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ABSTRACT 
 

Foraging ecology in the crested penguins (genus: Eudyptes) is an active area of research, with 

new techniques rapidly increasing our understanding of these charismatic species. The most 

common techniques to assess foraging ecology include stomach content analysis, fecal DNA 

analysis, stable isotope analysis, tracking, and video loggers. Here we review dietary research on 

all 8 taxa within the genus Eudyptes to identify gaps in our current knowledge. However, 

foraging studies that assess dietary segregation require a method for quickly and accurately 

sexing penguins in the field. Obvious sexual dimorphism in plumage is largely absent in 

penguins leaving behavioral cues for sex determination. We identified morphological characters 

that could be easily measured in the field to predict sex in the Fiordland penguin (tawaki; 

Eudyptes pachyrhynchus) by assessing the correlation between five morphological metrics and 

individual sex as determined by a PCR-based molecular approach. We found that a combination 

of foot length and either bill length or bill depth was the most accurate morphological approach 

to determine individual sex in the field. Finally, to identify differences in foraging strategies in 

tawaki among marine habitat types (pelagic, continental shelf, or fjord), we analyzed stable 

isotope ratios of carbon (13C/12C, expressed as δ13C values) and nitrogen (15N/14N, expressed as 

δ15N values) in penguin blood and feathers. We found that both δ13C and δ15N values differed 

significantly between tissues. During incubation (blood), δ15N values were highest in the fjord 

and δ13C values differed significantly between years. In the pre-molt period (feathers), δ13C 

values were significantly different among sites, between sexes, and between certain years. δ15N 

values were only different between certain years. Monitoring the foraging ecology of tawaki and 

other crested penguins is critical for understanding population responses to changing prey 

distributions in a warming ocean. 
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CHAPTER 1 
 

REVIEW OF EUDYPTES PENGUIN DIET AND FORAGING ECOLOGY 
 

Introduction 
 

Pelagic seabirds are highly mobile during the non-breeding season; however, they shift to 

central-place foraging strategies while rearing chicks (Wakefield et al., 2009). They depend on 

reliable access to prey within an accessible radius of a breeding site with suitable nesting habitat 

for breeding success. Preferred prey species, however, are not homogenously distributed within a 

foraging zone. While prey distribution is a strong driver for seabird ranges, the risk of 

depredation by seabirds and other predators is in turn a tradeoff for prey species that are 

constrained by their own suite of environmental factors such as marine bathymetry, oceanic 

currents, sea temperature, and marine productivity (Ballance et al., 2006; Fauchald, 2009). In the 

face of global climate change, prey distributions will likely shift and seabirds will be forced to 

either change their range or increase the length of foraging trips (Grémillet & Boulinier, 2009). 

Longer foraging trips for flightless seabirds such as penguins has been shown to significantly 

reduce reproductive success (Boersma & Rebstock, 2009). 

Penguins are arguably the most charismatic and iconic of seabirds, yet we know 

surprisingly little about many species. In particular, the crested penguins (genus: Eudyptes) have 

significantly less published research than the other penguin genera. Mattern and Wilson (2018) 

reviewed the status of research and current knowledge of penguin species in New Zealand, a 

penguin fauna dominated by Eudyptes. They showed that the bulk of published penguin research 

was on the king penguins (Aptenodytes patagonicus), little penguins (Eudyptula minor), and 

African penguins (Spheniscus demersus). Emperor penguins (Aptenodytes forsteri), Spheniscus 
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(except the Galápagos penguin Spheniscus mendiculus) and Pygoscelis penguins all have more 

published research than any Eudyptes penguin species. 

Crested penguins are primarily sub-Antarctic and temperate breeders. Members of this 

genus are found in Argentina and Chile (southern rockhopper), New Zealand (Fiordland and 

Snares penguins), sub-Antarctic islands (southern/eastern rockhopper, erect-crested, macaroni, 

and royal penguins), and islands around the sub-tropical front in the Atlantic and Indian Oceans 

(northern rockhopper) (Davis & Darby, 2012). For the purposes of this review, I consider these 

eight species within these three geographic species clusters to highlight current knowledge of 

these distinct regions while recognizing some taxonomic revision is likely needed for some taxa 

(Banks et al., 2006; Pan et al., 2019; Frugone et al. 2019). 

Diet and foraging studies are crucial for understanding how individuals interact with their 

environment, the life history differences among populations, and how anthropogenic changes in 

these ecosystems will impact penguin conservation and management. Most crested penguin 

species are declining (Mattern & Wilson, 2018), but the exact causes of many of these declines 

are not well known. Changes in prey availability likely play a significant role in declining 

colonies. However, for many crested penguins, relatively little is known about their diet beyond 

the breeding season. Here, I assess the extent of foraging ecology research published on each of 

the eight crested penguin taxa described and discuss the most commonly used methods for each. 

State of Foraging Ecology Research 

Southern rockhopper penguin (Eudyptes chrysocome chrysocome) 
 

The western subspecies of the southern rockhopper penguin is distributed primarily 

around the southern tip of South America, the Falklands/Malvinas, and southwestern Atlantic 

Ocean islands (Borboroglu & Boersma, 2015). Together with the eastern subspecies rockhopper, 
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the southern rockhopper is currently classified as vulnerable (BirdLife Int., 2017). The southern 

rockhopper is perhaps the most iconic crested penguin and indeed much of the foraging 

research on crested penguins has been conducted on this species. The bulk of research on 

southern rockhoppers focuses on colonies in the Falklands/Malvinas and Isla de los Estados, 

Argentina. These colonies are among the largest for this species and are relatively accessible for 

long-term studies. 

The most common method to assess dietary composition is through stomach content 

analysis by stomach flushing/water offloading. This process involves passing a flexible tube 

directly into the stomach and to lavage with water to induce emesis (Duffy & Jackson, 2006). 

The researcher is then able to sort the food items that are expelled and quantify species 

abundance associated with particular foraging trips. Because penguins swallow prey whole, this 

procedure often provides prey samples that are readily identifiable down to the species level 

(Gales, 1987). Stomach content analyses in southern rockhoppers indicate a reliance on 

cephalopods at Isla de los Estados (Raya Rey & Schiavini, 2005). There is also variation in the 

proportion of dietary components based on period of the annual cycle. Thompson (1989) 

described a shift from a crustacean dominated diet during the breeding season to a predominantly 

cephalopod diet during the pre-molt period in the Falklands/Malvinas. Stomach content analysis 

has been the most common method to assess diet in seabirds, and indeed for southern 

rockhoppers, most of the current knowledge of their foraging ecology comes from this type of 

assessment (Appendix B). 

Dietary preferences during extended periods at sea have been much more difficult to 

assess. Stable isotope analysis has opened a window into these periods (and others) to understand 

the trophic foraging level of many species (Newsome et al., 2007). This technique capitalizes on 



4  

the incorporation of stable isotopes from prey tissue into the tissues of the consumer (Post, 

2002). The two most commonly used isotopes in dietary studies for marine predators, including 

penguins, are the isotope ratios of carbon (13C/12C expressed as δ13C values) and nitrogen 

(15N/14N expressed as δ15N values). In general, δ13C identifies the foraging locations of 

individual penguins as it shows a predictable pattern across latitudinal, inshore/offshore, and 

benthic/pelagic scales (Cherel & Hobson, 2007; Rosciano et al., 2016). However, δ15N values 

differ significantly between prey and consumer tissue (Inger & Bearhop, 2008). Therefore, δ15N 

is used as a major indicator of trophic position and trophic foraging level of consumers (Hobson 

et al., 1994). 

Stable isotope analysis has been used to describe the trophic niche of southern 

rockhoppers primarily in the Falklands/Malvinas and Isla de los Estados. Multiple studies at 

these locations have indicated both sexual and colonial segregation in foraging areas (Dehnhard, 

et al., 2011; Rosciano et al., 2016). The bimodal distribution of δ13C signatures also indicate 

foraging over both the shallow Patagonian Shelf and deeper pelagic Atlantic waters (Hilton et 

al., 2006). Overall, this indicates that southern rockhoppers exhibit a highly variable foraging 

niche. 

In recent years, advances in tracking technology have allowed the use of global 

positioning systems (GPS) and global location sensors (GLS) devices to follow the movement 

of individual penguins at sea. GPS devices are typically affixed to the lower back using 

waterproof tape anchored by feather shafts (Mattern et al., 2005). In most cases, accelerometers 

are also added to measure dive parameters. GLS systems have lower spatial resolution than GPS 

devices, but are typically much smaller and can be attached to the lower leg much like a 

standard leg band (Ratcliffe et al., 2014). 
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Most of the tracking studies on southern rockhoppers have been carried out in the 

Falklands/Malvinas (Pütz et al., 2003), Isla de los Estados (Rosciano et al., 2016), and Isla Noir, 

Chile (Oehler et al., 2018). Southern rockhoppers in the Falklands/Malvinas have shown spatial 

segregation in foraging zones with females foraging in more near-shore zones and males making 

longer trips during incubation (Ludynia et al., 2013). At Isla de los Estados, southern 

rockhoppers nesting near Magellanic penguins (Spheniscus magellanicus) were tracked during 

the breeding season to understand competition and foraging zones (Rosciano et al., 2016). 

Although southern rockhopper foraging and diet varies temporally, they found strong evidence 

of interspecific segregation in foraging niche. 

The recent technological advances in satellite tag technology has created compact and 

light weight devices that are able to send data back remotely whenever the satellite passes over a 

tagged penguin (Hart & Hyrenbach, 2009). This allows remote access to data without having to 

wait to recover the device itself. This technology has been used on southern rockhoppers in the 

Falklands/Malvinas to track foraging males during incubation (Pütz et al., 2003). They were able 

to show spatial segregation into two foraging regions of the Patagonian Shelf across multiple 

years. 

Eastern rockhopper penguin (Eudyptes chrysocome filholi) 
 

The eastern subspecies of the southern rockhopper penguin is found primarily on sub- 

Antarctic islands in the southern Indian and south-western Pacific Oceans (Borboroglu & 

Boersma, 2015). The eastern rockhopper is currently listed as a subspecies of the southern 

rockhopper (Jouventin, et al., 2006), and is listed as vulnerable and declining (BirdLife Int., 

2017). The conditions faced by these two populations are very different and the eastern 

rockhopper has experienced rapid declines in recent decades (Mattern & Wilson, 2018). 
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Stomach content analyses of eastern rockhoppers from the southern Indian Ocean have 

shown a high reliance on crustaceans as compared to southern rockhoppers. For example, dietary 

composition in eastern rockhoppers from Marion Island was shown to be between 91-100% 

euphausiid krill (Brown & Klages, 1987). Other colonies had similarly high krill composition 

ranging from 60-70% on Macquarie Island (Horne, 1985; Hindell, 1988; Hull, 1999) to 97% on 

Kerguelen Island (Tremblay & Cherel, 2003). Interestingly, Marchant & Higgins (1990) found 

eastern rockhoppers from Campbell Island relied mainly on small fish (no percentages given). 

These studies show cephalopods composed between 1-13% of the diet. This is in stark contrast to 

the highly varied diet found in the southern rockhoppers and indicates a shift in trophic niche of 

this taxon. 

