
Marshall University Marshall University

Marshall Digital Scholar Marshall Digital Scholar

Theses, Dissertations and Capstones

2020

DroneSig: Lightweight Digital Signature Protocol for Micro Aerial DroneSig: Lightweight Digital Signature Protocol for Micro Aerial

Vehicles Vehicles

Yucheng Li

Follow this and additional works at: https://mds.marshall.edu/etd

 Part of the Information Security Commons, and the Theory and Algorithms Commons

https://mds.marshall.edu/
https://mds.marshall.edu/etd
https://mds.marshall.edu/etd?utm_source=mds.marshall.edu%2Fetd%2F1299&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1247?utm_source=mds.marshall.edu%2Fetd%2F1299&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=mds.marshall.edu%2Fetd%2F1299&utm_medium=PDF&utm_campaign=PDFCoverPages

DRONESIG: LIGHTWEIGHT DIGITAL SIGNATURE PROTOCOL FOR MICRO

AERIAL VEHICLES

Marshall University

August 2020

A thesis submitted to

the Graduate College of

Marshall University

In partial fulfillment of

the requirements for the degree of

Master of Science

In

Computer Science

by

Yucheng Li

Approved by

Dr. Cong Pu, Committee Chairperson

Dr. Husnu Narman

Dr. Jamil Chaudri

ii

APPROVAL OF THESIS

We, the faculty supervising the work of Yucheng Li, affirm that the thesis, DroneSig: Lightweight Digital

Signature Protocol for Micro Aerial Vehicles, meets the high academic standards for original scholarship

and creative work established by the M.S. in Computer Science and the Department of Computer Sciences

and Electrical Engineering. This work also conforms to the editorial standards of our discipline and the

Graduate College of Marshall University. With our signatures, we approve the manuscript for publication.

 Cong Pu

Dr. Cong Pu, Computer Sciences and Electrical Engineering Committee Chairperson

 Date

 July 21, 2020

 Husnu S. Narman

Dr. Husnu Narman, Computer Sciences and Electrical Engineering Committee Member

Date

 July 21, 2020

 Jamil M Chaudri
Dr. Jamil Chaudri, Computer Sciences and Electrical Engineering Committee Member

 Date: 2020 Jul 22

iii

© 2020

Li Yu Cheng

ALL RIGHTS RESERVED

iv

ACKNOWLEDGMENTS

First of all, I would like to thank my advisor Dr. Cong Pu for supporting me and sharing

his knowledge and experiences through the process of my master thesis.

Similarly, I would also like to thank my committee members Dr. Chaudri and Dr.

Narman, for valuable comments for my thesis.

Furthermore, I am grateful to my friends Hao Fan, Xuzhenghao Zou, and Zhichao Zhou,

who supported me during stressful times throughout this master thesis process.

Lastly, but most importantly, I am very grateful to my parents and my wife for their

support and love. This master thesis would never have been completed without them.

v

TABLE OF CONTENTS

List of Tables ... vi

List of Figures ... vii

Abstract .. viii

I. Introduction ... 1

II. Related Work.. 3

III. The Proposed Lightweight Digital Signature Protocol ... 6

A. System Model ... 6

B. Chaotic System ... 7

C. Lightweight Digital Signature Protocol .. 10

IV. Performance Evaluation.. 13

V. Future Work ... 22

VI. Conclusion .. 23

References ... 25

Appendix A: Approval Letter ... 29

Appendix B: SIMULATION SOFTWARE SOURCE CODE ... 30

vi

LIST OF TABLES

Table 1. Duffing Map ... 7

Table 2. Byte Substitution (1) ... 12

Table 3. Byte Substitution (2) ... 12

Table 4. Mix Columns .. 13

vii

LIST OF FIGURES

Figure 1. System model. ... 6

Figure 2. Duffing map with different initial conditions after 50 iterations. 9

Figure 3. The overall structure of the DroneSig. .. 11

Figure 4. Performance of code size and memory usage against the size of plaintext. 15

Figure 5. Performance of energy consumption against the size of plaintext. 17

Figure 6. Performance of computation time against the size of plaintext. 19

Figure 7. Performance of CPU cycle against the size of plaintext. .. 21

viii

ABSTRACT

Micro aerial vehicles a.k.a. drones, have become an integral part of a variety of civilian and

military application domains, including but not limited to aerial surveying and mapping, aerial

surveillance and security, aerial inspection of infrastructure, and aerial delivery. Meanwhile, the

cybersecurity of drones is gaining significant attention due to both financial and strategic

information and value involved in aerial applications. As a result of the lack of security features

in the communication protocol, an adversary can easily interfere with on-going communications

or even seize control of the drone. In this thesis, we propose a lightweight digital signature

protocol, also referred to as DroneSig, to protect drones from a man-in-the-middle attack, where

an adversary eavesdrops the communication between Ground Control Station (GCS) and drone,

and impersonates the GCS and sends fake commands to terminate the on-going mission or even

take control over the drone. The basic idea of the DroneSig is that the drone will only execute the

new command after validating the received digital signature from the GCS, proving that the new

command message is coming from the authenticated GCS. If the validation of the digital

signature fails, the new command is rejected immediately, and the Return-to-Launch (RTL)

mode is initiated and forces the drone to return to the take-off position. We conduct extensive

simulation experiments for performance evaluation and comparison using OMNeT++, and

simulation results show that the proposed lightweight digital signature protocol achieves better

performance in terms of energy consumption and computation time compared to the standard

Advanced Encryption Standard (AES) cryptographic technique.

