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ABSTRACT 

The change in the interaction between southern fox squirrel (Sciurus niger niger) and eastern 

gray squirrels (Sciurus carolinensis) provided an opportunity to examine sublethal effects of 

predation as it relates to a species’ risk perception and habitat structure at two scales. The 

interactions allowed us to examine the evolutionary responses of the southern fox squirrel and 

eastern gray squirrel to predation risk reflective of their historically associated landscapes and 

habitat structures. Second, the succession of savanna woodlands into closed-canopy mixed forest 

provided an opportunity to assess the flexible behaviors of both species in response to changes in 

predation risks that occur with changes in current habitat structures (e.g., predation risks that 

vary within a patch). In this study, we quantified the foraging behavior and risk perception of the 

southern fox squirrel and eastern gray squirrel by compiling an ethogram from the camera 

footage obtained using a feed depot and a time-lapse camera. We expected southern fox squirrel 

vigilance behavior would have a positive relationship with change in canopy cover (i.e., 

vigilance behavior increases as canopy cover increases), whereas the vigilance behavior of the 

eastern gray squirrel would have an inverse relationship (i.e., vigilance behavior decreases as 

canopy cover increases). We expected southern fox squirrels would be more vigilant compared 

to the eastern gray squirrel. Contrary to our expectations, eastern gray squirrels spent a greater 

proportion of their foraging time being vigilant than southern fox squirrels. Our results were 

inconsistent with our predictions that vigilance behavior of southern fox squirrels would have a 

positive relationship with canopy cover, whereas eastern gray squirrels would have an inverse 

relationship with canopy cover. We failed to detect a significant effect of canopy cover on 

vigilance of southern fox squirrels and eastern gray squirrels. Our results suggest that eastern 

gray squirrels perceived greater risk from stationary and ambush predators, for whom vigilance 



x 

is an effective strategy to avoid predation, than active predators, while southern fox squirrels 

perceived greater risk from active predators, for whom vigilance is less effective in avoiding 

predation.  
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CHAPTER 1 

EFFECTS OF CANOPY COVER ON FORAGING AND VIGILANCE BEHAVIOR OF 

SOUTHERN FOX SQUIRRELS AND EASTERN GRAY SQUIRRELS 

Introduction 

Foraging encompasses a range of actions related to a species’ acquisition of food and thus 

foraging behaviors are key components of ecological and evolutionary feedbacks between 

species and their environment. (Ydenberg, Brown, & Stephens, 2007). Foraging behaviors are 

typically modeled as optimization problems where behaviors interact with environmental factors 

to maximize benefits while minimizing costs or risk (Brown, 1992; Brown, Morgan, & Dow, 

1992). For many prey species foraging includes tradeoffs between active feeding and vigilant 

behaviors that reduce the risk of predation (Brown, 1988, 1992; Brown, Laundré, & Gurung, 

1999; Brown, Morgan, et al., 1992; Laundré, Hernández, & Altendorf, 2001; Ripple, Larsen, 

Renkin, & Smith, 2001).  

Top-down trophic effects extend beyond mortality due to predation, often influencing 

prey foraging behavior through sub-lethal effects of predation (Brown et al., 1999; Palmer, 

Fieberg, Swanson, Kosmala, & Packer, 2017; Peers et al., 2018). Within a “landscape of fear” 

individuals must balance conflicting demands for food with safety when foraging and achieve 

this by allocating time towards vigilance while actively feeding (e.g., searching and handling) 

within a patch (Lima, 1998). Time allocation is a common measure of antipredator behavior and 

perceived risk, because it is directly related to resource acquisition rates, and by extension to 

prey fitness (Brown & Kotler, 2004; Brown et al., 1999; Laundré et al., 2001; Lima & Dill, 

1990; Ripple et al., 2001). Fitness costs of anti-predatory behaviors include decreased food 

intake, lower body conditions (Dudeck, Clinchy, Allen, & Zanette, 2018), lower fecundity in 
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females (Creel, Christianson, Liley, & Winnie, 2007; MacLeod, Krebs, Boonstra, & Sheriff, 

2018; Zanette, White, Allen, & Clinchy, 2011), and reduced competitive ability in males (Lima, 

1998). It is important to understand the role habitat structures and species interactions play in the 

foraging behavior of those who use them. 

Microhabitat plays an important role as an indirect and reliable cue of predator risk, 

heavily influencing rodent foraging behavior (Bouskila, 1995; Bowers, Jefferson, & Kuebler, 

1993; Brown, 1988; Brown, Morgan, et al., 1992; Kotler, Brown, & Hasson, 1991; Thorson, 

Morgan, Brown, & Norman, 1998). Habitat structures influence predatory risk and the prey’s 

perception of risk either by allowing a prey to detect predators earlier, giving it a higher 

probability of escape if it is attacked, or by providing cover to reduce detection by predators 

(Lima, 1993). Prey species alter their foraging behavior in accordance with different structural 

elements, including presence of vegetation (Bowers et al., 1993; Brown, 1988; Kotler et al., 

1991; Potash, Conner, & McCleery, 2019), diameter of vegetation (Lima, 1992), type of 

substrate (Brown, Arel, Abramsky, & Kotler, 1992), and illumination (Brown & Alkon, 1990; 

Hughes & Ward, 1993; Kotler, 1984).  

The longleaf pine ecosystem is a diverse fire-dependent system noted for a high degree of 

endemism (Jackson, 1971; Noss et al., 2015; Tucker, Robinson, & Grand, 2004; Wall, 

Hoffmann, Wentworth, Gray, & Hohmann, 2012). Once a dominant ecosystem of the 

southeastern United States, now less than 3% remains (Frost, 1993). Many species dependent on 

the longleaf pine ecosystem are now relegated to isolated remnant patches (Frost, 1993; Greene 

& McCleery, 2017; Landers, Van Lear, & Boyer, 1995; Noss, 1989). Historically, the 

southeastern pine savannas and woodlands were shaped by recurrent fires that maintained open 

canopy savanna with a sparse understory (Greene & McCleery, 2017). Fire exclusion led to the 
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loss of such habitat, as savannas and woodlands succeeded into closed-canopy mixed forest, a 

detrimental trend for the rare plant and animal populations tied to the fire-maintained, open 

canopy habitats.  