Stable isotope analysis in eastern rockhoppers has been limited compared to the southern 

rockhopper. The few published studies on eastern rockhoppers have focused on Crozet, Prince 

Edward, and Campbell Islands (Whitehead et al., 2017; Xavier et al., 2018). These showed subtle 

spatial segregation between sexes as well as between eastern rockhoppers and macaroni 

penguins. The eastern rockhopper occupied an overall lower trophic niche than macaroni 

penguins, which is expected from the heavy reliance on krill. They also showed that male eastern 

rockhopper occupied a higher tropic niche than females during the periods studied (primarily 

breeding season). GPS and GLS tracking corroborated the spatial segregation indicated by δ13C 

values (Whitehead et al., 2017). Tracking has that eastern rockhoppers from Crozet forage close 

to the sub-Antarctic Front during the breeding and pre-molt periods (Ratcliffe et al., 2014). 

Northern rockhopper penguin (Eudyptes moseleyi) 
 

The northern rockhopper penguin is found on the Tristan da Cunha group and Gough 

Island in the Atlantic Ocean as well as Amsterdam and St. Paul Islands in the Indian Ocean 
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(Borboroglu & Boersma, 2015). It is listed as endangered and declining and relatively few 

dietary studies have been undertaken on this species (BirdLife Int., 2017). At Gough Island 

stomach content analysis indicated a reliance on euphausiid krill (90%) followed by primarily 

fish (Klages et al., 1989). Amsterdam and St. Paul Islands show an overall higher reliance on 

cephalopods (50%) and krill (40%) than on fish (10%) (Cooper et al., 1990). However, in these 

populations, the diet composition varies seasonally with a shift to a fish dominated diet (64%) in 

the late stages of chick rearing (Tremblay et al., 1997). 

Stable isotope analysis has revealed resource partitioning between parents and chicks in 

northern rockhoppers in the Tristan da Cunha group. Adult northern rockhoppers fed chicks a 

lower trophic level prey (krill) than they kept for themselves (squid) during most of the chick 

rearing period indicating a prioritization of future reproduction over the current chick. This 

shifted, however, in late stages of chick rearing when fish became a higher component of the diet 

of both adults and chicks (Booth & McQuaid, 2013). This supports the previous findings of a 

mixture of lower and higher trophic level prey in stomach flushes (Cooper et al., 1990). 

In addition to the trophic information provided by stable isotopes, GPS and GLS tracking 

has provided spatial information for the northern rockhopper during the breeding season. From 

Amsterdam Island, females were tracked on daily foraging trips that lasted an average of 12 

hours with a high percentage (69%) of the dives occurring during the day (Tremblay et al., 

1997). 

Macaroni penguin (Eudyptes chrysolophus) 
 

The macaroni penguin has a circumpolar distribution from the coast of Chile, the 

Falklands/Malvinas, the Antarctic Peninsula, and sub-Antarctic islands of the Atlantic and Indian 

Oceans (Borboroglu & Boersma, 2015). Although the macaroni penguin has a wide distribution, 
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it is listed as vulnerable and declining (BirdLife Int., 2017). Across this broad range, 

macaroni penguins feed primarily on euphausiid krill and myctophid fish. Penguins breeding 

on South Georgia and elsewhere in the southwestern Atlantic rely heavily (up to 98% by wet 

mass) on Antarctic krill (Euphausia superba), while populations in the Indian Ocean target 

Euphausia vallentini and Thysanoessa gregaria (Crawford et al., 2003; Ratcliffe et al., 

2014). The proportion of fish is often higher in the Indian Ocean populations than in the 

Atlantic. 

In addition to prey abundance in stomach content analyses, macaroni penguin diets have 

also been examined for prey presence through fecal DNA analysis. Fecal samples are used to 

identify prey consumed based on the presence of prey DNA sequences. Deagle et al. (2007) used 

this approach to identify prey DNA in the fecal samples of macaroni penguins on Heard Island in 

the Indian Ocean. PCR techniques were used to amplify and sequence prey DNA based on 

selected primers for five targeted prey species. DNA sequences derived from the fecal samples 

may also be compared to a sequence library to identify other prey species. Their results 

supported the reliance on E. vallentini and T. gregaria as well as fluctuating proportions with 

myctophid fish in late chick rearing periods. Overall, fecal DNA offers a non-invasive tool to 

identify prey species consumed and to highlight shifts in dietary trends over time. 

Macaroni penguin foraging niche has also been studied through stable isotope analysis in 

populations breeding on South Georgia, Marion, and Heard Islands. Male and female macaroni 

penguins do not occupy a significantly different trophic niche, as expected based on the high 

reliance of euphausiid krill in their diet (Bearhop et al., 2006). In general, a high degree of 

foraging niche fidelity has been described in macaroni penguins across their range (Cherel & 

Hobson, 2007; Cherel et al., 2007). 
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During the pre-molt forage period, Thiebot et al. (2014) combined stable isotopes with 

GLS tracking and found population level segregation in foraging area during this critical period. 

They show that females spent more time in colder water than males and that there was minimal 

overlap in foraging zones between colonies and between early and late molting penguins. Such a 

strategy reduces intraspecific competition for euphausiid krill. 

The first application of GLS trackers to follow the winter dispersal of a penguin species 

was on Macaroni penguins from Kerguelen Island (Bost et al., 2009). This study was 

groundbreaking as it showed that although they initially dispersed over a wide range, they 

converged on a previously unknown narrow band of the southern Indian Ocean corresponding to 

the Polar Front for most of the winter (Bost et al. 2009). 

Royal penguin (Eudyptes schlegeli) 
 

The royal penguin breeds only on Macquarie and Bishop Islands to the south of New 

Zealand and is listed as near threatened and stable (BirdLife Int., 2017). Compared to macaroni 

penguins, relatively little is known about the foraging ecology of royal penguins. The current 

knowledge on the foraging ecology of royal penguins stems from stomach content analyses 

from Macquarie Island population. These have shown a higher reliance on myctophid fish 

(59%) than on euphausiid krill at (37%) (Hindell, 1988; Hull et al., 1997; Goldsworthy et al., 

2001). This is a sharp contrast to macaroni penguins’ preference for krill. To date, there is no 

published research on royal penguin foraging ecology employing any of the other methods 

described. 

Fiordland penguin (Eudyptes pachyrhynchus) 
 

The Fiordland penguin is the only crested penguin that breeds on mainland New Zealand 

and they are listed as vulnerable and decreasing (Warham, 1974; BirdLife Int., 2017). Until 

recently, this species was very poorly represented in the literature with a limited number of 
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dietary studies published. Stomach content analyses from Martins Bay indicates a diet of 85% 

cephalopods (Nototodarus sloani) followed by krill such as Nyctiphanes australis (Van Heezik, 

1989). Stable isotope analysis from the early breeding season at the same colony supports this 

finding and suggests that winter spawning arrow squid may be a driving factor for the early 

breeding cycle of Fiordland penguins (Poupart et al., 2019). 

In contrast to the findings at Martins Bay, stomach contents from Codfish Island 

indicated predominantly (85%) larval and juvenile fish (ahuru, Auchenoceros punctuates, and 

blue cod, Pseudophycis bacchus) (Van Heezik, 1990). Fecal DNA analyzed from Jackson Head 

also suggested fish as the dominant prey type for Fiordland penguins (McInnes et al., 

unpublished data). 

The bulk of the research into foraging ecology of Fiordland penguins in recent years has 

focused on GPS, GLS, and satellite tracking. The marine ecosystem adjacent to the breeding 

colony has a significant impact on the distances the breeding females travel to forage. GPS 

devices show that females breeding at sites along the continental shelf in the north of their range 

travel up to 100 km away, while those in Milford Sound remain within the fjord itself and travel 

an average of 4 km from the colony (Mattern & Ellenberg, 2018). 

GLS devices were deployed on Fiordland penguins departing on the pre-molt forage from 

Gorge River. It was previously assumed that this species foraged along the Sub-Tropical Front in 

the lower Tasman Sea, however GLS tracks indicated that Fiordland penguins segregated into 

two foraging zones, one along the Sub-Tropical Front and the other along the Sub-Antarctic 

Front. This study revealed Fiordland penguins made up to a 6,800km round trip during this 6-8 

week period (Mattern, et al., 2018b). Satellite tags have also recently been deployed on Fiordland 
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penguins to track their winter movements and they indicate foraging much closer to Antarctic 

waters than previously thought (Mattern et al., unpublished data). 

Snares penguin (Eudyptes robustus) 
 

The Snares penguin is another New Zealand endemic and is currently listed as vulnerable 

and stable (BirdLife Int., 2017). They are found exclusively in the Snares Archipelago to the 

south of mainland New Zealand (Borboroglu & Boersma, 2015). To date, very few studies have 

focused on the Snares penguin. Stomach content analyses have all been conducted during the 

chick rearing period (Cooper et al., 1990; Marchant & Higgins, 1990; Mattern et al., 2009). 

Adult Snares penguins target primarily pelagic fish (redbait, Emmelichthys nitidus, and juvenile 

red cod, Pseudophycis bacchus) and cephalopods. Snares penguin chicks, however, were fed a 

diet of 60% krill (N. australis), and 30% fish (Mattern et al., 2009). This shows a segregation in 

trophic foraging level between chick provisioning and adult diet. 

Mattern et al. (2009) compared stable isotope values of δ13C and δ15N in Snares penguin 

feathers collected from live penguins and museum specimens representing a temporal range 

between 1880 and 2004. This study found that the trophic position this species has no significant 

temporal change over that time period, suggesting limited fluctuations in diet and marine 

productivity. 

Finally, GPS tracking has shown that while females are incubating, males travel up to 

200 km from the colony to forage along the Sub-Tropical Front (Mattern, 2007). This foraging 

trip coincides with spring blooming phytoplankton and increasing productivity along the frontal 

zone. Once the males returned to complete incubation, females made much shorter foraging trips 

into regions surrounding the Snares Archipelago (Mattern, 2007). 
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Erect-crested penguin (Eudyptes sclateri) 
 

The erect-crested penguin is New Zealand’s third endemic crested penguin species. They 

are found exclusively on the Bounty and Antipodes Islands (Borboroglu & Boersma, 2015). 

Erect-crested penguins have been identified as the least studied penguin species in the world 

(Mattern & Wilson, 2018). They are listed as endangered and declining, but there is a significant 

lack of research to support any claims about this species (BirdLife Int., 2017). At the time of this 

review, no research has been published on the foraging ecology or diet of the erect-crested 

penguin. They are assumed to forage on a mixture of krill, cephalopods, and fish but the exact 

composition and species are not known. The presumed diet and foraging behavior of this species 

is based on other New Zealand crested penguins, particularly the Snares and eastern 

rockhoppers. However, the diet of crested penguins, even within a single species, can be highly 

variable and efforts should be made to understand the foraging ecology of this species. 

Considerations for Assessing Foraging Ecology 

Stomach Content Analysis 

Perhaps the most direct method for quantifying diet in most species is to analyze the 

contents of the stomach. In fact, this method has been used in 7 of the 8 crested penguin taxa to 

understand dietary composition (Appendix B). This method is time sensitive, as prolonged time 

in the stomach will inevitably break down prey. This can potentially obscure the presence of soft 

bodied prey while indicating a higher abundance of harder body parts such as fish otoliths, squid 

beaks and crustacean carapaces (Barrett et al., 2007). Nevertheless, this method is widely used 

and is an important tool for understanding not only the specific species of prey consumed but 

also their abundance in the diet. 
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There is some concern that this method may have negative impacts on the sampled 

individuals due to stress induced by the procedure, complications from passing sharp bones or 

fins, or by removing a large volume of prey intended for growing chicks. Goldsworthy et al. 