1

I. INTRODUCTION

Micro aerial vehicles, a.k.a. drones, are flying robots endowed with the capabilities of

sensing, computing, and wireless communicating, and becoming progressively popular in

various civilian and military application areas, including but not limited to aerial surveying and

mapping, aerial surveillance and security, aerial inspection of infrastructure, and aerial delivery

(Pu & Carpenter, 2019). The global small drones market is projected to reach USD 40.31 billion

by 2025, at a compound annual growth rate of 17.04% from 2018 to 2025 (“Global Small Drones

Market,” 2018). By 2026, commercial drones for both corporate and consumer applications will

have an annual impact of $31 billion to $46 billion on the United States GDP (“Commercial

drones are here,” n.d.). As the drone-based civilian and military applications are proliferating,

Internet of Drones (IoD), a layered aerial network management and control architecture, was

proposed and has been demonstrated as an applicable architecture for coordinating the access of

drones to controlled airspace and providing navigation services (Pu & Carpenter, 2020). With the

assistance of advanced communication technology as well as emerging computing infrastructure,

we envision that drones will definitely find many new ways to improve the quality of our life in

the near future (Pu, 2019).

Due to both financial and strategic information and value involved in aerial applications,

however, drones look especially attractive to attackers and become an ideal target for various

cyber-attacks (Lin et al., 2018). For example, in January 2016, Mexican drug traffickers used

satellite navigation signal deception technology to send spoofed GPS signals to attack the U.S.

border patrol drone in order to illegally cross the border. In December 2011, Iran successfully

captured a U.S. Lockheed Martin RQ-170 Sentinel drone through spoofing the drone’s GPS

system. Nowadays, drones have started showing their impact in everyday life of ordinary people

2

and have been considered as a supplement of humans in a part of the delivery in the business.

Business and technology giants like Amazon, Google, Facebook, and Walmart have started

delivering the products and services via drones for the speedy delivery and customer satisfaction.

However, aerial drone applications are vulnerable to a myriad of cyber-attacks targeting their

communication links with Ground Control Station (GCS), as well as with other air units (Sanjab

et al., 2017). Therefore, investigating potential cybersecurity threats against drones and

designing state-of-the-art security mechanisms are the top priority to improve the security of

drone applications.

Unfortunately, the open nature of the wireless channel and the limited battery capacity,

computing capability, and communication bandwidth make it become a highly challenging task

(Pu, 2018). Communication between drones and GCS is established by the communication

protocol via a wireless channel, which makes them vulnerable to various attacks since the

communication protocol does not support security procedures (Koubaa et al., 2019). The GCS

and drones exchange data through an unauthenticated wireless channel without encryption. Thus,

data communication can be easily hacked. For example, an adversary can send unauthorized

commands to the drone to take its control from GCS, and then catch and withhold the drone.

This example is exactly showing that how the “anti-drone-gun” operates (Dronebuster™, 2018),

or hijacking the drone to have it go to an arbitrary waypoint (Feng et al., 2019). Therefore, it is

critical to ensure the security of communication in drone applications.

In this thesis, we propose a lightweight digital signature protocol, also named as

DroneSig, to protect drones from man-in-the-middle (MITM) attack, where an adversary

eavesdrops the communication between GCS and drone, and impersonates the GCS and sends

fake commands to terminate the on-going mission or even take control over the drone. In the

3

DroneSig, the GCS generates a digital signature based on the command message by using the

chaotic system and appends the digital signature to the command message. Before executing the

received command, the drone validates the digital signature by comparing it to its own generated

digital signature from the received command message. If the validation of the digital signature

fails, the command is rejected immediately, and the Return-to-Launch (RTL) mode is initiated

and forces the drone to return to take-off position. We develop a customized simulation

framework and evaluate its performance through extensive simulations in terms of energy

consumption, computation time, CPU cycle, memory usage, and code size. We also revisit prior

AES, DES, and 3DES (Stallings, 2006), and modify them to work in the framework for

performance comparison. The simulation results show that the proposed DroneSIG can achieve

better performance in terms of energy consumption, computation time, CPU cycle, memory

usage, and code size compared to AES, DES, and 3DES.

The rest of the thesis is organized as follows. Prior schemes are provided and analyzed in

Section II. A system model and the proposed DroneSig are presented in Section III. Section IV

focuses on simulation results and their analyses. Section V discusses the future work, Compare

the security of the protocol. Finally, concluding remarks are provided in Section VI.

II. RELATED WORK

A significant volume of research work has mainly focused on developing security

mechanisms and features to ensure the necessary security services of drones, such as

confidentiality, integrity, and authentication, and protect drones from various cyber-attacks.

Srinivas, Das, Kumar, and Rodrigues (2019) described a temporal credential-based anonymous

lightweight user authentication mechanism is proposed to address the authentication problem in

the IoD environment based on a three-factor scheme using user’s mobile device, password, and

4

biometrics. Ozmen and Yavuz (2018) proposed an optimized public key infrastructure based

framework integrated with lightweight symmetric primitives is proposed for small aerial drones,

where special precomputation methods and optimized elliptic curves are harnessed to reduce the

computational overhead and energy consumption. An encryption mechanism that improves the

communication security of open source drones is proposed based on Galois Embedded Crypto

(GEC) and ArduinoLibs Crypto library to provide safer and more secure communication service

for radio control link (Podhradsky et al., 2017). A medium-interaction portable drone honeypot,

also called HoneyDrone, is designed for protecting drones by Daubert, Boopalan, Mühlhäuser,

and Vasilomanolakis (2018). The basic idea of HoneyDrone is to emulate a number of drone-

specific and drone-tailored protocols, lure adversary into attacking drone honeypot, and record

and analyze malicious activities to detect potential attackers.

According to Won, Seo and Bertino (2020), a lookup table shuffling mechanism that

supports white-box block cipher with dynamics is proposed to protect unmanned vehicles from

white-box attacks, where attackers with sufficient knowledge of a target unmanned vehicle can

steal secret information stored in the unmanned vehicle through taking advantage of advanced

reverse engineering techniques and exploiting the vulnerabilities of open-source software. Since

no short secret key is used by an unmanned vehicle during the protocol, the shuffling mechanism

can be safely executed in the white-box environment and make it hard for a white-box attacker to

successfully encrypt/decrypt any plaintext/ciphertext even if the attacker has the knowledge of

the entire lookup table. A new system model is proposed to secure drone communication for the

data collection and transmission in the IoD environment, where public blockchain technology is

used for the storage of collected data from the drones and update the information into the

distributed ledgers to reduce the burden of drones (Aggarwal et al., 2019). According to

5

experimental evaluation, the proposed system model makes the realtime drone-based

applications more reliable and scalable and can defend against various risks and attacks.