Southern fox squirrels (Sciurus niger niger) are among the largest and most ground-

dwelling of the North American tree squirrels, and a species of conservation concern due to 

population declines throughout their range (Weigl, Steele, Sherman, Ha, & Sharpe, 1989). 

Southern fox squirrels are important dispersal agents of hypogenous fungi, which have a 

mutualistic association with the roots of certain tree species such as that of the longleaf pine 

(Weigl et al., 1989). Southern fox squirrels are habitat specialists associated with pine savannas 

and woodlands (Perkins & Conner, 2004; Weigl et al., 1989). Conversely, eastern gray squirrels 

(Sciurus carolinensis) are habitat generalists associated with closed canopy forest (Brown & 

Batzli, 1984). Eastern gray squirrels use forested habitats but rely on similar resources as 

southern fox squirrels (e.g. food and nesting trees). Historically, interactions between eastern 

gray squirrels and southern fox squirrels were limited through habitat partitioning (Weigl et al., 

1989). The change in the interaction between both species provides an opportunity to examine 

sublethal effects of predation as it relates to a species’ risk perception and habitat structure at two 

scales. First the interactions allow us to examine the evolutionary responses of the southern fox 

squirrel and eastern gray squirrel to predation risk reflective of their historically associated 

landscapes and habitat structures. Second, the succession of savanna woodlands into closed-

canopy mixed forest provides an opportunity to assess the flexible behaviors of both species in 

response to changes in predation risks that occur with changes in current habitat structures (e.g., 

predation risks that vary within a patch).  



4 

In this study, we used time-lapse videography and feed depots at the landscape-scale to 

examine the effects of canopy cover on the foraging behaviors of southern fox squirrels and 

eastern gray squirrels. We hypothesized that foraging behaviors under different degrees of 

canopy cover would reflect both historical habitat associations and microhabitat structures. 

Compared to eastern gray squirrels, fox squirrels have been observed in areas with higher 

predator densities, which indicates increased vigilance is a behavioral adaptation to open-

canopied habitats (Amspacher, 2018; Van Der Merwe, Brown, & Jackson, 2005). We expected 

southern fox squirrels would be more vigilant compared to the eastern gray squirrel. The canopy 

structures of pine savannas and woodlands, preferred by southern fox squirrels, offer limited 

cover from aerial predators such as the red-tailed hawk, who primarily hunts in open canopy 

areas (Preston, 1990). Animals that rely on concealment to avoid being detected by predators 

perceive lower risk with greater levels of cover while animals that rely on early predator 

detection and fleeing to refuge perceive lower risk with open habitats (Arenz & Leger, 1997; 

Lima & Dill, 1990). Preferences towards open canopy suggest that southern fox squirrels 

(Perkins & Conner, 2004; Weigl et al., 1989) rely on the latter strategy to avoid predation, 

whereas based on the eastern gray squirrel’s preference with closed canopy structures (Edwards, 

Heckel, & Guynn Jr, 1998), eastern gray squirrels rely on the former strategy to avoid predation.  

We expected southern fox squirrel vigilance behavior would have a positive relationship with 

change in canopy cover (i.e., vigilance behavior increases as canopy cover increases), whereas 

the vigilance behavior of the eastern gray squirrel would have an inverse relationship (i.e., 

vigilance behavior decreases as canopy cover increases). This project provides insight into the 

role habitat structures play in the assessment of predation risk by southern fox squirrels and their 
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interactions with eastern gray squirrels. It will also allow us to understand how fire prescription 

or fire exclusion might indirectly affect foraging behavior of the southern fox squirrel. 

Method 

Study Area 

Spring Island is a 1200 ha sea island located in Beaufort County, South Carolina. Spring 

Island soils are characterized as fine sand or fine sandy loam (U.S.D.A, 1980). It has a 

subtropical climate characterized by mild winters, and hot humid summers (Kovacik & 

Winberry, 2019). Approximately 1000 ha of the island consist of stands of various hardwoods, 

live oaks (Q. Virginiana), pines (Pinus spp.), or mixed hardwood and pines (Lee, 1999). About 

200 ha of the island are in fields, wildlife plantings, and a golf course (Lee, 1999). Frequent low-

intensity prescribed fires were used to maintain large tracts of low-basal areas of pine and 

hardwood with an open, diverse understory. Such management practices provided habitat for 

other sensitive species including the red-cockaded woodpeckers (Picoides borealis), and southern 

fox squirrels (Moser, Jackson, Podrazsky, & Larsen, 2002; Prince, Chitwood, Lashley, DePerno, 

& Moorman, 2016) Spring Island was managed for quail from the mid-1900s until 1990, before 

it was sold for residential development. Development caused an increase in human activity and 

road construction creating a fragmented landscape and introduced a change in habitat structures 

(i.e. savannas and woodlands succeed into closed-canopy mixed forest). The Spring Island Trust, 

a nonprofit organization, was established to protect the environmental and cultural history and 

currently maintains 445 ha in nature preserves. Approximately 370 ha is managed using 

prescribed burns, and different 160 ha sections are burned annually.  
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Field Methods 

Between 2 Aug 2019 and 16 Aug 2019, we established 12 random sites over a range of 

habitat types containing southern fox squirrels and/or eastern gray squirrels (Figure 1). At each 

site we set up a feed depot that consisted of a container (1.5 m x 1.5 m x 0.9 m; 2.025 m3) filled 

with a combination of 170 L of mini pine bark nuggets and 14.2 L of bait (pecans) to facilitate 

foraging. Feed depots were constructed using 1.5 x 0.9 m cypress frames with hardware cloth 

across the bottom. We used feed depots and time-lapse cameras to quantify foraging and vigilant 

behavior of southern fox squirrels and eastern gray squirrels. We visited each site every 2-3 days 

to restock bait and check cameras. Each feed depot was paired with a Brinno TLC200 Pro time-

lapse camera (Brinno Inc., Taipei City, Taiwan) focused on the depot, set 70 cm above the 

ground and 1 m from the depot. Cameras were set to take a picture every 2 seconds from 5:00 – 

21:00, and to automatically compile images into .AVI video format. 