(2016) assessed the impacts of stomach flushing on the endangered yellow-eyed penguin 

(Megadyptes antipodes). They used long term data to assess the overall survival rates between 

flushed and non-flushed birds and concluded that there was not a significant difference in long 

term survival (except in years with poor food availability). They also showed that there were 

comparable hatching and fledging rates, but chick weights were lower in nests where parents 

were flushed more than four times in a season (Goldsworthy et al., 2016). Overall, stomach 

flushing is a viable option for assessing diet composition, but protocols should be implemented 

to account for environmental conditions to reduce potential impacts. 

Another method for analyzing stomach contents is through dissection of the stomach, 

gizzard, and intestines of dead penguins (Barrett et al., 2007). Lethal collection of wild penguins 

for such a study is not feasible but deceased penguins found dead on beaches or euthanized due 

to severe injuries or disease may provide an opportunity to learn more about their diet. However, 

the causes of death should be considered. Penguins sampled in this method may not be 

representative of normal foraging if they died of starvation or disease. This is particularly 

important for understanding the impact that marine plastic pollution may have on penguins 

(Colabuono et al., 2009). Parents may mistake plastic bags for jellies or other natural prey and 

then pass that along to their chicks (Pierce et al., 2004; Brandão et al., 2011; Savoca et al., 

2016). 

 Fecal DNA Analysis 

This method has several advantages including a reduced or no handling of the penguins, 

and the ability to collect multiple samples throughout the season to monitor fluctuations in diet 
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without compromising survival of adults or chicks (Oehm et al., 2011). Fecal DNA is not 

constrained by the digestion process in the same way that stomach content analyses are. Species 

with hard and soft body parts will be represented without bias. However, species identifications 

are limited by the available reference library of prey sequences (Oehm et al., 2011). However, 

with next generation sequencing techniques, it is possible to identify more of the diet. DNA 

metabarcoding markers targeting plant, vertebrate and invertebrate components of the diet of 

brown bears have been shown to allow identification down to the genus or species level for over 

60% of taxa found in the fecal samples (De Barba et al., 2014). 

While this tool allows identification of prey species consumed, it is not able to quantify 

their abundance within the diet. Nevertheless, it is likely that this method will be a prominent 

feature in future research for other crested penguins (Appendix C). While fecal DNA analysis 

can provide a detailed account of prey diversity, it is still limited to reflecting only prey 

consumed during a very short window while penguins are accessible on land (usually breeding 

and molt). While these seasons are vitally important to penguin survival, they only represent a 

small proportion of their annual cycle, and therefore should be combined with other techniques 

that have broader temporal spans. 

Stable Isotope Analysis 
 

When considering stable isotopes for foraging studies, it is vital to choose tissues that 

reflect the targeted period of interest. Isotope values present in penguin whole blood reflect prey 

consumed roughly 20 days previous (Barquete et al., 2013), while those in feathers always 

reflect the diet that fueled feather growth during the molt (i.e. the pre-molt forage) (Cherel et al., 

2005). Based on the predictability of the incorporation rates into the penguin’s tissues, 

researchers can then select the correct tissue type that corresponds to the time period of interest. 
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Another factor that influences the interpretation of stable isotope data is differences in 

isotope values between prey and penguin tissues (Cherel et al., 2005). These discrimination 

factors vary depending on the prey type (fish, cephalopod, crustacean), the prey tissue (whole 

prey, muscle), and the penguin tissue (feather, blood, toenails) (Cherel et al., 2005; Barquete et 

al., 2013). It is therefore critical to correct isotope data to reflect these circumstances in order to 

accurately interpret the results (Cherel et al., 2005). This information is then used to construct 

trophic webs to understand the level of prey targeted by penguins during the period of interest 

(Layman et al., 2012). 

A benefit of stable isotope analysis is the capacity to compare individual dietary 

strategies within a colony as well as between colonies, populations, and species (Appendix D). 

This method provides a means to determine segregation of foraging niche between species 

(Rosciano et al., 2016), within species (Cherel & Hobson, 2007), and between sexes (Forero et 

al., 2002) as well as resource partitioning between parents and chicks (Booth & McQuaid, 2013). 

It is an especially powerful tool to assess historical diets and marine conditions through museum 

specimens (Mattern et al., 2009). 

Although there are many advantages to using stable isotope analysis to understand the 

trophic level of targeted prey species during periods that might otherwise be inaccessible, there is 

a trade off with identifying specific species in the diet. Stable isotopes provide general classes of 

prey consumed based on the available information on the baseline isotope values of the 

ecosystem but is unable to positively identify prey species. It is therefore recommended to 

combine stable isotope analysis first with more traditional sampling techniques such as stomach 

flushing to contextualize the isotopic values collected. In a growing number of studies, stable 
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isotopes are being paired with tracking technologies to more accurately understand not only the 

marine zones where foraging occurs, but also to identify important foraging areas at sea. 

Tracking 
 

Global Location Sensors (GLS) 
 

Another tracking device that is often used is GLS or global location sensors. This method 

has lower spatial resolution than GPS devices, but what these systems lack in spatial resolution, 

they make up for with temporal data. GLS devices can track movements over the course of an 

entire year (Carey et al., 2009). This has provided unprecedented information on the at sea 

movements of many species (Appendix E). 

Global Positioning System (GPS) 
 

Although tracking is not a method for directly assessing diet, it is nevertheless an 

important tool for understanding foraging ecology. Most crested penguins travel substantial 

distances from their breeding colony during the chick rearing period, so it is important to identify 

critical foraging areas. The information collected from GPS devices has revealed spatial overlap 

and segregation in foraging behavior based on species, sex, colony, season, and marine 

conditions (Appendix E). GPS tracking devices are an important tool but are limited by the 

weight of the device, battery life, and ability to acquire positional information only when the 

penguin surfaces long enough to communicate with the satellites (Mattern et al., 2005). 

Satellite Tags 
 

One drawback to both GPS and GLS systems is the device must be recovered to 

download the data. Satellite tags send data back remotely whenever the satellite passes over the 

penguin (Hart & Hyrenbach, 2009). This allows remote access to data without having to wait to 

recover the device itself. Although this is an exciting method to track penguins throughout the 
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year, very few studies have been published on crested penguins at this time (Appendix E). 

As with all tracking methods, satellite tags do not reflect the prey species selected. Any 

tracking method should therefore ideally be combined with other techniques, such as stable 

isotope analysis, to corroborate the two sides of the story that each method provides. 

Video Loggers 
 

A relatively new and exciting method to visualize prey preference is through body 

camera deployment. This involves attaching high-definition video loggers to the back of the 

penguin to see exactly what prey species are being targeted (Mattern et al., 2018a). This is a 

relatively new method and has to date only been published on a few penguin species (Appendix 

E). Most notably, it has been shown in the yellow-eyed penguin (Mattern et al., 2018a), the 

Adélie penguin (Pygoscelis adeliea), Magellanic penguin, and little blue penguin (Eudyptula 

minor) (Thiebot et al., 2017). In each of these studies, the camera footage has shown foraging 

behaviors that were otherwise unknown. For example, the yellow-eyed penguins were recorded 

exhibiting different hunting strategies based on the prey type they were targeting (Mattern et al., 

2018a). In all four species, jellies were shown either directly as prey or as a resource for 

collecting small fish and crustaceans hiding under the bell (Thiebot et al., 2017). 

Although they are also limited by battery life and attachment duration, video loggers 

show tremendous potential for uncovering behaviors, foraging strategies, and prey species that 

other techniques are not able to depict. This technology has yet to be published on any crested 

penguin species; however, studies employing video loggers are currently underway in at least 

the Fiordland penguin (Mattern et al., unpublished data).
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Discussion 
 

Penguins are experiencing significant population declines across many speices with 10 

out of 18 species globally threatened (Trathan et al., 2015; BirdLife International, 2017). One 

factor that contributes to this is a lack of reliable prey resources. Protecting these prime foraging 

areas is key for protecting declining penguin species. As feeding grounds are over exploited by 

human activity, penguins are forced to find new locations to forage which may increase risk of 

becoming bycatch or result in a shift in foraging strategy to include available prey (Crawford et 

al., 2017). Without a concrete understanding of the foraging requirements of each crested 

penguin species, it is difficult to develop and implement conservation plans that protect not only 

resources for penguins but also foraging zones and corridors between them. 

However, interactions with fisheries are not the only human induced factor that stands to 

alter the foraging ability of crested penguins. Global climate change has the potential to pose a 

serious threat to penguins and other sea birds over the next century (Trathan et al., 2015). 

Changing oceanic conditions inevitably cause shifts in prey distribution (Murphy et al., 2007). 

Such regime shifts in mid-trophic level prey communities will likely alter the distribution of 

penguins. In most cases, such shifts in penguin distribution are constrained by other 

environmental factors and may lead to declines in penguin populations (Boersma & Rebstock, 

2009). However, in some species (gentoo and Adéile penguins) such shifts may be beneficial at 

least in the short term (Lynch et al., 2012; La Rue et al., 2013). Conservation plans for marine 

reserves and fisheries should consider the impacts of climate and how penguin distributions and 

foraging requirements may shift. 

The foraging ecology of crested penguins is a dynamic and ever evolving field with new 

techniques increasing our understanding of this charismatic group of penguins. The most 
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common tools for assessing diet and foraging include stomach content analysis, fecal DNA 

analysis, stable isotope analysis, tracking methods (GPS, GLS, and satellite tags), and most 

recently high-resolution video loggers. Although some species (macaroni and southern 

rockhopper) have had significant research into their foraging ecology, others have had virtually 

none (erect-crested, Snares). Even for comparatively well studied species, our knowledge is 

largely limited to a few populations. 

Future work on crested penguin foraging ecology should broadly focus on two key areas. 

The first is undertaking large scale projects implementing multiple methods to resolve the gaps 

in the knowledge of the diet and foraging behavior of the lesser studied crested penguin species 

(primarily the New Zealand species). There is virtually no information on the erect-crested 

penguin, and the Snares, Fiordland, and royal penguins are still poorly studied when compared to 

other crested penguins. These species are all endemic to no more than a handful of islands and 

their non-breeding periods largely remain a mystery. Competition with fisheries and accidental 

bycatch in gill nets are major threats to penguins (Crawford et al., 2017), so understanding the 

foraging ecology of these species is vital to mitigating impacts from anthropogenic factors. 

The second major direction is to evaluate the foraging trends over time for all crested 

penguins. Penguin colonies fluctuate over time (Oehler et al., 2007; 2008), but we are entering 

an unprecedented phase of global oceanic changes (Grémillet & Boulinier, 2009). Some penguin 

colony declines and disappearances in Antarctica have been attributed to climate change 

(Trathan, et al., 2011), but not all species are anticipated to have the same response (Forcada et 

al., 2006). Ecological niche theory predicts that generalist species will likely adapt to changes in 

their ecosystem while specialists will be more sensitive to change (Leibold, 1995). This has been 

shown in Antarctic species where generalist gentoo penguins are able to shift their diet in line 
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with changing prey composition while krill specialist chinstraps are not (McMahon et al., 2019). 

