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ABSTRACT 

Translocations have the potential to aim conservation efforts as well as to reduce mortality 

caused by human activities. Eastern diamondback rattlesnakes (Crotalus adamanteus, EDB) 

have a limited ability to adapt to habitat loss and fragmentation due to the species’ slow life 

history and minimal dispersal ability. Because they are a venomous species, they are viewed as 

nuisance animals and are often killed on sight. We translocated a cohort of EDBs to investigate 

the potential of using translocations as a conservation and mitigation tool for this species. In July 

2018, we translocated twelve adult eastern diamondback rattlesnakes from Parris Island Marine 

Corps Recruit Depot to an inland wildlife management area. We radio-located the rattlesnakes 

approximately three times weekly during the active season and once per week during the inactive 

season both pre- and post-translocation. We used these radio telemetry data to examine the 

effects translocation had on home-range size and average daily movement. We also used know-

rate models to examine adult survival post-translocation. The post-translocation home ranges 

were larger than the pre-translocation home ranges and the snakes moved more on average per 

day post-translocation. We failed to detect an effect of translocation on two-year survival 

probability. We suspect that large post-translocation home ranges and average daily movements 

reflect the need to find suitable ambush and hibernacula sites, as well as the difference in coastal 

and inland woodland habitats. In order for translocations to be a viable conservation strategy for 

EDBs, more research is needed to determine the long-term viability of translocated populations. 
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THE EFFECTIVENESS OF LONG-DISTANCE TRANSLOCATION OF EASTERN 

DIAMONDBACK RATTLESNAKES (CROTALUS ADAMANTEUS) 

 

INTRODUCTION 

Translocation is the anthropogenic movement of animals from one area to another (IUCN 

2013) and can be further divided into two types. A conservation translocation is when the 

primary objective of the movement is to aid conservation efforts (IUCN 2013). Translocations 

have been used as a conservation strategy for a wide variety of taxa (Germano et al. 2014, 

Goldenberg et al. 2019, Seddon et al. 2007) and have the potential to supplement declining or at-

risk populations and enhance population viability or establish new populations in areas where the 

species has been extirpated (Germano et al. 2014, Dodd and Seigel 1991, IUCN 2013). For 

example, translocations have been implemented to supplement small, existing populations of 

black-tailed prairie dogs (Cynomys ludovicianus) decimated by disease (Dullum et al. 2005), as 

well as to augment declining populations of the federally endangered red-cockaded woodpecker 

(Picoides borealis; Herbez et al. 2011, Saenz et al. 2002). Translocations have also been used to 

establish new populations of tuatara (Sphenodon punctatus) in areas where they have been 

extirpated (Jarvie et al. 2016).  

Alternatively, a mitigation translocation is when the motive for moving the animals is to 

reduce mortality caused by human activities or to placate the members of a community who view 

those animals as problematic (IUCN 2013, Germano et al. 2015). This type of translocation is 

commonly used with large predators such as brown bears (Ursus arctos; Milligan et al. 2018) 

and grey wolves (Canis lupus; Bradley et al. 2005) in order to reduce conflicts with humans and 

livestock, although the effectiveness of these projects are debated (Germano et al. 2014).  

Mitigation translocations are also used as a non-lethal way to address human conflict with 
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common nuisance species in urban and suburban areas (Beringer et al. 2002, Walter et al. 2010, 

Mosillo et al. 1999, Flockhart and Clarke 2017). For species with limited dispersal ability, 

translocations have been used to remove animals from development and construction sites to 

prevent accidental mortality (Dickson et al. 2019, Rathbun and Schneider 2001, Ashton and 

Burke 2007).  

 Translocation studies are often taxonomically biased towards mammals and birds 

(Germano and Bishop 2009, Seddon et al. 2005) and as such, herpetofauna are often overlooked. 

This bias is further exacerbated by the secretive and cryptic nature of many reptiles and 

amphibians, which makes them difficult to study (Boback et al. 2020, Pike et al. 2008). The life 

history traits of snakes, in particular, place them at greater risk of extinction (Waldron et al. 

2013, McKinney 1997), making conservation and mitigation actions, such as translocation, 

necessary. For example, many snake species exhibit limited dispersal ability and strong habitat 

specificity, making them susceptible to extirpation due to rapid landscape change (Waldron et al. 

2013). Some of these same traits make snakes appropriate models for studying the effectiveness 

of translocation. Because of their low dispersal ability, snakes are less able to ‘home’ and return 

to their capture site, a commonly cited problem among translocation studies (Mengak 2018, 

Bradley et al. 2005, Milligan et al. 2018). Additionally, snakes are mainly solitary animals so 

they can be moved individually, unlike some mammals and birds that greatly benefit from entire 

family groups being translocated together (Bradley et al. 2005, Goldenberg et al. 2019).  