We quantified vegetation structure of sampling sites using modified techniques described 

by James and Shugart (1970). Within each site, five 0.04 ha circular plots were placed in 

randomly selected locations using randomly generated values for distance and azimuth away 

from the feed depot. We selected random distances between 20 m and 60 m based on radio-

telemetry observations from a study population in Beaufort County, SC that indicated that 

squirrels move 20- 60 m weekly, and allowed us to assess the effects of canopy cover on squirrel 

foraging behavior at the patch-scale (J. Huang, personal observation). To measure percent 

canopy cover, we recorded 10 readings sighted using a densitometer along two 1-m wide and 10-

m long transects. We recorded canopy cover every 2.8 m along perpendicular transects that were 

centered on the middle of each circular plot, totaling 20 readings per plot.  



7 

 

Figure 1. Feed Depot Sites 

Locations of squirrel feed depot sampling sites on Spring Island, SC.  

Ethogram 

We quantified southern fox squirrel and eastern gray squirrel foraging behavior and risk 

perception by compiling an ethogram from camera footage. We classified behavior as searching 

when squirrels held their head down to the ground actively searching for food. We classified 

behavior as vigilant when squirrels held their head up scanning the surrounding area. We 

processed all camera footage using BORIS (Friard & Gamba, 2016), an event logging software 
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for video/audio coding and live observations. We began timing the duration of a behavior when a 

squirrel entered the feed depot and stopped taking measurements when a squirrel left the feed 

depot. For each behavior, we summed the total amount of time (sec) squirrels displayed 

searching and vigilant behavior for each day. We then calculated the ratio of time allocated 

towards vigilance out of the total time a species spent foraging within a specific patch (i.e., total 

vigilance time / (total vigilance duration + total searching duration)). Time allocation between 

searching and vigilance is a common measure of antipredator behavior because it is directly 

related to resource acquisition rates and, by extension, to prey fitness (Brown & Kotler, 2004; 

Brown et al., 1999; Laundré et al., 2001; Lima & Dill, 1990; Ripple et al., 2001). This approach 

allowed us to quantify the trade-off between searching and vigilant behavior displayed under 

varying canopy cover.  

Data Analysis 

We used the ratio of time spent vigilant over total foraging time as our response variable. 

We ran an analysis of covariance (ANCOVA) to determine whether southern fox squirrels and 

eastern gray squirrels differ in the proportion of time spent vigilant over total foraging time, 

including canopy cover as a covariate. We treated site as a random effect to account for the lack 

of independence between observations from the same site. We examined residuals to test model 

assumptions. To meet normality assumptions, we transformed the response variables using an 

ordered quantile transformation (Peterson, 2017; Peterson & Cavanaugh, 2019). We examined 

the interaction term between canopy cover and species to test homogeneity of regression slopes, 

and non-significant (p > 0.05) interaction terms were removed. All analysis was conducted using 

package nlme in  program R version 4.0.2 (R Development Core Team, 2020).  



9 

Results 

I recorded 246 searching events, of which 91 were southern fox squirrels and 155 were 

eastern gray squirrels. I recorded 245 vigilance events, of which 90 were southern fox squirrels 

and 155 were eastern gray squirrels. On average, eastern gray squirrels allocated 0.83 ± 0.01 of 

foraging time being vigilant and southern fox squirrels allocated 0.76 ± 0.02 of foraging time 

being vigilant each day (Figure 2). The interaction term between canopy cover and species was 

not significant (F1, 231 = 1.09, p = 0.30), indicating that canopy did not affect southern fox 

squirrels differently than eastern gray squirrels. After removing the interaction term, we detected 

a significant difference in allocation of time towards vigilance between species within a patch 

(F1, 232 = 10.58, p = 0.001). Eastern gray squirrels allocated a greater proportion of their foraging 

time being vigilant compared to southern fox squirrels (Figure 2). We failed to detect a 

significant effect of canopy cover on vigilance (F1,8 = 0.38, p = 0.56).  
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Figure 2. Effects of canopy cover on the allocation of time towards vigilance 

Effects of canopy cover on the allocation of time towards vigilance for the southern fox squirrel 

and the eastern gray squirrel. The interaction term between canopy cover and species was not 

significant (F1, 231 = 1.09, p = 0.30), indicating that canopy did not affect southern fox squirrels 

differently than eastern gray squirrels. Eastern gray squirrels allocated a greater proportion of 

their foraging time being vigilant compared to southern fox squirrels (F1, 232 = 10.58, p = 0.001). 
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Discussion  

Within a landscape of fear, animals must balance their needs for food and safety. To 

accomplish this, they allocate time between foraging and being vigilant (Steven L. Lima, 1998). 

Within this framework, prey respond to predators by becoming more vigilant or distancing 

themselves from suspected predators (Brown et al., 1999; Newman, Recer, Zwicker, & Caraco, 

1988). When perceived risk is high, individuals increase vigilance and/or their rate of food intake 

to increase safety from predators (Brown et al., 1999; Newman et al., 1988). Our results suggest 

that in general eastern gray squirrels generally perceived higher predation risk compared to 

southern fox squirrels. Our results were inconsistent with our prediction that vigilance behavior 

of the southern fox squirrel would have a positive relationship with canopy cover, whereas 

eastern gray squirrels would have an inverse relationship with canopy cover. We failed to detect 

a significant effect of canopy cover on vigilance of southern fox squirrels and eastern gray 

squirrels.   