For crested penguins, more research should focus on understanding the foraging parameters that 

affect colony occupancy to better model how climate change will affect these species. 

Although there has been significant research into the diet and foraging behavior or 

crested penguins, it is largely focused on two species (southern rockhopper and macaroni). It is 

vital to create a more complete picture of the foraging ecology of all crested penguin species. It 

is only by combining multiple methods that we can understand how diet and foraging behavior 

change across both temporal (within the annual cycle, across years, historically), spatial 

(segregation within and among foraging areas), and biological (between sexes, age classes, 

breeder/non-breeders) scales that then inform conservation and management efforts for this 

iconic group. 
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CHAPTER 2 
 

IDENTIFYING FIELD SEXING PROTOCOLS FOR FIORDLAND PENGUINS 
 

Introduction 
 

The unique dual lifestyle that characterizes the annual cycle of penguins presents a 

complication for researchers. Most penguin species spend most of the year at sea foraging vast 

and inaccessible expanses of ocean and resume a terrestrial lifestyle only to breed and molt. Sex 

is likely a key factor in the chronology and extent of these shifts between marine and terrestrial 

habitats. Males and females exhibit differences in behavior that may expose them to unequal risk 

of predation, energy expenditure, or access to resources (Donald, 2007; González-Solís et al., 

2000; Morrison et al., 2017). However, understanding differences in ecology and behavior 

between sexes, as well as accurately assessing the demographics of declining species is 

confounded by the lack of clear sexually dimorphic traits. 

In many penguin species, males and females occupy predictable roles during the 

breeding season that dictate both the duration and time of foraging periods (Warham, 1974; 

Williams & Croxall, 1991). Eudyptes penguins exhibit strict division of incubation and chick 

rearing duties that require extended fasting periods in males and increased energy expenditure 

for foraging trips for females. These and other behavioral observations have been traditionally 

used to determine the sex of Eudyptes penguins in the field (Kriesell et al., 2018). 

Fiordland penguins (Eudyptes pachyrhynchus, hereafter referred to by their Māori name 

tawaki), typical of penguins, lack any obvious external sexual dimorphism (Warham, 1974). 

Although past studies have used behavioral cues to determine sex, a more immediate and 

accessible method that would allow reliable sexing of both breeding and non-breeding tawaki at 
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any point of the annual cycle is critical for understanding the demography and ecology of this 

highly elusive species. 

The use of morphometrics to sex penguin species in the field has employed multiple 

techniques; however, the same metrics are not always reliable as a sexing citerion for all penguin 

species. Some, such as vent measurements (Boersma & Davies, 1987) and cloacal examinations, 

(Clarke et al., 1998) can be performed in the field, but require significant expertise. 

Morphological measurements must be obtained quickly to avoid excessive handling times and 

the accompanying stress. Common metrics assessed for multiple penguin species include body 

mass, bill length and depth, head length, wing length, total foot length, and tarsus length. These 

have been used in southern rockhopper penguins (Eudyptes chrysochome; Poisbleau et al., 

2011), northern rockhopper penguins (Eudyptes moseleyi; Steinfurth et al., 2019), little penguins 

(Eudyptula minor; Overeem et al., 2006), and yellow-eyed penguins (Megadyptes antipodes; 

Setiawan et al., 2004), but have not been tested in tawaki in conjunction with a molecular genetic 

approach. 

Behavioral cues have been the primary method of determining the sex of breeding 

tawaki, although morphometrics have also been assessed (Warham, 1974). Metrics including bill 

length, bill depth, culmen width, head length, foot length, and flipper length have been 

considered for sexing adult tawaki. In all but flipper length, males were shown to have 

significantly higher values than females. Overall, the bill shape index [(length x width x 

height)/10] was chosen as the most indicative of sex (Warham, 1974). 

Although Warham (1974) identified the overall bill shape and size to be the most 

distinguishable metric, this technique was supported only by behavioral cues. Tawaki engage in 

reliably sex-specific behavioral patterns during the breeding season; however, the sexes are more 
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similar in their behavior at other times of the year (i.e., post-guard and molt) or among non- 

breeding and vagrant individuals (Warham, 1974). Here we use morphometrics and DNA-based 

sexing to identify those morphological measurements that are both consistently variable between 

sexes and are also able to be obtained quickly in the field. 

Methods 

Study Area 

We sampled tawaki at three sites in southern New Zealand. Each site is associated with 

one of the three main marine environments exploited by tawaki during the breeding season. They 

are also representative of the overall breeding range of this species from near the northern limit 

of the breeding range to the southern. The first study site is in south Westland at Jackson Head (- 

43.963°, 168.611°) near the village of Jackson Bay. The Harrison Cove colony (-44.624°, 

167.913°) sits near the mouth of the Harrison River in Milford Sound/Piopiotahi. The fjord is 

protected both by Fiordland National Park and the Piopiotahi Marine Reserve. The Whenua Hou 

colony (-46.760°, 167.641°) is located on Sealer’s Bay on the north-eastern coast of Codfish 

Island/Whenua Hou. Codfish Island/Whenua Hou sits off the north-west coast of Stewart 

Island/Rakiura in the Foveaux Strait (Mattern & Ellenberg, 2018). 

Capture and Measurement 
 

We captured adult penguins at all three sites by targeting accessible nests. Sampling 

began September 19, 2018 and continued through October 5, 2018. Like other Eudyptes 

penguins, each sex follows a predictable pattern during incubation and chick rearing. During late 

incubation and the guard stage, males remain at the nest while females forage during the day. We 

captured males by hand or with a leg crook (deeper nests) at their nests. Females were primarily 
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intercepted on the beach as they returned at dusk, but any that evaded capture upon arrival were 

allowed to feed the chick and rest before being caught at the nest. 

Each penguin was implanted with a subcutaneous microchip (Allflex TIRIS 23 mm 

transponder) in the back of the neck for individual identification. Measurements taken included 

total mass (kg), foot length (mm), head length (mm), culmen length (mm), and bill depth (mm) 

(Warham, 1972; Murie et al., 1991). We weighed each using a Pesola 5 kg spring balance to the 

nearest 10 g. The total foot length was measured to the nearest 1mm from the heel to the distal 

tip of the last pad of the central toe using an osteometric board. The total head length was also 

measured to the nearest 1mm from the post occipital crest to the tip of the culmen with an 

osteometric board. Culmen length and bill depth were assessed using digital calipers (Jobmate 

J701-2702) to the nearest 1 mm. Following Warham (1972), bill (culmen) length included the 

exposed portion of the culmen while bill depth was measured perpendicular to the point of the 

inter-ramal feather patch. 

Molecular Sexing 
 

Whole blood (0.1 - 0.5 mL) was collected from the brachial vein using a new 25-gauge 

needle and 1.0 mL tuberculin syringe. Samples were stored in 70 % ethanol until field work was 

completed and extraction procedures began. 

Total genomic DNA was extracted from each using standard phenol-chloroform 

protocols. We performed a polymerase chain reaction (PCR) using the primers SEX1 (5′-CTCC- 

CAAGGATGAGAAACTGTGCAAAACAGGTA-3′) and SEX2 (5′-CCTTCACTT CCATT- 

AAAGCTGATCTGGAATTTC-3′) designed to match conserved exon flanking regions of an 

intron in the chromo-helicase-DNA binding protein (CHD) gene on the Z (CHD-Z) and W 

(CHD-W) sex chromosomes in birds (Wang & Zhang, 2009). Length variations between CHD-Z 
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and CHD-W alleles allowed for discrimination between the heterogametic (females) and 

homogametic sex (males). We chose these primers and protocol based on previous success 

sexing northern rockhopper penguins (Steinfurth et al., 2019) as well as southern rockhopper, 

macaroni, and little penguins (White, unpublished data). PCR reactions were run in 20 μL 

volumes with 1 μM of each primer (SEX1 and SEX2), 1X AccurisTM Hot Start Taq Master Mix, 

approximately 25 ng of genomic DNA on an Applied Biosystems VeritiTM Thermal Cycler at 

95°C for 5 minutes, followed by 30 cycles of 95°C (1 min), 55°C (1 min), and 72°C (2 min), and 

a final extension at 72°C for10 minutes. 

Amplicons were separated by size by loading the entire 20 μL of each reaction on a 3 % 

agarose TBE gel stained with ethidium bromide. Electrophoresis proceeded for 200 volt-hours 

and bands were analyzed using a BioRad Molecular Imager®. The two similar sized alleles 

associated with the Z chromosome in the homogametic sex (males) migrate on the gel as a single 

band while the smaller W allele together with the larger Z allele in the heterogametic sex 

(females) appear as two distinct bands. 

 
Data Analysis 

 
Data were analyzed in R (RStudio Team 2006-2018, Version 1.1.442). We employed the 

Lilliefors (Kolmgorov-Smirnov) test to assess all variables for normality. T-tests were applied to 

compare sexes for each of the variables studied. An exploratory principle components analysis 

(PCA) was conducted (JMP®, Version 14. SAS Institute Inc., Cary, NC, 1989-2019) to visualize 

the parameters most associated with determining sex. MANOVA was performed on all 

variables. A recursive partitioning tree was generated using the R package “rpart” along with a 

linear discriminant analysis on the data using the R package “MASS.” Data were scaled to have 
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an equal variance of 1 using the R scale function for both linear discriminate analyses and 

recursive partitioning (Dykstra et al., 2012). 

Results 
 

We collected blood and measurements from 34 adult tawaki with 8 from Harrison Cove 

(4 male & 4 female), 20 from Jackson Head (9 male & 11 female), and 6 from Whenua Hou (1 

male & 5 female). Two individuals (1 male & 1 female) had missing weights and were excluded, 

leaving a total of 32 individuals in the final dataset. The sex for each penguin was confirmed by 

molecular analysis. 

All morphological characters measured (foot length, head length, bill length, bill depth, 

and mass) differed significantly between males and females against a Bonferoni corrected 

α=0.01 (MANOVA, F = 29.396, Wilks λ = 0.19587, p < 0.001; Table 1). A principle 

components analysis (PCA) indicated a clear separation between males and females when all 

variables were considered (Figure 1). PC1 reflects overall size and explained 63.2% of the 

variation. Overall, males from all sites were larger than females in each measurement (Figure 

2). The recursive partitioning indicated cutoff values to classify male and female tawaki (Table 

2) and the resulting decision tree identified foot length as the most distinguishing variable 

(Figure 2). A linear discriminate analysis indicated the morphological parameters correctly 

classified 94% of the penguins sampled (93% males, 95% females). 
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Male 
 

Female 

 

 

 

Table 1. Morphological parameters assessed in tawaki. Mean values, standard deviation, and 

statistics for each metric assessed. All were found to be significant following MANOVA and 

Bonferoni correction of α = 0.01. All metrics other than mass were significant at p < 0.001. 

 
 
Figure 1. Principle components analysis of morphological parameters. Bill length and bill depth 

are highly correlated, and all measurements indicate discreet separation of males (triangle) and 

females (circle). Arrows represent the eigenvectors for each metric. As each of these 

measurements increase, the individual is more likely a male. One male and one female fell 

within the range of the opposite sex. 

