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ABSTRACT 

 

Micro aerial vehicles a.k.a. drones, have become an integral part of a variety of civilian and 

military application domains, including but not limited to aerial surveying and mapping, aerial 

surveillance and security, aerial inspection of infrastructure, and aerial delivery. Meanwhile, the 

cybersecurity of drones is gaining significant attention due to both financial and strategic 

information and value involved in aerial applications. As a result of the lack of security features 

in the communication protocol, an adversary can easily interfere with on-going communications 

or even seize control of the drone. In this thesis, we propose a lightweight digital signature 

protocol, also referred to as DroneSig, to protect drones from a man-in-the-middle attack, where 

an adversary eavesdrops the communication between Ground Control Station (GCS) and drone, 

and impersonates the GCS and sends fake commands to terminate the on-going mission or even 

take control over the drone. The basic idea of the DroneSig is that the drone will only execute the 

new command after validating the received digital signature from the GCS, proving that the new 

command message is coming from the authenticated GCS. If the validation of the digital 

signature fails, the new command is rejected immediately, and the Return-to-Launch (RTL) 

mode is initiated and forces the drone to return to the take-off position. We conduct extensive 

simulation experiments for performance evaluation and comparison using OMNeT++, and 

simulation results show that the proposed lightweight digital signature protocol achieves better 

performance in terms of energy consumption and computation time compared to the standard 

Advanced Encryption Standard (AES) cryptographic technique. 



1 

I. INTRODUCTION 

Micro aerial vehicles, a.k.a. drones, are flying robots endowed with the capabilities of 

sensing, computing, and wireless communicating, and becoming progressively popular in 

various civilian and military application areas, including but not limited to aerial surveying and 

mapping, aerial surveillance and security, aerial inspection of infrastructure, and aerial delivery 

(Pu & Carpenter, 2019). The global small drones market is projected to reach USD 40.31 billion 

by 2025, at a compound annual growth rate of 17.04% from 2018 to 2025 (“Global Small Drones 

Market,” 2018). By 2026, commercial drones for both corporate and consumer applications will 

have an annual impact of $31 billion to $46 billion on the United States GDP (“Commercial 

drones are here,” n.d.). As the drone-based civilian and military applications are proliferating, 

Internet of Drones (IoD), a layered aerial network management and control architecture, was 

proposed and has been demonstrated as an applicable architecture for coordinating the access of 

drones to controlled airspace and providing navigation services (Pu & Carpenter, 2020). With the 

assistance of advanced communication technology as well as emerging computing infrastructure, 

we envision that drones will definitely find many new ways to improve the quality of our life in 

the near future (Pu, 2019).  

Due to both financial and strategic information and value involved in aerial applications, 

however, drones look especially attractive to attackers and become an ideal target for various 

cyber-attacks (Lin et al., 2018). For example, in January 2016, Mexican drug traffickers used 

satellite navigation signal deception technology to send spoofed GPS signals to attack the U.S. 

border patrol drone in order to illegally cross the border. In December 2011, Iran successfully 

captured a U.S. Lockheed Martin RQ-170 Sentinel drone through spoofing the drone’s GPS 

system. Nowadays, drones have started showing their impact in everyday life of ordinary people 
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and have been considered as a supplement of humans in a part of the delivery in the business. 

Business and technology giants like Amazon, Google, Facebook, and Walmart have started 

delivering the products and services via drones for the speedy delivery and customer satisfaction. 

However, aerial drone applications are vulnerable to a myriad of cyber-attacks targeting their 

communication links with Ground Control Station (GCS), as well as with other air units (Sanjab 

et al., 2017). Therefore, investigating potential cybersecurity threats against drones and 

designing state-of-the-art security mechanisms are the top priority to improve the security of 

drone applications.  

Unfortunately, the open nature of the wireless channel and the limited battery capacity, 

computing capability, and communication bandwidth make it become a highly challenging task 

(Pu, 2018). Communication between drones and GCS is established by the communication 

protocol via a wireless channel, which makes them vulnerable to various attacks since the 

communication protocol does not support security procedures (Koubaa et al., 2019). The GCS 

and drones exchange data through an unauthenticated wireless channel without encryption. Thus, 

data communication can be easily hacked. For example, an adversary can send unauthorized 

commands to the drone to take its control from GCS, and then catch and withhold the drone. 

This example is exactly showing that how the “anti-drone-gun” operates (Dronebuster™, 2018), 

or hijacking the drone to have it go to an arbitrary waypoint (Feng et al., 2019). Therefore, it is 

critical to ensure the security of communication in drone applications.  