Indirect cues of predatory risk can include any perceivable environmental factor that 

correlates with risk. In most habitats, there are areas of refuge and areas of higher predatory risk. 

Indirect cues of predation risk for active predators are less reliable than for stationary predators, 

(Preisser, Orrock, & Schmitz, 2007), which decreases the effectiveness of vigilance in reducing 

predation risk (Brown et al., 1999). Previous literature suggests that eastern gray squirrels were a 

common prey item of the sit-pursue predators such as red-tailed hawks (Koprowski, 2001) and 

Timber Rattlesnakes (Crotalus horridus), a terrestrial ambush predator (Goetz, Petersen, Rose, 

Kleopfer, & Savitzky, 2016). Predator-prey interactions are particularly affected by 

considerations for size (Thierry et al., 2011). Southern fox squirrels are nearly double the size of 

eastern gray squirrels. Eastern gray squirrels might perceive greater risk from stationary 



12 

predators, where vigilance is an effective strategy to avoid predation, than active hunters. The 

body size of eastern gray squirrels may also make them more susceptible to stationary predators 

than southern fox squirrels. Southern fox squirrels might rely less on vigilance, because they 

perceive greater risk from active predators, for whom vigilance is less effective in detecting their 

presence. 

Though we failed to detect an effect of canopy cover on vigilance of southern fox 

squirrels and eastern gray squirrels, this does not mean that canopy cover does not affect the 

allocation of vigilance by southern fox squirrels and eastern gray squirrels. The failure to detect 

an effect could be due to our short sampling period. Alternatively, there might be a temporal 

variation in perceived predation risk (Sperry, Peak, Cimprich, & Weatherhead, 2008). Future 

studies might examine predation risk across different seasons, and comparing perceived 

predation risk between multiple sites would provide us a better understanding of the relationship 

between habitat structures and nonlethal effects of predation.   

As savannas and woodlands succeeded into closed-canopy mixed forest, habitats 

preferred by southern fox squirrels are lost while interaction with eastern gray squirrels increases 

(Sovie, Greene, & McCleery, 2020). Previous literature suggests that eastern gray squirrels may 

outcompete southern fox squirrels for food as suitable open canopy habitat is lost and the species 

become syntopic (Sexton, 1990; Van Der Merwe et al., 2005). Assessing species interactions and 

their relationship with environmental cues are important to understand wildlife conservation. 

Identifying such relationships could have implications for habitat management as well as 

furthering current understanding of the role those cues have in determining prey’s resource 

selection, antipredator behavior, and habitat requirements. 
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ABSTRACT 

Conservation strategies for the southern fox squirrels have incorporated translocation 

efforts to augment and re-establish southern fox squirrel populations. Translocation has been 

used to successfully repatriate southern fox squirrel populations; however, none of these 

populations have been monitored long enough to examine recruitment and long-term survival. In 

our study we examined survival and recruitment of a repatriated population on the Marine Corp 

Recruit Depot – Parris Island (MCRDPI), South Carolina. Between January 2016 and July 2017, 

sixty-two southern fox squirrels were translocated onto MCRDPI, and were monitored using 

radio-telemetry and live-trapping efforts. We expected adult southern fox squirrel survival to be 

greater than juvenile southern fox squirrel survival. We also expected southern fox squirrel 

recruitment to be lower compared to other tree squirrel species. We used known fate models to 

estimate true survival probability. We modeled survival as a function of year, sex, season (to 

reflect differences in seasonal food abundance), stage (i.e., adult and juvenile), and squirrel mass. 

We used a Bayesian approach of the Jolly-Seber model as a restricted dynamic occupancy model 

to estimate recruitment. We failed to detect a difference between adult and juvenile southern fox 

squirrel survival. Only the survival model with year as a covariate was supported. Survival 

estimates were greatest in 2019 (0.73) and lowest in 2017 (0.23). Recruitment in 2016, 2017, and 

2019 was 0.35, 0.43, and 0.22 respectively. Southern fox squirrel recruitment was low (0.22) 

compared to eastern gray squirrels (Sciurus carolinensis; 0.41), and high compared to red 

squirrels (Sciurus vulgaris;0.13). Our results indicated translocation as an efficient conservation 

tool for the long-term conservation of southern fox squirrels. Survival increased significantly 

after the two years post-translocation. Recruitment of our repatriated population was similar to 
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those of the Delmarva fox squirrel, whose successful delisting can be attributed to its many 

successful translocations. 
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CHAPTER 2 

SURVIVAL AND RECRUITMENT RATES OF A REPATRIATED SOUTHERN FOX 

SQUIRREL (SCIURUS NIGER NIGER) POPULATION 

Introduction  

Life history theory provides a framework for conservation biologists to examine how 

specific population parameters (e.g., fecundity, recruitment, and survival) interact with 

environmental perturbations (e.g., habitat loss and fragmentation) to drive population declines 

that ultimately result in a specie’s imperilment (Benton, Plaistow, & Coulson, 2006; Stearns, 

1992). At the most basic level, only two values are needed to conclude the trajectory of a 

population. If the addition of individuals to a population by birth and immigration exceed the 

number of losses through emigration and death, a population is expected to increase. Should the 

relationships be reversed, the population is expected to decline (Rockwood, 2015).  

Understanding the interactions of key population parameters and habitat loss and 

fragmentation are necessary to maximize conservation successes (Williams, 2013). For example, 

the population dynamics of a species characterized by a slow life history (i.e., low fecundity, 

delayed maturation, high adult survival) are often slow to show a positive response to habitat 

improvements (Williams, 2013). Because population responses of these species respond slowly 

to environmental change, they can persist at low densities in small isolated patches for extended 

periods of time and become vulnerable to population and environmental stochasticity. 

