK1 cells. The generation of 

α1 NKA knock down PY-17 cells from LLC-PK1 was well described (Liang et al., 2006). PY-17 

cells express about 8% of α1 NKA in comparison to that in LLC-PK1 cells, and do not express 

other isoforms of NKA. Using the well-established protocol of knockdown and rescue, we have 

generated a number of stable cell lines (Lai et al., 2013; J. Xie et al., 2015; Yan et al., 2013). The 

generation and characterization of the α1-rescued AAC-19 cells, α1 mutant-rescued A420P, α2-

rescued LX-α2, and α2 mutant-rescued cells used in this study have been reported (Lai et al., 

2013; Liang et al., 2006; J. Xie et al., 2015; Yu et al., 2018). After cells reached 95-100% 
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confluence, they were serum-starved overnight and used for experiments unless indicated 

otherwise. All cell lines were cultured in DMEM plus 10% FBS with 1% 

penicillin/streptomycin.  

Cell Growth Assay. 

Cell growth assay was performed as previously described (Liang et al., 2007). Briefly, 

20,000 cells/well were seeded in triplicates in 12-well plates in glucose-free DMEM containing 

10% FBS and 1% penicillin/streptomycin. Cells were serum-starved for at least 12 hours to 

achieve cell cycle synchronization. At indicated time points, cells were trypsinized, and the 

number of cells was counted with hemocytometer. 

Biochemical measurement of ATP and lactate. 

ATP measurements were performed using CellTiter-Glo Luminescent Cell Viability 

Assay Kit (Promega, Madison, WI, USA, Cat # G7570). According to the protocol provided by 

the manufacturer, 10,000 cells per well were cultured in 96-well culture plate. After treatment 

with 2-DG (Sigma-Aldrich, Cat# D6134) at indicated concentrations in serum-free DMEM for 

45 minutes, assay reagents were reconstituted and added into culture plate. Afterwards, reactants 

were transferred to opaque-walled 96-well plate, and luminescent counts were determined with 

microplate reader. 

Lactate measurement was done as described by Barker (Barker & Summerson, 1941). 

Media glucose depletion. 

Media was collected from cells after 3 days incubation. Glucose concentration in the 

media was measured using a Glucose Colorimetric Assay Kit from Cayman Chemical (Item no. 

10009582, Ann Arbor, Michigan, USA). Glucose concentrations were subtracted from the 

glucose concentration in fresh media to determine media glucose depletion by each cell line, and 
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then normalized to AAC-19 controls for each experiment, so that the final number from each 

experiment was derived from the following equation: 

𝑓𝑜𝑙𝑑𝑠 𝑡𝑜 𝐴𝐴𝐶 − 19 =
[𝑔𝑙𝑢𝑐𝑜𝑠𝑒𝑓𝑟𝑒𝑠ℎ 𝑚𝑒𝑑𝑖𝑎] − [𝑔𝑙𝑢𝑐𝑜𝑠𝑒𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙 𝑚𝑒𝑑𝑖𝑎]

[𝑔𝑙𝑢𝑐𝑜𝑠𝑒𝑓𝑟𝑒𝑠ℎ 𝑚𝑒𝑑𝑖𝑎] − [𝑔𝑙𝑢𝑐𝑜𝑠𝑒𝐴𝐴𝐶−19 𝑚𝑒𝑑𝑖𝑎]
 

Cell proliferation in glucose-deprived media. 

Cells were plated and grown in media consisting of glucose-free DMEM, 10% FBS, and 

1% Penicillin/Streptomycin, and cell number was counted after 0, 24, 36, and 48 hours of 

proliferation. 

Seahorse metabolic flux analysis. 

Cells were plated in Seahorse XFp cell culture plates and subjected to both the 

mitochondrial stress test (Agilent Technologies, Cat # 103010-100) and the glycolytic stress test 

(Agilent Technologies, Cedar Creek, TX, US, Cat #103017-100) supplied by the manufacturer, 

with the injection of oligomycin, trifluoromethoxy carbonylcyanide phenylhydrazone (FCCP), 

rotenone and antimycin A, glucose, and 2-deoxyglucose (2-DG), as described in Table S3. Three 

measurements of oxygen consumption rate and extracellular acidification rate were taken at 

baseline and after each injection. The appropriate concentration of FCCP was determined by 

FCCP titration as recommended by the manufacturer, and all future experiments were performed 

with this concentration of FCCP (1.0 nM). 

 Mito Stress Test Glycolytic Stress Test 

Injection 1 20 µl 10 µM Oligomycin (1.0 µM) 20 µl 100 mM Glucose (10 mM) 

Injection 2 22 µl 10 µM FCCP (1.0 µM) 22 µl 10 µM Oligomycin (1.0 µM) 

Injection 3 25 µl 5 µM Rotenone/Antimycin A (0.5 µM) 25 µl 500 mM 2-DG (50 mM) 

Table 5: Volumes and concentrations of injections for Seahorse analysis, with final 

concentrations in parentheses. 
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Animals.  

