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ABSTRACT 
 

Bone elongation disorders can lead to painful musculoskeletal disabilities in adulthood. 

Existing treatment options to correct left-right asymmetry in limb length include invasive 

surgeries and/or drug regimens. These are often only partially effective. Previous 

studies in weanling mice have shown that a daily application of mild heat (40°C) to limbs 

on one side of the body could be used to noninvasively enhance bone elongation. 

However, the impact of heat-treatment on bone at the cellular level remains elusive. The 

epiphyseal growth plate, the band of cartilage located at each end of long bones, is the 

main site of longitudinal growth and is regulated by local and systemic growth factors. 

Insulin-like growth factor 1 (IGF1) is the major regulator of growth and controls bone 

elongation by promoting chondrocyte proliferation and hypertrophy. The objective of this 

study was to build upon an established method of targeted limb heating to determine 

how heat-treatment influences IGF1 action in the growth plate. This study tests the 

hypothesis that exposure to warm temperature augments the actions of IGF1 in 

the growth plate and permanently increases length of the extremities. This 

dissertation demonstrates that differences of less than 1.5% are functionally significant 

measured by a nearly 20% increase in hindlimb weight bearing on heat-treated sides. 

Heat-enhanced bone elongation is documented in female C57BL/6 mice after 7 days of 

heat-treatment during the most active period of growth from 3-4 weeks of age. This 

increase in bone elongation is accompanied by increased chondrocyte proliferation and 

hypertrophy in the proximal tibial growth plate. Moreover, this study is the first to show 

that targeted limb-heating impacts local action of IGF1 in growth plate chondrocytes. 

Results suggest that heat-induced limb length is IGF1 dependent since the growth 



 xviii 

effects are attenuated when IGF1 activity is blocked. Administration of a low dose of 

IGF1 (2.5mg/kg) was found to augment heat enhanced bone elongation and effects 

were sustained to skeletal maturity (12 weeks of age). These studies help contribute to 

the ultimate goal of developing a noninvasive method for lengthening bones that may 

translate in a clinical setting to treat linear growth disorders in children.  
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CHAPTER I: IN DEPTH REVIEW INTO LONGITUDINAL BONE GROWTH 

 

1.1  POSTNATAL LONGITUDINAL BONE GROWTH THROUGH ENDOCHONDRAL 

OSSIFICATION 

1.1.1 Endochondral Ossification and Growth Plate Morphology 

The skeleton develops by means of two different mechanisms: (1) 

Intramembranous ossification, involving direct differentiation of mesenchyme cells to 

bone as with the development of the flat bones of the skull and (2) Endochondral 

ossification, occurring when mesenchyme cells condense and differentiate into cartilage 

tissue, which then is replaced by bone forming the vertebrae, ribs and limbs (Gilbert, 

2014). Endochondral ossification is initiated during fetal life but continues from infancy 

through adolescence (transitional period from childhood to adulthood). Cartilaginous 

growth plates found at each end of developing long bones are responsible for 

longitudinal bone growth (or linear growth). Longitudinal bone growth increases the 

length of long bones during postnatal development and is mediated by the growth plate. 

Growth plate cartilage is composed of cells known as chondrocytes that secrete 

extracellular matrix and are organized into functional zones (Fig. 1).  
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Figure 1. Diagram of a Growth Plate  
Illustration represents the different cellular zones of the cartilaginous growth plate (dark 
gray). Arrows indicate the different zones within the growth plate. The vertical yellow 
line denotes the proliferative zone (PZ) and the green line denotes the hypertrophic 
zone (HZ). The PZ is a region of actively dividing chondrocytes stacked and flattened in 
multicellular columns. The HZ is a region of enlarged chondrocytes. Epiphyseal and 
metaphyseal bone on each end of the growth plate contain blood vessels (red lines) that 
supply each region of bone. Illustration based on Mackie, Ahmed, Tatarczuch, Chen, 
and Mirams (2008). 
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The cartilaginous growth plate functions as the command center of longitudinal bone 

growth. Understanding the general morphology of the growth plate is beneficial for 

appreciating its overall function. The end portion of the long bone is referred to as the 

epiphysis and the shaft of each long bone is termed the diaphysis. Directly between the 

epiphysis and the diaphysis is metaphysis, which contains the growth plate. The region 

adjacent to the epiphysis is the first zone of the growth plate, or the reserve zone (RZ). 

The RZ consists of round quiescent chondrocytes. The role of the RZ has been debated 

but is most commonly reported to act as the coordinator for the organization and 

orientation of the neighboring proliferative zone (PZ) (Abad et al., 2002). It has been 

suggested that the RZ contains stem-like cells that promote the production of 

proliferative chondrocytes and that this proliferative capacity decreases with age aiding 

to the closure of the growth plate associated with skeletal maturity (Abad et al., 2002; 

Hunziker, 1994b; Raimann, Javanmardi, Egerbacher, & Haeusler, 2017; Schrier et al., 

2006). Adjacent to the RZ is the PZ containing rapidly dividing chondrocytes stacked 

and flattened in multicellular columns. The PZ is a region of actively dividing cells that 

directs longitudinal growth along the long axis by which the cells line up in their 

arranged columns.  

The proliferating chondrocytes at the base of the columns make the transition from 

the PZ to the hypertrophic zone (HZ) where chondrocytes behave as terminally 

differentiated cells that begin to enlarge, secrete extracellular matrix and ultimately 

undergo physiological death (Kronenberg, 2003; Mackie et al., 2008; Shapiro, Adams, 

Freeman, & Srinivas, 2005; Ulici, Hoenselaar, Gillespie & Beier, 2008). Hypertrophic 

chondrocytes induce vascular invasion and recruit osteogenic cells in the process of 
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endochondral ossification and the replacement of cartilage with bone at the chondro-

osseous junction (region of growth cartilage between the growth plate and the newly 

mineralized bone). A majority of the bone-forming osteoblasts are said to be 

differentiated from bone marrow stromal cells. However, current research in the 

mammalian growth plate suggests that not all hypertrophic chondrocytes undergo 

apoptosis but instead transdifferentiate into osteoblasts during both bone development 

and repair (Bahney et al., 2014; Enishi et al., 2014; Hu et al., 2017; Zhou et al., 2014). 

Studies by Bahney et al. (2014) used cartilage grafts to promote bone regeneration 

through endochondral ossification (analogous to long bone development), and results 

from lineage tracing experiments showed chondrocytes differentiated into osteoblasts 

during bone repair. It is suggested that transdifferentiation occurs adjacent to the 

vasculature at the chondro-osseous junction and that the vasculature may have a 

signaling role in the transformation of chondrocytes to osteoblasts (Hu et al., 2017). It is 

not yet known if these chondrocytes undergo the same process of transdifferentiation 

during development as they do during repair.  

 

1.1.2  Differential Growth of Long Bones 

While the anatomical structure of the cartilaginous growth plate is comparable 

between the developing long bones, the rate at which these growth plates contribute to 

longitudinal bone growth differs from bone to bone, and from proximal end to distal end. 

This phenomenon is referred to as differential growth (Digby, 1916; Payton, 1932). The 

humerus, radius and ulna are the major long bones of the upper limb (excluding the 

hand and foot), and the lower limb includes the femur and tibia. When comparing 
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proximal to distal ends of these bones, the faster-growing sites are located at the 

proximal humerus (shoulder), distal radius and ulna (wrist), and distal femur and 

proximal tibia (knee) (J. Bisgard & M. Bisgard, 1935; Farnum, 2007; Kember, 1972; 

Pritchett, 1992; Raimann et al., 2017; Serrat, Lovejoy, & King, 2007; Wilsman, Farnum, 

Green, Leiferman, & Clayton, 1996a; Wilsman, Farnum, Leiferman, Fry, & Barreto, 

1996b; Wilsman, Bernardini, Leiferman, Noonan, & Farnum, 2008). Based on peak 

growth rates, the most rapid developing growth plate in humans and rodents is at the 

proximal end of the tibia followed by the distal femur (knee), distal radius (wrist), and 

proximal humerus (shoulder) (Rolian, 2008). Wilsman et al. (2008) have shown in rats 

that the proximal tibial growth plate (growth rate of 396 μM/day) is nearly nine times 

faster than the much slower proximal radial growth plate (growth rate of 47μM/day). 

The main factors contributing to increasing length of long bones and differential 

growth are the number of columnar cells in the PZ, the rate of proliferation, and the size 

of expanded cells in the hypertrophic zone (Hunziker, Schenk, & Cruz-Orive, 1987; 

Hunziker, 1994b; Kember, 1993; Lupu, Terwilliger, Lee, Segre, & Efstratiadis, 2001; 

Walker & Kember, 1972). Investigators have observed increased numbers of 

proliferative chondrocytes, increased rates of proliferation, and hypertrophic 

chondrocyte expansion in the faster-growing sites (Cooper et al., 2013; Farnum, 2007; 

Hunziker & Schenk, 1989; Kember, 1972; Raimann et al., 2017; Rolian, 2008; Serrat et 

al., 2007; Wilsman et al., 1996a, 1996b, 2008). Therefore, the cellular components of 

the growth plate are involved in regulating the process of endochondral bone 

development and linear growth. 
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1.1.3   Age Comparison of Mouse and Man  

A common model organism in the study of bone growth is the rodent, particularly 

the house mouse (Mus musculus). The murine model is beneficial because the mouse 

is small in size, cost-effective, easily available, and shares physiological similarities to 

humans making the mouse the most widely used animal (~59% of total animals used) in 

biomedical research (Dutta & Sengupta, 2016). However, mice have a shorter lifespan 

(~24 months) compared to humans (~80 years) (Dutta & Sengupta, 2016). While there 

may be a momentous difference in lifespan between mice and humans, it allows for 

accelerated projects when following the mouse throughout stages of development.  

Mouse age during different phases of postnatal growth is comparable to human 

age (Fig. 2). At birth, until approximately 2-3 weeks of age, mice rely completely on their 

mother for temperature regulation and food. At 3-4 weeks of age, pups will wean and 

become independent (Dutta & Sengupta, 2016; Latham & Mason, 2004). This phase of 

natural weaning that is the transition from exclusive nursing to nourishment by other 

food, is comparable to a 6-month-old infant (Dutta & Sengupta, 2016; Sengupta, 2013; 

Vail et al., 2015). While longitudinal growth is rapid during early postnatal stages of 

development, there is a progressive decline in this rate of active growth with 

approaching maturity. In mice, the accelerated rate of post weaning bone growth is from 

3-4 weeks of age, then gradually decelerates from 4-8 weeks of age, and significantly 

slows between 8-12 weeks of age (Callewaert et al., 2010; Li et al., 2017; Lui, Nilsson, 

& Baron, 2011) (Fig. 2). In humans, rapid linear growth is observed from infancy to 

childhood (6 months-3 years), decelerates from childhood through adolescence (3-16 
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years), and stops at adulthood (18-20 years) (Armstrong, 2007; Dutta & Sengupta, 

2016; Sengupta, 2013) (Fig. 2).  

 

  



 

 8 

 

Figure 2. Developmental Stages During Postnatal Linear Bone Growth Compared 
Between Mouse and Man 
Diagram follows the appropriate age ranges of a human with the comparative ages of a 
mouse during stages of linear growth. Rates of longitudinal bone growth are also noted 
during each developmental stage. Both human and mouse follow similar trends in linear 
growth with the exception of epiphyseal closure (indicated by the blue boxes). At the 
end of puberty, cessation of growth at the human growth plate is accompanied by 
epiphyseal fusion. No epiphyseal fusion is observed in the mouse. There is also an 
early pubertal growth spurt specific to humans that interrupts the decline in linear growth 
(gray). Mouse and human silhouettes provided by GetDrawings.com.  
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Puberty, when reproduction becomes possible, is reached in mice at 6-8 weeks 

(Jilka, 2013; Latham & Mason, 2004; Dutta & Sengupta, 2016) and 11-16 years in 

humans on average (Chirwa, Griffiths, Maleta, & Cameron, 2014; Dutta & Sengupta, 

2016; Lee, 1980; Kelly & Diméglio, 2008). Although linear bone growth progressively 

slows with age, this decline in growth rate is interrupted by an early pubertal growth 

spurt in humans (Li et al., 2017; Lui et al., 2011; Nilsson & Baron, 2004; Shim, 2015). 

During this time, increased rates of chondrocyte proliferation and hypertrophy within the 

growth plate are observed. This growth spurt is one reason why there is concern for 

childhood sport related physeal injuries, which are most common between 10-16 years 

of age (Grimmer, Jones, & Williams, 2000; Schwab, 1977) and account for 6-15% of 

youth fractures (Hunt & Amato, 2003). Disturbances during this period of developing 

growth cartilage can result in growth deformities (Caine, DiFiori, & Maffaulli, 2006; Mirtz, 

Chadler, & Eyers, 2011).  

Eventually a cessation of growth plate activity occurs as final adult height is 

reached. The cessation of longitudinal bone growth, also referred to as growth plate 

senescence, involves decreased rates of chondrocyte proliferation and hypertrophy 

(Forcinito et al., 2011; Lui et al., 2011; Nilsson & Baron, 2004; Nilsson et al., 2014; 

Walker & Kember, 1972). There is variation in time of closure between bones, but 

faster-growing sites such as in the proximal tibia close later (16-18 years of age in a 

human) than slower growing sites such as in the proximal radius (14-16 years of age in 

a human) (Schwab, 1977; Zoetis, Tassinari, Bagi, Walthall, & Hurtt, 2003). The process 

of growth plate senescence varies from species to species (Geiger, Forasiepi, Koyabu, 

& Sánchez-Villagra, 2014; Kilborn, Trudel, & Uhthoff, 2002). In humans, growth plate 
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cessation at the end of puberty is accompanied by epiphyseal fusion and the formation 

of a bony union (Geiger et al., 2014; Nilsson & Baron, 2004; Parfitt, 2002). In mice, 

there is not a complete closure of the growth plate (Dawson, 1925, 1935; Geiger et al., 

2014). The lack of complete epiphyseal fusion in mice contributes to complications in 

forming a direct comparison to humans. However, research has shown that even 

without complete closure, growth plate senescence still occurs at comparable 

developmental periods with similar cellular kinetics (Dawson, 1925, 1935; Geiger et al., 

2014; Walker & Kember, 1972). Skeletal maturity, not to be confused with sexual 

maturity, is similar between mice (8-12 weeks of age) (Kilborn et al., 2002; Li et al., 

2017; Serrat et al., 2007; Stempel, Fritsch, Pfaller, & Blumer, 2011; Zoetis et al., 2003) 

and humans (18-20 years of age) (Duren, Seselj, Froehle, Nahhas, & Sherwood, 2013; 

Dutta & Sengupta, 2016; Schwab, 1977) in regard to the proportion of their lifespan 

(Kilborn et al., 2002). When skeletal maturity is reached, chondrocyte proliferation, 

hypertrophy and longitudinal growth essentially stops despite the presence of a 

previously active growth plate.  

 

1.1.4  Limb Length Discrepancy 

 An orthopedic condition that is characterized by asymmetric length of lower 

extremity pairs is referred to as anisomelia, or limb length discrepancy (LLD) (Baker, 

Liu, Robertson, & Efstratiadis, 1993; Gurney, 2002). LLD usually emerges during 

childhood but the etiology varies and may be congenital, acquired or idiopathic. Prior to 

the development of the polio vaccine in the 1960s, the most common cause of LLD in 

children was poliomyelitis (viral infection causing paralysis) that resulted in leg 



 

 11 

shortening (Morscher, 1977; Wilson & Thompson, 1939). While polio has been 

eliminated from the United States, treatment options are still studied for middle-aged 

patients suffering from long-term LLD as a result of poliomyelitis developed during their 

childhood (Kirienko et al., 2011; Sonekatsu, Sonohata, Kitajima, Kawano, & Mawatari, 

2018). Aside from paralysis, other acquired causes of LLD include infection, tumors, 

and trauma (Morscher, 1977; Shapiro, 1982; Wilson & Thompson, 1939).  LLDs caused 

by trauma most commonly involve epiphyseal fractures (shortening on the fractured 

side) and meta- and diaphyseal fractures (lengthening on the fractured side) (Hansson, 

Stenström, & Thorngren, 1976; Morscher, 1977; Shapiro, 1982; Togrul, Bayram, 

Gulsen, Kalaci, & Ozabarlas, 2005; Truesdell, 1921; Wilson & Thompson, 1939; Wray & 

Goodman, 1961). Regardless of the cause of the LLD, untreated inequalities into 

adulthood have been associated with painful musculoskeletal disorders (Campbell, 

Ghaedi, Ghongomu, & Welch, 2018; Gurney, 2002) including lower back pain (Friberg, 

1983; Defrin, Ben Benyamin, Aldubi, & Pick, 2005), gait abnormalities (Aiona, Do, 

Emara, Dorociak, & Pierce, 2015; Kaufman, Miller, & Sutherland, 1996; Khamis & 

Carmeli, 2017; Mahmood, Huffman, & Harris, 2010; Song, Halliday, & Little, 1997), 

scoliosis (abnormal curvature of the spine) (Papaioannou, Stokes, & Kenwright, 1982), 

and osteoarthritis of the hip and knee (Golightly, Tate, Burns, & Gross, 2007a; Golightly  

et al., 2007b; Harvey et al., 2010; Resende, Kirkwood, Deluzio, Morton, & Fonseca, 

2016). 

 The severity of limb length discrepancy varies depending on the condition, as 

well as the onset of acquired cases. Limb length inequalities of 2 cm or more involve 

surgical methods of treatment with intentions of permanently correcting unequal length 
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of limbs (Gurney, 2002; Stevens, 2016; Vitale et al., 2006; Zhang, Hamamura, Turner, & 

Yokota, 2010). Limb shortening is recommended for limb length inequalities of 2-5 cm 

using epiphysiodesis procedures (Stevens, 2016). This method involves shortening the 

longer limb by either permanently halting growth from a surgically formed bony bridge 

(Phemister, 1933) or temporarily slowing of growth using guided growth techniques 

(Pendleton, Stevens, & Hung, 2013; Sabharwal, Nelson, & Sontich, 2015; Stevens, 

2016). Limb lengthening is recommended for those with limb length inequalities over 5 

cm (Stevens, 2016) and includes methods based off the traditional Ilizarov technique 

using external fixators (Ilizarov, 1988) or by mechanical bone guidance (Hasler & Krieg, 

2012). The aforementioned surgical interventions involve a variation of percutaneous 

drilling and use of external and internal fixation devices (including a cortical screw 

surgically placed through the epiphysis, across the growth plate, and into the 

metaphysis). In addition to the high cost of these invasive procedures, they are also 

often associated with complications including pain, implant failure, angular deformities 

and infection (Hasler & Krieg, 2012; Wilson & Thompson, 1939). 

 For relative comparison, a 2 cm discrepancy is roughly equivalent to a 2.8-2.4% 

difference using a reference limb length of 72-82.5 cm (total height minus sitting height 

averaged from mean male and female reference data) corresponding to a 10-16 year 

old adolescent (Fredricks et al., 2005; McDowell, Fryar, & Ogden, 2009) during the 

period of sexual maturity/puberty (Fig. 2) when still growing but approaching final height. 

A 5 cm discrepancy is therefore roughly equivalent to a 6.9-6.1% difference. It is 

important to note that these percent differences based on total limb length vary through 

development until final height is reached. At final height (reference limb length of 85 cm 
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for a young adult), a 2 cm discrepancy is a difference of 2.4%, while a 5 cm discrepancy 

is a difference of 5.9% (Fredricks et al., 2005; McDowell et al., 2009; Racine, Meadows, 

Ion, & Serrat, 2018). 

The projected limb length discrepancy at the point of maturity varies between 

congenital cases (based on a fixed limb length inequality) and acquired cases (based 

on how much limb growth remains) (Kelly & Diméglio, 2008). There have been 

numerous methods of predicting final limb length including the Green-Anderson method 

(Anderson, Green, & Messner, 1963), Menelaus method (Menelaus, 1966), Moseley 

method (Moseley, 1977), and Paley method (Paley, Bhave, Herzenberg, & Bowen, 

2000). The predicated final limb length discrepancy varies vastly between these 

methods (Monier, Aronsson, & Sun, 2015) and thus there is not one method that is 

more accurate than another. Therefore, determining the most effective timing to start 

treatment is difficult and can lead to possible over- or under-compensation for the 

observed unequal limb length. When the correction is not successful, either because of 

surgical failure or miscalculated predictions of final limb length discrepancy, surgical 

interventions have to be repeated (Stevens, 2016) and therefore increase the risk of 

post-surgical complications.  

While surgical intervention is typically recommended only for discrepancies of 2 

cm or more (Gross, 1978; Gurney 2002; Knutson, 2005), some studies have shown that 

discrepancies of 0.5-1 cm (0.6-1.2% limb length difference based on young adult height) 

may impact everyday walking (White, Gilchrist, & Wilk, 2004) leading to problems into 

adulthood including knee osteoarthritis (Harvey et al., 2010; Resende et al., 2016). 

Conservative methods of correction are typically recommended for those with these 
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minor limb length inequalities such as shoe lifts or prosthetics (Campbell et al., 2018; 

Hasler & Kreig, 2012; Wilson & Thompson, 1939). While inexpensive and less invasive, 

these methods do not permanently change the length of the bone. An alternative non-

invasive method for permanently lengthening limbs would therefore be ideal. A study by 

Zhang et al. (2010) showed that applying intermittent 0.5 N lateral loads to the knee 

joints of mice (~8-weeks old) increased femoral (2.3%) and tibial length (3.7%). This 

increase in limb length is noteworthy because treatment occurred during slower rates of 

longitudinal bone growth when mice were close to reaching skeletal maturity. Long-term 

effects of these studies have also not yet been done. Serrat et al. (2015) demonstrated 

that using once daily targeted limb heating (40°C for 40mins/day) to unilaterally increase 

femoral (1.3%) and tibial (1.5%) length of growing mice (3-5 weeks of age) is another 

non-invasive alternative to treating limb length discrepancies. At skeletal maturity (12 

weeks of age), femoral (1.0%) and tibial (1.0%) lengths remained significantly increased 

on the heat-treated sides (Serrat et al., 2015).  

 

1.2 REGULATION OF GROWTH PLATE DURING POSTNATAL LINEAR GROWTH  

1.2.1  Endocrine Regulation of Linear Growth  

The process of postnatal longitudinal growth is tightly controlled by 1) endocrine 

actions by molecules, such as hormones, distributed in the blood that act on target cells 

of the growth plate, and 2) paracrine/autocrine actions by locally produced factors 

expressed in epiphyseal chondrocytes or surrounding perichondrium. Mutations in 

genes encoding any of these regulators result in dysfunctional chondrocytes, abnormal 

longitudinal growth, and skeletal dysplasia including short-limbed dwarfism. By 
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endocrine action, systemic factors shown to regulate longitudinal growth include growth 

hormone (GH), insulin-like growth factor 1 (IGF1), thyroid hormone, estrogen, androgen, 

glucocorticoids, and vitamin D (Börjesson et al., 2010; van der Eerden, Karperien, & 

Wit, 2003; Lui, Nilsson, & Baron, 2014; Ohlsson et al., 1993; Simpson, Asling, & Evans, 

1950; Tryfonidou et al., 2010; Wang, Shao, & Ballock, 2010). For example, while 

circulating thyroid hormone has been shown to increase longitudinal bone growth 

indirectly by increasing systemic GH secretion (Ohlsson et al., 1993), it also has been 

shown to directly interact with the epiphyseal chondrocytes and initiate terminal 

differentiation (Ohlsson, Nilsson, Isaksson, Bentham, & Lindahl, 1992a; Stevens et al., 

2000).  