Southern fox squirrels (Sciurus niger niger, henceforth SFS) are among the largest and 

most ground-dwelling of all the tree squirrels in North America (Weigl et al., 1989). The SFS is 

a habitat specialist tied to open-canopy habitats characteristic of the longleaf pine ecosystem 

(Perkins & Conner, 2004; Weigl et al., 1989). The longleaf pine ecosystem is a fire-dependent 
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ecosystem noted for many rare plant and animal species (Jackson, 1971; Noss et al., 2015; 

Tucker et al., 2004; Wall et al., 2012). Less than 3% of this once  dominant ecosystem of the 

southeastern United States, remains (Conner et al., 1999). Many LLE-dependent species, 

including SFS, are now relegated to small isolated remnant patches (Frost, 1993; Greene & 

McCleery, 2017; Landers et al., 1995; Noss, 1989). Southern fox squirrels have experienced 

range wide declines and are now a species of conservation concern. 

Conservation strategies for the SFS have incorporated translocation efforts to augment 

and re-establish SFS populations. Translocation is an important conservation tool used to re- 

establish (i.e., repatriation) or augment populations in suitable habitat (Griffith, Scott, Carpenter, 

& Reed, 1989). Repatriation is a particularly important conservation tool because it can be used 

to increase the number of populations and help buffer the species from demographic and 

environmental stochasticity. Translocations have effectively been used to reintroduce Delmarva 

fox squirrels (Sciurus niger cinereus) to restored habitat (Bendel & Therres, 1994) leading to 

their delisting from the Endangered Species Act in 2015 (U.S. Fish and Wildlife Service Docket 

ID: FWS-R5-ES-2014-0021). Translocation has also been used to successfully repatriate SFS 

populations; however, none of these populations have been monitored long enough to examine 

recruitment and long-term survival (Dawson, Lee, Osborn, & Miller, 2009).  

Detailed demographic data are needed to effectively manage and conserve SFS 

populations. For example, most SFS populations show an age structure biased toward adults 

(Weigl et al., 1989), suggesting differential survival among age classes. Birth rates are typically 

limited by a single spring breeding season and female fecundity and juvenile recruitment are low 

(e.g., births average 2.5 pups per female annually; (Weigl et al., 1989), with a 44-day gestation 

period and 90-days of dependency on the mother (Koprowski, 2001; Weigl et al., 1989). High 
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adult survival and low reproductive output suggest that populations are likely sensitive to both 

demographic and environmental stochasticity. 

Our objectives were to examine recruitment and survival of a repatriated SFS population. 

Southern fox squirrels are relatively long-lived, 7 – 10 years, and typically have one litter each 

year with an average of 2.5 pups, which suggests they are k-selected species, characterized by 

relatively high adult survival and producing few offspring. (Tappe & Guynn Jr, 1998; Weigl et 

al., 1989). We expected adult survival would be greater than juvenile survival because previous 

literature has suggested tree squirrel mortality is elevated during the first 3 to 4 months of life 

(Thompson, 1978). We expected recruitment would be low compared to other tree squirrel 

species because SFSs have fewer litters annually than other tree squirrel species. Effective 

conservation and management of SFS populations requires detailed demographic data. This 

study was important because it allowed us to gain a better understanding of the vital rates of 

SFSs.  

Methods  

Study Area 

Marine Corps Recruit Depot – Parris Island (MCRDPI) is an active Marine Corps 

military base in South Carolina. The installation is located on a 3,220-ha sea island with 

approximately half of that acreage comprised of hard marsh. Marine Corps Recruit Depot has an 

active pine savanna restoration program that uses prescribed fire, mechanical thinning, and 

herbicides to manage wildlife habitat. Open-canopy pine savanna/woodlands, closed-canopy 

pine forests, and closed-canopy pine-hardwood forests are interspersed with a manicured golf 

course, training areas, and lawns.  
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Field Methods 

Marine Corps Recruit Depot is within the historic range of SFS. Between January 2016 

and June 2017, sixty-two SFS were captured at five donor sites in coastal South Carolina using 

Mosby-style wooden box traps baited with pecans (Amspacher, 2018; Day, Schemnitz, & Taber, 

1980). Captured individuals were transferred to a wire and canvas handling cone to estimate 

reproductive maturity and determine sex. Lactating females were released immediately, allowing 

them to return to their nests. The squirrels selected for translocation were placed in covered wire 

Havahart traps (Woodstream Corp., Litiz, PA) and transported to Sea Island Animal Hospital 

(Lady’s Island, SC) to be anesthetized with 20-30 mg of ketamine hydrochloride plus 1 mg 

acepromazine and fitted with radio collars (Advanced Telemetry Systems, Inc., Isanti, MN, 

Model M1640, 6.5g). Squirrels were allowed three hours for post-surgical recovery prior to 

release in a live oak (Quercus virgiana) grove on MCRDPI golf course (Amspacher, 2018). The 

release site was selected based on the prevalence of SFSs on golf courses in coastal South 

Carolina (Meehan & Jodice, 2010).  