He, Qiao, Chan, and Guizani (2018) proposed that use information fusion by combining a

visual sensor and inertial measurement unit to detect GPS spoofing attacks in an airborne fog

computing system. In order to address the challenging information leakage problem of

eavesdropping attack, leverages the physical characteristics of wireless channels to achieve the

goal of secure transmissions in unmanned aerial vehicles communication networks (Li et al.,

2019). In addition, an overview of security threats and attacks against communication protocol

for unmanned systems and potential security solutions are also presented by Koubaa et al.

(2019). Liang, Zhao, Shetty, and Li (2017) proposed a blockchain and cloud storage-based

framework to guarantee the UAV data integrity. The hashed data records collected from drones

are stored in the blockchain network, and a blockchain receipt for each data record is also stored

in the cloud, which can reduce the burden of moving drones with the limit of battery and process

capability while gaining enhanced security guarantee of the data. The article presents the

ideology of the secure utilization of drones for inter-service operability in ultra-dense wireless

networks by exploiting the features of the blockchain (Sharma et al., 2017). Zhang, He, Li, and

Chen (2020) proposed a lightweight authentication and key agreement scheme in which there are

only secure one-way hash function and bitwise XOR operations when drones and users mutually

authenticate each other. The proposed scheme is comprised of three phases: the setup phase, the

registration phase, and the mutual authentication phase. In the setup phase, the control station

generates its master private key and other public system parameters. In the registration phase,

users and drones register on the control station and get their secret key via a secure channel. In

6

the last phase, users and drones communicate with each other securely after establishing a

session key.

In summary, various cryptographic techniques have been well studied to protect drones

from cyber-attacks. However, to the best of our knowledge, there is no comprehensive and

lightweight defense mechanism against MITM attack for drones.

III. THE PROPOSED LIGHTWEIGHT DIGITAL SIGNATURE PROTOCOL

In this section, we first introduce the system model and chaotic system, then propose a

lightweight digital signature protocol, also named as DroneSig, to protect drones from man-in-

the-middle (MITM) attack.

A. SYSTEM MODEL

Figure 1. System model.

This image shows a basic system diagram where there is a Radio Control (RC) link to be

used by the GCS to manually control the drone. However, the communication link between GCS

and drone is established via a wireless channel, which is vulnerable to various security attacks

due to its openness. To be specific, the GCS exchanges data with the drone through an

unauthenticated and unencrypted channel; as a result, the communications can be easily hacked

by a man-in-the-middle (MITM) attack. An adversary with an appropriate RC transmitter can

RC Transmitter

X

Attacker

RC Link
Drone

7

eavesdrop the communication between GCS and drone and impersonates the GCS and sends

fake commands to terminate the on-going mission or even gain direct control over the drone

(Srinivas et al., 2019). Here, a successful communication link attack without involving “anti-

drone-gun” has already been demonstrated on a popular DSMx radio protocol to hijack the drone

(Liang et al., 2017).

B. CHAOTIC SYSTEM

A chaotic system is a dynamical and determined system with the extrinsic nature of

nonlinear behavior, pseudo-randomness, broad-spectrum, and sensitivity to initial conditions. In

the past few decades, a state of disorder and nonlinear dynamics have been used in the design of

cryptographically secure pseudo-random number generators. These pseudo-random number

generators use the control parameters and the initial condition of the chaotic maps as their keys.

Without the right initial conditions, the correct pseudo-random sequence cannot be regenerated.

Duffing map is a two-dimensional discrete-time and dynamical system that exhibits chaotic

behavior. It is widely known to display chaos for certain parameter values and initial conditions.

Duffing map contains a single cubic term and is expressed below,

{
𝑥𝑛+1 = 𝑦𝑛

𝑦𝑛+1 = −𝑏 ∙ 𝑥𝑛 + 𝑎 ∙ 𝑦𝑛 − 𝑦𝑛
3

Table 1. Duffing Map

where a and b are constant parameters. The output of the Duffing map highly depends on

the initial conditions represented by x0 and y0. The constant parameters are usually sent to a =

2.75 and b = 0.2 to produce chaotic behavior. Disregarding the initial point (0.5, 0.5), the Duffing

map outputs points around the Duffing map attractor in a random way.

8

(a) x0 = 0.4 and y0 = 0.6

(b) x0 = 0.6 and y0 = 0.4

9

(c) x0 = 0.55 and y0 = 0.45

(d) x0 = 0.45 and y0 = 0.55

Figure 2. Duffing map with different initial conditions after 50 iterations.

10

As shown in Figure 2, any change in the initial conditions will affect the plot of these

points.

C. LIGHTWEIGHT DIGITAL SIGNATURE PROTOCOL

The DroneSig adopts a technique that is similar to cryptographic encryption but requires

less computational resources. In addition, the DroneSig is designed to encode and decode binary

information without using standard cryptographic techniques, such as DES or AES. In DroneSig,

the digital signature is generated by using a random number generator, Duffing map, which can

assist both GCS and drone to achieve the same key without the necessity to wirelessly share it on

a public wireless medium.

The DroneSig consists of three functions: byte substitution, matrix transformation, and

random shuffling.

11

Figure 3. The overall structure of the DroneSig.