Despite having great potential, the effectiveness and suitability of snake translocations for 

either conservation or mitigation purposes is not clear (Dodd and Seigel 1991, Ewen et al. 2014, 

Germano et al. 2014, Sullivan et al. 2015, Germano and Bishop 2009). Most previous snake 

translocation studies indicated that translocated snakes experienced lower survival than resident 
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snakes (Devan-Song et al. 2016, Wolfe et al. 2018, Roe et al. 2010, Plummer and Mills 2000). 

Translocated Nerodia sipedon were reported to have an annual survival rate of 19.6%, compared 

to 45% for residents; this was attributed to the extensive movements of the translocated 

individuals but was not identified as reason to discount translocation as a potential conservation 

tool for the species (Roe et al. 2010). Similarly, translocated Trimeresurus albolabris had an 

annual survival probability of 4.2% compared to 16.5% for resident snakes, possibly because 

species with naturally low survival probabilities may be more negatively affected by 

translocation (Devan-Song et al. 2016). In contrast, there are examples of translocations where 

effects on survival were minimal (DeGregorio et al. 2017, Waldron et al. unpublished data). For 

instance, no mortality was observed among wild translocated Pantherophis obsoletus 

(DeGregorio et al. 2017).  

It is well documented that translocation causes abnormal movement patterns such as 

more frequent unidirectional movements (Devan-Song et al. 2016, Reinert and Rupert 1999, 

Plummer and Mills 2000), more time spent moving (Reinert and Rupert 1999, Wolfe et al. 

2018), and larger-than-normal home ranges (Roe et al. 2010, Waldron et al. unpublished data) 

compared to resident snakes. For example, activity ranges, mean distances moved per day, and 

maximum range lengths were found to be between 3 and 5 times larger for translocated Crotalus 

horridus compared to resident snakes, and translocation was not recommended for this species 

because of high mortality and aberrant behavior (Reinert and Rupert 1999). Additionally, some 

studies have reported higher average daily movement or mean distance moved for translocated 

individuals compared to residents (Roe et al. 2010, Reinert and Rupert 1999, Butler et al. 2005). 

Translocated Notechis scutatus travelled more than twice as far as residents between successive 

locations (Butler et al. 2005). Other studies found no difference in average daily movement 



4 

between translocated and resident individuals (Wolfe et al. 2018) or greater average daily 

movements only for females (Devan-Song et al. 2016). Similarly, the effect of translocation on 

reproduction has not been thoroughly reported. Most translocation studies do not mention 

reproduction at all, and those that do differ in outcome with some reporting a great disruption in 

physiological reproductive activity (Devan-Song et al. 2016) and others reporting normal 

reproductive behaviors including parturition and courting (Reinert and Rupert 1999).  

In order to resolve some of these discrepancies, we conducted a translocation study of 

eastern diamondback rattlesnakes (Crotalus adamanteus), a specialist of the longleaf pine 

savanna ecosystem. This species has undergone major population declines due to habitat loss and 

fragmentation (Martin and Means 2000, Timmerman and Martin 2003) and is currently being 

reviewed for federal protection under the Endangered Species Act (United States Fish and 

Wildlife Service 2012, IUCN 2011). Eastern diamondback rattlesnakes (EDB) are characterized 

by a slow life history that includes high longevity, high adult survival, and delayed maturation 

(Waldron et al. 2013). They also exhibit a limited dispersal ability, especially among mature 

adults, which feature high spatial fidelity (Waldron et al. 2013). These factors together suggest 

that EDBs have a limited ability to adapt to the severe habitat loss and fragmentation of the LLP 

ecosystem, are vulnerable to declines (Waldron et al. 2013, 2006) and may benefit from 

conservation translocations. Translocating individuals from small habitat fragments to larger 

areas of better quality habitat could supplement existing populations (Germano and Bishop 2009, 

Germano et al. 2014). Also, eastern diamondback rattlesnakes are a venomous species, and are 

therefore considered problematic by the public. The attitude encapsulated by the adage “the only 

good snake is a dead snake” is all too common, especially in areas where venomous species are 

prevalent (Pandey et al. 2016, Nonga and Haruna 2015). Mitigation translocations, moving 
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individuals away from areas with large human populations, have the potential to mollify the 

public in a way that does not involve killing the snakes. Thus, EDBs provide a suitable model for 

studying the utility of translocation as both a conservation and mitigation strategy for a long-

lived pit viper.  