 
Measurement 

Male Mean ± SD 
(n=14) 

Female Mean ± SD 
(n=20) 

 
F 

 
P (< 0.01) 

Mass (kg) 3.12 ± 0.40 2.69 ± 0.29 12.056 < 0.01 
Bill Length (mm) 48 ± 2 43 ± 2 45.937 < 0.001 
Bill Depth (mm) 28 ± 3 23 ± 3 38.955 < 0.001 
Head Length (mm) 125 ± 4 116 ± 6 26.396 < 0.001 
Foot Length (mm) 117 ± 6 108 ± 3 31.016 < 0.001 
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E.) Weight (kg) 

D) Foot Length (mm) C) Head Length (mm) 

B) Bill Length (mm) A) Bill Depth (mm) 

 

Figure 2. Boxplots of morphological parameters measured. While males were generally larger than 

females in all measurements, bill depth (A), bill length (B), head length (C) and foot length 

(D) showed the least overlap. 
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< 113.5 mm > 113.5 mm 

Measurement Cutoff Value Variable Importance 
Foot Length (mm) 113.5 37 
Bill Depth (mm) 25.5 20 
Bill Length (mm) 44.5 17 
Head Length (mm) 121.5 13 
Mass (kg) 2.87 13 

 
 

Table 2. Cutoff values and variable importance for morphological parameters. Females fall 

below the cutoff values while males fall above. 

 
 

Female Male 

Foot Length 
 

Figure 3. The recursive partitioning tree of foot length. 94% of tawaki were correctly classified 

by this metric alone. 

Discussion 
 

Accurately assigning sex to tawaki in the field is integral to ecological, behavioral, and 

demographic research and conservation efforts. Like most other penguins, tawaki are not 

sexually dimorphic which makes field sexing even more challenging. During the breeding 

season, behavioral cues are used to predict the sex of individuals; however, this can lead to 

erroneous classifications, particularly among non-breeding individuals. Typically, males and 
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females follow predictable patterns during incubation and the guard stage, but during post-guard 

it can be difficult to use behavior alone as tawaki may leave their nest sites while chicks form crèches in 

the forest. Non-breeding individuals also appear in breeding colonies and use nests as temporary shelters 

(White, personal observations) which can lead to misidentification when sexing based on behavioral clues 

alone. 

Here we analyzed various morphological parameters that have been used as reliable 

indicators of sex in other Eudyptes penguins (Poisbleau et al., 2011; Steinfurth et al., 2019) and 

others that have been suggested for tawaki in the past (Warham, 1972). Males are larger overall 

than females in all parameters measured. Such sexual size dimorphism has been proposed to be 

attributed to marine productivity (female-biased in less productive tropics) and to body size 

(male-biased in larger bodied species) (Fairbairn & Shine, 1993). The pattern of male-biased 

sexual size dimorphism is common across penguin species (Croxall, 1995). 

We favored parameters that can be measured quickly in conjunction with other sampling 

procedures. All measurements tested separated males and females, but weight was the least 

significant (p < 0.01, variable importance = 13) which was expected given the life stage 

examined in the study period. From late incubation through the guard stage male tawaki remain 

at the nest and fast. Females, however, are foraging daily to feed themselves and the growing 

chicks. This added nutrition in comparison to the fasting males potentially reduces the disparity 

in mass compared to other periods of the year when both are actively feeding. Therefore, we do 

not recommend using mass as a deciding factor in sex determination as it is dependent on period 

of the year as well as overall condition. 

Linear measurements of skeletal size exhibited greater variation between the sexes (p < 
 

0.01 for all) compared to mass. Warham (1972) proposed the use of the beak shape index as a 

measure of the overall size of the bill to be the most significant variable. We also found that 
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measurements associated with bill and head size (bill length, bill depth, and head length) all 

were significantly larger in males than in females. However, when faced with young males or older 

females, bill shape and size are more likely to overlap. Older female tawaki may develop thickened bills 

comparable to younger males requiring a second factor to positively determine sex. We suggest using 

foot length in conjunction with bill depth as the most repeatable and reliable metrics to identify sex in 

the field. 

While the results presented here show a clear indication of overall larger size in males 

than in females, more sampling and work should continue. Mass alone is not a sufficient 

indicator of sex as it is a factor of overall body condition as well as influenced by the period of 

the annual cycle (Croxall, 1995). The ontology of sexual size dimorphism in tawaki and other 

Eudyptes penguins is unknown. Future work should collect morphological data on chicks and 

juveniles of known sex to determine the trajectory of growth between males and females and to 

assess the reliability of morphological measures in sexing individuals of different age classes. 

The ability to accurately sex tawaki is vital for assessing population structure and trends and will 

further the ability of ecological studies to recommend specific conservation efforts to protect this 

enigmatic species. 
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CHAPTER 3 
 

STABLE ISOTOPE ECOLOGY IN FIORDLAND PENGUINS 
 

Introduction 
 

Seabird species worldwide are under threat due to changing climate, over-exploitation of 

resources, pollution, and the introduction of terrestrial mammalian predators (Croxall et al., 

2012). The penguins of New Zealand are not immune to these threats. The New Zealand region 

is home to diverse marine habitats and six (of 18) species of penguins (Mattern & Wilson, 2018). 

The survival of penguins is dependent on reliable access to resources and nesting sites. New 

Zealand’s penguins are threatened by rapidly changing marine environments affecting prey 

abundance, conflict with fisheries, invasive predators, and habitat loss (Wilson & Long, 2016). 

In order to better predict how increased threats may impact these sensitive penguin populations, 

it is vital to understand their dietary preferences and foraging behavior. 

Changing oceanic conditions inevitably cause shifts in prey distribution (Murphy et al., 

2007). Such regime shifts in mid-trophic level prey communities will likely alter the distribution 

of penguins. In most cases, such shifts in penguin distribution are constrained by other 

environmental factors and foraging shifts to environments that may be less favorable in terms of 

these other physical and ecological variables may lead to declines in penguin populations 

(Boersma & Rebstock, 2009). In some species (gentoo and Adéile penguins), such shifts may be 

beneficial at least in the short term (Lynch et al., 2012; La Rue et al., 2013). Conservation plans 

for marine reserves and fisheries should consider the impacts of climate and how penguin 

distributions and foraging requirements may shift. 

Fiordland penguins (Eudyptes pachyrhynchus, hereafter referred to by their Māori name 

tawaki) are small crested penguins endemic to the South Island of New Zealand from 
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Haretaniwha Point in the north to Port Pegasus, Stewart Island/Rakiura in the south (Mattern & 

Wilson, 2018). Tawaki breed at sites associated with a wide range of marine habitats across the 

west coast of New Zealand’s South Island (Warham 1974). Breeding colonies are often found in 

protected bays, fjords, or along coastal bluffs with nests hidden in rock fall caves, rainforest 

underbrush, coastal shrubland, and sea caves (Ellenberg et al., 2015). Marine conditions vary 

from shallow continental shelf, shallow coastal seas, and fjords. This distribution across diverse 

marine habitats suggests that tawaki may be able to tailor their foraging strategy to local 

resources and target a wider variety of prey sources than other penguin species. 

Tawaki are late-winter breeders that arrive in early July to form breeding colonies and 

their chicks typically fledge by the end of November (Warham 1974). Like other Eudyptes 

penguins, males and females adhere to predictable roles during the breeding season (Warham, 

1974; Williams & Croxall, 1991). Male and female tawaki alternate incubation duties. Females 

begin the process and males return from a short foraging trip during the final days before 

hatching. During chick rearing, male tawaki fast at the nest and guard the chick while females 

forage. Once the chicks reach the crèche phase both parents forage to feed the rapidly maturing 

chick. This division of incubation and chick rearing duties requires extended fasting periods in 

males and potentially long foraging trips for females. 

During the incubation and guard periods, female tawaki from Jackson Head and Whenua 

Hou travel up to 60-80 km from the colony to forage while female foraging ranges from Harrison 

Cove in Milford Sound rarely exceed 4 km (Mattern & Ellenberg, 2018). These GPS tracked 

foraging ranges place tawaki into three distinct marine habitats: continental shelf, pelagic, and 

fjord (Mattern & Ellenberg, 2018). 
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Once the chicks have fledged, adults disperse on the pre-molt foraging trip into the lower 

Tasman Sea (Mattern et al. 2018b). Until recently, their foraging grounds and routes were 

unknown. During the pre-molt, tawaki from the breeding colony at Gorge River were tracked 

along a 6,800 km round trip over the course of 4-6 weeks (Mattern et al., 2018b). Tawaki were 

segregated along either the Sub-Tropical Front or the Sub-Antarctic Front south of Tasmania. 

This journey along the Sub-Antarctic Front constitutes the longest pre-molt foraging trip of any 

crested penguin species (Mattern et al., 2018b). 

A limited number of studies have investigated tawaki dietary preferences. Van Heezik 

(1989) assessed prey in stomach contents at Martin’s Bay and found that arrow squid 

(Nototodarus sloanii) comprised the majority (85%) of their diet. Stomach contents from 

Codfish Island/Whenua Hou showed 80% of sampled tawaki consumed 9 taxa representing 7 

families, including juvenile red cod (Pseudophyscis bachus), ahuru (Auchenoceros punctatus), 

arrow squid, and octopus (Octopus maorum) (Van Heezik, 1990). Based on the predominance of 

juvenile and post-larval stage fish (85%) in stomach contents during chick rearing, tawaki are 

likely feeding on masses of pelagic macro-zooplankton such as schools of larval fish, krill, and 

cephalopods, and are less likely to be selecting specific prey species within this size class (Van 

Heezik, 1989; 1990). Stable isotope values derived from blood samples collected at 

Taumaka/Open Bay Island suggest a reliance on winter-spawning squid (Poupart et al., 2019). 

Traditionally, seabird diet has been assessed by retrieving gut contents (Gales, 1987; 

Goldsworthy et al., 2016). Although this method provides a snap shot of the most recent meal 

consumed, it also has the potential to overestimate reliance on species with hard body parts (e.g., 

squid beaks, fish bones) that will be digested more slowly than soft-bodied prey (e.g., jellyfish) 

(Duffy & Jackson, 1986). While valuable, gut content analysis is often best when complimented 
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by the use of other techniques such as fatty acid analysis (Karnovsky et al., 2012), fecal DNA 

(Deagle et al., 2007), or stable isotope analysis (SIA; Polito et al., 2011). 

SIA is commonly used to quantify the importance (i.e., % contribution) of the digestible 

diet of individuals (Quillfeldt et al., 2005; Caron-Beaudoin et al., 2013), and to investigate the 

trophic interactions among species (Jaeger et al., 2013). For example, SIA has been used to 

elucidate the trophic niche of southern rockhopper penguins (Eudyptes chyrsocome) and 

Magellanic penguins (Spheniscus magellanicus) in Argentina (Rosciano et al., 2016), gentoo 

penguins (Pygoscelis papua) on South Georgia (Ratcliffe et al., 2018), and emperor penguins 

(Aptenodytes forsteri) and Adélie penguins (Pygoscelis adeliae) in Antarctica (Cherel, 2008). 

Tissues derived from particulate organic matter (POM) are enriched in 13C along a latitudinal 

gradient, providing a metric for reconstructing seabird foraging and migration routes (Trull & 

Armand, 2001). Additionally, δ13C reflects inshore/offshore and pelagic/benthic input to the diet 

of seabirds (Hobson et al., 1994; Cherel & Hobson, 2007). 