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12 m13 m14 m15 m16

Byte Substitution

Inverse in GF(2
8
)

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

b0
b1
b2
b3
b4
b5
b6
b7

+

1
1
0
0
0
1
1
0

=

b'0
b'1
b'2
b'3
b'4
b'5
b'6
b'7

m'1 m'2 m'3 m'4 m'5 m'6 m'7 m'8 m'9 m'10 m'11m'12 m'13 m'14 m'15m'16

m'1 m'2 m'3 m'4 m'5 m'6 m'7 m'8 m'9 m'10 m'11m'12 m'13 m'14 m'15m'16

m'1 m'2 m'3 m'4

m'5 m'6 m'7 m'8

m'9 m'10 m'11 m'12

m'13 m'14 m'15m'16

02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

 =

m*1 m*2 m*3 m*4

m*5 m*6 m*7 m*8

m*9 m*10 m*11 m*12

m*13 m*14 m*15 m*16

Matrix Transformation

.m*1

Random Shuffle Using the Duffing Map

m*2 m*3 m*4 m*5 m*252 m*253 m*254 m*255 m*256

Digital Signature (First N Bytes)

Message Command (256 Bytes)

12

Figure 3 shows the overall structure of the DroneSig. Each message command has 256

bytes and is divided into a set of 16-byte blocks. Byte substitution and matrix transformation will

be applied to each block, whilst random shuffling will be performed on all blocks. First, each

individual byte of 16-byte block is mapped into a new byte according to

[

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1]

∙

[

 𝑏0

∗

𝑏1
∗

𝑏2
∗

𝑏3
∗

𝑏4
∗

𝑏5
∗

𝑏6
∗

𝑏7
∗
]

⊕

[

1
1
0
0
0
1
1
0]

=

[

 𝑏0

′

𝑏1
′

𝑏2
′

𝑏3
′

𝑏4
′

𝑏5
′

𝑏6
′

𝑏7
′
]

Table 2. Byte Substitution (1)

Here, (b
∗

7 b
∗

6 b
∗

5 b
∗

4 b
∗

3 b
∗

2 b
∗

1 b
∗

0) is the value of multiplicative inverse in GF (28) for input byte

(b7b6b5b4b3b2b1b0). As an example, considering the input byte {95}. the multiplicative inverse in

GF (28) is {95}−1 = {8A}, which is (10001010).

[

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1]

∙

[

0
1
0
1
0
0
0
1]

⊕

[

1
1
0
0
0
1
1
0]

=

[

0
1
0
1
0
1
0
0]

Table 3. Byte Substitution (2)

According to Table 3, the result byte is {2A}. The process of byte substitution is done.

Second, the 16 substituted bytes in a block are depicted as a 4 × 4 square matrix, and each

byte of a column in square matrix is mapped into a new value that is a function of all four bytes

13

in that column. The transformation is defined by matrix transformation in Figure 3. Each element

in the product matrix is the sum of products of elements of one row and one column. In this case,

the individual additions and multiplications are performed in GF (28). The matrix transformation

on a single column can be expressed as

𝑆′
0,𝑗 = (2 ∙ 𝑆0,𝑗) ⊕ (3 ∙ 𝑆1,𝑗) ⊕ 𝑆2,𝑗 ⊕ 𝑆3,𝑗

𝑆′
1,𝑗 = 𝑆0,𝑗 ⊕ (2 ∙ 𝑆1,𝑗) ⊕ (3 ∙ 𝑆2,𝑗) ⊕ 𝑆3,𝑗

𝑆′
2,𝑗 = 𝑆0,𝑗 ⊕ 𝑆1,𝑗 ⊕ (2 ∙ 𝑆2,𝑗) ⊕ (3 ∙ 𝑆3,𝑗)

𝑆′
3,𝑗 = (3 ∙ 𝑆0,𝑗) ⊕ 𝑆1,𝑗 ⊕ 𝑆2,𝑗 ⊕ (2 ∙ 𝑆3,𝑗)

Table 4. Mix Columns

Third, the 256 bytes of all blocks will be randomly shuffled using the Duffing map to

generate the digital signature, which includes the first N bytes of the shuffling output. The

shuffling process is reversible. When the drone receives the command message, it only executes

the command after verifying the authenticity of the digital signature, proving that the

communication has been held with the authenticated GCS. The drone will validate the digital

signature by comparing it to its own generated signature from the command message. If this

validation of the digital signature fails, the command is rejected immediately, and the Return-to-

Launch (RTL) mode is initiated and forces the drone to return to take-off position.

IV. PERFORMANCE EVALUATION

In this thesis, we develop a customized simulation framework to conduct our experiments

in terms of code size, memory usage, energy consumption, computation time, and CPU cycle.

We also revisit existing AES, DES, and 3DES (Stallings, 2006), and modify them to work in the

14

framework for performance comparison and analysis. The size of plaintext is changed between

25 and 2000 KB.

(a)

15

(b)

(c)

Figure 4. Performance of code size and memory usage against the size of plaintext.

First, the performance of code size and memory usage is measured with the changes in

the size of plaintext in Figure 4. Here, the code size is measured as the file size of the algorithm.

As shown in Figure 4(a) and (b), the DroneSig has the smallest code size in terms of encryption

and decryption algorithms compared to AES, DES, and 3DES. Because the DroneSig has a less

number of operations for encryption and decryption processes, which make the file size of

algorithms smaller. The AES has the largest code size in terms of encryption and decryption

algorithms because it is the most complex algorithm which consists of four transformation

functions: substitute bytes, shift rows, mix columns, and add round key. In Figure 4(c), we

measure the memory usage of four schemes. It is clear that the DroneSig has the smallest

memory usage compared to AES, DES, and 3DES.

16

(a)

(b)

17

(c)

Figure 5. Performance of energy consumption against the size of plaintext.

Second, we measure the performance of energy consumption against the size of plaintext

in Figure 5. As shown in Figure 5(a), the DroneSig achieves the lowest encryption energy

consumption compared to AES, DES, and 3DES. DroneSig consumes less energy because it

performs three lightweight operations: byte Substitution, matrix Transformation, and random

Shuffling. Most importantly, three lightweight operations are only executed one time in the

process of encryption. Thus, the lowest encryption energy consumption is observed by the

DroneSig. However, for AES, DES, and 3DES, the same encryption operations are performed in

multiple rounds. As a result, a large amount of energy is consumed. In Figure 5(b), it is clear that

the decryption energy consumption of the DroneSig is lower than that of the other three schemes.

Since the decryption is the reverse process of encryption, similar operations will be applied to

ciphertext. Therefore, the lowest decryption energy consumption is obtained by the DroneSig.