In this study, we translocated a cohort of 12 adult EDBs that had been radio 

telemetrically monitored at the donor site, allowing us to compare pre- and post-translocation 

movement patterns. We expected that the post-translocation home ranges would be larger than 

the pre-translocation home ranges. We also expected the snakes to have larger average daily 

movements post-translocation as they adapt to their new environment. Lastly, we expected 

translocation to negatively impact survival as compared to non-translocated snakes but despite 

this, we expected to detect reproductive effort. The outcome of this study will aid in our 

understanding of the effects translocation has on rattlesnakes and the suitability of translocation 

as both a conservation and mitigation strategy.  

METHODS 

Study Species 

 The eastern diamondback rattlesnake (Crotalus adamanteus) is the largest species of 

rattlesnake (Klauber and McClung 1972). It is endemic to pine savannas and woodlands of the 

imperiled longleaf pine ecosystem in the southeastern Coastal Plain, USA (Martin and Means 

2000).  Anthropogenic habitat loss has, in part, led to recent declines of EDBs across their 

historic range and they are currently being reviewed for federal protection under the Endangered 

Species Act (Waldron et al. 2008; 2013, Martin and Means 2000). This species is characterized 

by slow life history traits such as delayed maturation, high longevity, and high adult survival 

(Waldron et al. 2013). Adult EDBs rarely disperse at the landscape scale and survival is low 
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among neonates, which do disperse (Waldron et al. 2006, Waldron et al. 2013). Due to the 

species’ slow life history and limited dispersal ability, eastern diamondback rattlesnakes have a 

limited ability to adapt to habitat loss and fragmentation (Waldron et al. 2013).  

Study Sites 

 Our source population came from Parris Island Marine Corps Recruit Depot (MCRDPI) 

located in Beaufort County, SC. Parris Island is a sea island of approximately 8,000 ha that 

includes residential areas, military recruit training areas, office buildings, and a public golf 

course. A large part of the island is coastal marsh habitat, and thinning practices and fire 

management are used in an attempt to keep a relatively open canopy in forested areas. The EDB 

population on the island has been monitored since 2008 with the goal of reducing EDB/recruit 

interactions.  

 State-owned properties located in Hampton and Jasper Counties, SC, were used as the 

recipient sites for the translocated EDBs. The property that served as the release site is 2373 ha 

in size and is bordered by two other state-owned properties, sized 2734 ha and 5374 ha, 

respectively. These properties contain a variety of habitats including fire-managed longleaf pine 

savanna, oak-hickory mixed-pine hardwoods, and the cypress-tupelo swamp forests of the 

Savannah River floodplain. Fire is used on all three properties to manage pine savannas and 

woodlands and the faunal species that depend on them such as EDBs, the gopher frog 

(Lithobates capito), and the federally endangered red-cockaded woodpecker (Leuconotopicus 

borealis).  

Translocation and Radio Telemetry 

 Since 2008, EDBs on the MCRDPI have been monitored using radio telemetry and mark-

recapture surveys. Those tracked using radio-telemetry were located approximately 2-3 times 
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weekly during the active season (Apr - Nov) and once weekly during the inactive season (Dec - 

Mar). Each time a snake was located, they were considered to have moved if they were more 

than 4 meters away from their previous location. We used this approach to account for GPS-unit 

error (Trimble Juno 3B; 3-4m). The translocated individuals used in this study had been 

previously captured on the island and tracked for at least 200 days prior to being translocated. 

Individuals that had been radio-tracked for at least two consecutive years on MCRDPI were 

selected as non-translocated, control snakes. The non-translocated (control) snakes were not 

tracked during the same years as the translocated snakes. Each individual was equipped with an 

internal Holohil Systems SI-2 radio transmitter (11-13g) surgically implanted by a veterinarian 

following procedures modified from Reinert and Cundall (1982). Over the course of the study, 

each snake was captured at least twice yearly (once in the fall before ingress, and once 

immediately following egress) to monitor body condition. We processed snakes using a snake 

hook and clear restraining tubes and measured snout-to-vent length (SVL; cm), total length (TL; 

cm) and mass (g).  

 In July 2018, we translocated 12 adult EDBs from MCRDPI to the recipient property. We 

released individuals in quality EDB habitats, based on previous radio telemetry and mark-

recapture data collected at the release site. We radio-located translocated snakes daily for one 

week post-release to ensure no individuals were lost if they made large initial movements. From 

then on, we located each snake at least three times weekly during the active season and once 

weekly during the inactive season.   