Although δ13C variation can be low among consumers and their prey, nitrogen stable 

isotope ratios (15N/14N expressed as δ15N values) increase with trophic level. Primary producers 

are the baseline of the trophic web so the δ15N values derived from their tissues reflect 

environmental δ15N. All consumers show a stepwise enrichment in δ15N values compared to their 

prey (Minagawa & Wada, 1984). For example, δ15N values measured in the blood and feathers 

of captive southern rockhopper penguins fed a controlled diet of capelin (Mallotus villosus) were 

higher (Δ15N: 1.9 ‰ – 4.4 ‰) than whole fish or fish muscle (Cherel et al., 2005). 

Tissues incorporate isotopes from diet at varying rates, so choosing the correct tissue for 

the time period of interest is vital for understanding trophic interactions across a temporal scale. 

Whole blood in penguins reflects dietary isotopes integrated over roughly 20 days (Barquete et 
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al., 2013). Feathers, however, only incorporate isotopes from the diet prior to feather growth 

(Cherel et al., 2005; Hobson et al., 1994). Like all penguins, tawaki undergo a single catastrophic 

molt per year in which all feathers are shed and replaced. During the molt, tawaki are restricted 

to land. Therefore, the stable isotope values measured in tawaki feathers reflect only the diet 

consumed during the pre-molt period where feather synthesis began (Cherel et al., 1994). 

In this study, we used stable isotope values (δ13C and δ15N) derived from penguin tissues 

to investigate the diets of tawaki that foraged along the continental shelf (Jackson Head & Gorge 

River), shallow coastal seas (Whenua Hou), and fjord (Harrison Cove) habitat types. Our 

objective was to determine if penguins foraged differently in these habitat types and between 

sexes during two periods of the annual cycle when tawaki have increased demand for reliable 

resources (late incubation and the pre-molt). Characterizing how tawaki forage during these two 

critical periods of the annual cycle allows a better understanding of their resource requirements 

at a time when this species appears to be faring better than many other penguin species. 

Methods 

Study Area 

We sampled tawaki at three sites across their range in southern New Zealand (Fig. 4). 
 

Each location is representative of one of the three major marine habitat types occupied during the 

breeding season. The Jackson Head colony (-43.962°, 168.611°) is located near the village of 

Jackson Bay in southern Westland. Nests are hidden in dense stands of Kiekie (Freycinetia 

banksia) and small rock overhangs atop steep coastal bluffs. GPS tracked females from Jackson 

Head show typical daily foraging distances of 40-80 km from shore (Mattern & Ellenberg, 

2018). 
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Figure 4. Map of field sites on the South Island. Jackson Head (circle) and Gorge River 

(diamond) are associated with continental shelf foraging, Harrison Cove (square) with fjord, and 

Whenua Hou (triangle) with the Foveaux Strait 

The second study site, Whenua Hou, is on Sealer’s Bay on the north-eastern coast of 

Codfish Island/Whenua Hou (-46.760°, 167.640°). It is characterized by soft tree ferns as well as 

abundant understory fern species. Nests are found under vegetation and rock shelters. Codfish 

Island/Whenua Hou sits off the north-west coast of Stewart Island/Rakiura in the Foveaux Strait 

at the interface of the shallow continental shelf and the deeper Solander Trough. Tawaki have 

been shown to exploit both ecosystems within 50 km from the nest (Mattern & Ellenberg, 2018). 

Finally, the Harrison Cove colony (-44.623°, 167.912°) is located within Fiordland 

National Park and the Piopiotahi Marine Reserve near the mouth of the Harrison River in 

JH 

GR 

HC 

WH 
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Milford Sound/Piopiotahi, Fiordland. This site is dominated by dense temperate rainforest of 

silver beech (Lophozonia menziesii), tree fuchsia (Fuchsia excorticate), and soft tree fern 

(Cyathea smithi). Nests are located under rock overhangs and in rockfall caves within 20 m from 

the shore. The colony is located 10 km from the mouth of the fjord, but GPS tracked females 

forage exclusively within the fjord, rarely more than 5 km from the colony (Mattern & 

Ellenberg, 2018). 

Sample Collection 
 

We captured adult penguins at all three sites by targeting the most accessible nests. 

During the guard stage, males remain with the chicks at the nest while females forage. Males 

were captured on the nest by hand or using a leg crook. Most females were intercepted on the 

beach. Those that evaded capture were allowed to feed their chick and rest before being captured 

and sampled at their nest. 

In September and October 2017 and 2018 (late incubation into the guard stage; Fig. 5) 

we collected whole blood (0.1 - 0.5 mL) from the brachial vein of tawaki using a new 25-gauge 

needle and 1.0 mL tuberculin syringe (n = 70). Stable isotope values derived from whole blood 

reflect diet consumed roughly 20 days prior to sampling, equating to the latter half of the 

incubation stage (late August - September) (Barquete et al., 2013). 

We also cut feathers (n = 165) from the lower back during the guard stage of 2017 and 

2018 (n = 98) at Whenua Hou (n = 26), Jackson Head (n = 41), and Harrison Cove (n = 36) while 

blood samples were being collected. We also included feathers collected in 2010 at Jackson 

Head (n = 20) and Munro Beach (n = 2), in 2015 at Jackson Head (n = 2), and Harrison Cove (n 

= 11), and in 2016 at Gorge River (n = 13) and Whenua Hou (n = 14) by the Tawaki Project. 



39  

Pre-molt 
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Arrival 

Feather derived stable isotope values reflect the diet during the pre-molt period alone (Fig. 5). 

We preserved all samples in 70 % ethanol and stored at -20°C (Hobson et al., 1994). 

 
 

 

Figure 5. Tawaki annual cycle. Sample collection time, blood isotope period, and feather isotope 

periods are indicated. 

Prey Samples 
 

Reconstructing the trophic web for each of the primary marine ecosystems occupied by 

tawaki is critical for interpreting trophic interactions between penguins and their prey. As 

existing isotopic data is limited for this region of New Zealand, we aimed to collect samples 

from each site to test primary producers (baseline) through putative tawaki prey species. New 

Zealand green-lipped mussels (Perna canaliculus) and goose barnacles (Hexelasma nolearia) 

were collected from piers and buoys as proxies for the pelagic baseline. Snails (Lunella sp.) 
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acted as proxies for the benthic baseline. These species feed on primary producers, so isotope 

values derived from their muscles will reflect the first step in the trophic cascade. 

Prey species identified by Van Heezik (1989; 1990) such as krill, sprat (Sprattus 

muelleri) (Nyctiphanes australis), arrow squid (Nototodarus sloanii) were collected via dip nets 

(krill), opportunistically from spillage at nests (krill & sprat), purchased from local fishermen 

(arrow squid), or provided by the Tawaki Project (Snares Islands samples). Shrimp (Palaemon 

affinis), salps (Thalia sp.), short-finned eel (glass eels; Anguilla australis), and larval Galaxis 

fish were collected opportunistically either at nests or found on shore. Soft tissues were collected 

from mussels, snails and goose barnacles. Muscle biopsies were taken from larger squids and 

sprats. All other species were collected whole. 

Molecular Sexing Protocol 
 

The sex of each penguin was determined in the field based on behavioral and 

morphological cues (Warham, 1974). In order to verify correct sex assignment of study 

individuals, we genetically sexed a subsample (n = 58) of tawaki using whole blood. We 

extracted total genomic DNA using standard phenol-chloroform protocols. A polymerase chain 

reaction (PCR) was performed using the CHD-W and CHD-Z specific primers SEX1 (5′-CTCC- 

CAAGGATGAGAAACTGTGCAAAACAGGTA-3′) and SEX2 (5′-CCTTCACTT CCATT- 

AAAGCTGATCTGGAATTTC-3′) following Wang and Zhang (2009). These primers and 

protocol were chosen based on previous success sexing northern rockhopper penguins 

(Steinfurth et al., 2019) and other penguin species (White, et al., unpublished data). In each 

sample well, 15.0 μL of a 240x solution of PCR water (375.0 μL), primers (120.0 μL each), 

AccurisTM Hot Start Taq Master Mix (1200 μL) was added to 5.0 μL of extracted DNA (25 ng). 

The thermal cycler (Applied Biosystems VeritiTM Thermal Cycler) was set on ST55 which 
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included an initial cycle at 95°C (5 minutes), thirty cycles of 95°C (1 minute), 55°C (1 minute), 

and 72°C (2 minutes), and a final cycle at 72°C (10 minutes). 

Following completion of PCR, 20 μL of product and 3.0 μL of BioLabs® Gel Loading 

Dye (Purple 6x) were pipetted onto a 3 % agarose gel stained with ethidium bromide. 

Electrophoresis proceeded for 200 Volt-hours and bands were analyzed using a BioRad 

Molecular Imager®. Samples exhibiting a single band were classified as male and those with two 

bands as female (Miyaki et al. 1998). 

Stable Isotope Analysis 
 

We removed feather samples from 70% ethanol and rinsed with deionized water. Next, 

we sonicated the feathers in a 2:1 methanol:chloroform solution for 30 minutes to remove lipids 

and debris. We then rinsed each tissue with deionized water every 10 minutes and followed with 

a final rinse (Paritte & Kelly, 2009). We did not pre-treat whole blood. 

Once appropriately cleaned, all samples were oven dried at 60° C for 48 hours. Dried 

blood was homogenized using a mortar and pestle, whereas feathers were finely chopped using 

stainless steel scissors. Only the distal barbs (excluding the rachis) of the feathers were included. 

Growing feathers emerge from the shaft such that the more distal portions represent the earliest 

growth of the feather likely before a switch to endogenous protein sources (Cherel et al., 1988). 

Aliquots of 0.40 mg were weighed into 5x8 mm tin capsules. The University of Cincinnati Stable 

Isotope and Biogeochemistry Laboratory measured stable carbon (δ13C) and nitrogen (δ15N) 

isotopes in all samples using a Thermo Scientific Delta V IRMS Delta V Advantage isotope ratio 

mass spectrometer (IRMS; Bremen, Germany) and a Costech 4010 Elemental Analyzer and 

Conflo IV interface (Valencia California, USA). 
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The lab corrected data for linearity and drift using caffeine, and for scale using caffeine 

and USGS 41. We assessed accuracy based on independent measurements of glycine (carbon) 

and gelatin (nitrogen) and precision based on measurements of glycine, gelatin, caffeine, and 

USGS 41 (Table 3). The mean isotopic difference for 27 samples ran in duplicate was 0.05 ‰ 

for δ13C and 0.02 ‰ for δ15N. 

SIRM Range δ13C (‰) Mean δ13C (‰) SD δ13C (‰) Range δ15N (‰) δ15N (‰) SD δ15N (‰) 

Caffeine -38.6 to -37.6 -38.2 ± 0.6 1.5 to 2.9 1.6 ± 0.1 

Glycine -33.1 to -32.1 -32.6 ± 1.1 5.6 to 6.0 5.7 ± 0.1 

Gelatin -14.0 to -14.8 -14.4 ± 0.6 5.6 to 5.8 5.6 ± 0.1 

USGS 41 37.4 ro 37.7 37.6 ± 0.7 47.4 to 47.8 47.6 ± 0.2 

Table 3. Secondary isotopic reference materials (SIRMs). Accuracy and precision were 

assessed using caffeine, glycine, gelatin, and USGS 41. For 14 runs, the within run range of 

means, all run mean, and standard deviations of δ13C (‰) and δ15N (‰) for each SIRM are 

given. 