Mice with floxed endogenous NKA α1 isoform from Dr. Gustavo Blanco at Kansas 

University Medical Center were crossed with FVB.Cg-Myod1tm2.1(icre)Glh/Jmice purchased 

from Jackson Labs. Mice homozygous for floxed α1 (α1flox/flox) and heterozygous for 

MyoDiCre (MyoDiCre/WT) were bred with α1flox/flox MyoDWT/WT mice, resulting in litters 

of α1flox/flox MyoDiCre/WT (skα1-/-) mice with α1flox/flox MyoDWT/WT controls (skα1+/+). 

Skα1-/- mice were born with the expected Mendelian frequency and appeared normal. Skα1-/- 

mice and skα1+/+ control littermates were housed in 12-hour light and dark cycles at constant 

temperature and humidity. All animal procedures were approved by the Marshall University 

Institutional Animal Care and Use Committee. 

pNaKtide diet study. 

12-week-old male C57BL/6 mice were ordered from Jackson Labs and randomized to 

receive normal chow + vehicle, Western diet (42% fat chow with 4.2g/L fructose water) + 

vehicle, or Western diet + pNaKtide for 12 weeks. pNaKtide was dissolved in phosphate-

buffered saline and administered via intraperitoneal injection every 2 days, while vehicle-treated 

mice received phosphate-buffered saline via intraperitoneal injection every 2 days. Body 

composition was measured using an Echo-MRI (EchoMRI, Houston, TX, USA). Tissues were 

collected after 12 weeks of treatment and either fixed in 10% neutrally buffered formalin or flash 

frozen in liquid nitrogen for future studies. 

Treadmill testing.  

12-week-old male and female skα1-/- mice and litter mate controls were placed in the six 

lanes of an Exer 3/6 treadmill from Columbus Instruments equipped with a shock detection 
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system. Animals were acclimated to the treadmill for 3 days at 5 m/min for 5 minutes at a 5° 

angle and were subjected to the testing protocol on the fourth day. Mice began the testing 

protocol running at 5 m/m for five minutes and increased by 2 m/min each minute up to 25 

m/min, then continued running at 25 m/min until they reached fatigue. Each shock administered 

and each visit to the shock grid was recorded for each animal. Fatigue was defined as 10 

consecutive seconds spent on the shock grid, and the shock was discontinued to each mouse 

upon reaching fatigue.  

Table 6: Primer sequences used in RT-qPCR. 

 

Tissue collection.  

Mice were anesthetized with 50 mg/kg pentobarbital administered via IP injection. 

Tissues were dissected and weighed. Muscles used for Western blot analysis, qPCR, or 

Gene Forward Sequence Reverse Sequence 

Mouse Actab 5’ GGCTGTATTCCCCTCCATCG 3’ 5’ CCAGTTGGTAACAATGCCATGT 3’ 

Mouse Rn18s 5’ CGAAAGCATTTGCCAAGAAT 3’ 5’ AGTCGGCATCGTTTATGGTC 3’ 

Mouse Ppargc1a 5' CAACAATGAGCCTGCGAACA 3' 5' CTTCATCCACGGGGAGACTG 3' 

Mouse Atp5a1 5' CATTGGTGATGGTATTGCGC 3' 5' TCCCAAACACGACAACTCC 3' 

Mouse Acadm 5' TGTTAATCGGTGAAGGAGCAG 3' 5' CTATCCAGGGCATACTTCGTG 3' 

Mouse Hk2 5' TTCGACCACATTGTCCAGTG 3' 5' CTTGAATCCCTTTGTCCACTTG 3' 

Mouse Pkm 5' CCATTCTCTACCGTCCTGTTG 3' 5' TCCATGTAAGCGTTGTCCAG 3' 

Mouse Pfkm 5' GATGGCTTTGAGGGTCTGG 3' 5' CTTGGTTATGTTGGCACTGATC 3' 

Mouse Nfe2l2 5’ GGTTGCCCACATTCCCAAAC 3’ 5’ TATCCAGGGCAAGCGACTCA 3’ 

Mouse Hmox1 5’ TGACACCTGAGGTCAAGCAC 3’ 5’ GGCAGTATCTTGCACCAGGC 3’ 

Mouse Nqo1 5’ GGCCGATTCAGAGTGGCATC 3’ 5’ CCAGACGGTTTCCAGACGTT 3’ 

Mouse Gstm1 5’ CTGACTTTGAGAAGCAGAAGCC 3’ 5’ TAGGTGTTGCGATGTAGCGG 3’ 

Mouse Ccl2 5’ TTTTGTCACCAAGCTCAAGAGA 3’ 5’ ATTAAGGCATCACAGTCCGAGT 3’ 

Mouse Tnfa 5’ ATGGCCTCCCTCTCATCAGT 3’ 5’ TGGTTTGCTACGACGTGGG 3’ 