Statistical Analysis 

 We conducted our analyses on data collected prior to translocation and one year post-

translocation. All statistical analyses were conducted in SAS 9.4 unless otherwise stated. 
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Variables were log-transformed, if needed, to meet normality assumptions. We excluded one 

male snake from movement analyses because it disappeared shortly after being released at the 

recipient site and its fate was unknown. We constructed 95% minimum convex polygons (MCP) 

that represented the home ranges of each individual, using GPS location fixes after removing any 

obviously erroneous points. The 95% MCP excludes the 5% most outlying points thus excluding 

any occasional exploratory movements outside the true home range (Butler et al. 2005). We 

constructed pre-translocation home ranges using the Home Range Tools 2.0 extension in 

ArcMap 10.4.1 from location fixes on the MCRDPI obtained in the year leading up to the 

translocation. We created post-translocation home ranges from those location fixes obtained on 

the recipient site during the year following translocation. We also calculated two, consecutive-

year home ranges for 10 adult, non-translocated EDBs on MCRDPI that had been monitored 

using radio-telemetry as part of a long-term monitoring project on the island. We used analysis 

of variance (ANOVA; PROC MIXED) to compare home-range size by treatment (translocated or 

non-translocated), year, and their interaction. We included an interaction statement because we 

expected translocated snakes would have larger home ranges during the second year of the study 

as compared to control snakes. We ran a post-hoc simple effects test to test the effect of year at 

both treatment levels. 

To calculate the average daily movement for each snake, we combined consecutive 

points where the second point was recorded as being the same (< 4 m) as the first, accounting for 

any GPS error. We divided the total distance traveled (m), calculated using Home Range Tools 

2.0 in ArcMap, by the number of days tracked pre- or post-translocation. We also calculated 

average daily movement for two consecutive years from the control group of 10 adult EDBs on 

MCRDPI. We used analysis of variance (ANOVA; PROC MIXED) to compare average daily 
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movement by treatment (translocated or non-translocated), year, and their interaction. We 

included an interaction statement because we expected translocated snakes would move greater 

distances during the second year of the study as compared to control snakes. We ran a post hoc 

simple effects test to test the effect of year at both treatment levels.  

Because not all the snakes were tracked for a full year prior to translocation, we 

investigated the effect of translocation on home-range size and average daily movement using 

only a subset of points. All translocated snakes were tracked for a minimum of 204 days prior to 

translocation, from December 8, 2017 to June 29, 2018. We calculated the pre-translocation 

home ranges again using only the location fixes from this date range and then calculated the 

post-translocation home ranges using location fixes from the same date range of the next year, 

Dec. 8, 2018 through June 29, 2019. We also calculated two, consecutive-year home ranges for 

the control snakes using only points collected between Dec. 8th and June 29th of each year. We 

used analysis of variance (ANOVA; PROC MIXED) to compare home-range size by treatment 

(translocated or non-translocated), year, and their interaction. We then calculated the average 

daily movements for the date subset in the same manner and analyzed with a two-way ANOVA. 

We excluded three translocated snakes from this analyses that died early into or before the 

December 8th - June 29th subset and one control snake that had <10 location fixes during the 

first year date subset. 

 We used radio-telemetry data to conduct known-fate survival analysis in program MARK 

9.0 (White and Burnham 1999) using data collected during the year following translocation. We 

collapsed all radio-telemetry data into 12, one-month intervals and created an encounter history 

with 12 entries per snake. One individual was moved to the recipient site approximately three 

weeks later than the rest of the cohort because it was unable to be captured at the source site. We 
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deemed any effect of this to be negligible and started that encounter history on the same date as 

the other individuals. We modeled survival as a function of sex, size (snout-to-vent length, SVL) 

and body condition. Body condition was calculated from the residuals of an ordinary least-

squares regression of body mass predicted by SVL, such that positive values indicated high 

relative body condition and negative values indicated low relative body condition (Jakob et al. 

1996). We also modeled survival over two seasons (active and inactive) based on EDB activity 

patterns. We coded the active season as Apr-Nov, which encompassed EDB foraging and 

breeding seasons. We coded the inactive season as Dec-March, when EDBs were inactive and 

regularly occupied subterranean habitats. These season delineations were based on observations 

of telemetered EDBs within the study area since 2008. We constructed five candidate models 

that included survival as a constant (S(.)), as a function of the individual covariates (S(Cov)), and 

varying by season (S(season)). We used Akaike’s Information Criterion adjusted for small 

sample size (AICc) to rank candidate models. We estimated annual survival from the constant 

model.  