Data Analysis 
 

We compared stable isotopes between sexes and tissues, and among sites and years. 

Stable isotope values from all groups were first assessed for normality and homoscedasticity 

using a Shapiro-Wilkes and Levene’s test, respectively. If pair-wise groups were normally 

distributed, we used t-tests and ANOVA for comparison; otherwise, we used Wilcoxon-Mann 

Whitney or Kruskall-Wallis tests. For variables found to have significant differences, suggesting 

variation in diet, we employed the Steel-Dwass test for pairwise comparisons. We used the 

program JMP (JMP®, Version 14. SAS Institute Inc., Cary, NC, 1989 - 2019) to conduct all data 

analyses. 
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Results 

Incubation  

We collected 70 whole blood samples in 2017 (n = 27) and 2018 (n = 43). Of these, 3 (2 

from 2017 and 1 from 2018) were unable to be analyzed due to insufficient sample volume and 

were excluded from the study (n = 67). We analyzed 14 samples from Whenua Hou, 25 from 

Harrison Cove, and 28 from Jackson Head (Fig. 6; Appendix F) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 

 

 

Figure 6. Mean tawaki blood isotope values by colony. Samples collected at Jackson Head 

(green), Whenua Hou (red), and Harrison Cove (black), during the late incubation and guard 

stage of 2017 and 2018 breeding seasons. This shows a clustering of isotope values during the 

incubation period with δ13C between -20 ‰ to – 18.5 ‰ and δ15N between 11.5 ‰ to 13.5 ‰. 

 

 

JH 

HC 
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We found no significant differences in δ13C values among Harrison Cove, Jackson Head, 

or Whenua Hou (Kruskal Wallis, Χ2 = 5.2452, df = 2, p = 0.073). δ15N values were higher from 

Harrison Cove (Kruskal Wallis, Χ2 = 14.1483, df = 2, p < 0.001) than from both Jackson Head 

(Steel-Dwass, p < 0.001) and Whenua Hou (Steel-Dwass, p = 0.007; Fig. 7). We also found 

that δ13C and δ15N values were not significantly different between sexes (δ13C: t = 0.8011, p = 

0.106; δ15N: t = 0.2168, p = 0.067; Figure 8). Lastly, when we compared years (2017 and 

2018), we found stable isotope differences between δ13C (t = 1.972, p = 0.019) but not δ15N (t = 

1.874, p = 0.067; Figure 9). 

 

 
 
 

 

Figure 7. Boxplots of δ13C and δ15N values derived from whole blood during incubation by colony. 
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Figure 8. Boxplots of δ13C and δ15N values derived from whole blood between sexes during the 

incubation period 
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Figure 9. Boxplots of δ13C and δ15N values derived from whole blood between years (2017 - 

2018) during the incubation period. 

Pre-molt  
 

In total, 174 feather samples were analyzed in this study (Fig. 10). Due to low sample 

size and proximity to Jackson Head, Munro Beach samples were considered as Jackson Head for 

analysis. The mean δ13C value was -19.0 ± 0.7 ‰ while the mean δ15N value was 12.8 ± 0.6 ‰ 

(Appendix G). 
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Figure 10. Mean tawaki feather isotope values by colony. Samples collected at Gorge River 

(orange), Harrison Cove (black), Jackson Head (green), and Whenua Hou (red). This shows a 

range of δ13C values from around -20.0 ‰ to -18.0 ‰ while δ15N clustered between 12.0 ‰ to 

13.5 ‰. 
 

We compared the mean δ13C and δ15N values between colonies. Only the Harrison Cove 

and Whenua Hou colonies were isotopically different in δ13C values (Kruskal Wallis, Χ2 = 

10.525, df = 2, p = 0.033; Steel-Dwass, p = 0.047). δ15N values were not significantly different 

among sites (Kruskal Wallis, Χ2 = 6.435, df = 2, p = 0.169; Fig. 11). 

WH                GR       HC 

JH 
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Figure 11. Boxplots of δ13C and δ15N values derived from feathers among colonies 

during the pre-molt period. 

We then compared δ13C and δ15N values between sexes during the pre-molt 
 

period. We found a significant difference in δ13C (t = -2.384, p = 0.019) with mean δ13C 

values of -19.1 ‰ and -18.8 ‰ for males and females respectively. δ15N values were not 

isotopically different between sexes (t = 0.7642, p = 0.4465; Fig. 12). 
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Figure 12. Boxplots of δ13C and δ15N values derived from feathers between sexes during the pre-

molt period. 

We next compared stable isotope values among years and found significant differences in 

both δ13C (Kruskal Wallis, X2 = 14.1438, df = 4, p = 0.007) and δ15N (Kruskal Wallis, X2 = 

40.6391, df = 4, p < 0.0001; Fig. 13). The year 2015 stands out as isotopically different from 2010 

(δ15N: Steel-Dwass, p = 0.004), 2016 (δ13C: Steel-Dwass, p = 0.018), 2017 (δ15N: Steel- Dwass, p 

= 0.0001), and 2018 (δ13C: Steel-Dwass, p = 0.014; δ15N: Steel-Dwass, p < 0.001; 
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Appendix H). We also found the 2016 was significantly different from 2017 (δ15N: Steel-Dwass, 

p < 0.001) and 2018 (δ15N: Steel-Dwass, p < 0.001; Appendix H). No other pair-wise 

combinations were significant. 

 

 
 
 

 

Figure 13. Boxplots of δ13C and δ15N values derived from feathers among years during the pre-

molt period. 

Finally, we compared δ13C and δ15N values between blood and feather samples. These 

tissues reflect distinct periods of the tawaki annual cycle (whole blood = incubation; feathers = 

pre-molt) so isotopic variation between these tissues will reflect differences in diet at a temporal 
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scale. We found significant differences in both δ13C values (t = 4.5662, p < 0.0001) and δ15N 

values (t = 2.7703, p = 0.004; Fig. 14) 

 

 
 
 

 

Figure 14. Boxplots of δ13C and δ15N values derived from both whole blood and feathers to 

compare incubation and pre-molt periods. 

Prey 
 

We analyzed two size classes of small marine fish (adult sprat n = 13 and larval n = 6); 

krill (n = 7), arrow squid (n = 5), short-finned eels (n = 6), salps (n = 4), and green-lipped 

mussels (n = 20) were also collected and analyzed to better understand the marine food web in 

each of the habitat types. We were also supplied with adult sprat (n = 6), krill (n = 5), and arrow 
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squid (n = 4) from the Snares Islands. Previous studies have indicated small schooling fish, 

arrow squid, and, to a lesser extent, krill as dietary components prominent in tawaki stomach 

contents (Van Heezik, 1989;1990; Poupart et al., 2019). These samples are not included in these 

analyses due to high carbon-nitrogen ratios (C:N; indicating incomplete lipid removal from the 

samples during processing) leading to erroneously elevated δ13C and δ15N values in some 

samples and low sample size. However, preliminary analysis of fish, squid, and krill which were 

within acceptable C:N indicate clear isotopic separation of these prey. 

Discussion 
 

Tawaki follow a complex yet predictable annual cycle that distributes them across a wide 

variety of marine ecosystems. Even within the breeding season, tawaki occupy diverse habitats 

each of which has unique resources and challenges. This habitat plasticity may be an advantage 

in the face of changing marine conditions if tawaki can exploit a wide variety of food sources. 

Past dietary studies at Whenua Hou/Codfish Island (Van Heezik, 1990) and Taumaka/Open Bay 

Island (Poupart et al. 2019), indicated a reliance on small and larval stage fish as well as winter 

spawning squid during incubation and post-guard. However, very little information exists for 

dietary preferences during other periods of the annual cycle (pre-molt forage and winter 

dispersals in particular). 

δ13C 

Across marine systems, δ13C values vary by latitude as well as zone (i.e., pelagic/benthic 

and inshore/offshore). δ13C values, therefore, provide a method of estimating foraging area of 

marine predators based on these latitudinal and zonal gradients. Tawaki blood samples taken 

during the 2017 and 2018 breeding seasons indicated no significant differences among sites or 

between sexes, suggesting a similar diet during this period. This lack of variation is consistent 

with the relatively 
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small latitudinal distribution of tawaki during breeding; however, we expected tawaki breeding 

the fjord (Harrison Cove) to be higher. We found significant differences in δ13C values between 

years sampled; however, GPS tracking by Mattern et al. (2018b) does not support major 

differences in foraging areas between these two particular years. Instead, variation may be due to 

interannual fluctuations in baseline δ13C. 

Feathers exhibited significant differences in δ13C values between sexes. This variation 

suggests that during the pre-molt, male and female may differ more in their foraging range 

while at sea in the non-breeding season than during the breeding season. Interestingly, variation 

in δ13C among years (particularly 2015) reflects responses in the foraging to shifting marine 

conditions. 

Mean δ13C values did not differ significantly among all sites. Only Whenua Hou and 

Harrison Cove had significantly different δ13C values. The range δ13C fell between -17.61 ‰ and 

-20.43 ‰ (a difference of 2.82 ‰). In gentoo penguins, a δ13C variation of 4.1 ‰ indicated a 

separation into two subpopulations based on foraging zone (Cherel & Hobson, 2007). One group 

foraged in inshore open seas while the other was foraging in inshore closed seas. A δ13C value 

variation of 5.3 ‰ existed between northern rockhoppers (Sub-Tropical Front foraging) and 

emperor penguins (Antarctic foraging) (Cherel & Hobson, 2007). With the small difference 

between δ13C values found in this study, it is unlikely to represent segregation across a large 

latitudinal scale. 

Tawaki fitted with GLS leg bands from the Gorge River colony during the 2016 pre-molt 

were shown to segregate into two foraging groups along either the Sub-Tropical Front or the 

Sub-Antarctic Front (Mattern et al., 2018b). The same GLS banded penguins were included 

here as the Gorge River colony and did not show significantly different variation in δ13C values 

than the other colonies assessed. It is possible that tawaki are foraging along these separate 
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frontal zones to replenish weight lost during breeding, but then enter a period of hyperphagia to 

fuel feather growth closer to the New Zealand mainland on the return journey. This scenario 

would allow tawaki to take advantage of the high marine productivity near the mainland. 

Indeed, Mattern et al. (2018b) noted that returning tawaki follow more similar return 

routes than outgoing routes which may explain the ability to return to molt in prime condition 

(Warham, 1974) despite the 6,800 km round trip journey. However, more work is needed to fully 

understand this spatial segregation during the pre-molt period. Pairing spatial data such as 

satellite and GPS tags with isotopic data obtained from blood collected upon return to land to 

molt will greatly increase our understanding of their foraging behavior. 

δ15N 
 

Another critical factor when assessing the adaptability of tawaki is to identify their 

trophic position within local food webs. Unlike δ13C, δ15N is reflective of the trophic level of the 

organism (Hobson et al., 1994). In marine ecosystems, phytoplankton makes up the base of the 

food web and δ15N values increase with trophic level. We found no significant differences in 

δ15N values between sexes for blood or feathers, indicating that male and female tawaki may not 

forage for different trophic levels of prey, similar to many species of seabirds (Bearhop et al., 

2006), eastern rockhopper penguins (Eudyptes chrysocome filholi) (Morrison et al., 2014), and 

southern rockhopper penguins (Dehnhard et al., 2011). 