In this thesis, we propose a lightweight digital signature protocol, also named as 

DroneSig, to protect drones from man-in-the-middle (MITM) attack, where an adversary 

eavesdrops the communication between GCS and drone, and impersonates the GCS and sends 

fake commands to terminate the on-going mission or even take control over the drone. In the 
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DroneSig, the GCS generates a digital signature based on the command message by using the 

chaotic system and appends the digital signature to the command message. Before executing the 

received command, the drone validates the digital signature by comparing it to its own generated 

digital signature from the received command message. If the validation of the digital signature 

fails, the command is rejected immediately, and the Return-to-Launch (RTL) mode is initiated 

and forces the drone to return to take-off position. We develop a customized simulation 

framework and evaluate its performance through extensive simulations in terms of energy 

consumption, computation time, CPU cycle, memory usage, and code size. We also revisit prior 

AES, DES, and 3DES (Stallings, 2006), and modify them to work in the framework for 

performance comparison. The simulation results show that the proposed DroneSIG can achieve 

better performance in terms of energy consumption, computation time, CPU cycle, memory 

usage, and code size compared to AES, DES, and 3DES.  

The rest of the thesis is organized as follows. Prior schemes are provided and analyzed in 

Section II. A system model and the proposed DroneSig are presented in Section III. Section IV 

focuses on simulation results and their analyses. Section V discusses the future work, Compare 

the security of the protocol. Finally, concluding remarks are provided in Section VI. 

II. RELATED WORK 

A significant volume of research work has mainly focused on developing security 

mechanisms and features to ensure the necessary security services of drones, such as 

confidentiality, integrity, and authentication, and protect drones from various cyber-attacks. 

Srinivas, Das, Kumar, and Rodrigues (2019) described a temporal credential-based anonymous 

lightweight user authentication mechanism is proposed to address the authentication problem in 

the IoD environment based on a three-factor scheme using user’s mobile device, password, and 
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biometrics. Ozmen and Yavuz (2018) proposed an optimized public key infrastructure based 

framework integrated with lightweight symmetric primitives is proposed for small aerial drones, 

where special precomputation methods and optimized elliptic curves are harnessed to reduce the 

computational overhead and energy consumption. An encryption mechanism that improves the 

communication security of open source drones is proposed based on Galois Embedded Crypto 

(GEC) and ArduinoLibs Crypto library to provide safer and more secure communication service 

for radio control link (Podhradsky et al., 2017). A medium-interaction portable drone honeypot, 

also called HoneyDrone, is designed for protecting drones by Daubert, Boopalan, Mühlhäuser, 

and Vasilomanolakis (2018). The basic idea of HoneyDrone is to emulate a number of drone-

specific and drone-tailored protocols, lure adversary into attacking drone honeypot, and record 

and analyze malicious activities to detect potential attackers. 

According to Won, Seo and Bertino (2020), a lookup table shuffling mechanism that 

supports white-box block cipher with dynamics is proposed to protect unmanned vehicles from 

white-box attacks, where attackers with sufficient knowledge of a target unmanned vehicle can 

steal secret information stored in the unmanned vehicle through taking advantage of advanced 

reverse engineering techniques and exploiting the vulnerabilities of open-source software. Since 

no short secret key is used by an unmanned vehicle during the protocol, the shuffling mechanism 

can be safely executed in the white-box environment and make it hard for a white-box attacker to 

successfully encrypt/decrypt any plaintext/ciphertext even if the attacker has the knowledge of 

the entire lookup table. A new system model is proposed to secure drone communication for the 

data collection and transmission in the IoD environment, where public blockchain technology is 

used for the storage of collected data from the drones and update the information into the 

distributed ledgers to reduce the burden of drones (Aggarwal et al., 2019). According to 
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experimental evaluation, the proposed system model makes the realtime drone-based 

applications more reliable and scalable and can defend against various risks and attacks. 

He, Qiao, Chan, and Guizani (2018) proposed that use information fusion by combining a 

visual sensor and inertial measurement unit to detect GPS spoofing attacks in an airborne fog 

computing system. In order to address the challenging information leakage problem of 

eavesdropping attack, leverages the physical characteristics of wireless channels to achieve the 

goal of secure transmissions in unmanned aerial vehicles communication networks (Li et al., 

2019). In addition, an overview of security threats and attacks against communication protocol 

for unmanned systems and potential security solutions are also presented by Koubaa et al. 

(2019). Liang, Zhao, Shetty, and Li (2017) proposed a blockchain and cloud storage-based 

framework to guarantee the UAV data integrity. The hashed data records collected from drones 

are stored in the blockchain network, and a blockchain receipt for each data record is also stored 

in the cloud, which can reduce the burden of moving drones with the limit of battery and process 

capability while gaining enhanced security guarantee of the data. The article presents the 

ideology of the secure utilization of drones for inter-service operability in ultra-dense wireless 

networks by exploiting the features of the blockchain (Sharma et al., 2017). Zhang, He, Li, and 

Chen (2020) proposed a lightweight authentication and key agreement scheme in which there are 

only secure one-way hash function and bitwise XOR operations when drones and users mutually 

authenticate each other. The proposed scheme is comprised of three phases: the setup phase, the 

registration phase, and the mutual authentication phase. In the setup phase, the control station 

generates its master private key and other public system parameters. In the registration phase, 

users and drones register on the control station and get their secret key via a secure channel. In 



6 

the last phase, users and drones communicate with each other securely after establishing a 

session key. 