 

1.2.2  Autocrine/Paracrine Regulation of Linear Growth  

In regards to autocrine/paracrine regulation within growth plate cartilage, locally 

acting factors reported include Indian hedgehog (Ihh), parathyroid hormone-related 

protein (PTHrP), fibroblast growth factors (FGFs) (including FGF1, -2, -9 and -18), bone 

morphogenic proteins (BMPs) (including BMP2-7), vascular endothelial growth factor 

(VEGF), IGF1, and Wnt (van der Eerden et al., 2003; Karimian, Chagin, & Sävendahl, 

2012; Kronenberg, 2003; Lui et al., 2014; Maeda, Schipani, Densmore, & Lanske, 2010; 

Tryfonidou et al., 2010; Wang et al., 2010). Different regional zones of growth plate 

chondrocytes are regulated by particular factors. For instance, regulation of 

prehypertrophic chondrocytes (chondrocytes at maturation that no longer proliferate) in 

the region between the proliferative zone and hypertrophic zone, have been 

characterized by the expression of signaling molecules responsible for the successful 
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and timely transition from proliferative to hypertrophic chondrocytes. These include FGF 

receptors (Lazarus, Hedge, Andrade, Nilsson, & Baron, 2007; Su, Jin, & Chen, 2014), 

BMPs (Garrison, Yue, Hanson, Baron, & Lui, 2017; Nilsson et al., 2007), and Ihh/PTHrP 

receptors (Vortkamp et al., 1996).  

Often, it has been shown that longitudinal bone growth is controlled by the 

collaboration of both endocrine and paracrine/autocrine actions when systemic factors 

interact with locally expressed factors of the growth plate cartilage to promote 

chondrocyte proliferation and hypertrophy. Among these interactions, estrogen 

(endocrine) has been shown to regulate expression of IGF1 (autocrine/paracrine) in 

growth plate chondrocytes (Börjesson et al., 2010). Thus, in addition to the independent 

influences of systemic and local factors on the growth plate, there are important 

interactions between regulators to maintain growth. While the impact of some factors 

(such as IGF1) act predominantly over others, there is no evidence supporting that one 

is mutually exclusive from the rest in regulating longitudinal bone growth. There is still 

much to be understood regarding the molecular mechanisms involved in linear growth 

and further research will lead to a greater depth of comprehension.  

 
 

1.3 GROWTH HORMONE AND INSULIN-LIKE GROWTH FACTOR REGULATE 
LINEAR GROWTH 

  
1.3.1  Evolution of the Somatomedin Hypothesis 

GH and IGFs have an integral role in maintaining normal growth and 

development. The original understanding of the means by which GH and IGFs regulate 

growth was set into motion after experiments conducted in 1957 by Salmon and 

Daughaday (Salmon & Daughaday, 1957). In the early 1970s, the same group in 
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addition to other investigators referred to their findings as the somatomedin hypothesis, 

which described pituitary-gland derived GH to act upon the liver to secrete an 

intermediate hormone stimulating somatic growth (Daugaday et al., 1972). The 

intermediates were termed insulin-like growth factor 1 (IGF1) and insulin-like growth 

factor 2 (IGF2) (also referred to as somatomedin C and A) later in the decade 

(Rinderknecht & Humbel, 1978a,b). Both factors are important for growth and 

development and when disrupted display abnormal phenotypes (Table 1).  
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Table 1. Mouse Models with Disrupted IGF1 Regulation 

Model Phenotype Citation 

Igf1 null mice (global 
IGF1 disruption) 

95% mice died prenatally; 
undetectable levels of IGF1 in 
serum and tissues; significant 
decrease in tibial length 
(70%); abnormal chondrocyte 
proliferation and differentiation 

Baker et al., 1993 
Bikle et al., 2001 
Powell-Braxton et al., 1993 
Wang et al., 2006 

Igf2 null mice (global 
IGF2 disruption) 

Mice are viable; reduced body 
growth (60%) at birth; normal 
postnatal growth 

DeChiara, Efstratiadis, & 
Robertson, 1990 
Yakar et al., 1999 

LID mice (systemic 
disruption of liver-
derived IGF1) 

75% reduction in serum IGF1; 
no significant change in body 
length; no significant change 
in tibial length; slight decrease 
in femoral length (6%)  

Sjögren et al., 1999 
Yakar et al., 1999 

ALS knockout mice 
(systemic disruption 
ternary complexes 
(IGF1/ALS/IGFBP-3) 

65% reduction in serum IGF1; 
no significant change in body 
length; slight decrease in 
femoral length (7.5%) 

Ueki et al., 2000 

LID+ALSKO mice 
(systemic disruption of 
liver-derived IGF1 and 
ternary complexes 
(IGF1/ALS/IGFBP-3)) 

85-90% reduction in serum 
IGF1; significant reduction in 
body length (30%); significant 
decrease in femoral length 
(20%) 

Yakar et al., 2002 

(Col2a1)-driven Cre 
mice (local disruption 
of chondrocyte-derived 
IGF1) 

40% reduction in chondrocyte 
IGF1; Significant decrease in 
postnatal body length; no 
morphological differences in 
proliferative and hypertrophic 
regions 

Govoni et al., 2007a 

CartIgf1r-/- mice (local 
disruption of cartilage-
specific IGF1R) 

Mice died shortly after birth Wang et al., 2011 
 

TamCartIgf1r-/- mice 
(local disruption of 
cartilage-specific 
IGF1R induced by 
tamoxifen injections) 

Significant decrease in body 
length (40%); disorganized 
growth plates associated with 
reduced chondrocyte 
proliferation and differentiation 

Tahimic, Wang, & Bikle, 2013 
Wang et al., 2011 
Wu, Yang, & De Luca, 2015 
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The introduction of the dual effector theory in 1985 disputed the original 

somatomedin hypothesis and proposed an additional IGF1-independent role of GH 

(Green, Morikawa, & Nixon, 1985). This revision came with reports of local IGF1 

production in nonhepatic tissues, including bone (Tahimic et al., 2013) demonstrating 

that IGF1 acts as both an endocrine and autocrine/paracrine factor. In the growth plate, 

investigators found that GH directly stimulated cell differentiation in the RZ of precursor 

cells, while local IGF1 production mediated clonal expansion of the resulting PZ 

chondrocytes (Isaksson, Jansson, & Gause, 1982, Isaksson, Eden, & Jansson, 1985; 

Ohlsson et al., 1992a; Ohlsson, Nilsson, Isaksson, & Lindahl, 1992b; Ohlsson, 

Bengtsson, Isaksson, Andreassen, & Slootweg 1998; Schlechter, Russell, Greenberg, 

Spencer, & Nicoll, 1986). Recent research also supports the direct contribution of GH 

acting on the growth plate independent of IGF1 (Dobie et al., 2015; Wu et al., 2015). 

The evolution of the somatomedin hypothesis incorporates an adaptation of previous 

theories to describe a more complex interplay between GH and IGF1, including 

negative feedback mechanisms where IGF1 inhibits further GH production (Moody et 

al., 2014). The interaction between IGF1 and GH is commonly referred to as the 

GH/IGF1 axis (Fig. 3).  
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Figure 3. GH/IGF1 Axis in Postnatal Limb Elongation 
Flow diagram illustrates the complex interplay between GH and IGF1 in promoting 
longitudinal bone growth. In addition to stimulating IGF1 production in the liver as 
originally proposed in the somatomedin hypothesis, GH also stimulates longitudinal 
growth (1) by promoting local production of IGF1 in growth plate chondrocytes and (2) 
independent of IGF1 as explained by the dual effector theory. IGF1 also has 
autocrine/paracrine effects independent of GH promoting longitudinal growth locally in 
growth plate chondrocytes. The red arrow demonstrates the negative feedback 
mechanism of IGF1 inhibiting further GH synthesis and release. Tibia illustration 
provided with permission by Amsel S on Exploring Nature Educational Resources 
(2018). 
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1.3.2 IGF Induced Signaling Pathway 

IGF binding protein-3 (IGFBP-3) is the major carrier of IGFs. In serum, majority of 

IGFs (~75%) exist in a ternary complex of one molecule each of IGF1, IGFBP-3, and 

the acid labile subunit (ALS) (Holman & Baxter, 1996; Yakar et al., 2002). The ternary 

complex prolongs the half-life of serum IGFs and regulates transport from the circulation 

to the target tissue (Baxter, 2000; Holman & Baxter, 1996; Le Roith, Bondy, Yakar, Liu, 

& Butler, 2001). Similar to IGF1, IGF2 binds to IGFBPs (Baxter, 2000; Le Roith et al., 

2001). Upon release at the surface of the target tissue, both IGFs are capable of binding 

to the receptor tyrosine kinase type 1 IGF receptor (IGF1R) (Le Roith et al., 2001) 

expressed in all regions of the growth plate (Parker et al., 2007; E. Wang, J. Wang, 

Chin, Zhou, & Bondy, 1995). The activation of the IGF1R leads to a signaling cascade 

involving the phosphatidylinositide 3-kinase (P13K) and mitogen-activated protein 

kinase (MAPK) pathways ultimately leading to cell survival and proliferation, which 

contributes to longitudinal growth rate (Fig. 4). IGF2 is classically described to be 

essential only during prenatal growth (DeChiara et al., 1990; Lund et al., 1986; Yakar et 

al., 1999), whereas IGF1 is expressed at low levels during embryonic development and 

is important for postnatal growth (Baker et al., 1993; Liu, Baker, Perkins, Robertson, & 

Efstratiadias, 1993; Powell-Braxton et al., 1993). Evidence supports that IGF1 is more 

critical to postnatal longitudinal bone growth compared to IGF2 because the postnatal 

phenotype of the Igf1 null is more severe than the Igf2 null mice (see Table 1) (Baker et 

al., 1993; DeChiara et al., 1990; Liu et al., 1993; Yakar et al., 1999). 
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Figure 4. IGF1 Induced Intracellular Signaling Pathway  
Model demonstrates how IGF1 functions as a ligand and binds to its receptor (IGF1R) 
triggering two downstream signaling cascades including the phosphatidyl inositol-3 
kinase (P13K) and mitogen-activated protein kinase (MAPK) pathways and ultimately 
leading to cell survival and proliferation. Illustration based on Crudden, Girnita, A, and 
Girnita, L (2015). 
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1.3.3  GH and IGF1 Distinct and Overlapping Functions on Linear Growth 

One example of a mouse model that demonstrates the importance of the 

GH/IGF1 axis is the growth hormone receptor knockout (GHR-/-) mouse. The GHR-/- 

mouse is a model of human Laron Syndrome, a recessively inherited inactivating 

mutation(s) in the GHR. The disease is characterized by GH resistance, high serum 

GH, and low serum IGF1 (Laron, 2015a; List et al., 2011; Sims et al., 2000; Zhou et al., 

1997). While at birth these mice are similar in size to their wild-type littermates 

(suggesting prenatal growth not dependent on GH), the significant size difference 

becomes apparent during postnatal development (Zhou et al., 1997). GHR-/- mice have 

a 30-40% reduction in body size (List et al., 2011; Sims et al., 2000; Yakar & Isaksson, 

2016; Zhou et al., 1997) as well as a 65% reduction in tibial growth rate (Davies et al., 

2007; Wang, Zhou, Cheng, Kopchick, & Bondy, 2004) and decreased chondrocyte 

proliferation and hypertrophy (List et al., 2011). Studies by Lupu et al. (2001) 

determined that GH and IGF1 have distinct, yet overlapping, functions during 

mammalian linear growth. When comparing mutant mouse models of Igf1 mutant mice, 

GHR-/- (lacking GH action), and double-mutants (Ghr/Igf1), it was determined that the 

observed growth retardation of the double Ghr/Igf1 nullizygotes was more severe than 

that of either single mutant model (Lupu et al., 2001). With advancements in the field of 

endocrinology, investigators continue to refine the original somatomedin hypothesis and 

study how GH and IGF1 interact to regulate linear growth.  
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1.3.4  GH and IGF1 Treatment of Hormonal Deficiencies 

 As described, normal longitudinal bone growth requires functional hormonal 

regulation. Hormonal disorders involving the deficient or excessive production of the 

important hormones of growth (GH, IGF1, thyroid hormones, glucocorticoids, and sex 

steroids), can lead to abnormally short or tall stature. Short stature characterized by 

stunted linear growth may result from GH deficiency (Lupu et al., 2001; Ohlsson et al., 

1998; Tritos & Klibanski, 2016), IGF1 deficiency (Liu et al., 1993; Mohan et al., 2003; 

Powell-Braxton et al., 1993; Wang, Zhou, & Bondy, 1999; Wang et al., 2006; Yakar & 

Isaksson, 2016), hypothyroidism (Bassett & Williams, 2016), or hypercortisolism (Bello 

& Garrett, 1999; Silvestrini et al., 2000). Thyroid hormone (T3) deficiency in children is 

associated with growth retardation (Rivkees, Bode, & Crawford, 1988) and studies in 

mice using knockout models have shown that linear growth is impaired in thyroid 

hormone deficient mice (Basset et al., 2008; Friedrichsen et al., 2003) when levels are 

normal but the thyroid receptor (TRα1 and TRβ) is mutated (Göthe et al., 1999; 

Kindblom et al., 2005).  

One of the main problems associated with short stature in children is the 

development of behavioral and emotional problems (van der Eerden et al., 2003; 

Gordon, Crouthamel, Post, & Richman, 1982; Sandberg, 2000). The most common 

treatment option for children with stunted linear growth involves frequent subcutaneous 

injections of recombinant human GH until adult height is reached (Ohlsson et al., 1998; 

Pfäffle, 2015; Wit & Oostdijk, 2015). In addition to treatment of short stature as a result 

of hormonal disorders, GH has also been used to treat short stature resulting from 

chromosomal disorders and genetic syndromes including Turner syndrome (Pfäffle, 
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2015; Ranke, 1995a, Tritos & Klibanski, 2016; Wit & Oostdijk, 2015), Achondroplasia 

(Harada et al., 2017), Prader-Willi syndrome (Moix, Gimébez-Palop, & Caixàs, 2018; 

Pfäffle, 2015), and Noonan syndrome (Noonan & Kappelgaard, 2015; Pfäffle, 2015). 

Other therapies including oxandrolone (man-made steroid similar to testosterone), 

estrogens, gonadotropin-releasing hormone (GnRH) and IGF1 have also been used to 

increase linear bone growth (Wit & Oostdijk, 2015). While GH therapy is more 

commonly used in clinical settings, IGF1 has also been shown to effectively reverse 

skeletal growth discrepancies (Azcona et al., 1999; Backeljauw, Kuntze, Frane, 

Calikoglu, & Chernausek, 2013; Chernausek et al., 2007; Laron & Klinger, 2000; Laron, 

2001; Laron & Kauli, 2015b; Lupu et al., 2001; Midyett et al., 2010; Ranke et al., 1995b, 

1999; Sims et al., 2000). However, there are more adverse effects associated with IGF1 

treatment including hypoglycemia (abnormally low levels of glucose in the bloodstream) 

(Clemmons, 2004; Guevara-Aguirre et al., 1997; Laron & Klinger, 2000; Lindsey & 

Mohan, 2016; Ross, Lee, Gut, & Germak, 2015). In patients that already show 

symptoms of hypoglycemia, such as those with Laron’s Syndrome (GH insensitive), 

IGF1 therapy can intensify these symptoms and can lead to loss of consciousness or 

seizures (Chernausek et al., 2007; Cohen et al., 2014; Kovacs et al., 1999). Other risks 

with IGF1 treatment include headaches, intracranial hypertension, growth of the 

nasopharyngeal lymphoid tissues, hearing loss, and injection site lipohypertrophy 

(Backeljauw et al., 2013; Chernausek et al., 2007; Midyett et al., 2010; Ranke et al., 

1995b). Therefore, it would be favorable to develop a successful drug treatment 

regimen using a lower dose of IGF1 to avoid the adverse effects of increased systemic 

levels. 
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1.4 IGF1 AS A PRIMARY MEDIATOR OF LONGITUDINAL BONE GROWTH 

1.4.1  Function of Locally Expressed IGF1 

Numerous studies have supported the importance of both GH and IGF1 in 

mediating linear bone growth; however, IGF1 appears to be the most critical regulator of 

postnatal growth. In mutant animal models where GH action is impaired (Laron, 2015a; 

List et al., 2011; Lupu et al., 2001; Sims et al., 2000; Wang et al., 2004; Zhou et al., 

1997), animals thrived despite being significantly smaller than the wild-type 

counterparts. In contrast, in mutant animals where local IGF1 action is impaired, most 

animals died shortly after birth and those that did survive had severe growth defects 

(Tahimic et al., 2013; Wang et al., 2011; Wu et al., 2015) supporting the importance of 

local chondrocyte-produced IGF1. The observed growth defects suggest that while a 

degree of circulating IGF1 is necessary (Yakar et al., 2002), local action of IGF1 may be 

more critical for longitudinal bone growth than serum IGF1 (see Table 1).  

The role of local IGF1 in the proliferation of chondrocytes in mice and rats has 

been debated. Investigators have detected the expression of IGF1 in the PZ of the 

epiphyseal growth plate measured by in situ hybridization (Lazowski et al., 1994; Lupu 

et al., 2001; Nilsson, Carlsson, Isgaard, Isaksson, & Rymo, 1990; Ohlsson et al., 

1992a). However, these results were not in agreement with the findings of two different 

groups from the early to mid-1990s that were both unable to detect IGF1 mRNA in 

proliferating chondrocytes by in situ hybridization methods, and instead found IGF2 

mRNA (Shinar, Endo, Halperin, Rodan, & Weinreb, 1993; Wang et al., 1995). Additional 

investigators also identified the expression of IGF2 in the PZ (Parker et al., 2007; 

Reinecke, Schmid, Heyberger-Meyer, Hunziker, & Zapf, 2000). In all cases, it was 
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consistently reported that the level of IGF2 expression in the PZ decreased with age. 

Overall IGF1 expression levels increase after birth, including those in proliferating 

chondrocytes (Parker et al., 2007). The absence of IGF1 mRNA in proliferating 

chondrocytes by Shinar et al. (1993) and Wang et al. (1995) was reported using rodents 

during the earliest stages of postnatal development. Therefore, it is possible that these 

rodents had not yet reached the postnatal age by which an increase in IGF1 expression 

in the PZ can be detected, such as that reported by Parker et al. (2007). 

The significance of IGF2 in early postnatal chondrocyte development, secondary 

to IGF1, has begun to emerge. IGF2 is not included in the GH-IGF1 axis (Humbel, 

1990; Pierce, Dickey, Felli, Swanson, & Dickhoff, 2010) but recent studies are now 

investigating the role of IGF2 in postnatal bone growth after a group discovered that 

human postnatal growth restriction was associated with nonsense IGF2 mutations 

(Begemann et al., 2015). Uchimura et al. (2017) have shown significant reductions in 

bone length in IGF2-null mice at postnatal periods prior to weaning (1-3 weeks of age) 

and their histological analysis suggests IGF2 has a role in regulating chondrocyte 

development by controlling the progression from proliferation to hypertrophy. The 

mechanism and extent by which IGF2 regulates longitudinal bone growth through 

cartilage development remains unclear and its evaluation will be important in future 

experiments.  

Regardless of its local versus systemic roles, IGF1 is undisputedly a significant 

factor in epiphyseal cartilage development. Local regulation of IGF1 has been studied in 

other regions of the growth plate aside from the PZ. Cell kinetic studies using 

hypophysectomized rats (pituitary gland removed reducing systemic levels of GH and 
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IGF1) determined that IGF1 regulated all phases of chondrocyte differentiation in the 

growth plate including the RZ of chondrocyte precursors (Hunziker, Wagner, & Zapf, 

1994a). IGF1 expression has also been observed in the HZ of epiphyseal growth plates 

(Lazowski et al., 1994; Nilsson et al., 1990) and local regulation by IGF1 has been 

shown to augment chondrocyte hypertrophy (Abbaspour et al., 2008; Mushtaq, Bijman, 

Ahmed, & Farquharson, 2004; J. Wang et al., 1999; Y. Wang et al., 2006). An observed 

35% reduction in HZ height was reported in an IGF1 null mouse model (Wang et al., 

1999). IGF1 has also been shown to induce collagen X production (made in the HZ) 

(Repudi, Patra, & Sen, 2013; Wang et al., 1999). When local expression of IGF1 was 

blocked by the binding of Wnt induced secreted protein 3 (WISP3), a protein involved in 

cell differentiation, IGF1-induced collagen X expression was reduced (Repudi et al., 

2013).  

 

1.4.2  IGF1 Antagonists 

Mouse models designed to control the expression of IGF1 through genetic 

manipulation are a useful method for studying IGF1 regulation. Another approach for 

studying IGF1 action and its role in regulating linear bone growth is by blocking IGF1 

action. The major target of an IGF1 antagonist is the IGF1R, which serves as the 

gateway for IGF1 action (see Fig. 3). When activation of the IGF1R is inhibited, the 

growth promoting effects of IGF1 are blocked (Fig. 4). Multiple types of antagonists of 

IGF1 have been studied including small-molecule tyrosine kinase inhibitors (TKIs) and 

competitive antagonists such as monoclonal antibodies directed against the IGF1R or 

the use of IGF1 peptide analogs (Table 2). Since hormones and growth factors, 
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including IGF1, function to promote growth by inducing cell proliferation and survival, 

hormone antagonists are often investigated as means for treating abnormal cell growth 

such as carcinogenesis. However, many of these antagonists face scrutiny because of 

the reports of failure in clinical trials (Guha, 2013). Therefore, investigators are 

continuing to seek a better understanding of these antagonists using animal models 

(Moody et al., 2014) and continue to research alternatives for IGF1 antagonists to 

improve targeted therapies (Guha, 2013).  

Apart from clinical studies using IGF1 antagonists as anti-cancer drugs, testing 

antagonists for their ability to block IGF1 action in various tissues, including bone, 

should be done. Since many of these drugs are administered systemically, the smaller 

sized antagonists (<0.9 kDa) are more soluble and better for transport out of the 

vasculature and into the tissue (Hadacek & Bachmann, 2015; Macielag, 2012). As 

highlighted in Table 2, IGF1 peptide analogs are effective because of their specificity, 

small molecular size (0.6-1.2 kDa) and low toxicity (Haylor et al., 2000; Huang, Golden, 

Tarjan, Madison, & Stern, 2000; Kleinridders, 2016; Pietrzkowski, Wernicke, Porcu, 

Jameson, & Baserga, 1992; Smith et al., 1999). Multiple IGF1 peptide analogs have 

been used to inhibit cellular proliferation including JB1, JB2 and JB3 (Pietrzkowski et al., 

1992). Presently, JB1 is the analog commercially available to researchers that 

competitively binds to IGF1R and blocks downstream IGF1 activity (Brock et al., 2011; 

Huang et al., 2000; Kleinridders, 2016; Todd, Fraley, Peck, Schwartz, & Etgen, 2007; 

Wen et al., 2012) (Fig. 5). As with many antagonists, resistance is possible. Haylor et al. 