18

The total energy consumption is measured in Figure 5(c), where the DroneSig provides the

lowest total energy consumption compared to AES, DES, and 3DES. Because the DroneSig has

the lowest encryption and decryption energy consumption.

(a)

19

(b)

(c)

Figure 6. Performance of computation time against the size of plaintext.

20

Third, the performance of computation time is measured with varying size of plaintext in

Figure 6. The computation time is proportional to the complexity of the algorithm. As the

algorithm becomes more complex, it requires a larger computation time. In the DroneSig, there

are only three operations, and those operations are only executed one time for encryption and

decryption. However, AES, DES, and 3DES are traditional cryptographic techniques, and several

complex operations are executed in multiple rounds for encryption and decryption. Compared to

DroneSig, AES, DES, and 3DES are much more complex. Therefore, the DroneSig can achieve

the shortest computation time in terms of encryption and decryption, which are shown in Figure

6(a) and (b), respectively. In Figure 6(c), the DroneSig outperforms AES, DES, and 3DES in

terms of total computation time because the DroneSig can achieve the smallest encryption and

decryption computation time.

(a)

21

(b)

(c)

Figure 7. Performance of CPU cycle against the size of plaintext.

22

Fourth, we measure the performance of the CPU cycle by changing the size of plaintext

in Figure 7. As shown in Figure 7(a) and (b), the smallest number of CPU cycles is obtained by

the DroneSig in terms of encryption and decryption. Since the DroneSig significantly reduces the

number of operations in the process of encryption and decryption, a smaller number of CPU

cycles is required to complete the operations of encryption and decryption. However, AES, DES,

and 3DES are more complex than DroneSig. Thus, a larger number of CPU cycles is required to

execute all operations. In Figure 7, the total number of encryption and decryption CPU cycles is

measured for all schemes. The DroneSig provides the best performance compared to others

because the DroneSig can achieve a smaller number of CPU cycles in terms of encryption and

decryption.

V. FUTURE WORK

Although the analysis and simulation provided have proved that DroneSig is a

lightweight, low-consumption, and fast calculation method, there are some improvements that

can still be made. In Section IV, we compared code size, memory usage, energy consumption,

computation time, and CPU cycle. Nevertheless, these seem to only show that the performance

of DroneSig is good, but they cannot explain how safe it is. In this context, we will survey some

of the provided results, which can be improved or extended further.

Therefore, after a series of studies, we found two lightweight Micro Aerial Vehicle

protocols to compare with DroneSig. The first one is Micro Air Vehicle Communication

Protocol (MAVLink), a very lightweight, header-only message library for communication

between drones and/or ground control stations (Meier, 2009). The second is UranusLink,

Communication Protocol for UAV with Small Overhead and Encryption Ability (Kriz &

Gabrlik, 2015).

23

We will deploy two attack methods at the same time to compare the security of each

protocol. One type of attack can be an attempt to send random data in the encrypted portion and

attempt to provide some combination of valid commands on the receiver after decryption, see if

the length of the received data has changed. Another type of attack can be capturing the

communication during flight and try to use the captured comment on the next flight to see if the

drone executes.

To determine the security of cryptographic protocols, we intend to use the ISO/IEC

29128 method for evaluation testing. ISO/IEC 29128 is a newly proposed international standard

that USES formal methods, which used for improving the security assurance of cryptographic

protocols (Matsuo et al., 2010). Once the cryptographic protocol has passed ISO/IEC 29128

certification, especially at its highest level of assurance, the protocol will be absolutely secure.

VI. CONCLUSION

In this thesis, we proposed a lightweight digital signature protocol (DroneSig) to protect

drones from a man-in-the-middle attack, where an adversary eavesdrops the communications

between Ground Control Station and drone, and impersonates the Ground Control Station and

sends fake commands to terminate the on-going mission or even take control over the drone. The

basic idea of the DroneSig is that the drone will only execute the new command after validating

the received digital signature from the Ground Control Station, proving that the new command

message is coming from the authenticated Ground Control Station. If the validation of the digital

signature fails, the new command is rejected immediately, and the Return-to-Launch (RTL)

mode is initiated and forces the drone to return to the take-off position. In order to evaluate the

effectiveness of the proposed approach, we developed a customized simulation framework and

compared it with prior approaches. The simulation results show that the proposed DroneSig is a

24

viable and competitive approach defending drones against a man-in-the-middle attack.

25

REFERENCES

Aggarwal, S., Shojafar, M., Kumar, N., & Conti, M. (2019). A New Secure Data Dissemination

 Model in Internet of Drones. 2019 IEEE International Conference on

 Communications (ICC), 1–6. https://doi.org/10.1109/icc.2019.8761372

Commercial drones are here: The future of unmanned aerial systems. McKinsey & Company.

 https://www.mckinsey.com/industries/capital-projects-and-infrastructure/our-

 insights/commercial-drones-are-here-the-future-of-unmanned-aerial-systems.

Daubert, J., Boopalan, D., Mühlhäuser, M., & Vasilomanolakis, E. (2018). Improving

 communication security of open source UAVs: Encrypting radio control link. 2018

 Network Operations and Management Symposium (NOMS), 1-6.

Dronebuster™. Flex Force. (2018, March 29). http://flexforce.us/product/dronebuster/.

Feng, Z., Guan, N., Lv, M., Liu, W., Deng, Q., Liu, X., & Yi, W. (2019). An Efficient UAV

 Hijacking Detection Method Using Onboard Inertial Measurement Unit. ACM

 Transactions on Embedded Computing Systems, 17(6), 1–19.

 https://doi.org/10.1145/3289390

Global Small Drones Market 2018-2025 - Exemptions Made By the FAA to Allow the Use of

 Small Drones in Several Industries. PR Newswire: news distribution, targeting and

 monitoring. (2018, October 1). https://www.prnewswire.com/news-releases/global-small-

 drones-market-2018-2025---exemptions-made-by-the-faa-to-allow-the-use-of-small-

 drones-in-several-industries-300721794.html.