Mouse Il6 5' TCCTCTCTGCAAGAGACTTCC 3' 5' TTGTGAAGTAGGGAAGGCCG 3' 

Mouse Il1b 5’ TGCCACCTTTTGACAGTGATG 3’ 5’ AAGGTCCACGGGAAAGACAC 3’ 

Pig Gapdh 5' GTGTCGGTTGTGGATCTGAC 3' 5' CTGCTTCACCACCTTCTTGA 3' 

Pig Ppargc1a 5' GCTTGACGAGCGTCATTCAG 3' 5' AACCAGAGCAGCACACTCG 3' 

Pig Atp5a1 5' GCTGCAAAGATGCTGTCAGT 3' 5' AACAAAGGACGATCCCAAAG 3' 

Pig Acadm 5' AACCAGACCTTCGGTAGCAG 3' 5' GCCATGTCAGCCAGCAAAAA 3' 

Pig Hk2 5' GCCTGGCTAACTTCATGGAT 3' 5' CTGGACTTGAAACCCTTGGT 3' 

Pig Pkm 5' TCATGCTGTCTGGAGAGACG 3' 5' GGCGGAGCTCCTCAAATAAT 3' 

Pig Pfkm 5' CGTGTTAACCTCTGGTGGTG 3' 5' TGGTAACCCTCATGGACAAA 3' 
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enzymatic activity assays were flash frozen in liquid nitrogen then stored at -80° C until later 

use. Muscles used for histological analysis were fixed in 10% neutrally buffered formalin for 24 

hours then stored in 70% ethanol until they were embedded in paraffin blocks. 

Western blot. 

 Left and right muscles of the same type from the same mouse were homogenized 

together in ice-cold radioimmunoprecipitation (RIPA) buffer (0.25% sodium deoxycholate, 1% 

Nonidet P-40, 1mM EDTA, 1mM PMSF, 1mM sodium orthovanadate, 1mM Sodium fluoride, 

150 mM NaCl, 50 mM Tris-HCl, pH 7.4 and 1% protease inhibitor cocktail) with a Fisher 

TissueMeiser homogenizer. Homogenates were centrifuged at 14,000 X g for 15 min, 

supernatants were collected, and the protein content was measured using DC Protein Assay Kit 

from BioRad (catalog number 500-0114 and 500-0113). Equal amounts of protein of each 

sample were loaded, separated by SDS-PAGE, and transferred to nitrocellulose membranes. 

Membranes probed for α1 and α2 were blocked in 5% milk, then primary antibodies were added 

overnight at 4°C. Membranes were visualized with Western Lightning® Plus-ECL (Western 

Lightning) and radiographic film. Densitometric quantification was performed using ImageJ 

software from the National Institute of Health.  

RT-qPCR. 

RNA was extracted from tissues and cells using TRIzol Reagent (Life Technologies 

Corporation, Carlsbad, CA, USA) according to manufacturer’s instructions. The amount and 

quality of extracted RNA was measured using the Nanodrop 2000 (Thermo Scientific, Waltham, 

MA, USA). SuperScript III First-Strand Synthesis SuperMix for qRT-PCR (Life Technologies 

Corporation, Carlsbad, CA, USA) was used to synthesize first-strand cDNA. Gene expression 

was analyzed by real-time quantitative RT-PCR using the LightCylcer 480 SYBR Green I 
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Master mix (Roche, Indianapolis, IN, USA) using a LightCycler 480 Instrument II (Roche, 

Indianapolis, IN, USA). Relative expression was calculated using the comparative Ct method 

with data normalized to Actab (liver and skeletal muscle), Rn18s (adipose), or Gapdh (AAC-19, 

LX-α2, and LY-a2 cell lines) as previously described (Livak & Schmittgen, 2001). Primer 

sequences are listed in Table S3. 

RNA sequencing and data analysis. 

RNA was extracted from whole gastrocnemius muscles using a combination of TRIzol 

Reagent (Life Technologies Corporation, Carlsbad, CA, USA) and an RNeasy kit (Qiagen, 

Hillden, Germany) the method described by Bhatnagar, Panguluri, and Kumar (2012). RNA 

sequencing was performed by Novogene (Sacramento, CA, USA). A heatmap of the top 70 

differential expressed genes were visualized by log2 normalized fragments per kilobase million 

(Fpkm), using cytoscape 3.7.1 (Shannon et al., 2003) and clusterMaker2 (Morris et al., 2011). 

Gene Ontology (GO) enrichment were analyzed using BiNGO (Maere, Heymans, & Kuiper, 

2005), and then visualized using EnrichmentMap (Merico, Isserlin, Stueker, Emili, & Bader, 

2010). 

Membrane fractionation.  