In summary, various cryptographic techniques have been well studied to protect drones 

from cyber-attacks. However, to the best of our knowledge, there is no comprehensive and 

lightweight defense mechanism against MITM attack for drones. 

III. THE PROPOSED LIGHTWEIGHT DIGITAL SIGNATURE PROTOCOL 

In this section, we first introduce the system model and chaotic system, then propose a 

lightweight digital signature protocol, also named as DroneSig, to protect drones from man-in-

the-middle (MITM) attack. 

A. SYSTEM MODEL  

 

Figure 1. System model. 

 

This image shows a basic system diagram where there is a Radio Control (RC) link to be 

used by the GCS to manually control the drone. However, the communication link between GCS 

and drone is established via a wireless channel, which is vulnerable to various security attacks 

due to its openness. To be specific, the GCS exchanges data with the drone through an 

unauthenticated and unencrypted channel; as a result, the communications can be easily hacked 

by a man-in-the-middle (MITM) attack. An adversary with an appropriate RC transmitter can 

RC Transmitter

X

Attacker

RC Link
Drone
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eavesdrop the communication between GCS and drone and impersonates the GCS and sends 

fake commands to terminate the on-going mission or even gain direct control over the drone 

(Srinivas et al., 2019). Here, a successful communication link attack without involving “anti-

drone-gun” has already been demonstrated on a popular DSMx radio protocol to hijack the drone 

(Liang et al., 2017). 

B. CHAOTIC SYSTEM  

A chaotic system is a dynamical and determined system with the extrinsic nature of 

nonlinear behavior, pseudo-randomness, broad-spectrum, and sensitivity to initial conditions. In 

the past few decades, a state of disorder and nonlinear dynamics have been used in the design of 

cryptographically secure pseudo-random number generators. These pseudo-random number 

generators use the control parameters and the initial condition of the chaotic maps as their keys. 

Without the right initial conditions, the correct pseudo-random sequence cannot be regenerated. 

Duffing map is a two-dimensional discrete-time and dynamical system that exhibits chaotic 

behavior. It is widely known to display chaos for certain parameter values and initial conditions. 

Duffing map contains a single cubic term and is expressed below, 

{
𝑥𝑛+1  =  𝑦𝑛

𝑦𝑛+1  =  −𝑏 ∙  𝑥𝑛  +  𝑎 ∙  𝑦𝑛  −  𝑦𝑛
3 

Table 1. Duffing Map 

 

where a and b are constant parameters. The output of the Duffing map highly depends on 

the initial conditions represented by x0 and y0. The constant parameters are usually sent to a = 

2.75 and b = 0.2 to produce chaotic behavior. Disregarding the initial point (0.5, 0.5), the Duffing 

map outputs points around the Duffing map attractor in a random way.  



8 

 
(a) x0 = 0.4 and y0 = 0.6 

 
(b) x0 = 0.6 and y0 = 0.4 



9 

 
(c) x0 = 0.55 and y0 = 0.45 

 
(d) x0 = 0.45 and y0 = 0.55 

Figure 2. Duffing map with different initial conditions after 50 iterations. 
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As shown in Figure 2, any change in the initial conditions will affect the plot of these 

points. 

C. LIGHTWEIGHT DIGITAL SIGNATURE PROTOCOL  

The DroneSig adopts a technique that is similar to cryptographic encryption but requires 

less computational resources. In addition, the DroneSig is designed to encode and decode binary 

information without using standard cryptographic techniques, such as DES or AES. In DroneSig, 

the digital signature is generated by using a random number generator, Duffing map, which can 

assist both GCS and drone to achieve the same key without the necessity to wirelessly share it on 

a public wireless medium.  

The DroneSig consists of three functions: byte substitution, matrix transformation, and 

random shuffling.  
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Figure 3. The overall structure of the DroneSig. 