Goodin, D. (2016, October 27). There’s a new way to take down drones, and it doesn’t involve

 shotguns. Ars Technica. https://arstechnica.com/information-technology/2016/10/drone-

 hijacker-gives-hackers-complete-control-of-aircraft-in-midflight/.

https://doi.org/10.1109/icc.2019.8761372
http://flexforce.us/product/dronebuster/
https://doi.org/10.1145/3289390
https://www.prnewswire.com/news-releases/global-small-
https://www.prnewswire.com/news-releases/global-small-
https://arstechnica.com/information-technology/2016/10/drone-
https://arstechnica.com/information-technology/2016/10/drone-

26

He, D., Qiao, Y., Chan, S., & Guizani, N. (2018). Flight Security and Safety of Drones in

 Airborne Fog Computing Systems. IEEE Communications Magazine, 56(5), 66–71.

 https://doi.org/10.1109/mcom.2018.1700916

Koubaa, A., Allouch, A., Alajlan, M., Javed, Y., Belghith, A., & Khalgui, M. (2019). Micro Air

 Vehicle Link (MAVlink) in a Nutshell: A Survey. IEEE Access, 7, 87658–87680.

 https://doi.org/10.1109/access.2019.2924410

Kriz, V., & Gabrlik, P. (2015). UranusLink - Communication Protocol for UAV with Small

 Overhead and Encryption Ability. IFAC-PapersOnLine, 48(4), 474-479.

 https://doi:10.1016/j.ifacol.2015.07.080

Li, B., Fei, Z., Zhang, Y., & Guizani, M. (2019). Secure UAV Communication Networks over

 5G. IEEE Wireless Communications, 26(5), 114–120.

 https://doi.org/10.1109/mwc.2019.1800458

Liang, X., Zhao, J., Shetty, S., & Li, D. (2017). Towards data assurance and resilience in IoT

 using blockchain. 2017 IEEE Military Communications Conference (MILCOM), 261–

 266. https://doi.org/10.1109/milcom.2017.8170858

Lin, C., He, D., Kumar, N., Choo, K.-K. R., Vinel, A., & Huang, X. (2018). Security and Privacy

 for the Internet of Drones: Challenges and Solutions. IEEE Communications Magazine,

 56(1), 64–69. https://doi.org/10.1109/mcom.2017.1700390

Matsuo, S., Miyazaki, K., Otsuka, A., & Basin, D. (2010). How to evaluate the security of real-

 life cryptographic protocols. In International Conference on Financial Cryptography

 and Data Security (pp. 182-194). Springer, Berlin, Heidelberg.

Meier, L. (2009). MAVLink Developer Guide. Retrieve from https://mavlink.io/en/

https://doi.org/10.1109/mcom.2018.1700916
https://doi.org/10.1109/access.2019.2924410
https://doi.org/10.1109/milcom.2017.8170858
https://doi.org/10.1109/mcom.2017.1700390

27

Ozmen, M. O., & Yavuz, A. A. (2018). Dronecrypt - An Efficient Cryptographic Framework for

 Small Aerial Drones. 2018 IEEE Military Communications Conference (MILCOM), 1–6.

 https://doi.org/10.1109/milcom.2018.8599784

Podhradsky, M., Coopmans, C., & Hoffer, N. (2017). Improving communication security of

 open source UAVs: Encrypting radio control link. 2017 International Conference on

 Unmanned Aircraft Systems (ICUAS), 1153–1159.

 https://doi.org/10.1109/icuas.2017.7991460

Pu, C. (2018). Jamming-Resilient Multipath Routing Protocol for Flying Ad Hoc Networks.

 IEEE Access, 6, 68472–68486. https://doi.org/10.1109/access.2018.2879758

Pu, C. (2019). Stochastic Packet Forwarding Algorithm in Flying Ad Hoc Networks. 2019 IEEE

 Military Communications Conference (MILCOM), 490–495.

 https://doi.org/10.1109/milcom47813.2019.9020723

Pu, C., & Carpenter, L. (2019). To Route or To Ferry: A Hybrid Packet Forwarding Algorithm in

 Flying Ad Hoc Networks. 2019 IEEE 18th International Symposium on Network

 Computing and Applications (NCA), 1–8. https://doi.org/10.1109/nca.2019.8935011

Pu, C., & Carpenter, L. (2020). Psched: A Priority-Based Service Scheduling Scheme for the

 Internet of Drones. IEEE Systems Journal (Early Access), 1–1.

 https://doi.org/10.1109/jsyst.2020.2998010

Pu, C., & Li, Y. (2020). Lightweight Authentication Protocol for Unmanned Aerial Vehicles

 Using Physical Unclonable Function and Chaotic System. 2020 IEEE International

 Symposium on Local and Metropolitan Area Networks (LANMAN), Accepted to Appear.

https://doi.org/10.1109/milcom.2018.8599784
https://doi.org/10.1109/milcom47813.2019.9020723
https://doi.org/10.1109/nca.2019.8935011
https://doi.org/10.1109/jsyst.2020.2998010

28

Sanjab, A., Saad, W., & Basar, T. (2017). Prospect theory for enhanced cyber-physical security

 of drone delivery systems: A network interdiction game. 2017 IEEE International

 Conference on Communications (ICC), 1–6. https://doi.org/10.1109/icc.2017.7996862

Wang, B., Sun, Y., Sheng, Z., Nguyen, H. M., & Duong, T. Q. (2019). Inconspicuous

 Manipulation for Social-Aware Relay Selection in Flying Internet of Things. IEEE

 Wireless Communications Letters, 8(5), 1394–1397.

 https://doi.org/10.1109/lwc.2019.2919536

Sharma, V., You, I., & Kul, G. (2017). Socializing Drones for Inter-Service Operability in Ultra-

 Dense Wireless Networks using Blockchain. Proceedings of the 2017 International

 Workshop on Managing Insider Security Threats - MIST ’17, 81–84.

 https://doi.org/10.1145/3139923.3139932

Srinivas, J., Das, A. K., Kumar, N., & Rodrigues, J. J. P. C. (2019). TCALAS: Temporal

 Credential-Based Anonymous Lightweight Authentication Scheme for Internet of Drones

 Environment. IEEE Transactions on Vehicular Technology, 68(7), 6903–6916.

 https://doi.org/10.1109/tvt.2019.2911672

Stallings, W. (2006). Cryptography and network security: principles and practice. Pearson.