(2000) reported a bell-shaped curve with the dose response of JB3 and its successful 

inhibition of kidney growth in rats. In addition to determining an effective range of 
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treatment, challenges still arise in eliciting a tissue specific response without affecting 

other systems dependent on IGF1 for normal growth. Therefore, further investigation 

into methods of targeting small molecules will be beneficial in optimizing application of 

IGF1 antagonists. 
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Table 2. Summary of IGF1 Antagonists in Inhibiting Overall Growth 

Antagonist Advantage Disadvantage Citation 

Anti-IGF1R 
antibodies (i.e. 
ganitumab and 
αIR3) 

Highly specific for 
the IGF1R 

Activates the insulin 
receptor and 
promotes unwanted 
growth; Large 
molecular weight 
(145-155kDa); Drug 
resistance 

Huang et al., 2000 
Moody et al., 2014 
 

Small-molecule 
TKIs (i.e. 
Linsitinib and 
BMS-754807) 

Targets both 
IGF1R and insulin 
receptor; Small 
molecular weight 
(0.42-0.46kDa) 

Less specific; 
Reported toxicity 
(i.e. diarrhea and 
myelosuppression); 
Drug resistance 

Li, Pourpak, & Morris, 
2009 
Pillai & Ramalingam, 
2013 
Refolo et al., 2017 

IGF1 peptide 
analogs (i.e. JB1, 
JB2 and JB3) 

Highly specific for 
the IGF1R; Small 
molecular weight 
(0.6-1.2kDa); Low 
toxicity 

Drug resistance  Haylor et al., 2000 
Huang et al., 2000 
Kleinridders, 2016 
Pietrzkowski et al., 1992 
Smith et al., 1999 
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Figure 5. JB1 Blocks IGF1R Signaling  
Model demonstrates how IGF1 peptide analog, JB1, competitively binds to the IGF1R. 
JB1 thus inhibits IGF1 binding preventing IGF1R activation and ultimately blocking 
kinase signaling that would otherwise lead to cell survival and proliferation (repressed 
downstream effects indicated by the red “X”). Illustration based on Crudden et al. 
(2015). 
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1.5 REGULATION OF LINEAR GROWTH BY TEMPERATURE 

1.5.1  Temperature Regulates Linear Growth in Nature 

For over 50 years, several environmental factors have been shown to influence 

bone growth and development. As reviewed by Schell, Gallo, & Ravenscroft (2009), 

environmental factors include nutrition, altitude, climate and temperature. Temperature 

has classically been described to influence extremity length as described by Allen’s rule 

that warm-blooded animals living in cold climates display decreased length of 

extremities and appendages (Allen, 1877). Temperature regulated limb length is thought 

to be an adaptation to the cold climate by reducing the body mass to surface area ratio 

(Newman, 1953).   

 

1.5.2  Temperature Regulates Linear Growth in Laboratory Setting 

Allen’s rule is often still applied to a variety of different species in present day 

studies. In humans, Allen’s rule was demonstrated in a study suggesting that shorter 

limbs (including those of Neanderthals, a group of archaic humans) are advantageous 

for survival in cold climates by reducing the metabolic cost of maintaining body 

temperature (Tilkens, Wall-Scheffler, Weaver, & Steudel-Numbers, 2007). In reptiles, 

studies have shown that increased incubation temperature (32°C) of embryonic 

crocodiles led to increased tibial length (Pollard et al., 2017). Serrat (2014b) thoroughly 

reviewed the impact of temperature on extremity growth in various species. For 

instance, mice from 3.5-12 weeks of age housed at warm ambient temperature (27°C) 

displayed longer limbs than cold-reared mice (7°C) (Serrat, Williams, & Farnum, 2010). 

Overall results of Allen’s rule replicated in laboratory settings (mainly in rodents) appear 
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to be most profound when experimentation occurs during the active period of postnatal 

growth. Al-Hilli and Wright (1983) studied effects of warm ambient temperature (33°C) 

on tail growth in young mice (3 weeks of age) and showed heat enhanced tail growth 

occurred during the first 3-4 weeks of exposure. Serrat (2013) reanalyzed this 

temperature sensitive period of postnatal growth in young mice (3 weeks of age) and 

found that the “critical phase” of temperature sensitive growth occurs between 3-5 

weeks of age, followed by a later “maintenance phase,” whereby limb length differences 

are simply maintained.  

 

1.5.3  Unilateral Heating Model Enhances Bone Lengthening 

Serrat et al. (2015) later showed that targeted unilateral limb heating (40°C) in 

growing mice (3-5 weeks of age) increased limb length on heat-treated sides. However, 

the mechanism of action is unclear. It can be difficult to narrow down a single 

mechanism responsible for temperature-altered physiology, as there are numerous 

possibilities, both direct and indirect, and include altered cellular gene expression, 

vascularization, transport of nutrients and growth factors (Serrat, 2014b), and systemic 

hormone concentrations. It is likely that multiple mechanisms are involved in 

temperature-enhanced limb growth. Since the cartilaginous growth plate drives linear 

bone growth and the observed temperature induced changes in limb length occur 

concurrently with periods of elevated growth plate activity (3-5 weeks of age in the 

mouse), it is likely that temperature elicits direct and indirect effects on the growth plate.  
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1.5.4  Potential Function of IGF1 in Heat-Enhanced Linear Growth 

As previously discussed, IGF1 is the main regulator of linear growth since normal 

skeletal development does not occur without functional IGF1 activity (see Table 1) (Liu 

et al., 1993; Mohan et al., 2003; Powell-Braxton et al., 1993; Wang et al., 2006). In 

addition to liver-derived serum IGF1 (endocrine), it has also been suggested by rodent 

studies that locally expressed IGF1 (autocrine/paracrine) regulates cellular mechanisms 

of longitudinal bone growth in the growth plate (Isaksson et al., 1982, 1985; Isaksson, 

Ohlsson, Nilsson, Isgaard, & Lindahl, 1991; Ohlsson et al. 1992a, 1992b, 1998; 

Schlechter et al., 1986). Therefore, a working hypothesis for heat-enhanced linear 

growth is that temperature increases activity of IGF1, which increases rates of 

chondrocyte proliferation and hypertrophy to subsequently enhance limb growth. Heat-

enhanced linear growth may occur by: (1) indirectly increasing IGF1 access to the 

growth plate with temperature-enhanced blood flow (endocrine actions), (2) directly 

increasing IGF1 activity within the growth plate (autocrine/paracrine actions) with 

temperature-enhanced expression of regulators, or (3) a combination of both.  

While supporting evidence of temperature-enhanced blood flow and vascular 

transport are discussed in later sections, literature also supports that IGF1 expression 

increases with higher temperature. A recent study showed that during early 

development in a population of eels (endoskeleton is entirely made of bone), those 

reared in warmer temperatures (22°C) compared to colder temperatures (16°C), were 

significantly longer in length and had increased gene expression of IGF1 (Politis et al., 

2017). Other studies comparing the effect of thermal manipulation on IGF1 expression 

in skeletal muscles of growing broiler chicks showed increased expression associated 
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with increased temperature (Al-Zghoul et al., 2016; Halevy, Krispin, Leshem, McMurtry, 

& Yahav, 2001). In addition to the suggested relationship between temperature and 

IGF1 expression in developing tissues, temperature has also been shown to weaken 

the affinity of IGF1 binding to ALS in its ternary complex (ALS-IGF1-IGFBP3) 

accounting for increased free IGF1 in the circulation (Holman & Baxter, 1996). Further 

research is required to determine if temperature impacts IGF1 action in bone and 

cartilage tissue in mammals during development.   

 

1.6 ROLE OF VASCULATURE IN PROMOTING LONGITUDINAL BONE GROWTH 
 

1.6.1  Vascular Supply of the Growth Plate 

In addition to local and systemic factors that regulate the well-controlled process 

of endochondral ossification, vascular systems are also crucial because they transport 

regulators that are essential for longitudinal bone growth. Therefore, it is important to 

understand the blood supply of growth plate cartilage. Although bone is a highly 

vascularized tissue, signaling molecules involved in bone elongation must overcome a 

challenge that is unique to the growth plate. Cartilage does not have a penetrating blood 

supply. Systemic factors essential for bone elongation are delivered from surrounding 

blood vessels (Brodin, 1955; Maes, 2013; Trueta, 1968). These vascular routes include: 

1) epiphyseal vessels, 2) metaphyseal vessels, and 3) perichondral vessels (Brookes & 

Revell, 1998; Brighton, 1978; Spira & Farin, 1967; Wirth et al., 2002). Perichondral 

vessels arise from a ring vessel found in the encircling fibrochondrosseous structure in 

the perichondrium known as the groove of Ranvier (Brookes & Revell, 1998; Walzer et 

al., 2014). The epiphyseal vessels have been reported to provide the means for normal 
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chondrocyte proliferation, while chondrocyte hypertrophy is dependent on the 

metaphyseal vessels (Trueta & Amato, 1960; Zoetis et al., 2003). Studies have shown 

that the epiphyseal vasculature is essential for normal growth plate cartilage 

development (Maes et al. 2004; Maes, 2013; Trueta, 1968; Williams, Zipfel, Tinsley, & 

Farnum, 2007). While the viability of chondrocytes may be dependent on epiphyseal 

vasculature as opposed to metaphyseal vasculature (Trueta, 1968), metaphyseal 

vessels are essential for providing osteogenic factors that replace cartilage with bone 

during the process of endochondral ossification.  

 Studies have recently emerged using novel techniques to investigate the not fully 

elucidated mechanism of molecular transport into the growth plate through the 

surrounding vasculature. Multiphoton microscopy (MPM) as described by Zipfel, 

Williams, & Webb (2003) is an attractive, noninvasive method of in vivo fluorescent 

imaging in living anesthetized animals. Investigators have used MPM imaging as a 

means of tracking systemic fluorescent tracers through the vasculature into the growth 

plate (Farnum, Lenox, Zipfel, Horton, & Williams, 2006; Serrat, Williams, & Farnum, 

2009; Serrat et al., 2010; Serrat, Efaw, & Williams 2014a; Williams et al., 2007). For 

biological significance, the size of the fluorescent tracers was selected based on the 

range of endogenous molecules that diffuse into the growth plate. The comprehension 

of how signaling molecules enter the growth plate through the surrounding vasculature 

is helpful in understanding regulation of growth plate chondrocytes. For example, very 

small amounts of molecules larger than 40kDa enter the growth plate (Serrat et al., 

2014a), but molecules less than 10kDa were found to enter the growth plate through all 

three vascular routes (Farnum et al., 2006). Larger sized molecules (10kDa and 
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greater) appear to enter the growth plate from the surrounding perichondral vessels 

(Williams et al., 2007). Transport of molecules into the growth plate is relevant to 

understanding how larger signaling molecules such as FGFs (FGF2, 18kDA; FGF18, 

23kDa), PTHrP (9-23kDa), and BMPs (BMP-2, 26kDa) expressed in the perichondrium 

regulate growth plate chondrogenesis (Kronenberg, 2003).  

 

1.6.2  Transport of Systemic IGF1 into the Growth Plate 

IGF1 is the major circulating hormone of growth. At a molecular weight of 

7.6kDa, IGF1 falls within the range of molecules that readily enter the growth plate 

through the surrounding vasculature (less than 10kDa). Therefore, it is beneficial to 

study IGF1 transport and improve our understanding of its role in regulating growth 

plate chondrocytes. In an attempt to develop the means to facilitate this expansion in 

knowledge, Serrat and Ion (2017) developed a methodology for fluorescently labeling 

IGF1 in order to track its transport into the growth plate using MPM. They showed that 

biologically active IGF-488 (IGF1 conjugated with Alexa Fluor 488) entered the growth 

plate and localized to chondrocytes (Serrat & Ion, 2017). In addition to the general 

comprehension of growth plate chondrocyte regulation, vascular transport studies also 

are important in the development of therapies for growth plate disorders. IGF1 is used 

as a drug to treat impaired growth in growth hormone insensitive children, i.e Laron 

Syndrome patients (Azcona et al., 1999; Backeljauw et al., 2013; Chernausek et al., 

2007; Laron & Klinger, 2000; Laron, 2001, 2015a; Laron & Kauli, 2015b; Lupu et al., 

2001; Midyett et al., 2010; Ranke, 1995a; Ranke et al., 1995b, 1999; Sims et al., 2000). 

It is therefore essential to understand how IGF1 can be modulated to improve effective 
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treatment. Modulation may include methods for increasing IGF1 activity within the 

growth plate, or better targeting its delivery to the growth plate.  

Environmental factors, such as temperature, can affect vascular systems in bone 

and affect their growth (Reviewed by Serrat (2014b)). In vivo imaging studies using 

MPM have shown that warm temperature increases molecular uptake into the growth 

plate (Serrat et al., 2009, 2010, 2014a). Temperature enhanced solute delivery is size-

dependent as the transport of smaller molecules (less than 10kDa) is increased by over 

150%, while larger molecules (40kDa and larger) are increased by less than 50% 

(Serrat et al., 2014a).  

 

1.6.3 Chondrocyte Expression of Angiogenic Factors  

Angiogenesis (development of new blood vessels) is essential for normal linear 

bone growth. During endochondral ossification, hypertrophic chondrocytes secrete 

angiogenic factors that initiate vascular invasion and recruit bone absorbing and forming 

cells to replace mineralized cartilage with bone. The key regulator of angiogenesis 

during both prenatal and postnatal growth and development is vascular endothelial 

growth factor (VEGF). Survival is dependent on functional VEGF during both embryonic 

(Carmeliet et al., 1996; Ferrara et al., 1996) and early postnatal life (Gerber et al., 

1999a). Different VEGF isoforms exist but only VEGF-A is expressed in growth plate 

cartilage and therefore is the most important for regulating longitudinal bone growth 

(Emons et al., 2010). There are also additional splice isoforms of VEGF-A that vary 

between species. Hypertrophic chondrocytes in both human and murine growth plates 

secrete VEGF (Filipowska, Tomaszewski, Niedźwiedzki Ł, Walocha, Niedźwiedzki T, 
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2017; Gerber et al., 1999b; Horner et al., 1999; Hunziker, 1994b; Maes et al., 2004; van 

der Eerden et al., 2003; Zelzer & Olsen, 2005) to promote vascular invasion from the 

metaphyseal bone throughout postnatal limb elongation. In human growth plates, the 

most common splice isoforms are VEGF121, VEGF165 and VEGF189 (Emons et al., 2010; 

Maes et al., 2004). The analogous isoforms in mice are VEGF120, VEGF164 and VEGF188 

(Maes et al., 2002, 2004). Interestingly, Maes et al. (2004) discovered that different 

processes of vascularization require specific isoforms of VEGF-A and that the combined 

action of VEGF120 and VEGF188  is required for both epiphyseal and metaphyseal 

vascularization. Other local factors expressed by hypertrophic chondrocytes that 

promote angiogenesis include FGFs (Baron et al., 1994; Hung, Yu, Lavine, & Ornitz, 

2007; Liu, Lavine, Hung, & Ornitz, 2007) and matrix metalloproteinase 9 (MMP-9) 

(Engsig et al., 2000; Gerber et al., 1999b; Maes et al., 2002; van der Eerden et al., 

2003; Vu et al., 1998). Systemic factors including estrogen (Emons et al., 2010) and 

IGF1 (Ahmed & Farquharson, 2010; Álvarez-García et al., 2010) have also been shown 

to induce vascular invasion by stimulation of VEGF in growth plate chondrocytes.  

Normal longitudinal bone growth is dependent on VEGF expression in growth 

plate chondrocytes. Inhibition of VEGF in young mice (24 days old) suppressed blood 

vessel invasion, lengthened the hypertrophic zone and reduced bone growth, all of 

which was corrected after anti-VEGF treatment ended (Gerber et al., 1999b). These 

results are clinically relevant to actively growing children that may require therapeutic 

intervention using angiogenesis inhibitors to prevent unwanted formation of new blood 

vessels such as in pediatric cancers. A monoclonal antibody against VEGF, 

bevacizumab (Avastin®; Genentech, Inc), has been used in adults as a FDA approved 
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anti-cancer agent (Ferrara, 2004) and is considered a promising treatment option for 

children (Barone & Rubin, 2013; Han et al., 2016). It is especially important to improve 

chemotherapy in pediatric patients since children are undergoing an essential stage of 

bone development requiring growth factors, including IGF1 and VEGF, for bone 

elongation. Therefore, as with IGF1 antagonists, the development of non-invasive 

methods for targeting drugs directly to a tissue is beneficial for preserving linear growth 

in children. 

 

1.7 SCOPE OF CURRENT WORK 

 The goal of the current studies in this dissertation is to build upon an established 

method of targeted limb heating as a potential non-invasive alternative to enhance bone 

lengthening. This study tests the overall hypothesis that exposure to warm 

temperature augments the actions of IGF1 in the growth plate and permanently 

increases length of the extremities. The central aims of this study are 1) to determine 

if IGF1 enhances bone elongation in heat-treated extremities and 2) determine the long-

term extent of left-right limb length asymmetries and potential vasculature modifications 

resulting from unilateral heat-treatment.  

The application of the model for targeted limb heating (unilateral heating model) 

and its functional impact is described in Chapter 2. This chapter sets the foundation for 

following experiments using the unilateral heating model as a means to test the overall 

hypothesis. As discussed above, the epiphyseal growth plate is the primary site of 

longitudinal bone growth, and regulated by IGF1 (Börjesson et al., 2010; Lui et al., 

2014; Ohlsson et al., 1993; Tryfonidou et al., 2010; van der Eerden, 2003; Wang et al., 
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2010). Chapter 3 tests the hypothesis that there will be a unilateral increase in bone 

length associated with increased chondrocyte proliferation and hypertrophic zone 

expansion in the growth plate with heat-treatment. Observation of morphological 

changes in the growth plate is a means to assess heat-enhanced bone elongation. In 

Chapter 4, a study administering a low dose of IGF1 (2.5 mg/kg, once daily) coupled 

with targeted limb heating tests the hypothesis that IGF1 administered with heat-

treatment will further enhance limb length than with heat alone. To further test the 

overall hypothesis of this thesis, Chapter 5 describes the outcome of linear growth with 

heat-treatment when IGF1 activity is blocked. The hypothesis is that with diminished 

IGF1 activity, heat-enhanced limb length is attenuated. The goal shared by both 

Chapter 4 and 5 is to demonstrate that unilateral exposure to warm temperature 

augments actions of IGF1 in the growth plate to enhance bone length.    

The long-term impact of targeted limb heating after the end of treatment is 

elucidated in Chapter 6. This study tests the hypothesis that differential limb length will 

be maintained throughout skeletal development after treatments have ended. The goal 

of this chapter was also to demonstrate that persistent limb length differences will be 

prominent in mice administered IGF1 following heat-treatment. The final chapter of this 

thesis (Chapter 7) describes a pilot study measuring limb surface temperature following 

heating and tests the hypothesis that skin temperature of heat-treated limbs will remain 

elevated for an extended time following treatment. This chapter prefaces future studies 

into possible mechanisms of the targeted heating-model as it suggests a heat-induced 

increase in blood flow that accelerates bone lengthening. Together, current studies 
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within the chapters of this thesis will use the unilateral heating model to test the overall 

hypothesis (as stated above). 
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CHAPTER II: FUNCTIONAL IMPACT OF TARGETED LIMB HEATING IN MICE 

2.1 INTRODUCTION 

Both congenital and acquired bone elongation disorders arise during early stages 

of development. Without childhood medical intervention, problems associated with 

these disorders can persist into adulthood and often are accompanied by painful health 

conditions. Limb length discrepancy (LLD) of the lower limbs is characterized by the 

asymmetric length of the lower extremities and can result from trauma or disease 

(Morscher, 1977; Shapiro, 1982; Wilson & Thompson, 1939). Untreated LLD can lead to 

chronic and painful musculoskeletal disabilities (Campbell et al., 2018; Gurney, 2002). 

While the options for intervention vary based on the severity of the discrepancy, 

research has addressed possible treatment options that typically involve more 

permanent, invasive procedures (Gurney, 2002; Hasler & Krieg, 2012; Niedzielski, 

Flont, Domżalski, Lipczyk, & Malecki, 2016; Pendleton et al., 2013; Sabharwal et al., 

2015; Stevens, 2016). Traditionally, intervention is recommended for what has been 

considered an important functional discrepancy of 2 cm or more (Gross, 1978; Gurney 

2002; Knutson, 2005). However, studies within the last two decades have shown that a 

left-right asymmetry in limb length of less than 2 cm (0.5-1 cm) is functionally significant 

(Harvey et al., 2010; Resende et al., 2016; White et al., 2004). Smaller left-right 

asymmetries involve more conservative methods for correction such as shoe lifts or 

prosthetics (Campbell et al., 2018; Golightly et al., 2007a; Hasler & Krieg, 2012; Wilson 

& Thompson, 1939), but these methods do not permanently change the length of the 

bone. It is important to explore alternative, noninvasive methods for correcting LLD, 
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including even small discrepancies, during critical stages of postnatal longitudinal bone 

growth.  

A promising noninvasive alternative involves using targeted heat (40°C) to 

increase bone length on one side of the body (Serrat et al., 2015). After two weeks of 

localized unilateral heating, Serrat et al. (2015) demonstrated increases in tibial 

elongation rate (>12%), femoral length (1.3%) and tibial length (1.5%). The ultimate goal 

of these studies is to use heat-based therapy to correct a range of bone growth 

impairments such as LLD in children. However, one fundamental question is whether 

these heat-induced limb length differences are functionally significant.    

One functional outcome of LLD includes gait disturbances (Aiona et al., 2015; 

Kaufman et al., 1996; Khamis & Carmeli, 2017; Mahmood et al., 2010; Song et al., 

1997) resulting from a pelvic tilt toward the shorter side (Kerr, Grant, & MacBain, 1943; 

Rush & Steiner, 1946). Therefore, this study aimed to determine if the small 

discrepancies after one week of daily intermittent targeted limb-heating result in 

changes in weight bearing. Longitudinal x-ray imaging and weight bearing distribution 

analyses were used to test the hypothesis that heat-induced limb length asymmetry 

has a functional impact on weight bearing in mouse hindlimbs.  

 

2.2 MATERIAL AND METHODS 

2.2.1 Animals and Experimental Design 

 All procedures were approved by the Institutional Animal Care and Use 

Committee of Marshall University (Protocol 558). Female C57BL/6 (N=12) mice were 

obtained from Hilltop Lab Animals, Inc. (Scottdale, PA, USA) at 21 days weaning age. 
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Previous studies have shown that heat-enhanced bone elongation occurs in both male 

and female mice with unilateral heat-treatment (Serrat et al., 2015). These studies 

focused only on female mice since there were no reported differences between the 

sexes and because other related studies in our laboratory required females. Mice were 

singly housed at 21°C in standard plastic caging, exposed to a 12 hour light/dark cycle 

and provided with food and water ad libitum.  

Mice post-weaning were treated with 40 minutes of daily unilateral heat (40°C) 

for 7 days beginning when mice were 3-weeks old following methods described by 

Serrat et al. (2015). This period of postnatal growth was chosen because it has 

previously been shown as a period of rapid, temperature sensitive growth (Serrat, 

2013). Relative to human development, this pre-pubertal age range is comparable to 

the period between toddler age and elementary school (as shown in Fig. 2). Mice were 

anesthetized under 1.5% isoflurane and positioned right lateral recumbent on a 40°C 

gel heating pad each day (Fig. 6). Heat-treatment was deliberately scheduled to begin 

at the same time each day at the beginning of the light cycle (~7 a.m.) when growth 

plate height and growth rate are maximal (Noonan et al., 2004; Stevenson, Hunziker, 

Hermann, & Schenk, 1990). For each day of treatment, placement of each individual 

mouse was rotated along the anesthesia manifold to account for any positioning effects 

(the end positions for example are closer to the edge of the gel heating pad and 

closer/further from the source of isoflurane). Limbs on the heat-treated side were fitted 

in custom made insulating booties to warrant uniform heat distribution. Foam separators 

were placed between the limbs as a thermal shield preventing heat transfer to the non-

heated limb (30°C). Ear and hindlimb temperatures were taken throughout heating and 
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core temperature and respirations were recorded as means of physiological monitoring. 