Crude membrane fractions were prepared from frozen α1+/- and α1+/+ gastrocnemius 

muscles following a procedure modified from Walas and Juel (Walas & Juel, 2012). Frozen 

muscles were ground into a fine powder with a mortar and pestle. The resulting powder was 

homogenized in ice-cold fractionation buffer (250 mM mannitol, 30 mM L-histidine, 5 mM 

EGTA and 0.1% deoxycholate, adjusted to pH 6.8 with Tris-base) for 30 seconds with a Fisher 

Tissue Meiser handheld homogenizer. The crude homogenate was centrifuged at 3000xg for 30 

minutes and the supernatant was then centrifuged at 190,000xg for 90 minutes. The pellet was 
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resuspended in 30 mM histidine, 250 mM sucrose, and 1 mM EDTA, pH 7.4, and protein 

concentration was determined using the DC Protein Assay Kit from BioRad (catalog number 

500-0114 and 500-0113).  

ATPase activity assay.  

Ouabain-sensitive ATPase activity in crude membrane fractions was determined by 

measuring ATP hydrolysis as previously described (Belliard et al., 2016; Belliard et al., 2013). 

Released inorganic phosphate (Pi) was detected using a malachite-based Biomol Green reagent. 

Samples containing 10 µg of protein were added to a reaction mix containing 20 mM Tris-HCL, 

1 mM MgCl2, 100 mM NaCl, 20 mM KCl, and 1 mM EGTA-Tris, pH 7.2. Ouabain was added 

to the samples to a final concentration of 1 mM to completely inhibit both α1 and α2 isoforms of 

the NKA. After 10 minutes of preincubation at room temperature, the reaction was started by 

adding Mg-ATP at a final concentration of 2.25 mM and incubation at 37°C with shaking for 30 

minutes. The reaction was stopped with the addition of ice-cold 8% TCA, and the concentration 

of Pi was measured spectrophotometrically at OD 620 nm using Biomol Green as an indicator 

(Enzo Life Sciences catalog # BML-AK111-250). Maximal NKA activity was calculated as the 

difference between ATPase activity obtained in the absence or presence of 1 mM ouabain.  

Immunohistochemistry.  

Muscles were collected and then washed twice with ice-cold PBS, fixed with 10% 

neutrally buffered formalin for 24 hours, and embedded in paraffin. Transverse sections of the 

midbelly were immunostained for myosin heavy chain (Myhc) fast and Myhc slow by Wax-It, 

Inc., as described by Behan et al. (Behan et al., 2002) to differentiate between type 1 and type 2 

fibers. Additional sections were stained for NKA α1 by Wax-It, Inc. (Vancouver, Canada). The 

samples were examined on a Leica confocal SP5 microscope (Leica Microsystems, Wetzlar, 
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Germany). The images were processed with the Leica Application Suite Advanced Fluorescence 

(LAS/AF) suite (Leica Microsystems, Wetzlar, Germany), FIJI platform, and the GNU Image 

Manipulation Program (GIMP) to obtain maximum projections, extract lateral slices, and 

construct figures. 

Morphometric tissue analysis (CSA and fiber types).  

Images of muscles stained for fast and slow myosin heavy chain were obtained by Wax-

It, Inc. with digital whole-slide scanning. Aperio ImageScope software was used to determine the 

cross sectional area (CSA) of each fiber. Fibers that had been damaged were excluded from CSA 

analysis. Every fiber of each type in each muscle was counted to determine the average number 

of fibers per muscle. 

Western diet study. 

6-8-week-old male mice were placed on a 42% fat diet with 4.2g/L fructose water with 

controls on a normal chow diet for 12 weeks. Glucose tolerance tests were performed at 6 weeks 

and insulin tolerance tests were performed at 12 weeks. Tissues were collected and weighed after 

12 weeks of diet treatment, and flash frozen in liquid nitrogen or fixed in 10% neutrally buffered 

formalin for 24 hours then transferred to 70% ethanol for shipment to Wax-It, Inc., for paraffin 

embedding and hematoxylin and eosin staining. 

pNaKtide diet study. 

12-week-old male C57BL/6 mice were ordered from Jackson Labs and randomized to 

receive normal chow + vehicle, Western diet (42% fat chow with 4.2g/L fructose water) + 

vehicle, or Western diet + pNaKtide for 12 weeks. pNaKtide was dissolved in phosphate-

buffered saline and administered via intraperitoneal injection every 2 days, while vehicle-treated 

mice received phosphate-buffered saline via intraperitoneal injection every 2 days. Body 
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composition was measured using an Echo-MRI (EchoMRI, Houston, TX, USA). Tissues were 

dissected and flash frozen in liquid N2 for biochemical analysis or fixed in 10% neutrally 

buffered formalin for histological analysis. 
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CHAPTER 4 

DISCUSSION AND CONCLUSIONS 

Isoform-specific role of NKA α1 in skeletal muscle 

These studies reveal that the NKA α1 isoform has an isoform-specific role in skeletal 

muscle that cannot be filled by the α2 isoform, in spite of its low expression as a proportion of 

the total NKA pool in skeletal muscle (He et al., 2001). While NKA α2 is indeed vital for normal 

contractility (DiFranco et al., 2015; Radzyukevich et al., 2013), the skeletal muscle-specific 

ablation of α2 has no impact on skeletal muscle growth. In contrast, our skα1-/- mice had a 35% 

decrease in muscle mass and abnormal muscle structure (Figure 17), revealing that the growth of 

skeletal muscle is regulated by NKA α1 in an isoform-specific manner. Similarly, no clear 

metabolic defects were described in skeletal muscles lacking NKA α2, although the studies of 

the role of α2 in skeletal muscle did not specifically evaluate markers of altered metabolism 

(DiFranco et al., 2015; Manoharan et al., 2015; Radzyukevich et al., 2013).  