 We used a separate known-fate survival analysis to compare two-year survival between 

translocated and non-translocated individuals. We randomly selected 18 non-translocated 

individuals that had been tracked and survived on MCRDPI for at least one year between 2010 

and 2019. We selected snakes that had been tracked for a full year because the translocated 

snakes had 100% survival in the first year (pre-translocation). For both the translocated and non-

translocated snakes, we collapsed all radio-telemetry data into 24, one-month intervals and 

created an encounter history with 24 entries per snake. We modeled survival as a function of 

treatment (translocated or non-translocated) and calculated the two-year survival probability for 

both by designating specific covariate values.  
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RESULTS 

Home-Range Size 

The average pre-translocation home-range size was 14.52 ± 3.09 ha (SE) and the average 

post-translocation home-range size was 44.77 ± 9.92 ha, whereas the average home-range sizes 

for the control snakes for two consecutive years were 16.06 ± 4.49 ha and 24.99 ± 9.38 ha (Table 

1). We expected a significant interaction of treatment and year, which would indicate larger 

home-range size for the translocated group in the second year. The treatment by year interaction 

approached significance (F1,19 = 4.03, p = 0.0591; Table 2), such that translocated snake home 

ranges were larger in year two (Figure 1). We failed to detect a main effect of treatment on 

home-range size (F1,19 = 1.79, p = 0.20). Home-range size differed by year; year 2 home ranges 

were larger than year 1 home ranges (F1,19 = 17.78, p = 0.0005; Table 2). A test of simple effects 

revealed a significant effect of year on the translocated group (F1,19 = 20.34, p = 0.0002) and no 

effect of year on the control group (F1,19 = 2.33, p = 0.1436). There was a large amount of 

variation in home-range size, especially for the translocated group. When we limited our analysis 

to a subset of points representing the minimum number of days that all snakes were tracked on 

MCRDPI (Table 1), we failed to detect a main effect of year (F1,16 = 3.2, p = 0.0924), treatment 

(F1,16 = 0.17, p = 0.6829), or the treatment by year interaction (F1,16 = 0.09, p = 0.765) on home-

range size. 
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Table 1. Mean 95% minimum convex polygon home-range estimates (ha) for translocated and 

non-translocated (control) snakes. ‘Subset’ indicates groups where only location fixes generated 

between Dec. 8th and June 29th were used to calculate home ranges.  

GROUP N  MEAN HRS (HA) SE RANGE 

Translocated Year 1 11 14.62 3.09 2.57 – 34.06 

Translocated Year 2 11 44.77 9.92 8.57 – 122.83 

Control Year 1 10 16.06 4.49 1.24 – 40.33 

Control Year 2 10 24.99 9.38 4.66 – 101.71 

Subset Translocated Year 1 9 7.80 1.67 2.57 – 16.00 

Subset Translocated Year 2 9 12.65 3.67 4.49 – 38.88 

Subset Control Year 1 9 6.50 1.61 1.28 – 17.77 

Subset Control Year 2 9 18.75 9.49 0.65 – 91.24 

 

Table 2. Differences of least squares means from home-range size (ha) ANOVA. Shaded rows 

have significance at alpha = 0.05. DF = 19 for all rows.   

EFFECT TREATMENT YEAR TREATMENT YEAR ESTIMATE SE T P -

VALUE 

Year 
 

1 
 

2 -0.3371 0.0800 -4.22 0.0005 

Treatment C 
 

T 
 

-0.2006 0.1501 -1.34 0.1971 

Treatment*Year C 1 C 2 -0.1766 0.1157 -1.53 0.1436 

Treatment*Year C 1 T 1 -0.0401 0.1701 -0.24 0.8163 

Treatment*Year C 1 T 2 -0.5378 0.1701 -3.16 0.0051 

Treatment*Year C 2 T 1  0.1365 0.1701  0.80 0.4320 

Treatment*Year C 2 T 2 -0.3612 0.1701 -2.12 0.0470 

Treatment*Year T 1 T 2 -0.4977 0.1104 -4.51 0.0002 

 



13 

 

Figure 1. Mean home-range size (ha) for the translocated and non-translocated (control) groups 

over two years. Error bars show standard error and the letters designate significance at α = 0.05 

based on the differences of the least square means from the two-way, repeated measures 

ANOVA. 