The procedural room temperature remained at 19°C throughout the duration of 

treatment.  
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Figure 6. Diagram of the Unilateral Heating Method 
Labeled photograph shows the unilateral heating method during the 40 minutes of 
treatment (40°C). Temperature of heating pad topped with custom gel packs (colored 
yellow) is manually controlled by a thermostat (not shown in image) and maintained at 
40°C. Mice are positioned right lateral recumbent along the anesthesia manifold and 
anesthetized with 1.5% isoflurane. Isoflurane flows through the plastic tubing controlled 
for each individual mouse. Limbs on the heat-treated side are fitted in custom made 
insulating booties. Foam separators are placed between the limbs (temporarily removed 
from position 4 to reveal the insulating booties underneath).  
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2.2.2 Tibial Radiographs 

 Radiographs were collected from mice (N=6) at the start (3 weeks of age) and 

end (4 weeks of age) of the limb-heating experiments using an IVIS Lumina XRMS live 

animal imaging system (Perkin Elmer, Waltham, MA, USA). Mice were anesthetized 

individually under 1.5% isoflurane and positioned in ventral recumbency on a heated 

platform. Each mouse was secured to the platform with adhesive tape with its hindlimbs 

extended and taped down following published methods to ensure reproducible limb 

positioning and a true projection of the tibia (Fig. 7) (Hughes & Tanner, 1970). High-

resolution x-ray images were taken following methods described in the literature 

(McManus & Grill, 2011) using modified settings (animal energy, 35 Kv 100μA, filtered 

x-rays) at 5 cm X 5 cm field of view with f/stop set at 4 and subject height at 1.5 cm. The 

mouse was then returned to its individual cage and observed during anesthesia 

recovery (1-2 minutes). Methodology adapted from Racine et al. (2018).  
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Figure 7. Radiographs Collected Before and After Unilateral Heat-Treatment  
Digital radiographs (29 X 45mm area) of the same mouse taken with an IVIS Lumina 
XRMS live animal imaging system before (3-weeks of age) and after (4-weeks of age) 
heating. Individual mouse represents one of the experimental group (N=6) used to 
measure tibial length before and after targeted limb heating. 
 

  

BEFORE AFTER 
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2.2.3 Hindlimb Weight Bearing 

 Starting and ending weight-bearing data were collected from mice (N=12) 

following x-ray procedures (~2 hours after anesthesia recovery). Weight bearing was 

measured using an incapacitance meter (Stoelting Company, Wood Dale, IL, USA), a 

device for measuring weight distribution of the two hindlimbs of a small rodent or bird. 

The incapacitance meter records hindlimb weight bearing of each side of the mouse. 

The mouse is placed in an angled plexiglass chamber positioned in a rearing posture so 

that each hindlimb is placed over a separate force plate. Prior to collection, mice were 

acclimated (2-5 minutes) to the chamber following published methods (TenBroek, 

Yunker, Nies, & Bendele, 2016). Measurements were collected during 3-second 

intervals and mean weight distribution was calculated during that period, thus 

accounting for possible shifts in weight from one side to another during testing. A total of 

3-5 recordings were taken per mouse at each time point and mean weight distribution 

from each hindlimb was used in data analyses. Methodology adapted from Racine et al. 

(2018).  

 

2.2.4 Tissue Collection 

 All experimental mice (N=12) were euthanized for tissue collection 1 day after the 

last day of heat-treatment when final x-ray and weight bearing analyses were performed 

at the 4 weeks of postnatal age endpoint. Long bones (femora) from each side were 

dissected, cleaned, dried, and scanned on a flatbed scanner. It has previously been 

found that the intact femur can be dissected and cleaned most consistently for reliable 

bone length data. Proximal tibiae from each hindlimb were dissected, cleaned and 
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bisected. One unfixed half was arranged on a glass slide and cover-slipped with 

glycerol in PBS prepared for tibial elongation rate analysis. Methodology adapted from 

Racine et al. (2018).  

 

2.2.5 Tibial Elongation Rate Analysis and Long Bone Measurements 

 A single intraperitoneal injection of oxytetracycline (OTC) (7.5 mg/kg, Norbrook 

200 mg/mL) was administered to mice at the experimental start, 8 days prior to 

euthanization and tissue collection. OTC is a calcium chelator that integrates into 

mineralizing tissue and leaves a band of fluorescence that can be visualized using a UV 

filter. Fluorescence was visualized in unfixed slab sections of tibiae using Ocular Image 

Acquision Software (version 1.05.211) under 2.5X magnification with a Leica DM2500 

epifluorescence microscope (Leica Microsystems, Wetzlar, Germany) coupled with a 

QImaging Retiga R6 6.0 megapixel monochrome camera (Surrey, BC, Canada) and 

using a UV filter. Tibial elongation rate (μM/day) was quantified by measuring the 

distance between the metaphyseal chondro-osseous junction, where calcification 

begins, and the proximal edge of the OTC band in metaphyseal bone, where the 

fluorescent label is visualized after the 8-day period of growth.  

 Images of scanned femora were calibrated in ImageJ (version 1.48, National 

Institutes of Health, USA) using a metric ruler and measurements were taken by 

drawing a line between proximal and distal landmarks on the articular ends. Femoral 

length was measured as the distance between the proximal-most point on the greater 

trochanter and the distal-most point on the medial condyle. These methods of 

quantifying tibial elongation rate and limb length have been described as reliable 
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techniques in past experiments (Lee et al., 2016; Rolian, 2008; Serrat et al., 2015; 

Wilsman et al., 2008).   

 Tibial length was measured from digital x-rays at the start and end of the study 

(Fig. 7). Radiographs were calibrated in ImageJ using a razor blade for scale. The tibia 

was selected for analysis because its landmarks could be most consistently identified in 

both left and right hindlimbs of the same animal over time. Tibial length was measured 

as the distance from the middle of the proximal articular surface to the distal-most 

projection of the medial malleolus. Methodology adapted from Racine et al. (2018).  

 

2.2.6 Statistical Analysis and Sample Size 

 Statistical analyses were performed using SPSS 25.0 software (IBM Corporation, 

Armonk, NY) with p<0.05 as accepted significance. Non-treated and heat-treated side 

comparisons for femoral length, tibial length, and tibial elongation rate were made using 

one-tailed paired t-tests. Linear regression, with asymmetry in tibial elongation rate as 

the regressor and weight bearing as the dependent variable, was used to assess the 

relationship between weight bearing of hindlimbs and tibial elongation rate. Data were 

reported as mean ± standard deviation (SD) in tabular format and as mean ± standard 

error (SE) in graphical format. Study included a total of N=12 mice to account for 

potential loss of samples and missing cases were excluded from statistical analysis on 

an analysis-by-analysis basis. Sample sizes for measurements that are documented as 

less than the size of the experimental sample set was a result of either sample loss due 

to damage during dissection, poor acclimation to the incapacitance meter, and/or 

improper limb position in the x-ray imager (Racine et al., 2018).  
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2.3 RESULTS 
 

2.3.1 Unilateral Heating Parameters 

 After 7 days of unilateral heating, mice gained an average of 5 g between the 

start and the end of the study, consistent with the weight gain of age-matched non-

treated control mice (Serrat et al., 2015). The core temperature averaged 36°C during 

heat-treatment, which is analogous to the core temperature of a healthy C57BL/6 

mouse (Gordon, 2012, 2017). While anesthetized the average surface temperature of 

non-treated hindlimbs was 30°C and the heat-treated hindlimbs were 40°C. The 

average time to anesthesia recovery after limb heating was 1 minute.  

 

2.3.2 Bone Length and Tibial Elongation Rate 

 At the beginning of the study, prior to unilateral heating, there were no significant 

left-right differences in tibial length (paired t=0.65, p=0.55) measured on x-rays (Fig. 7, 

Table 3). At the experimental end when mice were 4 weeks of age following 7 days of 

targeted limb heating, tibial length (paired t=11.5, p<0.001) measured on x-rays 

increased by 0.9% on heat-treated sides (Fig. 7, Table 3) and femoral length (paired 

t=7.7, p<0.001) measured from the digital scans increased by 1.4% on the heat-treated 

side (Fig. 8A). Tibial elongation rate measured by OTC labeling averaged 

160±14μM/day on the non-treated side and 170±13μM/day on the heat-treated side with 

an increase of 6.5% on the heat-treated side over the 8-day labeling period (Fig. 8B). 
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Figure 8. Extremities are Lengthened on the Heat-Treated Side  
(A) Error bar plot comparing femoral length of non-treated and heat-treated limbs, show 
femoral length increased on the heat-treated side by 1.4% after 7 days of heating. (B) 
Tibial elongation rate increased on the heat-treated side by 6.5%. Mean ± 1 standard 
error plotted. ***p<0.001, significance in left-right comparisons. 
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Table 3. Comparison of Hindlimb Weight Bearing and Tibial Length Measured by 
X-Rays.  

 
Values are mean (standard deviation). Sample size (N) is number of left-right pairs. 
Significantly larger on heat-treated side by one-tailed paired t-test: *p< 0.05; **p<0.01; 
***p<0.001; ns, non-significant. 
  

Parameter Non-Treated 
(30°C) 

Heat-Treated 
(40°C) 

Percent 
Increase 

N 

Tibial Length (mm) 

    measured from x-rays Before  12.93 (0.27) 12.94 (0.26)ns 0.1 6 

After 14.19 (0.14) 14.32 (0.12)*** 0.9 5 

Hindlimb Weight Bearing (g) 

    measured using incapacitance meter Before  3.36 (0.38) 3.23 (0.25)ns -2.9 7 

After 5.44 (0.58) 6.51 (0.80)*** 19.6 8 
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2.3.3 Hindlimb Weight Bearing 

 As with starting tibial length, there were no significant left-right differences in 

hindlimb weight bearing (paired t=0.94, p=0.38) at the start of the study (Table 3). 

Although not statistically significant, hindlimb bearing was about 3% greater on the 

intended non-treated side prior to unilateral heating. After 7 days of targeted limb 

heating, hindlimb weight bearing (paired t=11.9, p<0.001) was nearly 20% greater on 

the heat-treated side (Table 3). There was also a significant positive linear relationship 

between the increase in weight bearing and increase in tibial elongation rate (R2=0.82, 

p<0.01) on the heat-treated side (Fig. 9). 
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Figure 9. Increase in Weight Bearing and Tibial Elongation Rate are Correlated 
After 7 Days of Unilateral Heat-Treatment 
Scatter plot of individual mice shows a significant positive linear relationship between 
the increase in weight bearing and increase in tibial elongation rate after 7 days of 
targeted limb heating (y= 14.23 + 0.9x).  
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2.4 DISCUSSION 

 The goal of this study was to determine if the heat-induced differences in limb 

length are functionally significant as assessed by changes in hindlimb weight bearing. 

Our data support the hypothesis that heat-induced limb length asymmetry has a 

functional impact on weight bearing in mouse hindlimbs.  

After 7 days of targeted limb heating, there was a nearly 1% increase in tibial 

length on the heat-treated side determined by measurements from x-ray images of live 

anesthetized mice (Table 3). This increase in tibial length is comparable to the 1.4% 

increase in femoral length measured by postmortem femoral scans (Fig. 8). While the 

femoral length increase was slightly greater, this may be due to a larger sample size, or 

because the dried femoral landmarks were more distinct than those of the tibia in the 

radiographs. The femur was not measured in radiographs because its proximal and 

distal ends were more prone to distortion. Endpoint tibial length measured from whole 

tibia postmortem was also not accomplished since tibiae were reserved for tibial 

elongation rate analyses.  

The heat-enhanced bone length and tibial elongation rate measured after 7 days 

of heating was associated with a nearly 20% increase in hindlimb weight bearing on the 

heat-treated side (Table 3). This increase in hindlimb weight bearing positively 

correlates to tibial elongation rate indicating that gait asymmetry increases along with 

bone elongation (Fig. 9). The positive correlation between hindlimb weight bearing and 

tibial elongation rate is consistent with similar findings in human studies (Kaufman et al., 

1996; Khamis & Carmeli, 2017). One limitation to this study was the difficulty to obtain 

longitudinal weight bearing data (before and after measurements from the same mouse) 
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using the incapacitance meter since data could only be used when the mice were calm, 

immobile, and properly positioned within the plexiglass chamber. Using a dynamic gait 

analysis would be beneficial because it would enable the collection of data in 

unrestrained mice in their natural posture. An additional study to further support the 

functional significance of heat-induced limb length asymmetry may include a balance 

beam test with mice. Assessment of motor coordination and balance response to heat-

treatment would be relevant since poor balance is associated with human limb length 

discrepancies (Azizan et al., 2018; Bonnet, Cherraf, Szaffarczyk, & Rougier, 2014).  

Radiography and weight bearing analyses were useful methods for acquiring 

before and after bone length and hindlimb weight bearing measurements from the same 

mouse. Measurements collected at the start of the experiment are useful for evaluating 

the functional importance of targeted limb heating because they demonstrate the natural 

differences in both bone length and weight bearing prior to experimental manipulation. 

In humans, many individuals have a degree of normal left-right asymmetry in the 

lengths of their lower limbs (Green & Anderson, 1955; Knutson, 2005). Serrat et al. 

(2015) showed that there was no inherent side asymmetry in non-treated control 

animals. The current study further supported that left-right asymmetry is heat-induced 

and not a natural variation by comparing the before and after measurements of both 

tibial length and weight bearing.  

 

2.5 CONCLUSION 

 In conclusion, even small discrepancies in limb length (nearly 1% to 1.4%) have 

a functional impact on hindlimb weight distribution (nearly 20%) in young mice. These 
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results suggest that heat-based therapies should continue to be pursued as a non-

invasive alternative to surgical correction of limb length discrepancy. Chapter 6 tests the 

hypothesis that heat-induced limb length asymmetry is maintained to skeletal maturity 

(12 weeks of age). However, future studies will determine if left-right limb length 

asymmetry in skeletally mature mice has a functional impact on weight bearing. This 

would be translatable to the orthopedic problems described to accompany LLD and gait 

disturbances in adulthood. The functional significance of the heat-induced difference in 

limb length sets the foundation to further experimentation using the unilateral heating 

model to gain a better understanding of heat-enhanced limb growth.  

 

  



 

 62 

CHAPTER III: CHONDROCYTE PROLIFERATION AND HYPERTROPHY IN TIBIAL 
GROWTH PLATES INCREASES AFTER 7 DAYS OF TARGETED LIMB HEATING 

 

3.1 INTRODUCTION 

 During longitudinal bone growth via endochondral ossification, cartilaginous 

growth plates undergo a process of proliferation, expansion and apoptosis. Bone growth 

rate is largely dependent on the dynamics of cartilage growth. It is therefore likely that 

heat enhanced bone elongation involves modifications to growth plate cartilage. Others 

have determined the main contributing factors to longitudinal growth include: the 

amount of columnar cells in the proliferative zone of the growth plate, the rate of 

proliferation, and the size of expanded cells in the hypertrophic zone (Cooper et al., 

2013; Farnum, 2007; Hunziker et al., 1987; Hunziker & Schenk, 1989; Hunziker, 1994b; 

Kember, 1993; Rolian, 2008; Walker & Kember, 1972; Wilsman et al., 1996a, 1996b, 

2008).  

 The growth period from 3-5 weeks of age in mice post weaning is the most rapid, 

temperature sensitive period of longitudinal bone growth (Al-Hilli & Wright, 1983; 

Callewaert et al., 2010; Li et al., 2017; Serrat, King, & Lovejoy, 2008). Temperature as a 

therapeutic intervention therefore should be most effective during this stage of early 

postnatal linear growth in mice. Treatment with 40°C unilateral heat for 40 minutes/day 

over a period of 14 days in mice starting at 3 weeks of age resulted in extremity 

lengthening and enhanced tibial elongation rate in both male and female mice (Serrat et 

al., 2015). This phase of growth is an ideal period to focus therapeutics for optimum 

limb lengthening results.  
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The objective of this study was to determine how localized heating impacts bone 

growth at the site of the cartilage growth plate after one and two weeks of limb heating.  

The one week duration of heating was selected in addition to two weeks since the mice 

have the largest gain in body mass from 3-4 weeks of age as shown by growth curves 

provided by Hilltop Lab Animals, Inc (“Growth Chart C57BL/6,” 2018) and The Jackson 

Laboratory (“Body Weight Information for C57BL/6J,” 2018). This study tested the 

hypothesis that increased bone length in heat-treated limbs will be associated 

with increased chondrocyte proliferation and hypertrophic zone expansion 

compared to the non-treated contralateral limbs.  

   

3.2 MATERIAL AND METHODS 
 

3.2.1 Animals and Experimental Design 

 All procedures were approved by the Institutional Animal Care and Use 

Committee of Marshall University (Protocol 558). Female C57BL/6 (N=24) mice were 

obtained from Hilltop Lab Animals, Inc. (Scottdale, PA, USA) at 21 (N=18) or 28 (N=6) 

days weaning age. Mice were singly housed at 20°C in standard plastic caging, 

exposed to a 12 hour light/dark cycle and provided with food and water ad libitum. 

 As indicated by the unilateral heating methods schematic (Fig. 10) mice post-

weaning were treated with daily unilateral heat (40°C). Unilateral heat-treatment for 7 

days began when mice were 3 weeks (N=6) and 4 weeks old (N=6), and treatment for 

14 days started when mice were 3 weeks old (N=6). The procedural room temperature 

remained at 19°C while mice were anesthetized under 1.5% isoflurane and positioned 

right lateral recumbent on a 40°C heating pad each day for 40 minutes.  
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Mice were weighed and given subcutaneous injections of a saline solution (3:1, 

1xPBS:dH2O) at a volume of 0.01mL/g daily at the beginning of the light cycle. Mice 

were injected with saline because they serve as a control group to compare with their 

weight-matched littermates injected with drug treatments discussed in Chapters 4 and 

5. Previous studies in our laboratory have shown that there are no significant 

differences in heat-treatment outcome variables between non-injected and saline-

injected mice (unpublished data). Localized heating occurred one hour following 

injections.  

 

  



 

 65 

 

Figure 10. Unilateral Heating Schematic  
Mice were injected subcutaneously (SQ) with saline one hour prior to treatment of 40°C 
unilateral heat for 40 minutes daily for: (1) 7 days from 3-4 weeks of age, (2) 7 days 
from 4-5 weeks of age or (3) 14 days from 3-5 weeks of age. Euthanasia and tissue 
collection occurred 1 day after the last day of heat-treatment. Mouse illustration based 
on “mouse clip art black and white” from clipartstockphotos.com.  
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3.2.2 Tissue Collection 

 All experimental mice (N=24) were euthanized for tissue collection 1 day after the 

last day of heat-treatment. Mice that were subjected to unilateral heating from 3-4 

weeks of postnatal age (N=6) were euthanized at the 4 weeks of age endpoint and 

those treated from 3-5 weeks of postnatal age (N=18) were euthanized at the 5 weeks 

of age endpoint (Fig. 10). It is important to note that although tissues were collected 

from mice treated for 7 days from 4-5 weeks of age, only weight gain comparisons are 

made from these mice in this study since mice from 3-4 weeks of age grew more rapidly 

in comparison. Therefore, mice treated for 7 days from 3-4 weeks of age were 

preferable for analysis.   

Long bones (femora and humeri) from each side were dissected, cleaned, dried, 

and scanned on a flatbed scanner. Proximal tibiae from each hindlimb were dissected, 

cleaned and bisected. One unfixed half was arranged on a glass slide and cover-slipped 

with glycerol in PBS prepared for tibial elongation rate analysis. The other tibial half was 

fixed in 10% neutral buffered formalin for 24 hours, decalcified in 19% EDTA (pH 7.4) 

for 1 week, rinsed in PBS, dehydrated in a series of ethanol, cleared in xylene, and 

embedded in paraffin. Sagittal sections 6μM thick were cut with a microtome (Leica 

RM2125) and mounted on Diamond™ White Glass slides (Globe Scientific) for 

histological analysis.  

 

3.2.3 Tibial Elongation Rate Analysis and Long Bone Measurements 

 A single intraperitoneal injection of oxytetracycline (OTC) (7.5 mg/kg, Norbrook 

200 mg/mL) was administered to mice 7 days prior to euthanization and tissue 
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collection. Fluorescence was visualized in unfixed slab sections of tibiae using the UV 

filter on a fluorescence stereoscope. Measurements collected from scans of femora, 

and quantification of tibial elongation rate, were done as described in Chapter 2 

(Material and Methods 2.2.5). Images of scanned humeri were also calibrated and 

measured in ImageJ, but humeral length was measured as the distance between the 

proximal- and distal-most articular ends.   

 

3.2.4 Growth Plate Morphometry 

 Serial sections of proximal tibiae were deparaffinized in xylene, rehydrated in a 

graded series of ethanol, and incubated in Weigert’s hematoxylin for 6 minutes prior to 

Safranin-O (0.1%, Sigma)/ fast green (0.01%, Fisher) staining. Stained sections were 

dehydrated in graded series of ethanol and xylenes and cover slipped with DPX 

(Sigma). Sections were then imaged using Ocular Image Acquisition Software (version 

1.05.211) under 20X magnification with a Leica DM2500 optical microscope (Leica 

Microsystems, Wetzlar, Germany) fitted with a QImaging Retiga R6 color camera 

(QImaging Corporation).  

 The heights of individual growth plate zones (reserve, proliferative and 

hypertrophic) were measured from calibrated images in ImageJ. Measurements were 

taken at five different points across the width of the growth plate and the mean was 

calculated to represent the height for each zone. Total growth plate height was 

determined by the sum of the individual zones. Each individual zone was then 

normalized to the total growth plate height to allow comparisons among ages. It is 
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important to note that tibiae from mice (N=6) treated for two weeks (N=12) were not 

used for histological analysis due to sample loss during tissue processing. 

 

3.2.5 Immunohistochemistry 

 Serial sections of proximal tibiae from mice treated from 3-4 weeks of age were 

stained using a rabbit polyclonal antibody against PCNA (Santa Cruz, sc-7907) at a 

dilution of 1:200 (Table 4). Serial sections of proximal tibiae from mice treated 3-5 

weeks of age were stained using a monoclonal rabbit antibody against PCNA (Cell 

Signalling, #13110) at a dilution of 1:200 after the previously used antibody against 

PCNA was discontinued. In both cases, antigen unmasking was accomplished by 

incubating slides at 40°C with a pre-warmed sodium citrate buffer (pH 3.5) for 30 

minutes followed by a rinse cycle and another incubation at 40°C in a 1:100 dilution of 

chondroitinase ABC (Sigma, C2905) for 10 minutes. Endogenous peroxidase activity 

was quenched with 3% hydrogen peroxide (H2O2) at room temperature (21°C) for 10 

minutes followed by a 1-hour incubation in normal blocking serum. Incubation with the 

primary antibody occurred in the humidified chamber at room temperature overnight. 