Additionally, the treadmill running studies reported by Radzyukevich et al. (2013) reveal 

a severe defect in running ability in mice with a skeletal muscle-specific ablation of α2 which is 

absent in skα1-/- mice (Figure 18). This further confirms the isoform specificity of the 

‘turbocharger’ role of NKA α2 in maintaining the membrane potential during muscle 

contraction, as ablation of NKA α1 did not impact running even at speeds of 25 meters per 

minute but did impact endurance, which is associated with metabolic defects rather than ion 

transport defect.                             

NKA α1 regulates muscle growth 

One of the most striking results of these studies is the impact of a reduction or ablation of 

NKA α1 on muscle growth. While this was the first time that a direct relationship between NKA 
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α1 and skeletal muscle growth was reported, a similar role for α1 in growth regulation has been 

shown in other models, including renal epithelial cell growth and cardiomyocyte proliferation in 

vitro (Huang et al., 1997; Liu et al., 2006; Tian et al., 2009; J. Xie et al., 2015; Z. Xie et al., 

1999) and renal development in vivo (Fontana et al., 2013). While the exact mechanism of that 

regulation was not clarified in this body of work, the importance of the Src binding site for the 

ability of NKA α1 to regulate cell proliferation has been established in other models (Lai et al., 

2013; Yu et al., 2018). Additionally, NKA α1 signaling in skeletal muscle cells has been linked 

to Src- and Erk-mediated GSK3β inactivation (Kotova, Al-Khalili, et al., 2006; Kotova, Galuska, 

et al., 2006). Inactivation of GSK3β, in turn, has been linked to myogenesis and the growth of 

skeletal muscles (Agley et al., 2017; Leger et al., 2006; van der Velden et al., 2007), while the 

activation of GSK3β is associated with skeletal muscle atrophy (Verhees et al., 2011; W. Yang et 

al., 2007).  

The possibility that GSK3β is involved is compelling, but it cannot fully explain the 

skα1-/- phenotype. The α1+/- model had decreased muscle mass in spite of apparently normal 

GSK3β expression (Figure 8), suggesting that the growth defects in this model of reduced NKA 

α1 expression was not mediated by GSK3β. Furthermore, the impact of altered GSK3β 

expression are much smaller than the effects of altered NKA α1 expression, even when paired 

with altered GSK3α expression to eliminate compensation by the other isoform. This suggests 

that the skα1-/- phenotype is mediated by multiple pathways, of which GSK3β is merely one. 

The fact that the ablation of the dominant α2 isoform does not have the same impact on skeletal 

muscle growth supports the hypothesis that mechanism by which α1 regulates skeletal muscle 

growth and development is independent of ion pumping (DiFranco et al., 2015; Manoharan et al., 

2015; Radzyukevich et al., 2013).  
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Another possible mechanism by which α1 could regulate myogenesis is via the Wnt 

signaling pathway. The caveolin binding motif of α1 has been shown to regulate embryonic 

organogenesis via Wnt/β-catenin signaling, and although myogenesis was not specifically 

evaluated, this process represents a possible mechanism for the regulation of muscle growth by 

NKA α1. Although this hypothesis is compelling, additional studies are necessary to understand 

which aspects of muscle development are impacted, such as the cardiotoxin method of evaluating 

muscle growth and repair (Garry, Antony, & Garry, 2016; Guardiola et al., 2017) or in vitro 

studies of myoblast proliferation and differentiation. 

NKA α1 regulates muscle metabolism 

Previous studies have found links between NKA activity and metabolic control of 

glycolysis, both under physiological and pathological conditions (Banerjee et al., 2018; J. H. 

James et al., 1996; J. H. James et al., 1999; Lynch & Balaban, 1987a, 1987b; Okamoto et al., 

2001; Sepp et al., 2014). This set of studies is unique in that it identified a direct link between the 

NKA α1 isoform and regulation of metabolic flexibility and spare capacity, both key components 

of skeletal muscle metabolism. The decrease in oxidative muscle size observed in α1+/- mice 

(Figure 5) and the switch from oxidative to glycolytic fibers in skα1-/- mice (Figure 16) both 

suggest decreased metabolic flexibility when NKA α1 expression is decreased or ablated. The 

functional importance of this metabolic regulation is supported by the lack of endurance 

exhibited by skα1-/- mice when subjected to forced treadmill running (Figure 18). However, this 

metabolic flexibility appears to come at the cost of intolerance to a Western diet (Figures 19-20). 