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12 m13 m14 m15 m16

Byte Substitution

Inverse in GF(2
8
)

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
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1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

b0 
b1
b2
b3
b4 
b5 
b6 
b7 

+

1
1
0
0
0
1
1
0

=

b'0 
b'1 
b'2 
b'3 
b'4 
b'5 
b'6 
b'7 

m'1 m'2 m'3 m'4 m'5 m'6 m'7 m'8 m'9 m'10 m'11m'12 m'13 m'14 m'15m'16

m'1 m'2 m'3 m'4 m'5 m'6 m'7 m'8 m'9 m'10 m'11m'12 m'13 m'14 m'15m'16

m'1 m'2 m'3 m'4

m'5 m'6 m'7 m'8

m'9 m'10 m'11 m'12

m'13 m'14 m'15m'16

02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

 =

m*1 m*2 m*3 m*4

m*5 m*6 m*7 m*8

m*9 m*10 m*11 m*12

m*13 m*14 m*15 m*16

Matrix Transformation

. . . . . .m*1

Random Shuffle Using the Duffing Map

m*2 m*3 m*4 m*5 m*252 m*253 m*254 m*255 m*256

Digital Signature (First N Bytes)
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Figure 3 shows the overall structure of the DroneSig. Each message command has 256 

bytes and is divided into a set of 16-byte blocks. Byte substitution and matrix transformation will 

be applied to each block, whilst random shuffling will be performed on all blocks. First, each 

individual byte of 16-byte block is mapped into a new byte according to 

[
 
 
 
 
 
 
 
1    0    0    0    1    1    1    1
1    1    0    0    0    1    1    1
1    1    1    0    0    0    1    1
1    1    1    1    0    0    0   1
1    1    1    1    1    0    0    0
0    1    1    1    1    1    0    0
0    0    1    1    1    1    1    0
0    0    0    1    1    1    1    1]

 
 
 
 
 
 
 

∙

[
 
 
 
 
 
 
 
 
 𝑏0

∗

𝑏1
∗

𝑏2
∗

𝑏3
∗

𝑏4
∗

𝑏5
∗

𝑏6
∗

𝑏7
∗
]
 
 
 
 
 
 
 
 
 

⊕

[
 
 
 
 
 
 
 
1
1
0
0
0
1
1
0]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 𝑏0

′

𝑏1
′

𝑏2
′

𝑏3
′

𝑏4
′

𝑏5
′

𝑏6
′

𝑏7
′
]
 
 
 
 
 
 
 
 
 
 
 

 

Table 2. Byte Substitution (1) 

 

Here, (b
∗ 

7 b
∗ 

6 b
∗ 

5 b
∗ 

4 b
∗ 

3 b
∗ 

2 b
∗ 

1 b
∗ 

0 ) is the value of multiplicative inverse in GF (28) for input byte 

(b7b6b5b4b3b2b1b0). As an example, considering the input byte {95}. the multiplicative inverse in 

GF (28) is {95}−1 = {8A}, which is (10001010).  

[
 
 
 
 
 
 
 
1    0    0    0    1    1    1    1
1    1    0    0    0    1    1    1
1    1    1    0    0    0    1    1
1    1    1    1    0    0    0   1
1    1    1    1    1    0    0    0
0    1    1    1    1    1    0    0
0    0    1    1    1    1    1    0
0    0    0    1    1    1    1    1]

 
 
 
 
 
 
 

∙

[
 
 
 
 
 
 
 
0
1
0
1
0
0
0
1]
 
 
 
 
 
 
 

⊕

[
 
 
 
 
 
 
 
1
1
0
0
0
1
1
0]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
0
1
0
1
0
1
0
0]
 
 
 
 
 
 
 

 

Table 3. Byte Substitution (2) 

 

According to Table 3, the result byte is {2A}. The process of byte substitution is done. 

Second, the 16 substituted bytes in a block are depicted as a 4 × 4 square matrix, and each 

byte of a column in square matrix is mapped into a new value that is a function of all four bytes 
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in that column. The transformation is defined by matrix transformation in Figure 3. Each element 

in the product matrix is the sum of products of elements of one row and one column. In this case, 

the individual additions and multiplications are performed in GF (28). The matrix transformation 

on a single column can be expressed as 

𝑆′
0,𝑗 = (2 ∙ 𝑆0,𝑗) ⊕ (3 ∙ 𝑆1,𝑗) ⊕ 𝑆2,𝑗 ⊕ 𝑆3,𝑗 

𝑆′
1,𝑗 = 𝑆0,𝑗 ⊕ (2 ∙ 𝑆1,𝑗) ⊕ (3 ∙ 𝑆2,𝑗) ⊕ 𝑆3,𝑗 

𝑆′
2,𝑗 = 𝑆0,𝑗 ⊕ 𝑆1,𝑗 ⊕ (2 ∙ 𝑆2,𝑗) ⊕ (3 ∙ 𝑆3,𝑗) 

𝑆′
3,𝑗 = (3 ∙ 𝑆0,𝑗) ⊕ 𝑆1,𝑗 ⊕ 𝑆2,𝑗 ⊕ (2 ∙ 𝑆3,𝑗) 

Table 4. Mix Columns 

 

Third, the 256 bytes of all blocks will be randomly shuffled using the Duffing map to 

generate the digital signature, which includes the first N bytes of the shuffling output. The 

shuffling process is reversible. When the drone receives the command message, it only executes 

the command after verifying the authenticity of the digital signature, proving that the 

communication has been held with the authenticated GCS. The drone will validate the digital 

signature by comparing it to its own generated signature from the command message. If this 

validation of the digital signature fails, the command is rejected immediately, and the Return-to-

Launch (RTL) mode is initiated and forces the drone to return to take-off position. 