The avidin-biotin complex (ABC) horseradish peroxidase method was then used to 

detect positive immunostaining either with the ImmunoCruz rabbit ABC staining system 

(Santa Cruz Biotechnology, sc-2018) or the VECTASTAIN Elite ABC-HRP kit (Vector, 

Rabbit IgG, PK-6101). Both methods used DAB as the chromagen (Vector, SK-4100) 

and all were counterstained with 0.1% methyl green (Sigma), dehydrated and cover 

slipped with DPX before allowing to dry overnight prior to imaging.  
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 Stained sections were imaged using the Leica DM2500 optical microscope as 

previously described above. Chondrocytes within the proliferative zone of the proximal 

tibial growth plate visualized as dark brown nuclei were manually counted as positively 

stained cells for PCNA. Chondrocytes were counted in a 130μM wide sample area (two 

per section). This size was chosen because it consistently contained an area of the 

growth plate encompassing all zones of chondrocytes to allow comparisons among 

samples. The percent of positively stained cells was quantified by dividing the number 

of counted positive cells by the total number of chondrocytes within the proliferative 

zone.  
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Table 4. List of Primary Antibodies and Secondary Antibody Kits Used in the 
Study 

 

  

Length of  
Heat-Treatment 

1° Ab / 2° Ab Detection Kit Company Catalog No. Dilution 

7 days 
(3-4 weeks of age) 

PCNA Santa Cruz sc-7907 1:200 

IGF1R Santa Cruz sc-712 1:200 

Phospho-IGF1R abcam ab39396 1:100 

ImmunoCruz ABC Santa Cruz sc-2018 as instructed 

14 days 
(3-5 weeks of age) 

PCNA Cell Signalling #13110 1:200 

IGF1R abcam ab131476 1:100 

Phospho-IGF1R abcam ab39398 1:100 

Vectastain Elite ABC Vector Laboratories PK-6101 as instructed 
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3.2.6 Statistical Analysis and Sample Size 

 Statistical analyses were performed using SPSS 25.0 software (IBM Corporation, 

Armonk, NY) with p<0.05 as accepted significance. Non-treated and heat-treated side 

comparisons for humeral length, femoral length, tibial elongation rate, growth plate zone 

heights and percent cells positive for PCNA expression were made using one-tailed 

paired t-tests. Multiple comparisons made between durations of heat-treatment were 

made using a one-way ANOVA with the Tukey post hoc test. Data were reported as 

mean ± standard deviation (SD) in tabular format and as mean ± standard error (SE) in 

graphical format.  

Sample sizes for measurements that are documented as less than the size of the 

experimental sample set was a result of either sample loss during dissection or sample 

processing. Since left-right comparisons are made, if one side is damaged during 

dissection, sample preparation, tissue processing, sectioning or staining, the entire left-

right pair is lost. Samples and missing cases were excluded from statistical analysis on 

an analysis-by-analysis basis. 

 

3.3 RESULTS 

3.3.1 Unilateral Heating Parameters 

 Mice treated for 7 days from 3-4 weeks of age gained 4.7±0.7g, and mice treated 

for 7 days from 4-5 weeks of age gained 1.6±1.0g in mass (Fig. 11). Thus, the largest 

growth spurt of experimental mice occurred from 3-4 weeks of age. This growth spurt is 

as shown by Hilltop Lab Animals, Inc (“Growth Chart C57BL/6,” 2018) and The Jackson 

Laboratory (“Body Weight Information for C57BL/6J,” 2018). Change in mass 
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significantly differed between each experimental group as determined by multiple 

comparison analysis using one-way ANOVA and Tukey post hoc test (F(2,21)=53.3, 

p<0.01). Therefore, the mice treated for 7 days from 3-4 weeks of age were selected for 

analysis instead of the slower growing mice from 4-5 weeks of age.  

Mice treated for 14 days from 3-5 weeks of age gained 6.0±0.9g in mass (Fig. 

11). This total gain is nearly equivalent to the sum of the mass gained after 7 days of 

heating from mice 3-4 weeks and 4-5 weeks of age. The core temperature averaged 

36°C during all extents of unilateral heating, consistent with the other limb heating 

studies in the previous chapter and those to follow. While anesthetized the average 

surface temperature of non-treated hindlimbs was 30°C and the heat-treated hindlimbs 

were 40°C for all durations of unilateral heating.  
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Figure 11. Majority of Body Mass Gained During 14 Days of Unilateral Heat-
Treatment Occurs During the First 7 Days   
Scatter plots show the change in mass of individual mice treated for (1) 7 days from 3-4 
weeks of age (open circles), (2) 7 days from 4-5 weeks of age (gray circles) and (3) 14 
days from 3-5 weeks of age (dark gray circles). Significance (p<0.05) in the mean 
change in mass between heat-treatment durations is denoted as: a, 3-4 weeks and 4-5 
weeks of age; b, 3-4 weeks and 3-5 weeks of age; c, 4-5 weeks and 3-5 weeks of age. 
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3.3.2 Bone Length and Tibial Elongation Rate 

 At experimental end, mice treated for 14 days from 3-5 weeks of age had an 

increase in femoral length (paired t=10.1, p<0.001) of 1.1% on the heat-treated side 

(Fig. 12A; Table 5). Humeral length did not differ (paired t=1.0, p=0.34) (Table 5). Mice 

treated for 7 days from 3-4 weeks of age, femoral length (paired t=4.4, p<0.01) 

increased by 1.7% (Fig. 12A, Table 5). Humeral length did not differ (paired t=0.74, 

p=0.50) (Table 5). Multiple comparisons by one-way ANOVA with Tukey post hoc tests 

showed no significant differences in heat-enhanced femoral length between durations of 

treatment (F(1,14)=2.7, ns, p=0.12). 

Mice treated for 14 days had a tibial elongation rate of 110±11μM/day on the 

non-treated side and 121±11μM/day on the heat-treated side with an increase on the 

heat-treated side (paired t=7.8, p<0.001) of nearly 11% (Fig. 12B; Table 5). Mice treated 

for 7 days of treatment had a tibial elongation rate of 157±11μM/day on the non-treated 

side and 169±13μM/day on the heated side with an increase on the heat-treated side 

(paired t=4.6, p<0.01) of nearly 8% (Fig. 12B; Table 5). Multiple comparison analysis by 

one-way ANOVA determined no significant differences in heat-enhanced tibial 

elongation rate between durations of treatment (F(2,17)=4.74, p<0.05).  
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Table 5. Comparison of Non-Treated and Heat-Treated Sides of Saline-Injected 
Experimental Mice Bone Parameters. 

 
Values are mean (standard deviation). Length of heat-treatment is in days (age of mice 
during treatment). Sample size (N) is number of left-right pairs. Significantly larger on 
heat-treated side by one-tailed paired t-test: **p<0.01; ***p<0.001; ns, not significant. 
Significant differences in percent increase between durations of heat-treatment by one-
way ANOVA: ns, not significant. 
 

 

 

 

 

 

Parameter Length of  
Heat-Treatment 

Non-Treated 
(30°C) 

Heat-Treated 
(40°C) 

Percent 
Increase 

N 

Humeral Length (mm) 

7 days 
(3-4 weeks) 

9.27 (0.14) 9.23 (0.20)ns -0.4 6 

14 days 
(3-5 weeks) 

10.14 (0.11) 10.15 (0.13)ns 0.1ns 9 

Femoral Length (mm) 

7 days 
(3-4 weeks) 

10.44 (0.19) 10.62 (0.26)** 1.7 6 

14 days 
(3-5 weeks) 

12.86 (0.18) 13.00 (0.17)*** 1.1ns 9 

Tibial Elongation Rate (µM/day) 
 

7 days 
(3-4 weeks) 

156.88 (11.24) 168.94 (12.85)** 7.7 5 

14 days 
(3-5 weeks) 

109.57 (11.18) 121.22 (10.70)*** 10.8ns 8 
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Figure 12. Extremities are Lengthened on the Heat-Treated Side  
(A) Error bar plots show percent change in heat-treated limb compared to non-treated 
limb. Femoral length increased on the heat-treated side by 1.7% and 1.1% for mice 
treated for 7 days (3-4 weeks of age) and 14 days (3-5 weeks of age) respectively. (B) 
Tibial elongation rate increased on the heat-treated side by 7.7% and 10.8% after 7 
days of heating and 14 days of heating respectively. Mean ± 1 standard error plotted. 
**p<0.01; ***p<0.001, significance in left-right comparisons. 
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3.3.3 Growth Plate Morphometry 

 Normalized proliferative zone (PZ) height was reduced by 9.0% on the heat-

treated sides of mice treated for 7 days from 3-4 weeks of age (paired t=10.2, p<0.001), 

and 7.3% on the heat-treated sides of mice treated for 14 days from 3-5 weeks of age 

(paired t=3.5, p<0.05) (Fig. 13A, C; Table 6). The normalized hypertrophic zone (HZ) 

height increased by 8.6% on the heat-treated sides of mice treated for 7 days (paired 

t=9.0, p<0.001) and 8.8% on the heat-treated sides of mice treated for 14 days (paired 

t=4.2, p<0.05) (Fig. 13B, C; Table 6). There were no significant changes in reserve zone 

height (zone of quiescent chondrocytes) at any duration of heat-treatment (paired t=0.0 

and 0.6; p=1.00 and 0.59 respective to as reported above). Multiple comparison 

analysis by one-way ANOVA determined no significant differences in heat-enhanced PZ 

height (F(2,14)=0.84, ns, p=0.46) and HZ height (F(2,14)=0.94, ns, p=0.42) between 

durations of heat-treatment.  
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Table 6. Comparison of Growth Plate Morphometry between Non-Treated and 
Heat-Treated Sides of Saline-Injected Experimental Mice. 

 
Values are mean (standard deviation). Length of heat-treatment is in days (age of mice 
during treatment). Sample size (N) is number of left-right pairs. Significantly larger on 
heat-treated side by one-tailed paired t-test: *p< 0.05; **p<0.01; ***p<0.001; ns, non-
significant. Significant differences in percent increase between durations of heat-
treatment by one-way ANOVA: ns, not significant. 
 
 

 

Parameter Length of  
Heat-Treatment 

Non-Treated 
(30C) 

Heat-Treated 
(40C) 

Percent 
Increase 

N 

Reserve Zone Height 
(Normalized) 

7 days 
(3-4 weeks) 

0.104 (0.015) 0.104 (0.011)ns 0.9 5 

14 days 
(3-5 weeks) 

0.118 (0.008) 0.114 (0.015)ns -0.4ns 5 

Proliferative Zone Height 
(Normalized) 

7 days 
(3-4 weeks) 

0.450 (0.023) 0.412 (0.019)** -9.0 5 

14 days 
(3-5 weeks) 

0.466 (0.039) 0.430 (0.027)* -7.3ns 5 

Hypertrophic Zone Height 
(Normalized) 

7 days 
(3-4 weeks) 

0.448 (0.026) 0.484 (0.025)** 8.6 5 

14 days 
(3-5 weeks) 

0.420 (0.032) 0.454 (0.021)* 8.8ns 5 
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Figure 13. When Normalized to Total Proximal Tibial Growth Plate Height, PZ is 
Reduced on the Heat-Treated Side and HZ is Enlarged  
(A) Error bar plot shows percent change in heat-treated limb compared to non-treated 
limb. Normalized proliferative zone (PZ) height is reduced on the heat-treated side by 
9.0% in mice treated for 7 days from 3-4 weeks of age and 7.3% in mice treated for 14 
days from 3-5 weeks of age. (B) Normalized hypertrophic zone (HZ) height is enlarged 
by 8.6% in mice treated for 7 days from 3-4 weeks of age and 8.8% in mice treated for 
14 days from 3-5 weeks of age. (C) Non-treated and heat-treated tibial growth plates 
from the same mouse treated from 3-4 weeks of age, stained with Safranin-O/fast green 
to distinguish cartilage (red) from bone (green/blue). Arrows indicate the different zones 
within the growth plate. The vertical yellow line denotes the PZ while the green line 
denotes the HZ. Mean ± 1 standard error plotted. 
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3.3.4 PCNA Expression 

 PCNA expression in chondrocytes of the PZ was increased on the heat-treated 

side of mice treated for both 7 days (3-4 weeks of age) and 14 days (3-5 weeks of age) 

(Fig. 14). Expression of PCNA increased by 8.6% on the heat-treated side of mice 

treated for 7 days from 3-4 weeks of age (paired t=2.7, p<0.05) and 16.7% on the heat-

treated side when mice were treated for 7 days from 3-5 weeks of age (paired t=2.9, 

p<0.05)(Fig. 14A). Multiple comparisons by one-way ANOVA determined no significant 

differences between durations of treatment (F(2,16)=2.16, ns, p=0.15). 

  



 

 81 

 

Figure 14. Expression of PCNA, Marker for Cell Proliferation, Increased with Heat-
Treatment in the PZ of the Proximal Tibial Growth Plate  
(A) Error bar plot shows percent of chondrocytes positive for PCNA expression on non-
treated (open circles) and heat-treated (gray circles) sides. PCNA expression increased 
by 8.6% on the heat-treated sides of mice treated for 7 days from 3-4 weeks of age and 
increased by 16.7% on the heat-treated sides of mice treated for 14 days from 3-5 
weeks of age. (B) Immunoreactivity of PCNA in non-treated and heat-treated proximal 
tibial growth plates from the same mouse treated from 3-4 weeks of age. Positive 
staining, shown by dark brown nuclei, within the PZ of the growth plate (region between 
the double arrows) increases on the heat-treated side by >10%. Mean ± 1 standard 
error plotted. *p< 0.05, significance in left-right comparisons. 
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3.4 DISCUSSION  

 
The goal of this study was to determine how unilateral heating enhances 

longitudinal bone growth at the cellular level. Femoral length (1.7%) and tibial 

elongation rate (7.7%) increased on the heat-treated sides of mice treated for 7 days 

from 3-4 weeks of age (Fig. 12, Table 5). Chondrocyte proliferation (8.6%) and size of 

the hypertrophic zone (8.6%) also increased in these mice (Fig. 13B, 12; Table 6). After 

14 days of treatment, femoral length (1.1%) and tibial elongation rate (10.8%) increased 

on the heat-treated sides of mice treated 3-5 weeks of age (Fig. 12, Table 5). 

Chondrocyte proliferation (16.7%) and size of the hypertrophic zone (8.8%) also 

increased in these mice (Fig. 13B, 12; Table 6).  

The data supported the hypothesis that there will be a unilateral increase in bone 

length associated with increased chondrocyte proliferation and hypertrophic zone 

expansion in the growth plate with heat-treatment. Humeral length did not differ 

between non-treated and heat-treated sides (Table 5), consistent with previous studies 

from our laboratory. The likely explanation is the similarity of humeral skin temperature 

to body core temperature accounting for a marginal temperature differential during 

treatment (Serrat et al., 2015). Results from Chapter 2 (mice were treated from 3-4 

weeks of age) suggest that one week of unilateral heat-treatment can effectively 

increase bone length (Fig. 8, Table 3). In this study, two separate age groups (3-4 

weeks and 4-5 weeks of age) were chosen for one week of unilateral heat-treatment.  

Mice from 3-4 weeks of age gained more mass after 7 days of treatment than the mice 

treated from 4-5 weeks (Fig. 11). The growth spurt that occurred when mice were 
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treated from 3-4 weeks of age supported the rationale for choosing that age group for 

data analysis.  

Although the impact of temperature on postnatal longitudinal bone growth has 

been documented (Serrat, 2014b), there had been a gap in our understanding of the 

kinetics of the growth plate cartilage with heating. This study demonstrated that 

longitudinal bone growth is accompanied by increased proliferation and hypertrophic 

zone expansion. Increased proliferation may be due to either an increase in 

chondrocyte number (not measured in this study), or rate of proliferation (Kember, 1993; 

Rolian, 2008). Here we measured proliferation as (PCNA) expression within the 

proliferative zone of the growth plate. PCNA immunohistochemistry was chosen over 

other methods for analyzing cell proliferation such as bromodeoxyuridine (BrdU), 

because PCNA is a less invasive technique and both methods have shown similar 

results (Wildemann et al., 2003).  

PCNA expression increased on the heat-treated sides at all durations of heat-

treatment, but trends indicate that proliferation was increased to a larger extent with two 

weeks of treatment (Fig. 14). While PCNA expression was exclusively measured in the 

proliferative zone of the growth plate, there was observed positive staining in the 

hypertrophic zone as well. Other studies have also reported positive staining of PCNA in 

the hypertrophic zone of rabbit growth plates (Enishi et al., 2014) and suggest 

hypertrophic chondrocytes (more commonly described to undergo programmed cell 

death) survive, proliferate and transdifferentiate into bone forming cells (Bahney et al., 

2014; Enishi et al., 2014; Hu et al., 2017; Zhou et al., 2014).  
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In addition to hypertrophic zone height, the height of the reserve and proliferative 

zones were also analyzed (Table 6). Reserve zone height was unaffected as expected 

since chondrocytes in this zone are quiescent and do not participate in bone growth. 

Minor differences in total height of the growth plate were seen on heat-treated sides 

(data not shown), which is similar to what was observed in a study comparing control- 

(21°C) and warm-housed (27°C) mice (Serrat, 2014b).  

Interestingly, the height of the proliferative zone decreased on heat-treated sides 

after 7 days (9.0%) and 14 days (7.3%) of unilateral heating (Fig 13A; Table 6). A cause 

for the reduced proliferative zone height after heat-treatment may be explained by the 

mechanical properties of proliferating chondrocytes. Periods of rapid bone growth are 

often accompanied by increased matrix synthesis exerting pressure on the 

chondrocytes causing them to flatten (Prein et al., 2016; Walker & Kember, 1972). 

Compressed columns of chondrocytes may also be a consequence of the expanding 

hypertrophic zone. Therefore, a shortened proliferative zone height does not necessarily 

reflect decreased proliferation, but a more compressed region of cells. However, to 

show the cells are compressed would involve comparing numbers of chondrocytes in 

the proliferative zone between growth plates of non-treated and heat-treated limbs (not 

done in this study). Another possibility for a shortened proliferative zone height may be 

due to heat-induced changes to Indian hedgehog (Ihh)/parathyroid hormone-related 

protein (PTHrP) negative feedback mechanisms that control the transition from 

proliferative, to hypertrophic chondrocytes. Downregulation of Ihh/PTHrP (maintains 

chondrocyte proliferation, and delays chondrocyte hypertrophy) would promote cell 

differentiation and leads to faster turnover to hypertrophic chondrocytes (van der 
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Eerden et al., 2003; Kronenberg, 2003; Wang et al., 2011). As an example, IGF1 has an 

important role in downregulating PTHrP to promote chondrocyte differentiation (Wang et 

al., 2011).  

Limitations of this study include the sample size for heat-treatment. While power 

analysis indicates 6 animals to be a sufficient effect size, it can be difficult to attain this 

number because of the laborious nature of the experiments. Our studies focus on left-

right differences after unilateral heat-treatment, and thus consistent collection of 

samples from both sides of the animal is necessary. If one side is damaged during 

dissection, sample preparation, tissue processing, sectioning or staining, the entire left-

right pair is lost. Left-right comparisons also limit the ability to collect the same samples 

for a variety of analyses. For example, since both left and right femora are needed to 

make left-right length comparisons, they cannot also be used for histological analysis. 

The rationale for selecting the proximal tibia for growth rate and histological analysis is 

because the proximal tibia contributes most to tibial lengthening compared to the distal 

end (as discussed in Chapter 1, Section 1.1.2) (J. Bisgard & M. Bisgard, 1935; Farnum, 

2007; Kember, 1972; Pritchett, 1992; Raimann et al., 2017; Rolian, 2008; Serrat et al., 

2007; Wilsman et al., 1996a, 1996b, 2008). The growth plate of the proximal tibia also 

has been shown to have a higher rate of cell division and hypertrophy compared to sites 

of other long bones including that of the distal femur (Rolian, 2008).  

 

3.5 CONCLUSION 

In conclusion, evidence supports the hypothesis that there will be a unilateral 

increase in bone length associated with increased chondrocyte proliferation and 
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hypertrophic zone expansion in the growth plate with heat-treatment. The hypothesis 

was supported by results from mice treated for 7 days (3-4 weeks of age) and 14 days 

(3-5 weeks of age). This study demonstrated that investigating morphological changes 

in the growth plate is a means to assess heat-enhanced bone elongation.  Future 

studies will determine how targeted limb heating affects the activity of insulin-like growth 

factor I (IGF1), the major growth factor that regulates longitudinal bone growth. 

Improving and understanding the methods for using targeted limb heating to enhance 

bone elongation is important for developing a noninvasive alternative for treatment of 

limb lengthening disorders in children. 
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CHAPTER IV: SUBCUTANEOUS INJECTIONS OF LOW DOSE IGF1 IN 
CONJUNCTION WITH TARGETED LIMB HEATING CAN AUGMENT HEAT-

ENHANCED BONE GROWTH 
 

4.1 INTRODUCTION 

The GH/IGF1 axis has been extensively studied and is often described as the 

major control system of postnatal growth and development (Le Roith et al., 2001; 

Woodall, Breier, O’Sullivan, & Gluckman, 1991) particularly of skeletal growth (Isgaard, 

Nilsson, Lindahl, Jansson, & Isaksson, 1986; Hunziker et al., 1994a; Lindsey & Mohan, 

2016; Lupu et al., 2001; Mohan et al., 2003; Oberbauer & Peng, 1995; Yakar & 

Isaksson, 2016; Wu et al., 2015). This anabolic axis involves the dependent and 

independent relationship between GH and IGF1 and their associated factors in 

regulating linear growth in both an endocrine and paracrine/autocrine manner. Severe 

growth retardation observed in double Ghr/Igf1 mutant mice supports that both GH and 

IGF1 are essential for linear growth (Lupu et al., 2001). However, IGF1 is a critical part 

of this axis because there is greater linear growth defects without the action of IGF1 

(Baker et al., 1993; Bikle et al., 2001; Liu et al., 1993; Mohan et al., 2003; Powell-

Braxton et al., 1993; Wang et al., 2006) compared to when GH action is impaired 

(Kasukawa, Baylink, Guo, & Mohan, 2003; Mohan et al., 2003). It has been reported 

that 83% of postnatal growth is dependent on the GH/IGF1 system and 69% of that 

dependent on IGF1 (Ciarmatori, Kiepe, Haarmann, Huegel, & Tönshoff, 2007). While 

studies have shown that postnatal growth can occur absent circulating levels of IGF1 

(Fan et al., 2009; Sjögren et al., 1999; Ueki et al., 2000; Yakar et al., 1999, 2002; Yakar 

& Isaksson, 2016), disruptions in local IGF1 impair longitudinal bone growth  (Govoni et 
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al., 2007a,b; Sheng, Zhou, Bonewald, Baylink, & Lau, 2013; Wang et al., 2011; Yakar, 

Courthland, & Clemmons, 2010; Yakar & Isaksson, 2016).  

Administration of GH and IGF1 has been used for treatment of stunted linear 

growth. GH therapy is more commonly used in clinical settings to treat short stature 

(Ohlsson et al., 1998; Pfäffle, 2015; Wit & Oostdijk, 2015) such as those resulting from 

GH deficiency or other chromosomal and genetic syndromes (Harada et al., 2017; Moix 

et al., 2018; Noonan & Kappelgaard, 2015; Pfäffle, 2015; Ranke, 1995a, Tritos & 

Klibanski, 2016; Wit & Oostdijk, 2015). IGF1 is not as commonly used because of the 

adverse effects associated with increased serum IGF1 (such as hypoglycemia) during 

treatment (Clemmons, 2004; Guevara-Aguirre et al., 1997; Laron & Klinger, 2000; 

Lindsey & Mohan, 2016; Ross et al., 2015). However, long-term treatment with IGF1 

has been shown to effectively reverse skeletal growth discrepancies (Azcona et al., 

1999; Backeljauw et al., 2013; Chernausek et al., 2007; Laron & Klinger, 2000; Laron, 

2001; Laron & Kauli, 2015b; Lupu et al., 2001; Midyett et al., 2010; Ranke et al., 1995b, 

1999; Sims et al., 2000).  