Furthermore, our studies with renal epithelial-derived cell lines expressing Src binding-mutant 

α1 and α2 suggest that this link is mediated by the α1-specific NKA/Src interaction. 



  84 

This regulation of skeletal muscle metabolism by the NKA α1/Src signaling complex has 

implications for our understanding of exercise-induced metabolic adaptations and skeletal 

muscle hypertrophy. Exercise has been shown to increase circulating levels of endogenous 

cardiotonic steroids (Bauer et al., 2005), but what role this spike in NKA ligands plays in 

physiological adaptations to exercise has not been explored. The generation of mice with 

ouabain-resistant NKA α2 revealed that increased circulating ouabain during exercise reduces 

exercise capacity due to reduced ion transport (Radzyukevich et al., 2009). However, in light of 

these new revelations about the role of NKA α1-mediated signaling in skeletal muscle growth 

and metabolism, the possibility that increased circulating cardiotonic steroids during exercise 

could stimulate NKA α1/Src signaling and thereby mediate skeletal muscle metabolic responses 

to exercise should be investigated. The metabolic adaptations to exercise training in several 

existing animals, such as global α1 haplodeficient mice, skeletal muscle-specific α1 knockout 

mice, and mice expressing ouabain sensitive α1, could be evaluated and contrasted to determine 

what role endogenous ouabain signaling through NKA α1 plays in exercise-induced metabolic 

adaptations. Additionally, generation of a mouse model with a skeletal muscle-specific rescue of 

α1 expression with a signaling-null α1, such as the A420P mutant used in Figure 14, would allow 

us to differentiate between the ion transport function and the Src-mediated signaling function of 

NKA α1 in skeletal muscle. 

Evolutionary implications 

If this novel role of NKA α1 in skeletal muscle is in fact mediated by Src signaling, it 

could indicate the evolution of a novel regulator of metabolic flexibility and metabolism in 

mammals and birds that is not seen in other classes of animals. The convergent evolution of the 

NaKtide sequence in birds and mammals is intriguing, especially with the metabolic phenotype 
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observed in A420P cells, which have a conserved Y260 region and disrupted Src binding only in 

the NaKtide region. Unlike the LX-α2 cells which have no Src binding capacity and have 

decreased basal mitochondrial metabolism and unchanged basal glycolytic metabolism (Figure 

13), A420P cells have unchanged basal mitochondrial metabolism and increased basal glycolytic 

metabolism (Figure 67). This suggests that the acquisition of the NaKtide region alone is enough 

to increase basal metabolism, which according to the aerobic scope hypothesis was a key 

component of the development of endothermy (Clarke & Pörtner, 2010; Nespolo et al., 2017). 

For these reasons, the evolutionary implications of the Src binding capacity of NKA α1 in 

endotherms bear further investigation. 

Additionally, the metabolic reserve and flexibility afforded by Src binding appear to 

come at the cost of intolerance to nutritional oversupply. Based on the work done by Sodhi et al, 

NKA signaling through Src appears to facilitate adipogenesis and the storage of lipids, as well as 

the development of T2D (Sodhi et al., 2015; Sodhi et al., 2018). Administration of pNaKtide, a 

small peptide inhibitor of NKA-mediated Src activation based on the NaKtide sequence, 

prevents the development of metabolic syndrome on a Western diet and attenuates aging (Sodhi 

et al., 2015; Sodhi et al., 2018). These affects are attributed to the disruption of the ROS-

mediated feed-forward NKA α1 activation loop (Yan et al., 2013). 

Similarly, skα1-/- mice which lack this signaling pathway and subsequent metabolic 

control are resistant to the metabolic effects of the Western diet (Figures 19-20). This resistance 

does not come without a price. Indeed, under normal, healthy conditions, these mice exhibit 

decreased exercise performance and display multiple hallmarks of decreased metabolic 

flexibility and increased metabolic dysfunction, including a severe decrease in endurance 

exercise tolerance (Figure 18), a switch to more glycolytic fibers (Figure 16), and decreased 
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glycogen storage (Figure 18). Therefore, we can hypothesize that the addition of this new 

mechanism for regulating metabolism may also have introduced a mechanism by which 

metabolism can become dysregulated, resulting in metabolic disease. 