IV. PERFORMANCE EVALUATION 

In this thesis, we develop a customized simulation framework to conduct our experiments 

in terms of code size, memory usage, energy consumption, computation time, and CPU cycle. 

We also revisit existing AES, DES, and 3DES (Stallings, 2006), and modify them to work in the 
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framework for performance comparison and analysis. The size of plaintext is changed between 

25 and 2000 KB. 

 
(a) 
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(b) 

 
(c) 

Figure 4. Performance of code size and memory usage against the size of plaintext. 

 

First, the performance of code size and memory usage is measured with the changes in 

the size of plaintext in Figure 4. Here, the code size is measured as the file size of the algorithm. 

As shown in Figure 4(a) and (b), the DroneSig has the smallest code size in terms of encryption 

and decryption algorithms compared to AES, DES, and 3DES. Because the DroneSig has a less 

number of operations for encryption and decryption processes, which make the file size of 

algorithms smaller. The AES has the largest code size in terms of encryption and decryption 

algorithms because it is the most complex algorithm which consists of four transformation 

functions: substitute bytes, shift rows, mix columns, and add round key. In Figure 4(c), we 

measure the memory usage of four schemes. It is clear that the DroneSig has the smallest 

memory usage compared to AES, DES, and 3DES. 



16 

 
(a) 

 
(b) 
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(c) 

Figure 5. Performance of energy consumption against the size of plaintext. 

 

Second, we measure the performance of energy consumption against the size of plaintext 

in Figure 5. As shown in Figure 5(a), the DroneSig achieves the lowest encryption energy 

consumption compared to AES, DES, and 3DES. DroneSig consumes less energy because it 

performs three lightweight operations: byte Substitution, matrix Transformation, and random 

Shuffling. Most importantly, three lightweight operations are only executed one time in the 

process of encryption. Thus, the lowest encryption energy consumption is observed by the 

DroneSig. However, for AES, DES, and 3DES, the same encryption operations are performed in 

multiple rounds. As a result, a large amount of energy is consumed. In Figure 5(b), it is clear that 

the decryption energy consumption of the DroneSig is lower than that of the other three schemes. 

Since the decryption is the reverse process of encryption, similar operations will be applied to 

ciphertext. Therefore, the lowest decryption energy consumption is obtained by the DroneSig. 
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The total energy consumption is measured in Figure 5(c), where the DroneSig provides the 

lowest total energy consumption compared to AES, DES, and 3DES. Because the DroneSig has 

the lowest encryption and decryption energy consumption. 

 
(a) 
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(b) 

 
(c) 

Figure 6. Performance of computation time against the size of plaintext. 
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Third, the performance of computation time is measured with varying size of plaintext in 

Figure 6. The computation time is proportional to the complexity of the algorithm. As the 

algorithm becomes more complex, it requires a larger computation time. In the DroneSig, there 

are only three operations, and those operations are only executed one time for encryption and 

decryption. However, AES, DES, and 3DES are traditional cryptographic techniques, and several 

complex operations are executed in multiple rounds for encryption and decryption. Compared to 

DroneSig, AES, DES, and 3DES are much more complex. Therefore, the DroneSig can achieve 

the shortest computation time in terms of encryption and decryption, which are shown in Figure 

6(a) and (b), respectively. In Figure 6(c), the DroneSig outperforms AES, DES, and 3DES in 

terms of total computation time because the DroneSig can achieve the smallest encryption and 

decryption computation time. 

 
(a) 
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(b) 

 
(c) 

Figure 7. Performance of CPU cycle against the size of plaintext. 
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Fourth, we measure the performance of the CPU cycle by changing the size of plaintext 

in Figure 7. As shown in Figure 7(a) and (b), the smallest number of CPU cycles is obtained by 

the DroneSig in terms of encryption and decryption. Since the DroneSig significantly reduces the 

number of operations in the process of encryption and decryption, a smaller number of CPU 

cycles is required to complete the operations of encryption and decryption. However, AES, DES, 

and 3DES are more complex than DroneSig. Thus, a larger number of CPU cycles is required to 

execute all operations. In Figure 7, the total number of encryption and decryption CPU cycles is 

measured for all schemes. The DroneSig provides the best performance compared to others 

because the DroneSig can achieve a smaller number of CPU cycles in terms of encryption and 

decryption. 