It is clear that IGF1 has an essential role in longitudinal growth. Without the 

action of IGF1, if survived past birth, there is a reported 70% reduction in body size and 

40% reduction in linear bone growth (Liu et al., 1993; Mohan et al., 2003; Powell-

Braxton et al., 1993; J. Wang et al., 1999; Y. Wang et al., 2006; Yakar & Isaksson, 

2016). Studies have used IGF1 to enhance linear growth in various animal models. It 

has been shown that IGF1 administered through local administration directly into the 

growth plate has significantly increased bone length (Isgaard et al., 1986). Since 

targeted heat can increase vascular supply to the growth plate (Chapter 1, Section 
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1.6.2), the goal of this study was to use unilateral limb heating as a method to target a 

low dose of IGF1 administered subcutaneously once daily to the growth plate on the 

heat-treated side. This study tests the hypothesis that IGF1 administration with 

heat-treatment will further enhance limb length than with heat alone. Published 

studies are still ongoing to optimize IGF1 therapy in children without complications 

(Hansen-Pupp et al., 2017). Using limb heating to target once daily, low doses of IGF1 

only to sites of longitudinal bone growth would improve current IGF-based therapies for 

children by enhancing limb elongation without the negative side effects.   

 

4.2 MATERIAL AND METHODS 

4.2.1 Animals and Experimental Design 

 All procedures were approved by the Institutional Animal Care and Use 

Committee of Marshall University (Protocol 558). Female C57BL/6 (N=32) mice were 

obtained from Hilltop Lab Animals, Inc. (Scottdale, PA, USA) at 21 (N=12) and 28 

(N=24) days weaning age. Mice were singly housed at 21°C in standard plastic caging, 

exposed to a 12 hour light/dark cycle and provided with food and water ad libitum. 

 As described in the previous chapters and as indicated by the unilateral heating 

methods schematic (Fig. 15), mice were subjected to same procedural conditions. Mice 

were treated for 7 days from 3-4 weeks of age and for 14 days 3-5 weeks of age. Mice 

were weighed each day and given subcutaneous injections of IGF1 (2.5mg/kg; 

Peptrotech). IGF1 injections were administered daily at the start of the light cycle one 

hour prior to heat-treatment for 7 days (N=6) and 14 days (N=12). IGF1 has been 

administered subcutaneously anywhere from once daily, to continuously, in other animal 
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studies at a dosage range of 2-6 mg/kg (Ding, List, Bower, & Kopchick, 2011; Lynch, 

Cuffe, Plant, & Gregorevic, 2001; Sims et al., 2000; Woodall et al., 1991). Therefore, the 

selected dose of 2.5 mg/kg administered once daily is considered low in comparison. 

While IGF1-injected twice a day may be more effective at promoting overall growth, this 

study aimed to target a small dose of IGF1 unilaterally using warm temperature without 

subsequent systemic effects. The timing of injections was also deliberate because peak 

IGF1 in circulation is approximately one hour after subcutaneous injections (Woodall et 

al., 1991) and study intended to time the peak of IGF1 with heat-treatment. Left-right 

comparisons in IGF1-injected mice were made to the saline-injected control mice 

treated for 7 days from 3-4 weeks of age (N=6) and 14 days from 3-5 weeks of age 

(N=12) as discussed in Chapter 3.  
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Figure 15. Unilateral Heating Schematic  
Mice were injected subcutaneously (SQ) with IGF1 (2.5mg/kg) one hour prior to 
treatment of 40°C unilateral heat for 40 minutes daily for 7 days from 3-4 weeks of age 
or 14 days from 3-5 weeks of age. Euthanasia and tissue collection occurred 1 day after 
the last day of heat-treatment. Mouse illustration based on “mouse clip art black and 
white” from clipartstockphotos.com. 
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4.2.2 Tissue Collection and Sample Analysis 

 Long bones (femora and humeri) were collected and measured as described in 

Chapter 3 (Sections 3.2.2 and 3.2.3). Proximal tibial halves from each hindlimb were 

collected (Section 3.2.2) for tibial elongation rate analysis (Section 3.2.3) and growth 

plate morphometry (Sections 3.2.4) following methods described in Chapter 3.  

 

4.2.3 Immunohistochemistry 

 Serial sections of proximal tibiae from mice subjected to 7 days (N=12, 6 per 

saline control and IGF1) and 14 days (N=12, 6 per saline control and IGF1) of unilateral 

heating were stained using rabbit polyclonal antibodies against PCNA following 

methods as described in Chapter 3 (Section 3.2.5). Rabbit polyclonal antibodies against 

IGF1R and phospho-IGF1R (phospho-Y1161) were also used to assess IGF1 activity in 

the PZ of growth plates following the same methods. Analysis focused on the 

proliferative zone (PZ) specifically as the site of actively proliferating chondrocytes to 

determine the heat-enhanced effect in conjunction with IGF1 administration.  

 

4.2.4 Statistical Analysis and Sample Size 

 Statistical analyses were performed using SPSS 25.0 software (IBM 

Corporation, Armonk, NY) with p<0.05 as accepted significance. Non-treated and heat-

treated side comparisons for humeral length, femoral length, tibial elongation rate, 

growth plate zone heights, and percent cells positive for protein expression were made 

using one-tailed paired t-tests. Multiple comparisons made between saline controls and 
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IGF1-injected mice were made using a one-way ANOVA. Data were reported as mean 

± standard deviation (SD) in tabular format and as mean ± standard error (SE) in 

graphical format.  

Sample sizes for measurements that are documented as less than the size of the 

experimental sample set was a result of either sample loss during dissection or sample 

processing. Since left-right comparisons are made, if one side is damaged during 

dissection, sample preparation, tissue processing, sectioning or staining, the entire left-

right pair is lost. Samples and missing cases were excluded from statistical analysis on 

an analysis-by-analysis basis. 

 

4.3 RESULTS 

4.3.1 Unilateral Heating Parameters 

 IGF1-injected mice treated for 7 days from 3-4 weeks of age gained 5.1±0.5g 

while saline control mice (established in Chapter 3) gained 4.7±0.7g (Fig. 16A). IGF1-

injected mice treated for 14 days from 3-5 weeks of age gained 6.4±0.8g while saline 

control mice (also established in Chapter 3) gained 6.0±0.9g (Fig. 16B). There was no 

significant difference in the amount of mass gained between saline and IGF1-injected 

mice after 7 days (F(1,11)=1.4, ns, p=0.27) or 14 days (F(1,23)=0.9, ns, p=0.35) of limb 

heating. The core temperature averaged 36°C during all extents of unilateral heating. 

During the duration mice were anesthetized, the average surface temperature of non-

treated hindlimbs was 30°C and the heat-treated hindlimbs were 40°C, consistent with 

parameters during the daily limb heating reported in previous chapters. At the end of 

each daily heat-treatment (40mins), the average time for saline control mice to recover 
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from anesthesia after 7 days and 14 days of heating was 1.6±0.33mins and 

1.5±0.37mins respectively. The average time for IGF1-injected mice to recover from 

anesthesia was 3.3±0.79mins and 3.0±0.80mins, which was significantly longer than the 

saline controls after both 7 days (F(1,11)=22.35, p<0.001) and 14 days (F(1,23)=31.5, 

p<0.001) of unilateral heating. 
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Figure 16. Overall Change in Mass was not Impacted by IGF1 Injections at Either 
Length of Heat-Treatment 
(A) Scatter plots show the change in mass of individual mice after 7 days of heat-
treatment from 3-4 weeks of age. Saline control mice (open circles) gained an average 
of 4.7g and IGF1-injected mice (gray circles) gained an average of 5.1g. (B) Scatter 
plots show the change in mass of individual mice after 14 days of heat-treatment from 
3-5 weeks of age. Saline control mice gained 6.0g and IGF1-injected mice gained 6.4g. 
Significance (p<0.05) is the mean change in mass between injections. One-way ANOVA 
indicated no significant difference in overall gain in mass between saline control and 
IGF1-injected mice with either length of heat-treatment.  
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4.3.2 Length of Long Bones and Tibial Elongation Rate 

 Femoral length of IGF1-injected mice treated for 7 days increased on the heat-

treated sides by 1.7% (paired t=3.8, p<0.05) (Fig. 17A(a), Table 7). Femoral length of 

IGF1-injected mice treated for 14 days increased by 1.9% (paired t=7.6, p<0.001) on 

the heat-treated sides (Fig. 17B(a); Table 7). Compared to saline controls (Chapter 3; 

Fig. 12A, Table 5), the heat-induced increase in femoral length of IGF1-injected mice 

(1.7%) treated for 7 days was equivalent to that of the controls. However, femoral length 

of IGF1-injected mice (1.9%) treated for 14 days was significantly greater (F(1,20)=6.3, 

p<0.05) than that of the saline controls (1.1%) as determined by one-way ANOVA.  

Humeral length did not differ between non-treated and heat-treated sides in 

saline control mice as shown in Chapter 3 (Table 5). Humeral length of IGF1-injected 

mice treated for 7 days also did not differ (paired t=1.4, ns, p=0.23). However, there was 

a slight 0.7% increase in humeral length on the heat-treated side of IGF1-injected mice 

treated for 14 days (paired t=3.6, p<0.05), which was significantly greater (F(1,20)=6.5, 

p<0.05) than saline mice as determined by one-way ANOVA. 

Tibial elongation rate of IGF1-injected mice treated for 7 days increased on the 

heat-treated side by 7.3% (paired t=2.9, p<0.05) (Fig. 17A(b), Table 7). Tibial elongation 

rate of IGF1-injected mice treated for 14 days increased by 18.7% (paired t=7.2, 

p<0.001) on the heat-treated side (Fig. 17B(b), Table 7). Compared to saline controls 

(Chapter 3; Fig. 12B, Table 5), the heat-induced increase in tibial elongation rate of 

IGF1-injected mice (7.3%) treated for 7 days was not greater than the controls (7.7%) 

as determined by one-way ANOVA (F(1,9)=0.02, ns, p=0.89). However, tibial elongation 

rate of IGF1-injected mice (18.7%) treated for 14 days was significantly greater 
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(F(1,18)=5.3, p<0.05) than that of the saline controls (10.8%) as determined by one-way 

ANOVA. Together, left-right comparisons of femoral and humeral length, as well as 

tibial elongation rate, indicate that injections of low dose IGF1 further enhances heat 

induced limb elongation only after mice are treated for 14 days from 3-5 weeks of age.  
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Table 7. Comparison of Non-Treated and Heat-Treated Sides of IGF1-Injected 
Experimental Mice Bone Parameters.  

 
Values are mean (standard deviation). Sample size (N) is number of left-right pairs. 
Significantly larger on heat-treated side by one-tailed paired t-test: *p< 0.05; ***p<0.001; 
ns, non-significant. 
 
 

Parameter Length of  
Heat-Treatment 

Non-Treated 
(30C) 

Heat-Treated 
(40C) 

Percent 
Increase 

N 

Humeral Length (mm) 

7 days 
(3-4 weeks) 

9.31 (0.23) 9.27 (0.19)ns -0.4 6 

14 days 
(3-5 weeks) 

10.29 (0.15) 10.36 (0.16)*** 0.7 12 

Femoral Length (mm) 

7 days 
(3-4 weeks) 

10.51 (0.20) 10.68 (0.28)* 1.7 6 

14 days 
(3-5 weeks) 

12.86 (0.18) 13.10 (0.22)*** 1.9 12 

Tibial Elongation Rate (µM/day) 
 

7 days 
(3-4 weeks) 

157.51 (6.16) 168.85 (8.93)* 7.3 5 

14 days 
(3-5 weeks) 

103.38 (9.43) 122.32 (11.61)*** 18.7 11 
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Figure 17. Extremities are Lengthened on the Heat-Treated Sides when Injected 
with Saline and IGF1 
(A) Error bar plots compare saline- and IGF1-injected mice treated for 7 days (3-4 
weeks of age) and shows percent change in heat-treated limb compared to non-treated 
limb. (a) Femoral length increased by 1.7% on the heat-treated sides of both saline and 
IGF1-injected mice (b) Tibial elongation rate increased by 7.7% and 7.3% on the heat-
treated sides of saline and IGF1-injected mice. (B) Error bar plots compare saline- and 
IGF1-injected mice treated for 14 days (3-5 weeks of age). (a) Femoral length increased 
by 1.1% and 1.9% on the heat-treated side of saline and IGF1-injected mice. (b) Tibial 
elongation rate increased by 10.8% and 18.7% on the heat-treated side of saline and 
IGF1-injected mice. Mean ± 1 standard error plotted. *p< 0.05; **p<0.01; ***p<0.001, 
significance in left-right comparisons; #p<0.05 comparing % change in saline control and 
IGF1-injected mice. 
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4.3.3 Growth Plate Morphometry 

 The height of the PZ normalized to total growth plate height was significantly 

reduced by 9.0% on the heat-treated sides of saline control mice (Chapter 3; Fig. 13A, 

C; Table 6) and by 5.9% on the heat-treated sides of IGF1-injected mice (paired t=2.6, 

ns, p=0.059) treated for 7 days (Fig. 18A(a), Table 8). The height of the PZ was reduced 

by 7.3% on the heat-treated sides of saline mice (Chapter 3; Fig. 13A, C; Table 6) and 

by 7.8% on heat-treated sides of IGF1-injected mice (paired t=3.7, p<0.05) treated for 

14 days (Fig. 18B(a), Table 8).  

The height of the hypertrophic zone (HZ) normalized to the total growth plate 

height was significantly enlarged by 8.6% on the heat-treated sides of saline control 

mice (Chapter 3; Fig. 13B, C; Table 6) and by 5.3% on the heat-treated sides of IGF1-

injected mice (paired t=5.1, p<0.01) treated for 7 days (Fig. 18A(b), Table 8). The 

expansion in the HZ height observed in IGF1-injected mice (5.3%) was significantly less 

than that of the controls (8.6%) as determined by one-way ANOVA (F(1,9)=7.8, p<0.05). 

The height of the HZ expanded by 8.8% on the heat-treated sides of saline mice 

(Chapter 3; Fig. 13B, C; Table 6) and by 9.4% of IGF1-injected mice (paired t=4.4, 

p<0.05) treated for 14 days (Fig. 18B(b), Table 8). Overall, PZ and HZ height was 

comparable between saline and IGF1-injected mice. However, the left-right differences 

in zonal height were greater in saline mice treated for 7 days. 
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Table 8. Comparison of Growth Plate Morphometry Between Non-Treated and 
Heat-Treated Sides of IGF1-Injected Experimental Mice. 

 
Values are mean (standard deviation). Sample size (N) is number of left-right pairs. 
Significantly larger on heat-treated side by one-tailed paired t-test: *p< 0.05; **p<0.01; 
***p<0.001; ns, non-significant. 
 

Parameter Length of  
Heat-Treatment 

Non-Treated 
(30C) 

Heat-Treated 
(40C) 

Percent 
Increase 

N 

Resting Zone Height 
(Normalized) 

7 days 
(3-4 weeks) 

0.104 (0.019) 0.106 (0.011)ns 5.7 5 

14 days 
(3-5 weeks) 

0.138 (0.011) 0.134 (0.011)ns -1.0 5 

Proliferative Zone Height 
(Normalized) 

7 days 
(3-4 weeks) 

0.450 (0.029) 0.422 (0.028)ns -5.9 5 

14 days 
(3-5 weeks) 

0.460 (0.010) 0.426 (0.023)* -7.8 5 

Hypertrophic Zone Height 
(Normalized) 

 

7 days 
(3-4 weeks) 

0.448 (0.023) 0.474 (0.031)** 5.3 5 

14 days 
(3-5 weeks) 

0.404 (0.022) 0.442 (0.031)* 9.4 5 
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Figure 18. Proximal Tibial Growth Plate Morphometry After Administration of Low 
Dose IGF1 with Targeted Heating  
(A) Error bar plots compare growth plate (GP) morphometry of mice treated for 7 days 
and shows percent change in heat-treated limb compared to non-treated limb. (a) 
Proliferative zone (PZ) height decreased by 9.0% and 5.9% on heat-treated sides of 
saline control and IGF1-injected mice respectively. (b) Hypertrophic zone (HZ) height 
increased by 8.6% and 5.3% in saline and IGF1-injected mice. (B) Error bar plots 
compare GP morphometry of mice after 14 days of treatment. (a) PZ height decreased 
by 7.3% and 7.8% in saline and IGF1-injected mice (b) HZ height increased by 8.8% 
and 9.4% in saline and IGF1-injected mice. Mean ± 1 standard error plotted. *p< 0.05; 
**p<0.01; ***p<0.001, significance in left-right comparisons; #p<0.05 comparing % 
change in IGF1-injected mice with saline controls.  
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4.3.4 PCNA Expression 

In saline control mice treated for 7 days, the percent of chondrocytes positive for 

PCNA in the PZ was 85.1± 6.9% on the non-treated sides, and 91.9±2.0% on the heat-

treated sides for an 8.6% increase in expression (Chapter 3; Fig. 14). Chondrocytes in 

the PZ of IGF1-injected mice were positive for a lesser 79.3±4.6% on non-treated sides 

and 83.3±4.4% on the heat-treated sides for a 5.0% increase in PCNA expression 

(paired t=3.5, p<0.05) on the heat-treated side (Fig. 19A). In saline mice treated for 14 

days, chondrocytes were positive for PCNA in 77.6±11.5% and 89.3±4.5% on the non-

treated and heat-treated sides respectively for an increase of 16.7% (Chapter 3; Fig. 

14). Chondrocytes in the PZ of IGF1-injected mice were positive for 84.9±4.5% and 

93.2±3.9% PCNA on the non-treated and heat-treated sides respectively for an increase 

of 9.9% (paired t=5.1, p<0.01) on the heat-treated side (Fig. 19B). There were no 

significant differences in the heat-induced increase in PCNA expression between saline 

and IGF1-injected mice treated for 7 day days (F(1,10)=0.7, ns, p=0.43) and 14 days 

(F(1,9)=1.0, ns, p=0.34).  
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Figure 19. Expression of PCNA in the PZ of Proximal Tibial Growth Plates After 
Administration of Low Dose IGF1 with Targeted Heating  
(A) PCNA expression in mice treated for 7 days (a) Error bar plots show percent of 
chondrocytes positive for PCNA expression on non-treated (open circles) and heat-
treated (gray circles) sides. PCNA expression increased by 8.6% and 5.0% on the heat-
treated sides of saline and IGF1-injected mice respectively. (b) Left-right comparison of 
proximal tibial growth plates from an IGF1-injected mouse immunostained for PCNA. A 
larger quantity of PCNA staining was counted on heat-treated sides. Positive staining is 
shown by dark brown nuclei within the PZ of the growth plate (region between the 
double arrows). (B) PCNA expression in mice treated for 14 days (a) Error bar plot 
shows a 16.7% and 9.9% increase in saline and IGF1-injected mice. (b) Left-right 
comparison of proximal tibial growth plate from an IGF1-injected mouse immunostained 
for PCNA. There was more PCNA staining on heat-treated sides.  
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4.3.5 IGF1R and pIGF1R Expression in Proliferating Chondrocytes 

IGF1R expression in the PZ of mice treated for 7 days increased by 14.5% 

(paired t=3.2, p<0.05) and 7.7% (paired t=2.39, ns, p=0.076) on the heat-treated sides 

of saline control and IGF1-injected mice respectively (Fig. 20A(a), Table 9). This 

increase of IGF1R expression on the heat-treated sides of IGF1-injected mice was 2-

fold less compared to the saline mice (F(2,15)=26.6, p<0.001). Activation of the IGF1R, 

assessed by pIGF1R expression in the PZ, increased by 7.7% (paired t=5.3, p<0.01) 

and 28.2% (paired t=3.5, p<0.05) on the heat-treated sides of saline and IGF1-injected 

mice respectively (Fig. 20A(b), Table 9). This increase of pIGF1R expression on the 

heat-treated sides of IGF1-injected mice was over 3-fold more compared to the saline 

(F(2,15)=16.8, p<0.001). Therefore, even though IGF1-injected mice had less of a heat-

induced increase in IGF1R expression, there was a greater increase in activation of 

these receptors compared to saline controls.  

IGF1R expression in the PZ of mice treated for 14 days increased by 37.6% 

(paired t=6.1, p<0.01) and 30.8% (paired t=3.5, p<0.05) on the heat-treated side of 

saline and IGF1-injected mice respectively (Fig. 20B(a), Table 9). Differences were 

comparable between saline and IGF1-injected mice (F(1,7)=0.16, ns, p=0.70). 

Expression of pIGF1R increased by 23.9% (paired t=5.2, p<0.01) and 25.4% (paired t= 

6.3, p<0.01) on the heat-treated sides of saline and IGF1-injected mice respectively 

(Fig. 20B(b), Table 9). Differences were comparable between the injection groups 

(F(1,7)=0.03, ns, p=0.86).  
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Table 9. Comparison of Non-Treated and Heat-Treated Expression of Markers for 
IGF1 Activation in Proliferative Zone of Tibial Growth Plates in Saline and IGF1-
Injected Mice. 

 
Values are mean (standard deviation). Sample size (N) is number of left-right pairs. 
Significantly larger on heat-treated side by one-tailed paired t-test: *p< 0.05; **p<0.01; 
ns, non-significant. Significant differences in percent increase between saline controls 
and IGF1-injected mice by one-way ANOVA: #p<0.05; ns, non-significant. 
 

Length of  
Heat-Treatment 

Antibody in  
Proliferative Zone 

Treatment Non-Treated 
(30C) 

Heat-Treated 
(40C) 

Percent 
Increase 

N 

7 days 
(3-4 weeks) 

IGF1R expression 

Saline 69.68 (6.36) 79.52 (7.61)* 14.5 5 

IGF1 72.10 (11.87) 75.70 (11.63)ns 7.7# 5 

pIGF1R expression 

Saline 84.85 (10.36) 90.97 (7.90)** 7.7 6 

IGF1 62.44 (8.74) 78.72 (4.09)* 28.2# 5 

14 days 
(3-5 weeks) 

IGF1R expression 

Saline 37.98 (11.24) 51.03 (11.44)** 37.6 4 

IGF1 47.40 (22.22) 57.93 (17.43)* 30.8ns 4 

pIGF1R expression 

Saline 59.28 (9.40) 72.48 (4.84)* 23.9 4 

IGF1 47.70 (4.13) 59.85 (6.94)** 25.4ns 4 
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Figure 20. Heat-Induced Effect on IGF1 Activity in the PZ of the Tibial Growth 
Plate with IGF1 Administration  
(A) Expression in saline control and IGF1-injected mice with 7 days of unilateral heating. 
(a) Error bar plot shows percent change in heat-treated limb compared to non-treated 
limb. IGF1R expression increased by 14.5% and 7.7% in the PZ on the heat-treated 
side of saline and IGF1-injected mice. (b) pIGF1R expression in the PZ increased by 
7.7% and 28.2% of saline and IGF1-injected mice. (B) Expression in saline and IGF1-
injected mice with 14 days of heating. (a) IGF1R expression in the PZ increased by 
37.6% and 30.5% in saline and IGF1-injected mice. (b) pIGF1R expression in the PZ 
increased by 23.9% and 25.4% in saline and IGF1-injected mice. Mean ± 1 standard 
error plotted. *p< 0.05; **p<0.01; ns, significance in left-right comparisons; #p<0.05 
comparing % change in IGF1-injected mice with saline controls. 
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4.4 DISCUSSION 

Previous chapters have established that in a group of saline control mice, 

targeted limb heating can enhance longitudinal growth on the heat-treated sides after 

both 7 days (shown in Chapters 2 and 3) and 14 days of heating (Chapter 3). Heat-

enhanced limb elongation was shown with unilateral increases in femoral length, tibial 

elongation rate, chondrocyte proliferation and hypertrophic expansion in proximal tibial 

growth plates. The goal of this study was to determine if targeted limb heating in 

conjunction with the administration of a low dose of the growth-promoting drug IGF1 

would further enhance bone elongation without impacting overall physiology. Results of 

the current study show that there was an additional heat-enhanced increase in femoral 

length and tibial elongation rate in IGF1-injected mice. There was also a greater rate of 

proliferation and hypertrophic zone expansion on heat-treated sides compared to saline 

controls. Data supported the hypothesis that IGF1 administration with heat-treatment 

will further enhance limb length than with heat alone.  