The repatriated SFS population was monitored post-translocation between January 2016 

through December 2019 using Mosby-box traps (Day et al., 1980), and radio-telemetry. We 

baited Mosby-style wooden box traps with pecans and set them at the base of trees in close 

proximity to the SFS feeding remains. We transferred captured SFS to wire Havahart traps 

(Woodstream Corp., Litiz, PA) to determine sex and estimate reproductive maturity; all lactating 

females were released immediately. We transported individuals to Sea Island Animal Hospital 

(Lady’s Island, SC) to be anesthetized with 20-30 mg of ketamine hydrochloride plus 1 mg 

acepromazine. We then fitted each SFS with a radio collar (Advanced Telemetry Systems, Inc., 

Isanti, MN, Model M1640, 6.5g; 642-day battery life) and a passive integrated transponder (PIT) 
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tag. We used radio collars to monitor survival, while the PIT tags were used for identification 

during capture-recapture sessions. Both were used for identification, but PIT tags were more 

reliable and had a lower probability of tag loss. We measured mass and body-length from the 

head to the base of the tail, and photographed fur coloration patterns. We replaced radio collars 

for recaptured individuals with new ones. We examined captured females for any signs of 

pregnancy or previous instances of reproduction. Individuals were allowed to recover for 24 

hours following anesthetization, providing them ample time to recover from the procedure, 

before a hard release at their point of capture. After the SFSs were released, we radio-located 

individuals twice weekly with a receiver (Advanced Telemetry Systems, Inc., R4000) and Yagi 

antenna. We recorded SFS locations using a Trimble Juno 3 GPS unit with a spatial accuracy of 

2-5 m (Trimble Inc., Sunnyvale, CA).  

Data Analysis 

We estimated in-situ recruitment (bt), number of individuals entering the population (Bt), 

mean capture probability(p), and superpopulation size (Ns) with capture-recapture data from 

2016 – 2019 using a Bayesian approach of the Jolly-Seber model as a restricted dynamic 

occupancy Model (Kéry & Schaub, 2011; Royle & Dorazio, 2008). We excluded the year 2018 

because only recaptures were recorded, precluding the ability to obtain estimates. In this 

approach, capture-recapture data were described as the result of the state process and observation 

process. The state process represents true, but unknown, ecological process, whereas the 

observation process describes imperfect observation of ecological processes in the data collected 

(Kéry & Schaub, 2011; Royle & Dorazio, 2008). The observation process is dependent on the 

state process, and the state process is estimated from the analysis. Within the restricted 

occupancy formulation of the Jolly-Seber model, individuals could be in three possible states: 
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not yet entered, alive, or dead. Ecological processes of entry and survival allow individuals to 

transition between these states. Individuals can enter and leave the population in an analogous 

way to occupancy models, where sites and patches are colonized and recolonized (Royle & 

Dorazio, 2008).  

To consider individuals that were part of the population but not captured, we used data 

augmentation (Royle & Kéry, 2007). We added “pseudo-individuals” (n = 5) that were never 

captured, of which their capture history is all zeros. We determined the number of “pseudo-

individuals” based on the minimum number of individuals thought to have been recruited into 

the population after the first year of translocation. Each female that survived until the following 

breeding season in the first year of translocation was assumed to have had at least one individual 

fledge from the nest. Using data augmentation, we introduced a latent variable that linked 

“pseudo-individuals” with the probability of being part of the study population. The model was 

fitted using JAGS 4.3.0 (Plummer, 2015) and R 3.5.2 (Team, 2014). The R packages used were 

“coda” (Plummer, Best, Cowles, & Vines, 2006) and “jagsUI” (Kellner, 2015). We ran 3 Markov 

Chains (MCMC), with 60,000 iterations, and discarded the first 30,000 as burn-in, thinning 

samples by 3 to result in 30,000 samples. The initial values of all the parameters were assigned 

by random functions, and we used vague priors’ distributions. We checked model convergence 

with the Gelman-Rubin statistic, and by visually inspecting plots of the chains (Brooks & 

Gelman, 1998).  

The Jolly-Seber model assumes unmarked animals in the populations have the same 

probability of capture as marked animals in the population (i.e., newly captured unmarked 

animals are a random sample of all unmarked animals in the population). Animals must also 

retain their tags throughout the experiment, tags must be read properly, sampling periods are 
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instantaneous, all emigration from the sampled area is permanent, and the fate of each animal 

with respect to capture and survival probability is independent of the fate of any other animal.  

We estimated survival using radio-telemetry data within a known fate modeling 

framework in program MARK (Cooch, 2008; White & Burnham, 1999) version 9.x implemented 

through the RMark package (Laake, 2013) in program R version 4.0.2 (R Development Core 

Team, 2020). We formatted the encounter history files to include one live/dead entry per month 

for twelve months and created three entries for SFSs present on MCRDPI in 2016, 2017, and 

2019. All months were assumed to have equal survival probabilities. We modeled survival as a 

function of year, sex, season (to reflect differences in seasonal food abundance), stage (i.e., adult 

and juvenile), and squirrel mass (z-standardized) (Table 2). We compared five candidate models 

and a constant survival model (Table 3) using Akaike’s Information Criterion adjusted for small 

sample size (Burnham & Anderson, 2002), retaining models with ΔAICc < 2.0 for inference. We 

modeled survival over three years (2016, 2017, 2019), and by season (Jan-Mar, Apr-June, July-

Sept, Oct-Dec). These four seasons captured differences in seasonal food availability. From 

January through March, food resources were variable and beginning to decline (i.e., dependent 

on fall mass production and vary from year to year). From April through June, food resources are 

abundant. During July – September, limited food resources are available to the squirrels, and 

from October through December is potentially the best food period for the squirrels (e.g., acorns 

and hickory nuts). 
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Results 

We marked 82 individuals over the four-year study. We marked 27 squirrels in 2016 and 

35 individuals in 2017. Twenty-seven individuals in 2016 and 35 individuals in 2017 were 

marked during translocation, and 20 individuals marked were born on MCRDPI. Of the total 

number of individuals marked, 30 were juveniles and 52 were adults during first capture. Eleven 

individuals were recaptured during the study. In 2016 and 2017, 31 dead SFSs were recovered as 

a result of predation (n =22), vehicular strikes (n=1), and unknown causes (8) (Amspacher, 

2018). In 2019, four squirrels were recovered and the cause of death was unknown. We also 

recovered 4 radio-collars that were dropped.     