V. FUTURE WORK 

Although the analysis and simulation provided have proved that DroneSig is a 

lightweight, low-consumption, and fast calculation method, there are some improvements that 

can still be made. In Section IV, we compared code size, memory usage, energy consumption, 

computation time, and CPU cycle. Nevertheless, these seem to only show that the performance 

of DroneSig is good, but they cannot explain how safe it is. In this context, we will survey some 

of the provided results, which can be improved or extended further. 

Therefore, after a series of studies, we found two lightweight Micro Aerial Vehicle 

protocols to compare with DroneSig. The first one is Micro Air Vehicle Communication 

Protocol (MAVLink), a very lightweight, header-only message library for communication 

between drones and/or ground control stations (Meier, 2009). The second is UranusLink, 

Communication Protocol for UAV with Small Overhead and Encryption Ability (Kriz & 

Gabrlik, 2015).  
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We will deploy two attack methods at the same time to compare the security of each 

protocol. One type of attack can be an attempt to send random data in the encrypted portion and 

attempt to provide some combination of valid commands on the receiver after decryption, see if 

the length of the received data has changed. Another type of attack can be capturing the 

communication during flight and try to use the captured comment on the next flight to see if the 

drone executes. 

To determine the security of cryptographic protocols, we intend to use the ISO/IEC 

29128 method for evaluation testing. ISO/IEC 29128 is a newly proposed international standard 

that USES formal methods, which used for improving the security assurance of cryptographic 

protocols (Matsuo et al., 2010). Once the cryptographic protocol has passed ISO/IEC 29128 

certification, especially at its highest level of assurance, the protocol will be absolutely secure. 

VI. CONCLUSION 

In this thesis, we proposed a lightweight digital signature protocol (DroneSig) to protect 

drones from a man-in-the-middle attack, where an adversary eavesdrops the communications 

between Ground Control Station and drone, and impersonates the Ground Control Station and 

sends fake commands to terminate the on-going mission or even take control over the drone. The 

basic idea of the DroneSig is that the drone will only execute the new command after validating 

the received digital signature from the Ground Control Station, proving that the new command 

message is coming from the authenticated Ground Control Station. If the validation of the digital 

signature fails, the new command is rejected immediately, and the Return-to-Launch (RTL) 

mode is initiated and forces the drone to return to the take-off position. In order to evaluate the 

effectiveness of the proposed approach, we developed a customized simulation framework and 

compared it with prior approaches. The simulation results show that the proposed DroneSig is a 
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viable and competitive approach defending drones against a man-in-the-middle attack.  
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APPENDIX A: APPROVAL LETTER 
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APPENDIX B: SIMULATION SOFTWARE SOURCE CODE 

Sbox = ( 

0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5, 0x30, 0x01, 0x67, 0x2B, 0xFE, 

0xD7, 0xAB, 0x76, 

0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59, 0x47, 0xF0, 0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 

0xA4, 0x72, 0xC0, 

0xB7, 0xFD, 0x93, 0x26, 0x36, 0x3F, 0xF7, 0xCC, 0x34, 0xA5, 0xE5, 0xF1, 0x71, 

0xD8, 0x31, 0x15, 

0x04, 0xC7, 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A, 0x07, 0x12, 0x80, 0xE2, 0xEB, 

0x27, 0xB2, 0x75, 

0x09, 0x83, 0x2C, 0x1A, 0x1B, 0x6E, 0x5A, 0xA0, 0x52, 0x3B, 0xD6, 0xB3, 0x29, 

0xE3, 0x2F, 0x84, 

0x53, 0xD1, 0x00, 0xED, 0x20, 0xFC, 0xB1, 0x5B, 0x6A, 0xCB, 0xBE, 0x39, 0x4A, 

0x4C, 0x58, 0xCF, 

0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33, 0x85, 0x45, 0xF9, 0x02, 0x7F, 0x50, 

0x3C, 0x9F, 0xA8, 

0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5, 0xBC, 0xB6, 0xDA, 0x21, 0x10, 

0xFF, 0xF3, 0xD2, 

0xCD, 0x0C, 0x13, 0xEC, 0x5F, 0x97, 0x44, 0x17, 0xC4, 0xA7, 0x7E, 0x3D, 0x64, 

0x5D, 0x19, 0x73, 

0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88, 0x46, 0xEE, 0xB8, 0x14, 0xDE, 

0x5E, 0x0B, 0xDB, 

0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C, 0xC2, 0xD3, 0xAC, 0x62, 0x91, 

0x95, 0xE4, 0x79, 

0xE7, 0xC8, 0x37, 0x6D, 0x8D, 0xD5, 0x4E, 0xA9, 0x6C, 0x56, 0xF4, 0xEA, 0x65, 

0x7A, 0xAE, 0x08, 

0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6, 0xB4, 0xC6, 0xE8, 0xDD, 0x74, 0x1F, 0x4B, 