Average Daily Movement 

The average distance moved per day was 9.86 ± 1.2 m (SE) prior to translocation and 

21.4 ± 2.79 m after being translocated (Table 3). Control snakes moved 11.77 ± 2.28 m per day 

in the first year and 10.69 ± 1.18 m the second year (Table 3). We failed to detect an effect of 

treatment on average daily movement (F1,19 = 2.37, p = 0.1403). Average daily movement 

differed by year such that year 2 had greater daily movements than year 1 (F1,19 = 14.47, p = 

0.0012). We expected a significant interaction of treatment and year, which would indicate 

greater daily movements for the translocated group in the second year. The treatment by year 
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interaction was significant (F1,19 = 15.81, p = 0.0008) such that translocation led to higher 

average daily movements for year 2 (Figure 2). The simple effects test showed that year had a 

significant effect on the translocated group (F1,19 = 31.77, p <0.0001) and no effect on the control 

group (F1,19 = 0.01, p = 0.9066). When we limited our analysis to December – June subset of 

points (Table 3), we failed to detect a main effect of year (F1,16 = 3.22, p = 0.09), treatment (F1,16 

= 1.09, p = 0.3121), or the treatment by year interaction (F1,16 = 0.11, p = 0.7452) on home-range 

size. 

Table 3. Average daily movement (m) for translocated and non-translocated (control) snakes. 

‘Subset’ indicates groups where only location fixes generated between Dec. 8th and June 29th 

were used to calculate home ranges. 

GROUP N MEAN ADM (M) SE RANGE 

Translocated Year 1 11 9.86 1.20 3.09 – 16.84 

Translocated Year 2 11 21.40 2.79 11.61 – 37.31 

Control Year 1 10 11.77 2.28 4.90 – 28.06 

Control Year 2 10 10.69 1.18 5.33 – 15.41 

Subset Translocated Year 1 9 7.81 1.02 3.21 – 11.74 

Subset Translocated Year 2 9 8.90 1.07 4.03 – 14.29 

Subset Control Year 1 9 6.26 1.04 3.40 – 14.13 

Subset Control Year 2 9 7.87 1.10 1.81 – 13.65 
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Figure 2. Mean average daily movement (m) for the translocated and non-translocated (control) 

groups over two years. Error bars show standard error and the letters designate significance at α 

= 0.05 based on the differences of the least square means from the two-way, repeated measures 

ANOVA. 

Survival 

One year post-translocation, five (4 males and 1 female) translocated EDBs died. Cause 

of death varied and included starvation (N=1), attempted predation by a bird (N=1), killed by 

humans (N=2), and unknown (N=1). Only non-correlated covariates variables were included as 

covariates in the models. Known-fate survival models (Table 4) failed to detect significant 

covariate effects (95% confidence limits of regression coefficients contained zero) on adult 

survival. Based on the constant model, annual survival probability post-translocation was 61 ± 

13% (estimate ± SE). 



16 

Table 4. Candidate known-fate models used to examine translocated EDB survival. ΔAICC = the 

difference between the AICC value for the current model and the lowest AICc score; K = number 

of model parameters. Models are listed in order of support. SVL = snout-vent-length (cm), 

2season = active or inactive seasons, BCI = body condition index. 

MODEL AICC DELTA AICC WEIGHT K 

{S(.)} 43.94 0.00 0.35 1 

{S(SVL)} 45.11 1.17 0.20 2 

{S(SEX)} 45.16 1.23 0.19 2 

{S(2SEASON)} 45.89 1.96 0.13 2 

{S(BCI)} 45.96 2.03 0.13 2 

 

We failed to detect an effect of treatment on two-year survival probability (β = -0.333 ± 

0.638, 95% CI = -1.583 – 0.916). The two-year survival probability was 64 ± 13% for the 

translocated snakes and 72 ± 10% for the non-translocated snakes.  

DISCUSSION 

Translocation affected EDB movement but unexpectedly did not affect two-year survival 

probability. The significant interaction between treatment and year on average daily movement 

shows that EDBs exhibited greater average daily movement post-translocation, which is in 

accordance with other snake translocation studies (Roe et al. 2010, Reinert and Rupert 1999, 

Butler et al. 2005). An increase in average daily movement due to translocation has also been 

observed with Crotalus horridus; those translocated snakes moved an average of 96 m per day 

whereas resident snakes moved an average of 26 m per day (Reinert and Rupert 1999). In this 

study, EDBs averaged 21 ± 9 m per day post-translocation which is similar to a previous EDB 

translocation study where snakes moved an average of 25 ± 11 m per day post-translocation 

(Jungen 2018). A typical average distance moved per day for inland EDBs is 16.5 m 