Recruitment and Abundance Estimates 

There was no evidence for lack of convergence for the Jolly-Seber model, with the 

Gelman-Rubin statistic less than ≤1.02 for all monitored parameters. Mean capture probability 

was 0.83 (95% CRI:0.71 – 0.91) across 2016, 2017, and 2019. Annual recruitment rate was 0.35 

(95% CRI: 0.24 – 0.46) in 2016, 0.43 (95% CRI: 0.32 – 0.55) in 2017 and 0.22 (95% CRI: 0.12 – 

0.33) in 2019. Per-capita recruitment rate in 2017 was 0.81, and 0.55 in 2019 (Figure 3). Annual 

abundance varied throughout the study period (Table 1), with a mean estimated superpopulation 

size of 86 (95% CRI:84 – 87). The number of individuals that entered the population was 

estimated to be 29 (95% CRI: 26 – 34) in 2016, 37 (95% CRI: 33 – 43) in 2017, and was 19 

(95% CRI: 14 -24) in 2019 (Figure 3). 

Known Fate Survival Analysis 

Only the survival model with year as a covariate received support (Table 3). Survival 

averaged 0.73 ± 0.09, 0.23 ± 0.06, and 0.42 ± 0.10 for 2019, 2017, and 2016, respectively (Table 
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4).  Survival was higher in 2019 as compared to 2016 (Figure 4), while the survival rate in 2017 

was less than 2016 (Figure 4).  

 

Figure 3.  Southern fox squirrel population size and Local per-capita recruitment  

Annual population size (Nt) for 2016, 2017, and 2019 (left). Populations increased from 2016 to 

2017, as expected because squirrels were translocated onto MCRDPI. Population size decreased 

from 2017 through 2019. Per-capita recruitment rate (left) interpreted as the per capita number of 

southern fox squirrels produced in a breeding season that survived into the population into the 

next year. Per-capita recruitment rate was observed to have decreased from 2017 through 2019. 
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Table 1. Estimates from the Jolly-Seber model 

Posterior means and 95% credible intervals (CRI) for parameters of interest under the restricted 

dynamic occupancy parameterization of the Jolly-Seber model for recruitment and abundance of 

the southern fox squirrel Sciurus niger niger in the MCRDPI, SC for 2016, 2017, and 2019 with 

uninformative priors where pmean  is the mean capture probability from 2016 – 2019 (excluding 

2018), Nt is the abundance estimate in year t, Nsuper is the total number of individuals that were 

ever a member of the population from 2016- 2019, bt is the in-situ recruitment rate estimate in 

year t, and Bt (individuals born and surviving 1 year) is the number of recruits in year t.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameter     Mean 95% CRI 

pmean 0.826 0.71 – 0.91 

N2016 29 26 - 34 

N2017 46 42 - 54 

N2019 36 32 - 42 

Nsuper 86 84 – 87 

b2016 0.345 0.24 – 0.46 

b2017 0.433 0.32 – 0.55 

b2019 0.222 0.12 – 0.33 

B2016 29 26 – 34 

B2017 37 33 – 43 

B2019 19 14 -24 
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Table 2. Known Fate model Covariates 

Description of the covariates used for the known fate models. 

Covariate   Description 

Year   

Includes the years 2016, 2017, and 2019. Classified as a categorical 

variable 

Sex  

Individuals were identified as either male or female. Classified as a 

categorical variable 

Mass  

Mass of individuals when they were captured during a sampling period. 

Classified as a continuous variable.  

Season  

Seasonal variation based on food availability. Classified as a categorical 

variable. 

Stage   

Individuals were classified as adult or subadult during a sampling period. 

Classified as a categorical variable.  

 

 

Table 3. Known fate models 

Known fate survival models ranked according to AICc model selection. ΔAICC = the difference 

between the AICC value for the current model and the top supported model; K = number of 

model parameters. Models are listed in order of support. 

Model AICc ΔAICc  Weights Likelihood K -2log(L) 

 S(Year)  338.31 0 0.99 1.00 3 332.27 

 S(Season)  351.16 12.86 0.00 0.00 4 343.11 

 S(Sex)  351.51 13.20 0.00 0.00 2 347.49 

 S(.)  351.76 13.46 0.00 0.00 1 349.76 

 S(Mass)  352.08 13.77 0.00 0.00 2 348.06 

 S(Stage)  353.25 14.95 0.00 0.00 2 349.24 
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Table 4. Known Fate model with year as a covariate 

Betas, standard error, and 95% confidence intervals for each year (2016, 2017, and 2019) 

Year β SE 95% LCI 95% UCI 

2016 2.59 0.29 2.03 3.15 

2017 -0.56 0.35 -1.25 0.12 

2019 1.05 0.48 0.11 1.99 

 

  

 

Figure 4. Comparison of survival rates between years 

Annual survival rate estimated using a known fate model analysis. Southern fox squirrel survival 

rate was greater in 2019 compared to 2017 and 2016.  
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Figure 5. Comparing survival of repatriate southern fox squirrel population on MCRDPI 

and other translocated and established populations 

Estimated survival rates from our study and from other studies of translocated and established 

southern fox squirrels’ populations (Conner, 2001; Dawson et al., 2009; Lee, Osborn, & Miller, 

2008; Prince & DePerno, 2014). The survival rate of our repatriated population in 2016 was 

greater than the translocated population study on Hall Island, SC (Dawson et al., 2009), but 

much lower than another conducted on St. Philips Island, SC (Dawson et al., 2009). The survival 

rate in 2017 was much lower than translocated population studies at other sites (Dawson et al., 

2009). The survival rate in 2019 was greater than established population from other studies 

(Conner, 2001; Lee et al., 2008; Prince & DePerno, 2014). 