Won, J., Seo, S., & Bertino, E. (2020). A Secure Shuffling Mechanism for White-Box Attack-

 Resistant Unmanned Vehicles. IEEE Transactions on Mobile Computing, 19(5), 1023–

 1039. https://doi.org/10.1109/tmc.2019.2903048

Zhang, Y., He, D., Li, L., & Chen, B. (2020). A lightweight authentication and key agreement

 scheme for Internet of Drones. Computer Communications, 154, 455–464.

 https://doi.org/10.1016/j.comcom.2020.02.067

https://doi.org/10.1109/lwc.2019.2919536

29

APPENDIX A: APPROVAL LETTER

30

APPENDIX B: SIMULATION SOFTWARE SOURCE CODE

Sbox = (

0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5, 0x30, 0x01, 0x67, 0x2B, 0xFE,

0xD7, 0xAB, 0x76,

0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59, 0x47, 0xF0, 0xAD, 0xD4, 0xA2, 0xAF, 0x9C,

0xA4, 0x72, 0xC0,

0xB7, 0xFD, 0x93, 0x26, 0x36, 0x3F, 0xF7, 0xCC, 0x34, 0xA5, 0xE5, 0xF1, 0x71,

0xD8, 0x31, 0x15,

0x04, 0xC7, 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A, 0x07, 0x12, 0x80, 0xE2, 0xEB,

0x27, 0xB2, 0x75,

0x09, 0x83, 0x2C, 0x1A, 0x1B, 0x6E, 0x5A, 0xA0, 0x52, 0x3B, 0xD6, 0xB3, 0x29,

0xE3, 0x2F, 0x84,

0x53, 0xD1, 0x00, 0xED, 0x20, 0xFC, 0xB1, 0x5B, 0x6A, 0xCB, 0xBE, 0x39, 0x4A,

0x4C, 0x58, 0xCF,

0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33, 0x85, 0x45, 0xF9, 0x02, 0x7F, 0x50,

0x3C, 0x9F, 0xA8,

0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5, 0xBC, 0xB6, 0xDA, 0x21, 0x10,

0xFF, 0xF3, 0xD2,

0xCD, 0x0C, 0x13, 0xEC, 0x5F, 0x97, 0x44, 0x17, 0xC4, 0xA7, 0x7E, 0x3D, 0x64,

0x5D, 0x19, 0x73,

0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88, 0x46, 0xEE, 0xB8, 0x14, 0xDE,

0x5E, 0x0B, 0xDB,

0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C, 0xC2, 0xD3, 0xAC, 0x62, 0x91,

0x95, 0xE4, 0x79,

0xE7, 0xC8, 0x37, 0x6D, 0x8D, 0xD5, 0x4E, 0xA9, 0x6C, 0x56, 0xF4, 0xEA, 0x65,

0x7A, 0xAE, 0x08,

0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6, 0xB4, 0xC6, 0xE8, 0xDD, 0x74, 0x1F, 0x4B,

0xBD, 0x8B, 0x8A,

0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E, 0x61, 0x35, 0x57, 0xB9, 0x86,

0xC1, 0x1D, 0x9E,

0xE1, 0xF8, 0x98, 0x11, 0x69, 0xD9, 0x8E, 0x94, 0x9B, 0x1E, 0x87, 0xE9, 0xCE,

0x55, 0x28, 0xDF,

0x8C, 0xA1, 0x89, 0x0D, 0xBF, 0xE6, 0x42, 0x68, 0x41, 0x99, 0x2D, 0x0F, 0xB0,

0x54, 0xBB, 0x16,

)

InvSbox = (

0x52, 0x09, 0x6A, 0xD5, 0x30, 0x36, 0xA5, 0x38, 0xBF, 0x40, 0xA3, 0x9E, 0x81,

0xF3, 0xD7, 0xFB,

0x7C, 0xE3, 0x39, 0x82, 0x9B, 0x2F, 0xFF, 0x87, 0x34, 0x8E, 0x43, 0x44, 0xC4,

0xDE, 0xE9, 0xCB,

0x54, 0x7B, 0x94, 0x32, 0xA6, 0xC2, 0x23, 0x3D, 0xEE, 0x4C, 0x95, 0x0B, 0x42,

0xFA, 0xC3, 0x4E,

0x08, 0x2E, 0xA1, 0x66, 0x28, 0xD9, 0x24, 0xB2, 0x76, 0x5B, 0xA2, 0x49, 0x6D,

0x8B, 0xD1, 0x25,

31

0x72, 0xF8, 0xF6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xD4, 0xA4, 0x5C, 0xCC, 0x5D,