Clinical implications 

These studies provide the first genetic evidence of NKA α1 as an important regulator of 

metabolism in vivo. Although previous studies using pNaKtide have linked NKA α1 signaling to 

metabolism and metabolic disorders (J. Liu et al., 2016; Sodhi et al., 2015; Sodhi et al., 2018; 

Sodhi et al., 2017; Srikanthan et al., 2016), it is possible that pNaKtide may have off-target 

effects on Src independent of NKA α1 itself. Additionally, these studies involved the systemic 

disruption of the NKA α1/Src signaling complex, which makes it difficult to identify the specific 

impact of altered NKA α1/Src signaling on individual tissues. Furthermore, the identification of 

NKA as a regulator of metabolic flexibility in skeletal muscle could lead to the development of 

novel treatments for metabolic disorders which target the NKA/Src signaling axis, or to the 

application of existing drugs such as digoxin that are capable of targeting NKA for a different 

therapeutic goal.  

Additionally, the identification of NKA as a regulator of skeletal muscle growth is 

similarly useful in treating muscle wasting due to cachexia, sarcopenia, and disuse by stimulating 

NKA signaling through Src, thereby increasing the activation of key growth pathways and 

increasing muscle mass and metabolic flexibility. Moreover, because NKA signaling contributes 

to the regulation of both metabolism and growth in skeletal muscle, it could be a useful 

therapeutic goal for populations who are in need of addressing both muscle wasting and 

metabolism, such as elderly patients suffering from type 2 diabetes in addition to sarcopenia, or 

patients with burn cachexia whose muscle metabolism can be controlled with CTS which can 
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also contribute to increasing muscle growth and decreasing wasting (Dhillon & Hasni, 2017; 

Pedroso et al., 2012; Sakuma et al., 2017). Furthermore, if exercise-induced increases in 

metabolic flexibility and mitochondrial metabolism are mediated by increased circulating 

cardiotonic steroids which increase NKA α1 signaling through Src in skeletal muscle, it may be 

possible to mimic the health benefits of exercise pharmacologically using exogenous cardiotonic 

steroids for those who are unable to exercise, such as patients on bedrest.  

The striking impact of NKA α1 ablation on skeletal muscle size and morphology 

provides compelling evidence that NKA α1 signaling regulates skeletal muscle growth and 

development. However, without identifying the specific aspects of skeletal muscle development 

that are impacted, it is difficult to recognize which developmental and degenerative muscle 

conditions might benefit from the pharmacological targeting of this pathway. The commonly 

used cardiotoxin injury model of skeletal muscle regeneration could provide insight into the 

aspects of skeletal muscle growth and differentiation that are mediated by NKA α1 and could 

identify the muscle wasting conditions that are most likely to benefit from NKA α1-targeted 

therapeutics. Additionally, the viability of such therapeutic options should be validated using 

animal models of muscle wasting diseases such as the hindlimb suspension model of disuse-

induced atrophy, the mdx mouse model of Duchenne’s muscular dystrophy, and the cancer 

cachexia model in tumor-inoculated immunodeficient mice.  

While differences in α1 expression have been identified in multiple disease states, we 

have yet to evaluate the impacts of genetically altering α1 expression in other tissues. Whether 

altered α1 expression contributes to the progression of these diseases or is a protective 

mechanism is also unclear. The skα1-/- mice were protected from Western diet-induced 

metabolic dysfunction (Figures 20 and 21), suggesting that although NKA α1 plays a vital role in 
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the development of normal metabolism in skeletal muscle, it also plays a key role in the 

pathological dysregulation of metabolism. Given that metabolism is dysregulated in many of the 

diseases in which α1 expression is altered, including heart failure (L. Liu et al., 2016), diabetic 

neuropathy (Gerbi et al., 1998), and polycystic ovarian syndrome (Tepavcevic et al., 2015), 

reduced expression of NKA α1 may actually be protective as the loss of the NKA α1/Src 

signaling complex appears to be protective in our model. These studies of the interaction 

between skeletal muscle-specific NKA α1 ablation and Western diet-induced metabolic 

dysregulation are intriguing and bring up the possibility that ablation of the NKA/Src receptor 

complex in other tissues in other disease states could enhance our understanding of the 

interaction of this signaling mechanism and human disease, thus leading to further uses of NKA 

α1 as a pharmacological target. This is supported by the similarities between the effects of α1 

ablation and treatment with pNaKtide to ‘short circuit’ Src signaling.  

Limitations 

One mechanism that these studies fail to address is the impact of NKA α1 ablation on 

calcium signaling, which is critical in skeletal muscle (Hostrup et al., 2014). Additionally, while 

the effects we see with decreased or ablated NKA expression in skeletal muscle are consistent 

with the effects of the disruption of NKA α1/Src signaling complex in other cell types in vitro 

(Banerjee et al., 2018; Lai et al., 2013; J. Xie et al., 2015; Yu et al., 2018), we did not perform 

experiments that specifically interrupted this complex in skeletal muscle. To do this, a system of 

signaling-null rescue of NKA α1 expression would be ideal. 
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APPENDIX B 

ABBREVIATIONS 

µg – micrograms; 1/1000000th of a gram 

2-DG – 2-deoxyglucose 

AAC-19 – porcine renal epithelial cell line 

Akt – protein kinase B (see also: PKB) 