0xBD, 0x8B, 0x8A, 

0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E, 0x61, 0x35, 0x57, 0xB9, 0x86, 

0xC1, 0x1D, 0x9E, 

0xE1, 0xF8, 0x98, 0x11, 0x69, 0xD9, 0x8E, 0x94, 0x9B, 0x1E, 0x87, 0xE9, 0xCE, 

0x55, 0x28, 0xDF, 

0x8C, 0xA1, 0x89, 0x0D, 0xBF, 0xE6, 0x42, 0x68, 0x41, 0x99, 0x2D, 0x0F, 0xB0, 

0x54, 0xBB, 0x16, 

) 

 

InvSbox = ( 

0x52, 0x09, 0x6A, 0xD5, 0x30, 0x36, 0xA5, 0x38, 0xBF, 0x40, 0xA3, 0x9E, 0x81, 

0xF3, 0xD7, 0xFB, 

0x7C, 0xE3, 0x39, 0x82, 0x9B, 0x2F, 0xFF, 0x87, 0x34, 0x8E, 0x43, 0x44, 0xC4, 

0xDE, 0xE9, 0xCB, 

0x54, 0x7B, 0x94, 0x32, 0xA6, 0xC2, 0x23, 0x3D, 0xEE, 0x4C, 0x95, 0x0B, 0x42, 

0xFA, 0xC3, 0x4E, 

0x08, 0x2E, 0xA1, 0x66, 0x28, 0xD9, 0x24, 0xB2, 0x76, 0x5B, 0xA2, 0x49, 0x6D, 

0x8B, 0xD1, 0x25, 
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0x72, 0xF8, 0xF6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xD4, 0xA4, 0x5C, 0xCC, 0x5D, 

0x65, 0xB6, 0x92, 

0x6C, 0x70, 0x48, 0x50, 0xFD, 0xED, 0xB9, 0xDA, 0x5E, 0x15, 0x46, 0x57, 0xA7, 

0x8D, 0x9D, 0x84, 

0x90, 0xD8, 0xAB, 0x00, 0x8C, 0xBC, 0xD3, 0x0A, 0xF7, 0xE4, 0x58, 0x05, 0xB8, 

0xB3, 0x45, 0x06, 

0xD0, 0x2C, 0x1E, 0x8F, 0xCA, 0x3F, 0x0F, 0x02, 0xC1, 0xAF, 0xBD, 0x03, 0x01, 

0x13, 0x8A, 0x6B, 

0x3A, 0x91, 0x11, 0x41, 0x4F, 0x67, 0xDC, 0xEA, 0x97, 0xF2, 0xCF, 0xCE, 0xF0, 

0xB4, 0xE6, 0x73, 

0x96, 0xAC, 0x74, 0x22, 0xE7, 0xAD, 0x35, 0x85, 0xE2, 0xF9, 0x37, 0xE8, 0x1C, 

0x75, 0xDF, 0x6E, 

0x47, 0xF1, 0x1A, 0x71, 0x1D, 0x29, 0xC5, 0x89, 0x6F, 0xB7, 0x62, 0x0E, 0xAA, 

0x18, 0xBE, 0x1B, 

0xFC, 0x56, 0x3E, 0x4B, 0xC6, 0xD2, 0x79, 0x20, 0x9A, 0xDB, 0xC0, 0xFE, 0x78, 

0xCD, 0x5A, 0xF4, 

0x1F, 0xDD, 0xA8, 0x33, 0x88, 0x07, 0xC7, 0x31, 0xB1, 0x12, 0x10, 0x59, 0x27, 

0x80, 0xEC, 0x5F, 

0x60, 0x51, 0x7F, 0xA9, 0x19, 0xB5, 0x4A, 0x0D, 0x2D, 0xE5, 0x7A, 0x9F, 0x93, 

0xC9, 0x9C, 0xEF, 

0xA0, 0xE0, 0x3B, 0x4D, 0xAE, 0x2A, 0xF5, 0xB0, 0xC8, 0xEB, 0xBB, 0x3C, 0x83, 

0x53, 0x99, 0x61, 

0x17, 0x2B, 0x04, 0x7E, 0xBA, 0x77, 0xD6, 0x26, 0xE1, 0x69, 0x14, 0x63, 0x55, 

0x21, 0x0C, 0x7D, 

) 

 

xtime = lambda a: (((a << 1) ^ 0x1B) & 0xFF) if (a & 0x80) else (a << 1) 

 

def text2matrix(text): 

    matrix = [] 

    for i in range(16): 

        byte = (text >> (8 * (15 - i))) & 0xFF 

        if i % 4 == 0: 

            matrix.append([byte]) 

        else: 

            matrix[i // 4].append(byte) 

    return matrix 

 