We did find a significant difference in δ15N values of blood between Harrison 
 

Cove and all other colonies sampled. Harrison Cove δ15N values averaged 13.0 ‰ while both 

Whenua Hou and Jackson Head averaged 12.4 ‰. While extensive prey and baseline sampling is 

needed in all sites, it is likely that the difference lies in baseline δ15N values in fjord ecosystems 

versus open ocean and continental shelf environments. Fjord ecosystems have been shown to be 
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enriched in δ15N due to high terrestrial influx of nutrients (Nilsen et al, 2008; Renaud et al., 

2011). It is therefore possible that tawaki in Harrison Cove are not foraging at a higher trophic 

level, but that the baseline δ15N values in the fjord are higher than those on the continental shelf 

or Foveaux Strait. 

Interestingly, the variation in feather δ15N values among years reflects differences in diet 

particularly in 2015 and 2016 as compared to the other years sampled. In these two years, the 

mean δ15N value was 12.2 ‰ (2015) and 12.5 ‰ (2016). The mean δ15N value for the other three 

years was 13.1 ‰. This shift in δ15N values is associated with the 2015 - 2016 El Niño Southern 

Oscillation (ENSO) that occurred in the eastern Pacific Ocean. ENSO warms ocean temperatures 

and reduces primary productivity (Barber et al., 1996). Such changes in productivity can shift 

prey, and subsequently, seabird ranges in search of more nutrient rich regions (Tershy et al., 

1991). This change in δ15N values during the pre-molt periods associated with an ENSO event 

suggests that tawaki adapt to different prey sources while at sea. 

However, the same may not be true for all colonies during the breeding season when 

penguins are forced into a central place foraging strategy. We did not have blood samples for 

2015 or 2016; however, tawaki breeding at Jackson Head were noted to have experienced high 

chick mortality during the ENSO event, suggesting a shift in prey distribution outside the 

acceptable foraging range from the colony (Mattern & Ellenberg, 2015). 

We found that δ13C and δ15N values differed significantly between blood and feather 
 

samples, meaning that tawaki are foraging in different marine zones (either latitudinally or 

inshore/offshore) and on different trophic level prey (or in habitats with different baseline δ15N) 

in the incubation and pre-molt periods. This difference based on tissue type is in line with the 

dual lifestyle of tawaki and other penguin species who shift between pelagic migrant and 

central-place foraging depending on the period of the annual cycle. 
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Conclusions 

Tawaki spend extended periods at sea and only return to shore to breed and molt. This 

dual lifestyle requires conservationists to understand foraging ecology in two distinct marine 

regions. Tawaki breeding sites occupy a diverse range of marine habitats which suggest high 

habitat plasticity. The fjord ecosystem appears to provide tawaki with ample prey of the 

preferred trophic level eliminating the need to travel long distances in search of food. Fjord 

ecosystems have a high input of terrestrial nutrients from forest debris and run off (Prebble et al., 

2018). This influx of nutrients along with unique hydrology (Rutger & Wing, 2006) and 

protection from rough seas creates a unique ecosystem that supports a vibrant community 

(McLeod et al., 2010). 

We have shown that tawaki foraging ecology is complex and responds to environmental 

factors such as ENSO events, period of the annual cycle and colony location (fjord versus nob- 

fjord). Future research should include extensive sampling of prey and other lower trophic level 

organisms in fjords and other regions to determine if the higher δ15N values in Harrison Cove are 

truly due to higher trophic niche or an artefact of higher baseline δ15N values in the environment. 

Tawaki nesting in inner fjord colonies should be compared to those near the mouth and in other 

fjords to determine if the pattern of exclusive fjord foraging holds. Finally, to understand if 

trophic niche and foraging zones have shifted over time, museum specimens should also be 

assessed. 

In the light of global climate change and differential impacts on marine ecosystems, it is 

critical to understand how tawaki and other seabirds will respond to changing conditions. If 
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tawaki are not able to overcome warming events such as ENSO, it is unlikely that they will adapt 

if warming ocean temperatures drive prey distribution away from mainland New Zealand. 

However, it is possible that fjord ecosystems may act as a refugia for tawaki (at least in the short 

term) and conservation plans to protect the fjords of the South Island could be critical for the 

future of this enigmatic species. 
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APPENDIX B 
REVIEW OF STOMACH 
CONTENT ANALYSIS 

RESEARCH 
 

Taxon Stomach Content Analysis 
 Locations Studied Publications 
 

Southern 
Rockhopper 

Isla de los Estados, 
Falklands/Malvinas, 

Steeple Jason 

 
(Raya Rey & Schiavini, 2005; Raya Rey et al., 2007; Thompson, 1989; 

Croxall et al., 1985; Pütz et al., 2003) 
 
 

Eastern 
Rockhopper 

Marion, Crozet, 
Kerguelen, Heard, 

Macquarie, 
Campbell 

 
(Brown & Klages, 1987; Tremblay & Cherel, 2003; Klages et al., 

1989; Horne, 1985; Hindell, 1988; Hull, 1999; Marchant 
& Higgins, 1990) 

Northern 
Rockhopper 

Gough, Amsterdam, 
St. Paul 

 
(Klages et al., 1989; Cooper et al., 1990; Tremblay et al., 1997) 

 
 

Macaroni 

South Georgia, SW 
Atlantic islands, 
Marion, Heard 

 
(Crawford et al., 2003; Ratcliffe et al., 2014; Brown & Klages, 1987; 

Deagle et al., 2007) 
Royal Macquarie (Hindell, 1988; Hull et al., 1997; Goldsworthy et al., 2001) 

 
Fiordland 

Codfish, Martin's 
Bay 

 
(Van Heezik, 1989, 1990) 

Snares Snares (Cooper et al., 1990; Marchant & Higgins, 1990; Mattern et al., 2009) 
Erect-crested none none 

 
 

Appendix B. Review of stomach content analyses in Eudyptes penguins. 
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APPENDIX C 
REVIEW OF FECAL DNA 

RESEARCH 
 

Taxon Fecal DNA 
 Locations Studied Publications 

Southern Rockhopper none none 
Eastern Rockhopper none none 
Northern Rockhopper none none 
Macaroni Heard (Deagle et al., 2007) 
Royal none none 
Fiordland Jackson Head, Milford Sound (McInnes et al., unpublished data) 
Snares none none 
Erect-crested none none 

 
 

Appendix C. Review of fecal DNA analysis studies in Eudyptes penguins. 
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APPENDIX D 
REVIEW OF STABLE 
ISOTOPE RESEARCH 

 
Taxon Stable Isotope Analysis 

 Locations Studied Publications 
Southern Rockhopper Isla de los Estados, 

Falklands/Malvinas 
(Hilton et al., 2006; Dehnhard et al., 2011; Rosciano et al., 
2016) 

Eastern Rockhopper Crozet, Prince Edward, 
Campbell 

(Whitehead et al., 2017; Xavier et al., 2018; Morrison et al., 
2014) 

Northern Rockhopper Amsterdam, Gough (Lorrain et al., 2009; Jaeger et al., 2013; Booth & McQuaid, 
2013) 

Macaroni Marion, Heard, South 
Georgia 

(Bearhop et al, 2006; Cherel et al., 2007; Cherel & Hobson, 
2007; Thiebot et al., 2014) 

Royal none none 
 

Fiordland 
Codfish, Milford 
Sound, Jackson Head, 
Open Bay 

(Poupart et al., 2019) 

Snares Snares (Mattern et al., 2009) 
Erect-crested none none 

 
 

Appendix D. Review of stable isotope analysis studies in Eudyptes penguins. 
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APPENDIX E 
REVIEW OF TRACKING 

RESEARCH 
 

Taxon Tracking (GPS, GLS, Satellite) 
 Locations Studied Publications 

Southern Rockhopper Isla de los Estados, 
Falklands/Malvinas, Isla Pingüno, Isla 
Noir 

(Pütz et al, 2003; Raya Rey et al., 2007; 
Rosciano et al., 2016) 

Eastern Rockhopper Crozet, Kerguelen (Ratcliffe et al., 2014; Whitehead et al., 2017) 
Northern Rockhopper Amtsterdam, St. Paul, Gough, Tristan 

da Cunha, Nightingale 
(Tremblay et al, 1997) 

Macaroni Macquarie (Hull et al., 1997) 
Royal none none 
Fiordland Codfish, Milford Sound, Jackson 

Head, Open Bay 
(Mattern et al., 2018b; Poupart et al., 2019) 

Snares Snares (Mattern, 2007) 
Erect-crested none none 

 
 

Appendix E. Review of tracking (GLS, GPS, and satellite tag) studies in Eudyptes penguins. 
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APPENDIX F 
FIORDLAND PENGUIN 

BLOOD ISOTOPE VALUES 
 

Tawaki Blood δ13C and δ15N Values Across Sites 
Colony δ13C (‰) δ15N (‰) Mean C:N Ratio 

 Mean ± 
SD 

 
Range 

Mean ± 
SD 

 
Range 

 

Whenua Hou -19.1 ± 0.4 -19.7 to -18.5 12.4 ± 0.8 11.1 to 13.5 3.3 
Jackson Head -19.5 ± 0.6 -21.8 to -18.7 12.4 ± 0.6 11.7 to 13.8 3.4 
Harrison Cove -19.5 ± 1.0 -21.8 to -18.2 13.0 ± 0.5 11.6 to 14.1 3.3 
All Tawaki -19.5 ± 0.7 -21.8 to -18.2 12.6 ± 0.6 11.1 to 14.1 3.3 

 
 

Appendix F. Tawaki blood δ13C and δ15N mean values and ranges from all sites studied. 
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APPENDIX G 
FIORDLAND PENGUIN 

FEATHER ISOTOPE VALUES 
 

Tawaki Feather δ13C and δ15N Values Among Sites 
Colony δ13C (‰) δ15N (‰) Mean C:N Ratio 

 Mean ± 
SD 

 
Range 

Mean ± 
SD 

 
Range 

 

Harrison Cove -18.7 ± 0.5 -20.5 to -16.7 12.7 ± 0.5 11.6 to 14.8 3.5 
Gorge River -18.8 ± 0.5 -19.4 to -18.0 12.7 ± 0.5 11.9 to 13.4 3.8 
Jackson Head -19.0 ± 0.7 -20.6 to -17.5 12.8 ± 0.5 11.7 to 14.4 3.5 
Whenua Hou -19.2 ± 0.6 -20.43 to -18.1 12.7 ± 0.6 11.1 to 14.0 3.7 
All Tawaki -19.0 ± 0.7 -20.6 to -16.7 12.8 ± 0.6 11.1 to 14.8 3.5 

 
 

Appendix G. Tawaki feather δ13C and δ15N mean values and ranges from all sites studied. 
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APPENDIX H 
CONNECTING LETTER REPORT 

FOR FEATHER ISOTOPES BY 
YEAR 

 
 

δ13C 
2010 AB 
2015 A 
2016 B 
2017 AB 
2018 B 

δ15N 
2010 AB 
2015 C 
2016 BC 
2017 A 
2018 A 

 
Appendix H. Connecting letter report of pair-wise combinations of δ13C and δ15N values from 

feathers among years sampled. 
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