AMP – adenosine monophosphate 

AMPK – 5’ adenosine monophosphate-activated protein kinase 

ANOVA – analysis of variance 

ATCC – American Type Culture Collection 

ATP – adenosine triphosphate 

ATP1A1 – Na/K-ATPase α1 

AUC – area under the curve 

BiNGO – Biological Networks Gene Ontology tool 

B-Raf – serine/threonine-protein kinase B-Raf 

BW – body weight 

C2C12 – immortalized mouse myoblast line 

C57J/Bl6 – commonly used strain of inbred mice 

cAMP – cyclic adenosine monophosphate 

cDNA – complementary deoxyribonucleic acid 

CSA – cross-sectional area 

CTS – cardiotonic steroids 

DIO2 – type II iodothyronine deiodinase 
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DMEM – Dulbecco’s modified Eagle’s medium 

ECAR – extracellular acidification rate 

ECL – enhanced chemiluminescence 

EDL – extensor digitorum longus 

EDTA – ethylenediaminetetraacetic acid 

EGF – epidermal growth factor 

EGFR – epidermal growth factor receptor 

EGTA – ethylene glycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acidethylene  

FBS – fetal bovine serum 

FCCP – carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone  

FIJI – FIJI is just ImageJ 

FVB – albino inbred mouse strain 

FXYD1 – phospholemman 

GIMP – GNU image manipulation program 

GLUT4 – glucose transporter type 4 

GSK-3β – glycogen synthase kinase 3β 

GTT – glucose tolerance test 

IP – intraperitoneal 

IP3 – inositol triphosphate 

ITT – insulin tolerance test 

K+ – potassium  

KCl – potassium chloride 

LAS/AF – Leica Application Suite/Advanced Fluorescence  
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LX-α2 – LLC-PK1-derived cell line 

LY-a2 – LLC-PK1-derived cell line 

m/min – meters per minute 

MAPK – mitogen-activated protein kinase 

mg/g – milligram/gram 

mg/kg – milligram/kilogram 

Mg-ATP – magnesium adenosine triphosphate 

MgCl2 – magnesium chloride 

MIIR – Marshall Institute for Interdisciplinary Research 

mM – millimolar; millimoles per liter 

MRF4 – myogenic factor 6; herculin 

mRNA – messenger ribonucleic acid 

mTORC – mammalian target of rapamycin complex 

Myhc – myosin heavy chain 

Na/K-ATPase – sodium-potassium adenosine triphosphatase (see also: NKA) 

Na+ – sodium   

NaCl – sodium chloride 

NAD(P)H – nicotinamide adenine dinucleotide phosphate and nicotinamide adenine 

dinucleotide 

NADPH – nicotinamide adenine dinucleotide phosphate 

NaKtide – peptide based on Src binding site in ATP1A1 

NASH – non-alcoholic steatohepatitis 

NC – normal chow 
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NFAT – nuclear factor of activated T-cells 

NF-κB – nuclear factor kappa-light-chain-enhancer of activated B cells 

NIH – National Institute of Health 

NKA – sodium-potassium adenosine triphosphatase (see also: Na/K-ATPase) 

nm – nanometer 

Nrf2 – nuclear factor erythroid 2-related factor 2 

OCR – oxygen consumption rate 

OD – optical density 

PBS – phosphate-buffered saline 

PGC-1α – peroxisome proliferator-activated receptor gamma coactivator-1α 

Pi – inorganic phosphate 

PI3K – phosphoinositide 3-kinase  

PKA – protein kinase A 

PMSF – phenylmethylsulfonyl fluoride 

PPARγ – peroxisome proliferator-activated receptor gamma 

p-Ser9 – phosphorylated serine 9 

PY-17 – LLC-PK1-derived cell line 

qPCR – quantitative polymerase chain reaction (see also: qRT-PCR, RT-PCR) 

qRT-PCR – quantitative real time polymerase chain reaction (see also: qPCR, RT-

PCR) 

R Gastroc – red gastrocnemius muscle 

Rap1 – Ras-proximate-1 or Ras-related-protein-1 

RIPA – radioimmunoprecipitation assay 
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RNA – ribonucleic acid 

ROS – reactive oxygen species 

RT – reverse transcriptase 

RT-PCR – real-time polymerase chain reaction (see also: qPCR, qRT-PCR) 

SDS-PAGE – sodium dodecyl sulfate–polyacrylamide gel electrophoresis 

SEM – standard error of the mean 

skα1-/- – skeletal muscle-specific ATP1A1 knockout mouse 

Src – proto-oncogene tyrosine-protein kinase Src 

SST-MINI tubes – serum separator miniature tubes 

SubQ – subcutaneous  

T3 – triiodothyronine 

T4 – thyroxine 

TCA – tricarboxylic acid 

Tris-HCl – tris(hydroxymethyl)aminomethane hydrochloride 

W Gastroc – white gastrocnemius muscle 

WD – Western diet 

xg – times gravitational force 
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