 

def matrix2text(matrix): 

    text = 0 

    for i in range(4):  # 0~4 

        for j in range(4): 

            text |= (matrix[i][j] << (120 - 8 * (4 * i + j)))  

    return text 
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def __sub_bytes(s): 

    for i in range(4): 

        for j in range(4): 

            s[i][j] = Sbox[s[i][j]] 

 

 

def __inv_sub_bytes(s): 

    for i in range(4): 

        for j in range(4): 

            s[i][j] = InvSbox[s[i][j]] 

 

 

def __shift_rows(s): 

    s[0][1], s[1][1], s[2][1], s[3][1] = s[1][1], s[2][1], s[3][1], s[0][1] 

    s[0][2], s[1][2], s[2][2], s[3][2] = s[2][2], s[3][2], s[0][2], s[1][2] 

    s[0][3], s[1][3], s[2][3], s[3][3] = s[3][3], s[0][3], s[1][3], s[2][3] 

 

 

def __inv_shift_rows(s): 

    s[0][1], s[1][1], s[2][1], s[3][1] = s[3][1], s[0][1], s[1][1], s[2][1] 

    s[0][2], s[1][2], s[2][2], s[3][2] = s[2][2], s[3][2], s[0][2], s[1][2] 

    s[0][3], s[1][3], s[2][3], s[3][3] = s[1][3], s[2][3], s[3][3], s[0][3] 

 

 

def __mix_single_column(a): 

    # please see Sec 4.1.2 in The Design of Rijndael 

    t = a[0] ^ a[1] ^ a[2] ^ a[3] 

    u = a[0] 

    a[0] ^= t ^ xtime(a[0] ^ a[1]) 

    a[1] ^= t ^ xtime(a[1] ^ a[2]) 

    a[2] ^= t ^ xtime(a[2] ^ a[3]) 

    a[3] ^= t ^ xtime(a[3] ^ u) 

 

 

def __mix_columns(s): 

    for i in range(4): 

        __mix_single_column(s[i]) 

 

 

def __inv_mix_columns(s): 

    # see Sec 4.1.3 in The Design of Rijndael 

    for i in range(4): 

        u = xtime(xtime(s[i][0] ^ s[i][2])) 

        v = xtime(xtime(s[i][1] ^ s[i][3])) 

        s[i][0] ^= u 
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        s[i][1] ^= v 

        s[i][2] ^= u 

        s[i][3] ^= v 

 

    __mix_columns(s) 

  

def encrypt(plaintext): 

    plain_state = text2matrix(plaintext) 

 

    __sub_bytes(plain_state) 

    __shift_rows(plain_state) 

    __mix_columns(plain_state) 

 

    return matrix2text(plain_state) 

 

def decrypt(ciphertext): 

    cipher_state = text2matrix(ciphertext) 

 

    __inv_mix_columns(cipher_state) 

    __inv_shift_rows(cipher_state) 

    __inv_sub_bytes(cipher_state) 

 

    return matrix2text(cipher_state) 

  

def chaos(x, y): 

    line = encrypt(plaintext) 

 

    sep = [int(digit) for digit in str(line)] 

    k = len(sep) 

 

    dot = []  # seed 

    value = [] 

    x1 = [] 

    y1 = [] 

    x1.append(x) 

    y1.append(y) 

    dot.append(x * 2 + y * 2.5) 

    for i in range(k): 

        if i > 0: 

            x1.append(y1[i - 1]) 

            y1.append(-0.2 * x1[i - 1] + 2.75 * y1[i - 1] - math.pow(y1[i - 1], 3)) 

            dot.append(x1[i] * 2 + y1[i] * 2.5) 

 

    for j in range(k): 

        random.seed(dot[j]) 

        num = random.randint(0, k) 
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        value.append(sep[num]) 

 

    new_sep = ''.join('%s' % id for id in value) 

    return new_sep 

 

 

def inv_chaos(text, x, y): 

    sep = [int(digit) for digit in str(text)] 

    k = len(sep) 

 

    dot = []  # seed 

    value = [] 

    x1 = [] 

    y1 = [] 

    x1.append(x) 

    y1.append(y) 

    dot.append(x * 2 + y * 2.5) 

 

    for i in range(k): 

        if i > 0: 

            x1.append(y1[i - 1]) 

            y1.append(-0.2 * x1[i - 1] + 2.75 * y1[i - 1] - math.pow(y1[i - 1], 3)) 

            dot.append(x1[i] * 2 + y1[i] * 2.5) 

 

    for j in range(k): 

        random.seed(dot[j]) 

        num = random.randint(0, k) 

        re = sep[j] 

        value.insert(num, re) 

 

    new_sep = ''.join('%s' % id for id in value) 

    return new_sep 
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