Both saline and IGF1-injected mice had similar recorded core temperatures and 

surface limb temperatures. While mice have been shown to demonstrate weight gain 

with increased serum levels of IGF1 (D’Ercole,1993; Mathews et al., 1988; Woodall et 

al., 1991; Yakar & Isaksson, 2016), overall gain in mass did not differ between saline 

and IGF1-injected mice (Fig. 16). Livers collected and weighed from both saline and 

IGF1-injected mice (data not shown) also were comparable between saline and IGF1-

injected mice treated for 7 days (p=0.49) and 14 days (p=0.68). Similar liver mass 

between saline and IGF1-injected mice was not unexpected, as the stimulatory effect of 

GH on the liver has been shown to be independent of IGF1 (Blutke et al., 2014). 
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Comparable weights between treatment groups further supported the rationale to use a 

low dose of IGF1.  

An interesting observation during the unilateral heating regimen was the 

differential anesthesia recovery time between the saline controls and IGF1 mice. The 

mice injected with IGF1 took on average twice as long to wake up from the anesthesia 

than the saline controls which was observed throughout the duration of both the 7 days 

and 14 days of heating. Anesthesia recovery is a concern for patients with pituitary 

disease (Menon, Murphy, & Lindley, 2011) including those with acromegaly (excess 

GH, normal to high IGF1). Acromegaly presents a variety of challenges for general 

anesthesia including prolonged awakening associated with obstructed airways (Chung 

& Mokhlesi, 2014) common in these patients (Menon et al., 2011). While recovery time 

with IGF1 has not been previously reported in the literature, other drugs including 

caffeine (Fong et al., 2017; Wang, Fong, Mason, Fox, & Xie, 2014) have been shown to 

accelerate recovery from anesthesia by facilitating neurotransmitter release. Since IGF1 

has been shown to cross the blood-brain barrier (Pan & Kastin, 2000; Yan et al., 2011), 

it is likely prolonged anesthesia recovery as an outcome of IGF1 administration could be 

explained by IGF1 regulation in the brain. Since other tissues, including the brain, were 

not examined in this study the cause of extended recover time with IGF1 remains 

unknown. However, this finding aided to support if IGF1 administration was successful 

throughout the duration of heat-treatment.  

While not intended to be an indicator of effective IGF1 treatment, comparing 

wake up times was a useful method throughout experimentation. These observations 

were not supported by other means of confirming successful IGF1 administration, such 
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as measuring levels of IGF1 or glucose in the blood following injections. Assays for 

serum IGF1 require a considerable volume of blood that could not be collected daily 

since mice are very small in size and to collect a sufficient volume of blood would 

require animal sacrifice. A smaller volume of blood is needed to measure serum 

glucose and lower levels of glucose would be indicative of increased serum IGF1 

(Clemmons, 2004). However, to obtain even a small amount of blood from experimental 

mice would cause a degree of stress to the animals, potentially interfering with the 

results of heat-treatment. Since low levels of glucose, or hypoglycemia, is associated 

with increased levels of IGF1, mice were monitored during the first couple days of 

treatment. While uncommon, there were cases when mice required glucose injections 

(15% glucose solution, 0.01mL per gram body weight) when demonstrating adverse 

signs of IGF1 administration following heat-treatment (nonappearance of anesthesia 

recovery and labored breathing). Hypoglycemia was another physiological response 

indicative to increased levels of IGF1. 

Outcome variables showed that with 7 days of unilateral heating, there was 

almost a 2% increase in femoral length in both saline control and IGF1-injected mice 

(Fig. 17A(a), Table 7). After 14 days of heating, femoral length increased by just over 

1% on the heat-treated sides of saline controls but femora were almost 2% longer on 

the heat-treated sides of IGF1-injected mice (Fig. 17B(a), Table 7). Tibial elongation 

rate after 7 days of heating was also comparable between saline control and IGF1 mice 

with a heat-induced increase of over 7% (Fig. 17A(b), Table 7). After 14 days of heating 

the increase in tibial elongation rate on the heat-treated side was almost 19% with IGF1 

administration, 2.5-fold greater than the over 7% increase observed in saline controls 
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(Fig. 17B(b), Table 7). While both femoral length and tibial elongation rate significantly 

increased with targeted limb heating, further enhancement with IGF1 was only apparent 

with 14 days of heating.  

In Chapter 3, longitudinal growth was assessed on the cellular level by amount of 

proliferation and hypertrophy in proximal tibial growth plates. Increased femoral length 

and tibial elongation rate were accompanied by increased PCNA expression in 

proliferating chondrocytes and expanded heights of the hypertrophic zone. In this study, 

when mice were administered IGF1, there was a significant 5.0% and 9.9% increase in 

PCNA expression on the heat-treated sides after 7 days and 14 days of heating 

respectively (Fig. 19). These increased levels of expression were not significantly 

greater than that of saline controls. However, trends in overall PCNA expression 

suggest an increased rate in proliferation when IGF1-injected mice were treated for 14 

days. Longitudinal bone growth gradually slows with age and can be associated with a 

decline in proliferation and hypertrophic zone height (Forcinito et al., 2011; Lui et al., 

2011; Nilsson & Baron, 2004; Nilsson et al. 2014; Walker & Kember, 1972). While 

comparisons were not made between treatment durations in this study, marginal 

differences can be seen. Overall PCNA expression in the PZ decreased in saline mice 

treated for 14 days from 3-5 weeks of age (older) compared to expression in mice 

treated for 7 days from 3-4 weeks of age (younger) (Fig. 19). However, overall PCNA 

expression increased in IGF1-injected mice treated for 14 days compared to 7 days 

which indicates that although the left-right comparisons in PCNA expression levels were 

similar between saline and IGF1-injected mice at both durations, there was a higher rate 

of proliferation when IGF1-injected mice were treated for 14 days. However, since 
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observations are made from trends in overall PCNA expression (not between non-

treated and heat-treated sides), further analysis is required to determine if the increased 

rates in proliferation in IGF1-injected mice are results of targeted limb heating.  

Hypertrophic zone expansion was significantly increased by 5% and 9% on the 

heat-treated sides of IGF1-injected mice after 7 days and 14 days of unilateral heat-

treatment respectively (Fig. 18A(b), B(b); Table 8). Again, while there was still a heat-

induced increase in expansion, the increase was not beyond that of saline controls. The 

increase in hypertrophic height in IGF1-injected mice was a significant 3% less than the 

saline mice after 7 days of heating, and comparable after 14 days of heating. Similar to 

the trends observed when comparing heat-treatment duration of expression of PCNA, 

IGF1-injected mice after 14 days of treatment displayed a greater difference in height of 

the hypertrophic zone compared to those treated for 7 days (Fig. 18).  

Multiple explanations are possible to rationalize why extremity lengthening is 

similar between saline control and IGF1-injected mice with 7 days of heating, yet IGF1 

further increases lengthening with 14 of heating. All possibilities require further 

investigation before determining the contributing factor(s). In normal physiological 

conditions, IGF1 levels decline after birth then increase during the early rapid stages of 

postnatal growth (Daughaday, Parker, Borowsky, Trivedi, & Kapadia, 1982; Gluckman & 

Butler, 1983; Hansen-Pupp et al., 2011), eventually dropping throughout childhood until 

adolescence. If levels of IGF1 are elevated during the rapid 3-4 week period of growth, 

than additional IGF1 in the system may not further heat-enhanced growth.  

IGF-binding proteins (IGFBPs) regulate the bioavailability of IGF1 in the serum. 

Studies have shown that mouse models created to lower IGF1s affinity for IGFBPs have 
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increased bioavailability of IGF1 to tissues resulting in increased body length (Elis et al., 

2011). If the low dose of injected IGF1 is bound to IGFBPs, there may not be a enough 

IGF1 available to the growth plates of long bones to further enhance limb elongation 

with heat-treatment. In addition, temperature has been shown to weaken the affinity of 

IGF1 binding to ALS in its ternary complex (ALS-IGF1-IGFBP3) accounting for 

increased free IGF1 in the circulation (Holman & Baxter, 1996). A longer duration of 

heat-treatment may be necessary to increase IGF1 bioavailability. Using a similar 

mouse model allowing us to investigate the effects of IGF1 independent of IGFBPs 

would be effective to determining if the binding proteins are the limiting factor.  

Past studies have also shown that the genetic background of the mouse model 

may contribute to variation in skeletal growth observed with increased serum IGF1 

(Yakar & Isaksson, 2016). It is possible that increased serum IGF1 has minimal effects 

on enhancing linear growth in C57BL/6 mice from 3-4 weeks of age as another possible 

explanation of the similarity observed between saline control and IGF1-injected mice 

with 7 days of heating. An extensive study would need to be conducted to quantify 

linear growth with increased serum IGF1 in various mouse models.   

IGF1 activity was assessed by measuring expression of IGF1R and pIGF1R in 

the growth plate. IGF1R expression in the PZ on heat-treated sides of IGF1-injected 

mice treated for 7 days (7.7%) was not significant and was significantly less than the 

heat-induced increase in IGF1R expression in saline mice (14.5%). As rationalized 

above, if IGF1 serum levels are further elevated from 3-4 weeks of age, there may be a 

higher degree of receptor internalization (Chow, Condorelli, & Smith, 1998; Girnita, 

Worrall, Takahashi, Seregard, & Girnita, 2014) as a result of an increased amount of 
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IGF1 binding and activating the available receptors. Despite the similarity of IGF1R 

expression in non-treated and heat-treated sides with IGF1 administration, there was a 

significant increase in pIGF1R expression (28.2%) on the heat-treated sides, which was 

20% greater than what was measured in saline controls (7.7%)(Fig. 20A, Table 9). Both 

saline and IGF1-injected mice treated for 14 days had a significant increase in IGF1R 

and pIGF1R expression on heat-treated sides but there was no difference between the 

injection groups (Fig. 20B, Table 9). Therefore, it is possible that the outcome of 

increased IGF1 signaling from 3-4 weeks of age is observed by the increased bone 

elongation measured in heat-treated limbs from mice treated from 3-5 weeks of age. 

Overall, results suggest that IGF1 activity was augmented with heat-treatment, and with 

additional IGF1 administered in conjunction with unilateral limb heating IGF1 activity is 

further increased when mice were treated for 7 days. Increased IGF1 activity after 7 

days of treatment also indicates that despite the IGF1-driven increase shown in femoral 

length and tibial elongation rate of mice treated for 14 days (Fig. 17B, Table 7), there 

was a higher degree of IGF1 signaling detected in the PZ of mice treated for 7 days 

(Fig. 20A, Table 9). Further investigation is required to better understand the 

complicated IGF1 signaling cascade involved in growth plate chondrocytes in response 

to additional IGF1 with targeted limb heating. 

One shortcoming of this study is examining IGF1 activity within the limited scope 

of growth plate chondrocytes. Studies have shown that with an increase in IGF1 activity 

in osteoblasts via the Col1a1(3.6) promoter, there was increased femoral length 

(Brennan-Speranza, Rizzoli, Kream, Rosen, & Ammann, 2011; Jiang et al., 2006). 

While not examined in this study, IGF1 receptors are expressed in osteoblasts 
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responsible for bone formation in the process of bone remodeling. With prolonged heat-

treatment, IGF1 may increase osteoblast activity to enhance longitudinal bone growth 

independent of activity within the growth plate. Since osteoblasts also contribute to 

radial growth, examining bone density would indicate if heat-treatment augments IGF1 

activity in osteoblasts with IGF1 injections.  

 

4.5 CONCLUSION 

In conclusion, IGF1 activity is augmented with heat-treatment and low dose 

IGF1-administration in conjunction with targeted limb heating can further enhance bone 

elongation. IGF1-injected mice treated for 14 days had an additional heat-enhanced 

increase in femoral length and tibial elongation rate compared to saline control mice 

(heat alone). There was also more proliferation and an increased hypertrophic zone 

height on heat-treated sides with IGF1 administration following 14 days of heating 

despite the comparable left-right differential to saline mice. A heat-enhanced increase in 

IGF1 activity was shown during both 7 days and 14 days of heating but was more 

pronounced from mice heated for 7 days during the rapid period of growth. Further 

studies are needed to better understand IGF1 signaling at the level of growth plate 

cartilage when IGF1 administration is coupled to targeting limb heating. Chapter 5 will 

test whether heat-enhanced limb length results in the absence of IGF1. 
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CHAPTER V: IGF1 IS ESSENTIAL FOR HEAT-ENHANCED BONE ELONGATION 

5.1 INTRODUCTION 

 As discussed in Chapter 1, there are a vast number of possible mechanisms, 

both indirect and direct, by which localized heat enhances longitudinal growth. Although 

multiple prospects create various avenues of study, this study focuses on a possible 

direct effect of temperature on local regulation at the cellular level in the growth plate of 

long bones. The process of chondrocyte proliferation and hypertrophy in the growth 

plate is regulated by various contributing factors, none of which are mutually exclusive. 

Many have reviewed local regulation of the growth plate during postnatal longitudinal 

growth (Kronenberg, 2003; Lui et al., 2014; Mackie et al., 2008; van der Eerden et al., 

2003). Each functional zone of chondrocytes has a degree of local regulation by 

numerous factors that play a role in maintaining efficient endochondral ossification. For 

instance, Indian hedgehog (Ihh), parathyroid hormone-related protein (PTHrP), bone 

morphogenic proteins (BMPs), fibroblast growth factors (FGFs), and insulin-like growth 

factor-1 (IGF1) among others are expressed throughout distinctive regions of the growth 

plate and interact to regulate the rate of proliferation and hypertrophy. When these 

factors are inhibited, disturbances of longitudinal bone growth occur leading to 

conditions such as short stature (Grunwald & De Luca, 2015; Lee et al., 2016; LuValle & 

Beier, 2000; Maeda et al., 2010; Wang et al., 2004; Woods, Camacho-Hubner, Savage, 

& Clark, 1996).  

IGF1 produced by epiphyseal chondrocytes has been reported to regulate all 

regions of growth plate cartilage (Tahimic et al., 2013; Ulici et al., 2008; J. Wang et al., 

1999; Y. Wang et al., 2006) despite the conflicting findings on its role in chondrocyte 
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proliferation (Govoni et al., 2007a; Parker et al., 2007; Reinecke et al., 2000; Shinar et 

al., 1993; Wang et al., 1995). Increased chondrocyte proliferation and hypertrophy have 

also been shown following direct treatment with IGF1 as a resulting growth response 

(Abbaspour et al., 2008; Mushtaq et al., 2004). IGF1 activity in the growth plate whether 

locally or systemically derived, has a significant role in regulating longitudinal bone 

growth.  

IGF1 is a putative target of study in the process of heat-enhanced limb 

elongation because of its essential role in longitudinal bone growth. Potential methods 

for studying the action of IGF1 in the growth plate include (1) the administration of IGF1 

blocking drugs such as IGF1 peptide analogues that specifically inhibit the downstream 

action of the IGF1 receptor (IGF1R) (Pietrzkowski et al., 1992; Smith et al., 1999) and 

(2) knockout mouse models with the absent or low levels of IGF1 (Yakar et al., 2010; 

Yakar & Isaksson, 2016). This study uses both. Experiments here utilize a small peptide 

analog of IGF1 known as JB1 that competitively binds to the receptor and blocks 

downstream IGF1 activity (Chapter 1, Fig. 5) (Brock et al., 2011; Huang et al., 2000; 

Kleinridders, 2016; Todd et al., 2007; Wen et al., 2012). This study also includes limited 

data using the growth hormone receptor knockout mouse (GHR-/-) recognized for 

having low levels of IGF1 and 30-40% reduction in body size (List et al., 2011; Sims et 

al., 2000; Yakar & Isaksson, 2016; Zhou et al., 1997). This chapter tests the 

hypothesis that with diminished IGF1 activity, heat-enhanced limb length is 

attenuated.  
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5.2 MATERIAL AND METHODS 
 

5.2.1 Animals and Experimental Design 

 All procedures were approved by the Institutional Animal Care and Use 

Committee of Marshall University (Protocol 558). Female C57BL/6 (N=12) mice were 

obtained from Hilltop Lab Animals, Inc. (Scottdale, PA, USA) at 21 days weaning age. 

Mice were singly housed at 21°C in standard plastic caging, exposed to a 12 hour 

light/dark cycle and provided with food and water ad libitum. 

 As described in Chapter 2, and as indicated by the unilateral heating methods 

schematic (Fig. 21), mice were subjected to the same procedural conditions. Mice (N=6) 

were weighed each day and given subcutaneous injections of an IGF1 peptide analog 

(JB1, Sigma) that blocks downstream activity of IGF1. Injections of the IGF1 blocking 

drug JB1 (2.5 mg/kg) were administered daily at the start of the light cycle one hour 

prior to heat-treatment. The rationale for the dose and time period of JB1 administration 

was to be consistent with IGF1 drug treatment experiments described in Chapter 4. 

Dose was accepted following pilot trials that mimicked experimental conditions and 

tested the physiological response of the mice to the drug treatment. Saline-injected 

control (N=6) mice described in Chapter 3 served as the controls.  

 An additional group of female (N=5) growth hormone receptor (GHR) knockout 

(GHR-/-) mice on a C57BL/6 background was obtained from the Kopchick laboratory at 

Ohio University (Athens, OH, USA) at 21 days weaning age. GHR-/- mice model 

hereditary dwarfism in humans known as Laron Syndrome characterized by short 

stature, low serum IGF1, and GH resistance (Laron, 2015a; Laron & Kauli, 2015b; List 

et al., 2011; Sims et al., 2000; Zhou et al., 1997). These mice were housed under 
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similar conditions previously described. GHR-/- mice were not drug injected and were 

treated with unilateral heat (40°C for 40 mins/day) for 14 days. Although GHR-/- mice 

were not injected with saline, previous studies have shown that there are no significant 

differences between non-injected and saline-injected mice (unpublished data).  
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Figure 21. Unilateral Heating Schematic 
Mice were injected subcutaneously (SQ) with IGF1 blocking drug (JB1, 2.5 mg/kg) one 
hour prior to treatment of 40°C unilateral heat for 40 minutes daily from 3-4 weeks of 
age. Euthanasia and tissue collection occurred 1 day after the last day of heat-
treatment. Mouse illustration based on “mouse clip art black and white” from 
clipartstockphotos.com. 
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5.2.2 Tissue Collection and Sample Analysis 

 Long bones (femora and humeri) were collected and measured as described in 

Chapter 3 (Sections 3.2.2 and 3.2.3). Proximal tibial halves from each hindlimb were 

collected (Section 3.2.2) for tibial elongation rate analysis (Section 3.2.3) and growth 

plate morphometry (Sections 3.2.4) following methods described in Chapter 3.  

 

5.2.3 Immunohistochemistry 

 Serial sections of proximal tibiae from mice subjected to 7 days (N=12, 6 per 

saline control and JB1) of unilateral heating were stained using rabbit polyclonal 

antibodies against IGF1R, phospho-IGF1R (phospho-Y1161) and PCNA (as described 

in Table 4) and rabbit polyclonal antibodies against pAkt, Thr308 (1:200, Santa Cruz, 

sc-16646) following methods as described in Chapter 3 (Section 3.2.5). Analysis 

focused on the proliferative zone (PZ) and the hypertrophic zone (HZ). PCNA was used 

as a marker for rate of proliferation (PZ only) and IGF1R, pIGF1R and pAkt were 

evaluated as markers of IGF1 activity (PZ and HZ). While an important part of the study, 

bisected tibiae were not collected from the GHR-/- mice following techniques necessary 

for immunohistochemistry analysis. Therefore, expression levels of PCNA, IGF1R, 

pIGF1R, and pAkt could, unfortunately, not be done in the GHR-/- model. 

 

5.2.4 Statistical Analysis 

 Statistical analyses were performed using SPSS 25.0 software (IBM Corporation, 

Armonk, NY) with p<0.05 as accepted significance and comparisons as described in 

Chapter 4 (Section 4.2.4). 
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5.3 RESULTS 

5.3.1 Unilateral Heating Parameters 

 There was no significant difference in the amount of mass gained between 

controls and JB1-injected mice as determined by multiple comparison analysis using 

one-way ANOVA (F(1,11)=1.1, ns, p=0.311). JB1-injected mice treated for 7 days from 

3-4 weeks of age gained 4.3±0.5g while saline control mice (established in Chapter 3) 

gained 4.7±0.7g (Fig. 22). Therefore, the JB1-inject mice exhibited normal body growth. 

The core temperature averaged 36°C. While mice were anesthetized, the average 

surface temperature of non-treated hindlimbs was 30°C and the heat-treated hindlimbs 

were 40°C. 
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Figure 22. Total Body Mass Gained in Mice Treated for 7 days from 3-4 weeks of 
Age did not Differ Between Saline Controls and JB1-Injected Mice  
Scatter plots show the change in mass of individual saline mice (open circles) and JB1 
mice (dark gray circles). One-way ANOVA revealed no significant differences in overall 
mass gain between saline and JB1 mice. 
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5.3.2 Length of Long Bones and Tibial Elongation Rate 

 Femoral length was comparable on the non-treated sides of saline (10.44 mm) 

and JB-1 injected mice (10.46 mm) (Table 10). However, femoral length (paired t=0.3, 

ns, p=0.81) of JB1-injected mice did not differ between non-treated and heat-treated 

sides (Fig. 23A; Table 10) while saline mice had a significant 1.7% increase on heat-

treated sides (Chapter 3; Fig. 12A, Table 5). This heat-induced increase in femoral 

length was significantly greater (F(1,11)=6.2, p<0.05) than the JB1-injected mice. 

Humeral length was not different between sides for saline (Chapter 3; Table 5) or JB1-

injected mice (paired t=0.1, ns, p=0.91). 

 Tibial elongation rate was also comparable on the non-treated sides of saline 

mice (156.88 μM/day) and JB1-injected mice (153.31μM/day) (Table 10). However, 

tibial elongation rate of JB1-injected mice decreased by nearly 3% (paired t=1.9, ns, 

p=0.13) on the heat-treated side (Fig. 23B, Table 10), while saline mice had a significant 

increase of nearly 8% on the heat-treated side (Chapter 3; Fig. 12B, Table 5). This 

observed decrease was significantly less (F(1,9)=24.8, p<0.001) from the increase in 

tibial elongation rate in saline mice. The potential of limb heating to target JB1 to the 

heat-treated side was supported by data since unilateral differences in both femoral 

length and tibial elongation rate between saline and JB1-injected mice were seen on the 

heat-treated sides while the non-treated sides were similar between groups. Therefore, 

these results along with the observed normal body growth (Fig. 22) indicate that JB1 

blocked IGF1 locally in the growth plate on heat-treated sides.  
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Table 10. Comparison of Non-Treated and Heat-Treated Bone Parameters of 4-
Week Old Saline- and JB1-Injected Mice Following 7 Days of Heat-Treatment. 

 
Values are mean (standard deviation). JB1 emphasized as an IGF1 blocking drug in 
red. Sample size (N) is number of left-right pairs. Significantly larger on heat-treated 
side by one-tailed paired t-test: **p<0.01; ns, non-significant. Significant differences in 
percent increase between saline controls and JB1-injected mice by one-way ANOVA: 
#p<0.05; ns, non-significant. 
 