(Timmerman 1995), which was greater than the first-year averages of our translocated and non-
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translocated snakes (9.9 m and 11.2 m, respectively). The overall smaller average daily 

movements on MCRDPI are likely a result of the relatively small size and large human 

population of their island source site; the EDBs restrict their movements to low-risk areas with 

low human activity resulting in smaller-than-normal daily movements (Waldron et al. 2012). The 

increase in movement we observed is likely indicative of a stress response to translocation 

(Heiken et al. 2016, Teixeira et al. 2007), as well as the need to explore their new environment to 

find suitable ambush and hibernacula sites (Butler et al. 2005, Reinert and Rupert 1999). Other 

studies found that after being released at the recipient site, the snakes made large movements 

very quickly, perhaps in an attempt to relocate their original home ranges (Reinert 1991, 

Waldron et al. unpublished data). However, the snakes in this study barely moved from their 

release site for the first week post-translocation, and we observed no obvious unidirectional 

movements indicative of homing. 

We failed to detect an effect of treatment (translocated or non-translocated) by year 

interaction on home-range size, although it approached significance. We suggest this lack of 

effect is due to large amounts of variation, mainly in the translocated group. It has been 

suggested that some amount of change in home-range size between years is to be expected due to 

fluctuating seasonal changes in habitat productivity (Timmerman 1995). The strong effect of 

year we detected is likely due to such fluctuation. Despite the lack of a significant effect of the 

treatment by year interaction, all specific combinations of differences in the least square means 

that include treatment year 2 (the post-translocation year) are significant at the 0.05 level (Table 

2). This demonstrates that translocation likely did influence home-range size, but it is partially 

obscured by large amounts of variation and limited power. Both translocated and control snakes 

had larger home ranges in year 2; on average, translocated snakes exhibited a greater increase in 
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home-range size compared to control snakes. Additionally, the home-range size simple effects 

test demonstrated that translocated snakes had larger home ranges post-translocation. Many 

snake translocation studies have reported larger home ranges due to translocation (Wolfe et al. 

2018, Roe et al. 2010, Reinert and Rupert 1999, Butler et al. 2005, DeGregorio et al. 2017). 

Translocated Crotalus horridus, a closely related species, had convex polygon home ranges 

ranging from 233 ha (female mean) to 600 ha (male mean) whereas the home ranges of resident 

individuals ranged from 42 ha (female mean) to 60 ha (male mean; Reinert and Rupert 1999). 

Among inland populations, EDB home ranges generally range from 29 to 89 ha for females and 

85 to 160 ha for males (Waldron et al. 2006, Timmerman 1995) whereas average EDB home 

ranges on our source site, MCRDPI, were 5.3 ha for females and 12.0 ha for males (Waldron et 

al. 2012). The overall smaller home-range size on MCRDPI is again likely an effect of the small 

size and large human population of the island (Waldron et al. 2012). 

We failed to detect significant covariate effects on annual survival probability (Table 4), 

likely reflecting our small sample size and limited power. Annual post-translocation survival was 

61 ± 13% (estimate ± SE, based on the constant model). Annual survival probability of EDBs at 

the source population was 86 ± 4% (Waldron and Welch 2017) and 82 ± 6.5% at the recipient 

site for non-translocated resident individuals (Waldron et al. 2013). Despite an apparent effect on 

annual survival probability, the two-year survival probability for the translocated snakes (64 ± 

13%) was not significantly different from that of non-translocated snakes (72 ± 10%) indicating 

that translocation may not have a negative effect on the survival of this species.  

 Of the five individuals that died within one-year post translocation, the causes of death 

varied greatly. Despite the recipient site having low human traffic, two of the five deaths were 

caused by humans. We believe this demonstrates how negative attitudes towards snakes, 
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especially venomous species, can hinder conservation progress. As long as the public endorses 

the attitude “the only good snake is a dead snake,” conservation and mitigation programs, such 

as translocations, are only temporary solutions to a much larger problem. Snakes are often 

viewed as dangerous due to cultural norms and phobias (Nonga and Haruna 2015, Pandey et al. 

2016, Keener-Eck et al. 2020) and the direct killing of snakes by humans has been cited as a 

factor in population declines (Gibbons et al. 2000, Whitaker and Shine 2000). Venomous species 

are especially likely to be affected by peoples’ negative attitudes; 49% of survey respondents in 

Nepal would kill any venomous snake encountered (Pandey et al. 2016). However, there is hope 

through education. For example, a person’s behavior in reaction to a timber rattlesnake encounter 

is guided by knowledge and past experiences, and snake encounters with positive outcomes lead 

to more positive and harder to change attitudes (Keener-Eck et al. 2019). We recommend the 

implementation of education programs among school-aged children to inform and expose them 

to snakes, in order to replace fear with knowledge (Morgan and Gramann 1989). Conservation 

and mitigation programs, such as translocations, are more likely to succeed if the public is 

accepting of snakes and their role in the ecosystem.   