Discussion 

Southern fox squirrel recruitment was below 0.35 in 2016, 2017, and 2019. Recruitment 

was highest in 2016 and 2017, which was consistent with our expectation that recruitment 
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estimates would be highest during translocation years. We suspect these estimates may have 

been artificially inflated due to translocation, but SFS may also exhibit density-dependent 

recruitment (i.e., as population size/density increases, per-capita recruitment decreases; 

(McConnell et al., 2018). 

  We hypothesized that SFSs would have slower life history compared to other squirrel 

species. Our estimates of SFS juvenile recruitment rates were lower than the rates estimated for 

red squirrels (Sciurus vulgaris) in two large conifer forests in northern England (Wauters, Lurz, 

& Gurnell, 2000). Wauters et al. (2000) examined juvenile recruitment rates for red squirrels at 

two sites, one consisting only of red squirrels, and another that had eastern gray squirrels 

(Sciurus carolinensis) and red squirrels. At sites with only red squirrels the recruitment rate was 

0.5, while at sites with both eastern gray squirrels and red squirrels, red squirrel recruitment rate 

was 0.13 (Wauters et al., 2000). Eastern gray squirrel recruitment rate was 0.41 at sites with red 

squirrels (Wauters et al., 2000). In our study, the recruitment rate in 2019 was lower than red 

squirrels at sites with only red squirrels. The recruitment rate of southern fox squirrels was much 

lower than those of the eastern gray squirrel. Southern fox squirrel recruitment was lower in 

2019 compared to those of 2016 and 2017. Southern fox squirrel recruitment was greater than 

recruitment estimates obtained for red squirrels at sites that consisted of both eastern gray 

squirrel and red squirrels. Eastern gray squirrels were present on MCDRPI, and my results 

suggest that recruitment rates of southern fox squirrels were less effected by the presence of 

eastern gray squirrels compared to red squirrel recruitment rates. It also suggests that recruitment 

rates of southern fox squirrels are low compared to the eastern gray squirrel, but greater than that 

of the red squirrel. Recruitment of translocated populations of Delmarva fox squirrels (Sciurus 

niger cinereus) in Maryland were measured using the number of lactating females captured 
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through live-trapping at least five years post-translocation (Therres & Willey, 2002). On average 

1 to 2 lactating females were captured at each site during the study. The number of individuals 

released at each site was between 5 to 42 individuals, with some sites requiring supplemental 

releases of individuals. The number of individuals translocated onto MCRDPI was similar to the 

recommended number of individuals for the translocation of Delmarva fox squirrels, and our 

population included a supplemental release 1 year after the initial release as well (Fish & 

Service, 1993). In our study, we observed two pregnant females. Our observations suggest that 

recruitment of our southern fox squirrel population was similar to those of the translocated 

populations of Delmarva fox squirrels.  

Annual survival varied between 2016, 2017 and 2019. Southern fox squirrel survival was 

greatest in 2019 compared to 2017 and 2016, and was consistent with our expectations (i.e., 

survival would be highest in 2019 as an established population as opposed to 2016 and 2017 

during translocation). The estimate for 2016 was similar to a successful translocation on Hall 

Island, SC (Dawson et al., 2009) and those of established populations on Spring Island, SC (Lee 

et al., 2008) and Fort Bragg, NC (Prince & DePerno, 2014). The estimate was 0.29 lower than 

the translocated population on St. Phillips, Island, SC (Dawson et al., 2009), and 0.27 lower than 

the established population on Ichauway, GA (Conner, 2001). The survival estimate for 2017 was 

similar to the translocated population on Hall Island, SC (Dawson et al., 2009). It was 0.26, 0.39, 

and 0.46 lower than those of established populations on Fort Bragg (Prince & DePerno, 2014), 

Spring Island (Lee et al., 2008), and Ichauway (Conner, 2001), respectively, as well as 0.48 

lower than the translocated population on St. Phillips Island (Dawson et al., 2009). The estimate 

from 2019 was higher than those estimated from successful translocation and established 

populations (Figure 4). Survival differences between translocation years (i.e., 2016, 2017) versus 
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2019 when SFS were established could reflect differences in awareness of food sources and/or 

predator populations. Differences could also reflect the impact of Hurricane Matthew during fall 

2016. The hurricane could have removed possible refuge sites and decreased food availability. 

We failed to detect differences between adult and juvenile survival, which contradicts previous 

literature suggesting low juvenile survival (Thompson, 1978). The candidate model with the 

stage of the individuals as a covariate was not supported; in fact, it was the least supported model 

among the candidate models.  

The accuracy of the number of individuals entering the population appears to be high 

when compared with the known number of individuals translocated in 2016 and 2017. The 

estimated number of individuals in 2016 was between 26 to 34 individuals with the lower end of 

the range being the actual number of individuals that were translocated on to the MCRDPI, with 

possibility for recruitment within that year. In 2017, number of individuals that were translocated 

onto the MCRDPI falls in the range of the estimate with room for in-situ recruitment within the 

year.  

Survival in 2016 was similar to other translocated populations, whereas the 2017 survival 

estimate was low in comparison. The survival rate in 2019, when the population had been 

established, was significantly higher than other established and translocated populations. 

Estimated juvenile recruitment rate of the MCRDPI population was low compared to those of the 

eastern gray squirrel but was greater than the red squirrel at sites where eastern gray squirrels 

were present. Our results indicated translocation as an efficient conservation tool for the long-

term conservation of SFSs, as survival increased significantly after the two years post-

translocation and recruitment of our fox squirrel population was similar to those of the Delmarva 

fox squirrel, for whom their successful delisting can be attributed to its many successfully 
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translocated populations. Future studies examining the population dynamics of tree squirrels 

should consider estimating juvenile recruitment rates of the population, as it is an important 

component to assess a population trajectory. Further research is needed to understand the 

population dynamics of the SFS compared to other tree squirrel’s.  
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