0x65, 0xB6, 0x92,

0x6C, 0x70, 0x48, 0x50, 0xFD, 0xED, 0xB9, 0xDA, 0x5E, 0x15, 0x46, 0x57, 0xA7,

0x8D, 0x9D, 0x84,

0x90, 0xD8, 0xAB, 0x00, 0x8C, 0xBC, 0xD3, 0x0A, 0xF7, 0xE4, 0x58, 0x05, 0xB8,

0xB3, 0x45, 0x06,

0xD0, 0x2C, 0x1E, 0x8F, 0xCA, 0x3F, 0x0F, 0x02, 0xC1, 0xAF, 0xBD, 0x03, 0x01,

0x13, 0x8A, 0x6B,

0x3A, 0x91, 0x11, 0x41, 0x4F, 0x67, 0xDC, 0xEA, 0x97, 0xF2, 0xCF, 0xCE, 0xF0,

0xB4, 0xE6, 0x73,

0x96, 0xAC, 0x74, 0x22, 0xE7, 0xAD, 0x35, 0x85, 0xE2, 0xF9, 0x37, 0xE8, 0x1C,

0x75, 0xDF, 0x6E,

0x47, 0xF1, 0x1A, 0x71, 0x1D, 0x29, 0xC5, 0x89, 0x6F, 0xB7, 0x62, 0x0E, 0xAA,

0x18, 0xBE, 0x1B,

0xFC, 0x56, 0x3E, 0x4B, 0xC6, 0xD2, 0x79, 0x20, 0x9A, 0xDB, 0xC0, 0xFE, 0x78,

0xCD, 0x5A, 0xF4,

0x1F, 0xDD, 0xA8, 0x33, 0x88, 0x07, 0xC7, 0x31, 0xB1, 0x12, 0x10, 0x59, 0x27,

0x80, 0xEC, 0x5F,

0x60, 0x51, 0x7F, 0xA9, 0x19, 0xB5, 0x4A, 0x0D, 0x2D, 0xE5, 0x7A, 0x9F, 0x93,

0xC9, 0x9C, 0xEF,

0xA0, 0xE0, 0x3B, 0x4D, 0xAE, 0x2A, 0xF5, 0xB0, 0xC8, 0xEB, 0xBB, 0x3C, 0x83,

0x53, 0x99, 0x61,

0x17, 0x2B, 0x04, 0x7E, 0xBA, 0x77, 0xD6, 0x26, 0xE1, 0x69, 0x14, 0x63, 0x55,

0x21, 0x0C, 0x7D,

)

xtime = lambda a: (((a << 1) ^ 0x1B) & 0xFF) if (a & 0x80) else (a << 1)

def text2matrix(text):

 matrix = []

 for i in range(16):

 byte = (text >> (8 * (15 - i))) & 0xFF

 if i % 4 == 0:

 matrix.append([byte])

 else:

 matrix[i // 4].append(byte)

 return matrix

def matrix2text(matrix):

 text = 0

 for i in range(4): # 0~4

 for j in range(4):

 text |= (matrix[i][j] << (120 - 8 * (4 * i + j)))

 return text

32

def __sub_bytes(s):

 for i in range(4):

 for j in range(4):

 s[i][j] = Sbox[s[i][j]]

def __inv_sub_bytes(s):

 for i in range(4):

 for j in range(4):

 s[i][j] = InvSbox[s[i][j]]

def __shift_rows(s):

 s[0][1], s[1][1], s[2][1], s[3][1] = s[1][1], s[2][1], s[3][1], s[0][1]

 s[0][2], s[1][2], s[2][2], s[3][2] = s[2][2], s[3][2], s[0][2], s[1][2]

 s[0][3], s[1][3], s[2][3], s[3][3] = s[3][3], s[0][3], s[1][3], s[2][3]

def __inv_shift_rows(s):

 s[0][1], s[1][1], s[2][1], s[3][1] = s[3][1], s[0][1], s[1][1], s[2][1]

 s[0][2], s[1][2], s[2][2], s[3][2] = s[2][2], s[3][2], s[0][2], s[1][2]

 s[0][3], s[1][3], s[2][3], s[3][3] = s[1][3], s[2][3], s[3][3], s[0][3]

def __mix_single_column(a):

 # please see Sec 4.1.2 in The Design of Rijndael

 t = a[0] ^ a[1] ^ a[2] ^ a[3]

 u = a[0]

 a[0] ^= t ^ xtime(a[0] ^ a[1])

 a[1] ^= t ^ xtime(a[1] ^ a[2])

 a[2] ^= t ^ xtime(a[2] ^ a[3])

 a[3] ^= t ^ xtime(a[3] ^ u)

def __mix_columns(s):

 for i in range(4):

 __mix_single_column(s[i])

def __inv_mix_columns(s):

 # see Sec 4.1.3 in The Design of Rijndael

 for i in range(4):

 u = xtime(xtime(s[i][0] ^ s[i][2]))

 v = xtime(xtime(s[i][1] ^ s[i][3]))

 s[i][0] ^= u

33

 s[i][1] ^= v

 s[i][2] ^= u

 s[i][3] ^= v

 __mix_columns(s)

def encrypt(plaintext):

 plain_state = text2matrix(plaintext)

 __sub_bytes(plain_state)

 __shift_rows(plain_state)

 __mix_columns(plain_state)

 return matrix2text(plain_state)

def decrypt(ciphertext):

 cipher_state = text2matrix(ciphertext)

 __inv_mix_columns(cipher_state)

 __inv_shift_rows(cipher_state)

 __inv_sub_bytes(cipher_state)

 return matrix2text(cipher_state)

def chaos(x, y):

 line = encrypt(plaintext)

 sep = [int(digit) for digit in str(line)]

 k = len(sep)

 dot = [] # seed

 value = []

 x1 = []

 y1 = []

 x1.append(x)

 y1.append(y)

 dot.append(x * 2 + y * 2.5)

 for i in range(k):

 if i > 0:

 x1.append(y1[i - 1])

 y1.append(-0.2 * x1[i - 1] + 2.75 * y1[i - 1] - math.pow(y1[i - 1], 3))

 dot.append(x1[i] * 2 + y1[i] * 2.5)

 for j in range(k):

 random.seed(dot[j])

 num = random.randint(0, k)

34

 value.append(sep[num])

 new_sep = ''.join('%s' % id for id in value)

 return new_sep

def inv_chaos(text, x, y):

 sep = [int(digit) for digit in str(text)]

 k = len(sep)

 dot = [] # seed

 value = []

 x1 = []

 y1 = []

 x1.append(x)

 y1.append(y)

 dot.append(x * 2 + y * 2.5)

 for i in range(k):

 if i > 0:

 x1.append(y1[i - 1])

 y1.append(-0.2 * x1[i - 1] + 2.75 * y1[i - 1] - math.pow(y1[i - 1], 3))

 dot.append(x1[i] * 2 + y1[i] * 2.5)

 for j in range(k):

 random.seed(dot[j])

 num = random.randint(0, k)

 re = sep[j]

 value.insert(num, re)

 new_sep = ''.join('%s' % id for id in value)

 return new_sep

	DroneSig: Lightweight Digital Signature Protocol for Micro Aerial Vehicles
	tmp.1599231266.pdf.x7lap