 Our results may have been affected by variation in the length of time telemetered EDBs 

were monitored prior to being translocated. Ideally, we would have only translocated snakes that 

had been radio-telemetrically monitored for a full year prior to being moved. Unfortunately, this 

was not possible due to limited sample size, and only 5 out of 12 EDBs in our study were tracked 

for a full year. All snakes in our study were tracked for a minimum of 204 days prior to 

translocation, and all were monitored from December through June. Thus, we compared home-

range sizes and average daily movements for that subset of dates and found that year did not 

affect the treatment groups (translocated or non-translocated) differently for both home-range 
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size and average daily movement. While these results were not anticipated, we suspect our 

limited power affected our ability to detect an effect of translocation on movement. We suspect 

these results could be due to low power; we excluded three snakes because they died before or 

early into the December 8th – June 29th subset. Additionally, this date subset excludes some of 

the foraging season (Apr – Jul) and all of the breeding season (Aug – Nov; Waldron et al. 2013). 

The fact that we failed to detect a difference in either home-range size or average daily 

movement for the December to June subset is also likely an effect of different EDB densities on 

the source and recipient sites. The density of EDBs on MCRDPI is higher than densities of 

typical inland sites, such as the recipient property (Waldron et al. unpublished data). When 

translocated, males would have had to move more in search of females on the recipient property 

than previously on MCRDPI. Because the December to June subset excluded all of the breeding 

season, the increase in movement due to lower EDB density would not be evident.   

 We suspect that habitat characteristics of both the source and recipient sites affected the 

success of EDB translocation. Eastern diamondback rattlesnakes are habitat specialists within the 

longleaf pine savanna but will select for other habitats that are structurally similar (Waldron et al. 

2006, Martin and Means 2000). Our source site, MCRDPI, exemplifies an alternative habitat 

because the EDBs there rely on the coastal marsh habitat that makes up a large part of the island 

(Stohlgren 2013). Coastal marsh habitat is structurally similar to the longleaf pine savanna but is 

quite different in other ways including prey base, plant species composition, and hydrological 

characteristics (Chabreck 1988). Therefore, natal habitat preference induction (NHPI), where 

natal habitat molds an individual’s habitat preference following dispersal (Davis and Stamps 

2004, Davis 2008), may play a role in the success of EDB translocations. This theory states that 

aspects of individuals’ phenotypes are shaped by the specific environment they are born into, 
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making them especially well-suited for that habitat (Davis and Stamps 2004). Thus, when it 

comes time to disperse, it could be beneficial for individuals to select for a habitat similar to their 

natal habitat (Davis and Stamps 2004). In our study, we moved EDBs from an island with coastal 

marsh habitat to an inland site containing a variety of habitats including fire-managed longleaf 

pine savanna, oak-hickory mixed-pine hardwoods, and the cypress-tupelo swamp forests of the 

Savannah River floodplain. By moving them to a site with fire-managed longleaf pine savanna, 

we characterized the move as one from suitable habitat to very good habitat, thinking this would 

help control the expected increase in daily movement and home range size. It is possible that due 

to NHPI, the snakes were unable to cope with the dramatic change in habitat and experienced 

high amounts of stress, even though the change was for the better. Natal habitat preference 

induction could have been a factor in other snake translocation studies as well but it is hard to 

make that determination because many of these studies either do not describe the source sites 

(Roe et al. 2010), or obtained their study animals sporadically from many different areas (Wolfe 

et al. 2018, Devan-Song et al. 2016, DeGregorio et al. 2017).  

 We suggest that translocations have potential for mitigation and conservation uses but we 

caution against their casual use. We failed to detect a significant reduction in survival probability 

due to translocation and we observed typical reproductive behaviors. Two females gave birth 

post-translocation and several males were witnessed courting resident females. The increase in 

home-range size and average daily movements we observed post-translocation is concerning and 

demonstrates that stress may have a bigger effect on the behavior of the snakes than previously 

thought. These stress effects may be offset by reproductive activity, provided some of these 

offspring survive to adulthood. In a mitigation situation, we believe translocation can be used as 

an alternative to killing the snakes provided there is adequate planning involved because we saw 
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no significant effect on two-year survival probability. However, we urge for more caution in 

conservation-based circumstances. More research is needed on the survivorship of the offspring 

of translocated snakes before translocation can be used as a reliable conservation strategy. 
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