 

 

 

 

 

 

 

 

 

 

Parameter Treatment Non-Treated 
(30C) 

Heat-Treated 
(40C) 

Percent 
Increase 

N 

Humeral Length (mm) 

Saline 9.27 (0.14) 9.23 (0.20)ns -0.4 6 

JB1  9.09 (0.27) 9.10 (0.23)ns 0.1ns 6 

Femoral Length (mm) 

Saline 10.44 (0.19) 10.62 (0.26)** 1.7 6 

JB1 10.46 (0.27) 10.48 (0.33)ns 0.1# 6 

Tibial Elongation Rate (µM/day) 
 

Saline 156.88 (11.24) 168.94 (12.85)** 7.7 5 

JB1 153.31 (25.72) 148.96 (22.13)ns -2.6# 5 
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Figure 23. Heat-Enhanced Growth Effects are Attenuated When IGF1 is Blocked  
(A) Error bar plots shows percent change in heat-treated limb compared to non-treated 
limb. Femoral length increased by 1.7% on the heat-treated side of saline control mice 
and no increase when IGF1 is blocked in mice injected with JB1. (B) Tibial elongation 
rate increased by 7.7% on the heat-treated side in saline mice and decreased by 2.6% 
in JB1-injected mice. (C) The PZ of proximal tibial growth plates in saline mice 
decreased by 9.0% on the heat-treated side but increased by 1.4% in JB1-injected 
mice. (D) The HZ of proximal tibial growth plates increased by 9.0% on the heat-treated 
side of saline mice but had a minimal increase of 0.4% in JB1 mice. Mean ± 1 standard 
error plotted. *p< 0.05; **p<0.01; ***p<0.001, significance in left-right comparisons; 
#p<0.05 comparing % change in JB1-injected mice with saline controls. 
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5.3.3 Growth Plate Morphometry 

 The height of the PZ normalized to total growth plate height was significantly 

reduced by 9.0% on the heat-treated sides of saline mice (Chapter 3; Fig. 13A, C; Table 

6). JB1-injected mice displayed a 1.4% increase in PZ height (paired t=0.4, ns, p=0.68) 

on the heat-treated side (Fig. 23C). The height of the HZ normalized to the total growth 

plate height was significantly enlarged by 8.6% on the heat-treated sides of saline mice 

(Chapter 3; Fig. 12B, C; Table 6). JB1-injected mice had a minimal decrease of 0.4% in 

HZ height (paired t=0.0, ns, p=1.0) on the heat-treated side (Fig. 23D). The decrease in 

height of the PZ (F(1,10)=17.9, p<0.01) and HZ (F(1,10)=14.4, p<0.01) on heat-treated 

sides was significantly less when IGF1 is blocked than the increased heights reported in 

saline mice as determined by one-way ANOVA. Overall, blocking IGF1 activity in tibial 

growth plates attenuated the localized heat effect on growth plate morphometry. 

 

5.3.4 PCNA Expression 

PCNA expression (paired t=2.0, ns, p=0.12) decreased by 12.1% on the heat-

treated sides of JB1-injected mice (Fig. 24, Table 11). PCNA expression was 

significantly less (F(1,10)=10.6, p<0.01) than the 8.8% increase in expression on the 

heat-treated sides of saline control mice (Chapter 3; Fig. 14). Results indicate 

decreased proliferation in tibial growth plates with localized heating when IGF1 is 

blocked. However, while overall expression of PCNA was less in JB1-injected mice, 

chondrocytes still demonstrated a level of proliferation suggesting mechanisms 

regulated proliferation in the PZ independent of IGF1. 
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Table 11. Comparison of Non-Treated and Heat-Treated Expression of PCNA in 
Proliferative Zone of Tibial Growth Plates in Saline and JB1-Injected Mice. 

 
Values are mean (standard deviation). JB1 emphasized as an IGF1 blocking drug in 
red. Sample size (N) is number of left-right pairs. Significantly larger on heat-treated 
side by one-tailed paired t-test: *p< 0.05; ns, non-significant. Significant differences in 
percent increase between saline controls and JB1-injected mice by one-way ANOVA: 
#p<0.05. 
  

Antibody in Proliferative Zone Treatment Non-Treated 
(30C) 

Heat-Treated 
(40C) 

Percent 
Increase 

N 

PCNA expression 

Saline 85.10 (6.90) 91.93 (1.98)* 8.6 6 

JB1 71.08 (19.04) 62.20 (17.52)ns -12.1# 5 
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Figure 24. Expression of PCNA in the PZ of Proximal Tibial Growth Plates 
Decreased when IGF1 is Blocked (Continued on the following page) 
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Figure 24. (A) Error bar plots shows percent change in heat-treated limb compared to 
non-treated limb. PCNA expression increased by 8.6% on the heat-treated side of 
saline mice, and decreased by 12.1% in JB1-injected mice. (B) Comparison of heat-
treated proximal tibial growth plates from a saline and JB1-injected mouse 
immunostained for PCNA. A larger quantity of PCNA staining was counted in saline 
mice compared to JB1-injected mice. Positive staining is shown by dark brown nuclei 
within the proliferative zone of the growth plate (region between the double arrows). 
Mean ± 1 standard error plotted. *p< 0.05 significance in left-right comparisons; #p<0.05 
comparing % change in JB1-injected mice with saline controls. 
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5.3.5 IGF1R, pIGF1R and pAkt Expression 

IGF1R expression in the PZ (paired t=5.0, p<0.01) of tibial growth plates 

decreased by 28.0% on the heat-treated side of JB1-injected mice. This decrease was 

significantly less (F(1,10)=39.4, p<0.001) than the 14.5% increase in IGF1R expression 

(paired t=3.2, p<0.05) on the heat-treated side of saline control mice (Fig. 25A, 26A(a); 

Table 12). Expression of activated IGF1R (pIGF1R) in the proliferative zone (paired 

t=3.2, p<0.05) of tibial growth plates decreased by 23.6% on the heat-treated side of 

JB1-injected mice. This decrease was significantly less (F(1,10)=24.0, p<0.001) than 

the 7.7% increase in pIGF1R expression (paired t=5.3, p<0.01) on the heat-treated side 

of saline mice (Fig. 25B, 26B(a); Table 12). The phosphatidylinositol-3 (PI-3) kinase 

pathway is one of several signaling pathways activated by IGF1-IGF1R interaction (the 

other is the mitogen-activated protein kinase (MAPK) pathway (Chapter 1, Fig. 4). 

Downstream activation of IGF1R was therefore investigated by measuring 

phosphorylated Akt (pAkt) expression as one of the key signaling molecules of the PI-3 

kinase pathway in the tibial growth plate (Choukair, Hϋgel, Sander, Uhlmann, & 

Tönshoff, 2014). Expression of pAkt decreased by 2.1% in the proliferative zone (paired 

t=0.2, ns, p=0.87) of tibial growth plates on the heat-treated side of JB1-injected mice. 

This decrease was significantly less (F(1,10)=6.4, p<0.05) than the 22.8% increase in 

pAkt expression (paired t=4.4, p<0.01) on the heat-treated side of saline control mice 

(Fig. 25C, Table 12). These data indicate that in the PZ, IGF1 activity is increased with 

heat-treatment (as reported in Chapter 4), and when IGF1 is blocked, there is a 

localized decrease in IGF1 activation.  
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IGF1R expression in the HZ (paired t=2.7, p<0.05) of tibial growth plates 

decreased by 19.2% on the heat-treated side of JB1-injected mice. This decrease was 

significantly less (F(1,10)=11.0, p<0.01) than the 10.4% increase in IGF1R expression 

(paired t=2.1, ns, p=0.11) on the heat-treated side of saline mice (Fig. 25A, 26A(b); 

Table 13). Expression of pIGF1R in the HZ (paired t=1.7, ns, p=0.17) of tibial growth 

plates decreased by 10.1% on the heat-treated side of JB1-injected mice. This 

decrease was significantly less (F(1,10)=9.0, p<0.05) than the 10.2% increase in 

pIGF1R expression (paired t=3.4, p<0.05) on the heat-treated side of saline mice (Fig. 

25B, 26B(b); Table 13). Expression of pAkt decreased by 22.4% in the HZ (paired t=4,1, 

p<0.05) of tibial growth plates on the heat-treated sides of JB1-injected mice. This 

decrease was significantly less (F(1,10)=8.0, p<0.05) than the 13.5% increase in pAkt 

expression on the heat-treated side of saline mice (paired t=1.7, ns, p=0.15) (Fig. 25C, 

Table 13). These data indicate that in the HZ, there is increased IGF1 activity because 

when IGF1 is blocked, there is a localized decrease in markers of IGF1 activation. 
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Table 12. Comparison of Non-Treated and Heat-Treated Expression of Markers for 
IGF1 Activation in Proliferative Zone of Tibial Growth Plates in Saline and JB1-
Injected Mice.  

 
Values are mean (standard deviation). JB1 emphasized as an IGF1 blocking drug in 
red. Sample size (N) is number of left-right pairs. Significantly larger on heat-treated 
side by one-tailed paired t-test: *p< 0.05; **p<0.01; ns, non-significant. Significant 
differences in percent increase between saline controls and JB1-injected mice by one-
way ANOVA: #p<0.05. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Antibody in Proliferative Zone Treatment Non-Treated 
(30C) 

Heat-Treated 
(40C) 

Percent 
Increase 

N 

IGF1R expression  

Saline 69.68 (6.36) 79.52 (7.61)* 14.5 5 

JB1  68.83 (18.80) 50.25 (18.71)** -28.0# 6 

pIGF1R expression 

Saline 84.85 (10.36) 90.97 (7.90)** 7.7 6 

JB1 72.80 (15.38) 53.88 (4.75)* -23.6# 5 

pAkt expression 

Saline 55.21 (15.05) 66.23 (12.52)** 22.8 6 

JB1 37.62 (19.87) 38.14 (22.27)ns -2.1# 5 
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Table 13. Comparison of Non-Treated and Heat-Treated Expression of Markers for 
IGF1 Activation in Hypertrophic Zone of Tibial Growth Plates in Saline and JB1-
Injected Mice. 

 
Values are mean (standard deviation). JB1 emphasized as an IGF1 blocking drug in 
red. Sample size (N) is number of left-right pairs. Significantly larger on heat-treated 
side by one-tailed paired t-test: *p< 0.05; ns, non-significant. Significant differences in 
percent increase between saline controls and JB1-injected mice by one-way ANOVA: 
#p<0.05. 
 

 

 

 

 

 

 

 

 

 

 

 

Antibody in Hypertrophic Zone Treatment Non-Treated 
(30C) 

Heat-Treated 
(40C) 

Percent 
Increase 

N 

IGF1R expression  

Saline 74.22 (9.94) 81.08 (2.95)ns 10.4 5 

JB1  74.95 (15.10) 59.57 (13.78)* -19.2# 6 

pIGF1R expression 

Saline 82.13 (7.39) 90.07 (4.23)* 10.2 6 

JB1 76.14 (12.74) 67.42 (10.13)ns -10.1# 5 

pAkt expression 

Saline 49.91 (14.15) 56.66 (17.93)ns 13.5 6 

JB1 57.12 (25.83) 48.46 (29.78)* -22.4# 5 
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Figure 25. Expression of Markers of IGF1 Activation Decreases in Heat-Treated 
Proximal Tibial Growth Plates when IGF1 is Inhibited  
Comparison of heat-treated proximal tibial growth plates from a saline control and JB1-
injected mouse immunostained for (A) IGF1R (B) pIGF1R and (C) pAkt. A larger 
quantity of positive staining, shown by dark brown nuclei, was counted in saline mice 
compared to JB1 mice. 
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Figure 26. Heat-Induced Effect on IGF1 Activity in the Tibial Growth Plate is 
Evident in the PZ and HZ 
(A) IGF1R expression in saline and JB1-injected mice. (a) Error bar plot shows percent 
change in heat-treated limb compared to non-treated limb. IGF1R expression in the PZ 
increased by 14.5% and decreased by 28% on heat-treated sides of saline and JB1-
injected mice. (b) IGF1R expression in the HZ increased by 10.4% and decreased by 
19.2% in saline and JB1-injected mice. (B) pIGF1R expression in saline and JB1-
injected mice. (a) pIGF1R expression in the PZ increased by 7.7% and decreased by 
23.6% in saline and JB1-injected mice. (b) pIGF1R expression in the HZ increased by 
10.2% and decreased by 10.1% in saline and JB1-injected mice. Mean ± 1 standard 
error plotted. *p< 0.05; **p<0.01, significance in left-right comparisons; #p<0.05 
comparing % change in JB1-injected mice with saline controls. 
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5.3.6 GHR-/- Growth Parameters 

 When levels of circulating IGF1 are low, femoral length (paired t=0.17, ns, 

p=0.88) and tibial elongation rate (paired t=0.3, ns, p=0.80) did not differ on the heat-

treated sides of 5 week old GHR-/- mice treated for 14 days (Fig. 27, Table 14). In wild-

type mice, femoral length and tibial elongation rate increased by 1.1% and 10.8% 

respectively as seen in Chapter 3 (Table 5). The heat-induced increase in femoral 

length (F(1,12)=29.2, p<0.001) and tibial elongation rate (F(1,12)=13.1, p<0.01) was 

significantly greater from the equivalent left-right pairs measured in GHR-/- mice. 

Humeral length (paired t=0.2, ns, p=0.87) did not differ as seen in wild-type mice.  
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Table 14. Comparison of Non-Treated and Heat-Treated Bone Parameters of 5-
Week Old Wild-Type and GHR-/- Mice. 

 
Values are mean (standard deviation). JB1 emphasized as an IGF1 blocking drug in 
red. Sample size (N) is number of left-right pairs. Significantly larger on heat-treated 
side by one-tailed paired t-test:  ***p<0.001; ns, non-significant. Significant differences 
in percent increase between saline controls and JB1-injected mice by one-way ANOVA: 
#p<0.05; ns, non-significant. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Parameter Genotype Non-Treated 
(30C) 

Heat-Treated 
(40C) 

Percent 
Increase 

N 

Humeral Length (mm) 

Wild-type 10.14 (0.11) 10.15 (0.13)ns 0.1 9 

GHR-/- 7.51 (0.04) 7.51 (0.04)ns 0.0ns 5 

Femoral Length (mm) 

Wild-type 12.86 (0.18) 13.00 (0.17)*** 1.1 9 

GHR-/- 9.32 (0.08) 9.32 (0.09)ns 0.0# 4 

Tibial Elongation Rate (µM/day) 
 

Wild-type 109.57 (11.18) 121.22 (10.70)*** 10.8 8 

GHR-/- 53.98 (12.59) 54.36 (12.23)ns 0.9# 5 



 

 139 

 
 
Figure 27. Extremities of Growth-Hormone Receptor Knockout (GHR-/-) Mice are 
not Lengthened with Unilateral Heat-Treatment  
(A) Error bar plots shows percent change in heat-treated limb compared to non-treated 
limb. Femoral length increased by 1.1% on the heat-treated sides of wild-type mice 
treated for 14 days from 3-5 weeks of age. Femoral length did not change with 
treatment in GHR-/- mice. (B) Tibial elongation rate increased by 10.8% on the heat-
treated sides of wild-type mice, and GHR-/- mice had a minimal increase of 0.9% with 
heat-treatment. Mean ± 1 standard error plotted. ***p<0.001, significance in left-right 
comparisons; #p<0.05 comparing % change in wild-type and GHR-/- mice 
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5.4 DISCUSSION 

The goal of this study was to determine if the heat-enhanced bone elongation 

observed after targeted limb heating is IGF1 dependent. The heat-treatment effect on 

bone elongation is attenuated in growing mouse models exhibiting both locally blocked 

IGF1 and low IGF1. Femoral length and tibial elongation rate was shown to increase by 

over 1% and 7% respectively in heat-treated limbs of saline control mice after either 7 or 

14 days of unilateral heating. In JB1-injected (blocked IGF1) and GHR-/- (low levels of 

IGF1) mice, both femoral length and tibial elongation rate did not differ between the 

heat-treated and non-treated contralateral sides. Our data supported the hypothesis that 

with diminished IGF1 activity, heat-enhanced limb length is attenuated. 

Although we were not able to perform immunostaining on GHR-/- mice the 

results using our model and JB1 as an antagonist of IGF1 activity demonstrated that 

heat-enhanced chondrocyte proliferation and hypertrophy in proximal tibial growth 

plates was attenuated when IGF1 is blocked. Chondrocyte proliferation and hypertrophy 

are common indicators of longitudinal growth as discussed in Chapter 3. There is a 

positive relationship between rate of chondrocyte proliferation, size of chondrocyte 

enlargement, and linear bone growth rate (Cooper et al., 2013; Hunziker, 1994b; 

Kember, 1993; Rolian, 2008; Wilsman et al., 2008). According to the findings of this 

study, the proliferative and hypertrophic zones of growth plates on non-injected sides of 

saline control mice each made up 45% of the total growth plate height (the remaining 

10% being the reserve zone). On the heat-treated side, there was a shift in zonal height 

as the proliferative zone made up 41% of total growth plate height (Fig. 23C) while the 

hypertrophic zone of chondrocytes took up 48% of total height (Fig. 23D). This observed 
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shift in zones was absent in mice injected with the IGF1 blocking drug as the 

proliferative and hypertrophic zone height made up 42% and 47% of total height 

respectively on both non-treated and heat-treated sides. When evaluating proliferation 

in the growth plate, expression of PCNA increased by 8.6% on the heat-treated side of 

saline control mice but decreased by 12.1% when IGF1 was blocked (although not 

statistically significant) (Fig. 24, Table 11). Results demonstrated that an increased rate 

of proliferation with heat-treatment is dependent, in part, on IGF1 activity in the 

proliferative zone of the growth plate.  

To test for activation of IGF1 signaling, immunohistochemistry methods detected 

expression of specific markers for IGF1 activity in tibial growth plates including IGF1R, 

pIGF1R (activated receptor) and pAkt (downstream IGF1 activation). Measured 

expression levels of these markers (as done in Chapter 4) suggest in this study that the 

heat-enhanced increase in IGF1 activity is attenuated when IGF1 is blocked. On heat-

treated sides of the saline control mice, there was an increase in IGF1R, pIGF1R and 

pAkt expression while levels decreased when IGF1 was blocked in JB1-injected mice 

(Fig. 25, 26; Tables 12,13). Measured expression of signaling molecules as a result of 

IGF1 activated receptors including pIGF1R and downstream pAkt increased on the 

heat-treated sides of saline control mice by over 7%. Expression of pIGF1R and pAkt 

decreased by over 10% and 2% respectively on the heat-treated sides when the 

antagonist blocked IGF1 from binding to the receptor. This decrease in expression was 

observed in both the proliferative and hypertrophic zones of the growth plate as 

expected since IGF1 has been shown to increase cellular proliferation and 

differentiation both in vitro and in vivo (Abbaspour et al., 2008; Choukair et al., 2014; 
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Ciarmatori et al., 2007; Tahimic et al., 2013; Yakar & Isaksson, 2016). However, down 

regulation of pAkt was more substantial in the hypertrophic zone (22.4% decrease) 

compared to the proliferative zone (2.1% decrease). One plausible explanation for these 

results could be rationalized by findings from Ciarmatori et al. (2007) and Kiepe, 

Ciarmatori, Hoeflich, Wolf, & Tönshoff (2006) in growth plates of both cell lines and 

whole animals demonstrating that IGF1-driven proliferation is regulated by both the PI-3 

kinase and MAPK pathways, while the hypertrophic zone is regulated by only the PI-3 

kinase pathway (Ciarmatori et al., 2007; Kiepe et al., 2006). Regulation pathways could 

be compared in our model by analyzing expression levels of pAkt and important 

downstream signaling molecules from the MAPK pathway such as ERK. 

A surprising finding from this study was the significant decrease in IGF1R 

expression in both the proliferative zone (28% decrease) and the hypertrophic zone 

(19% decrease) from growth plates after treatment with the antagonist (Fig. 26A; Tables 

12,13). It was expected that with targeted limb heating IGF1R expression would either 

remain unchanged or increase in mice administered the IGF1 blocking drug since 

binding of IGF1 to its receptor enhances activation and initiates internalization and 

recycling of IGF1R (Chow et al., 1998; Yin, Guan, Liao, & Wei, 2009). Cell culture 

studies modeling the growth plate have shown that other antagonists of IGF1 signaling 

have reduced chondrocyte proliferation without impacting expression of IGF1R 

(Choukair et al., 2014). While literature does not support our findings, it is possible that 

the down regulation of IGF1R is a unique characteristic of IGF1 peptide analog JB1. 

The obscure ligand-independent mechanisms of IGF1R internalization may be a 
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potential mechanism of JB1-bound IGF1R down regulation (Morcavallo, Stefanello, 

Iozzo, Belfiore, & Morrione, 2014; Reilly, Mizukoshi, & Maher, 2004).  

Numerous studies have investigated the use of kinase inhibitors as a method for 

IGF1 inhibition in various tissues (Li et al., 2009; Pillai & Ramalingam, 2013; Refolo et 

al., 2017). However, blocking IGF1 activity by peptide analogs has been considered a 

more specific method for inhibiting cellular proliferation (Brock et al., 2011; Huang et al., 

2000; Kleinridders, 2016; Pietrzkowski et al., 1992; Todd et al., 2007; Smith et al., 1999; 

Wen et al., 2012). Besides their high specificity, IGF1 peptide analogues also have low 

molecular weights and low toxicity (Pietrzkowski et al., 1992). Monoclonal antibodies, 

such as αIR3, also have high specificity against IGF1R comparable to the peptide 

analogues, but are over 100-fold larger in size (Huang et al., 2000). Small molecular 

size is important for this study because the targeted growth plate is avascular and 

solute transport occurs by means of surrounding vasculature (Brodin, 1955). In vivo 

imaging studies have shown that molecules under 10kDa enter the growth plate from all 

directions of surrounding vasculature, while molecules over 40kDa cannot enter to a 

significant degree (Farnum et al., 2006). Aside from being commercially available, JB1 

was chosen for this study at only 1.2kDa and therefore falls well in the range of 

molecules capable of vascular transport into the cartilage growth plate. The small size 

of JB1 may also explain why heat-induced decrease in expression levels of IGF1 

signaling proteins were more prominent than the increase in expression seen in the 

heat-treated saline control mice. It is possible that the smaller size of JB1 (1.2kDa) 

allows for increased transport into the growth plate relative to IGF1 (7.6kDa). 
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The use of localized heat-treatment, as explained in Chapter 2, has been 

established as an effective method for enhancing limb elongation in growing mice 

(Serrat et al., 2015). Research into the mechanism of action is important in the hopes of 

translating our findings to develop a noninvasive alternative for treatment of bone 

elongation disorders in children. The ultimate goal would be to target localized heat to 

the site of the growth plate and increase limb elongation without impacting overall 

growth. In this study, there were no significant differences in change of body mass 

between saline controls and JB1-injected mice over the duration of heat-treatment and 

did not impact overall growth. The similarity observed between the non-treated sides of 

saline controls and JB1-injected mice is another indication that the effect of blocking 

IGF1 was limited to the heat-treated side.  

Limitations to this study include the small sample size of the GHR-/- mice. 

Unilateral heating experiments were carried out previous to establishing a consistent 

methodology as published (Serrat et al., 2015), and as described in the chapters of this 

dissertation. Also, since expression levels of PCNA, IGF1R, pIGF1R, and pAkt were not 

measured in the GHR-/- model, future studies will be essential to assay these important 

variables. Expanding upon the findings in the GHR-/- mouse model, future studies may 

be designed to understand the impact of heat-treatment on the GH-IGF1 axis at the 

level of the epiphyseal growth plate. While the current study focused on local IGF1 

activity in the growth plate, GH and related signaling molecules have yet to be studied in 

targeted limb heating experiments. GH has both direct and indirect control on the 

growth plate and has been shown to directly stimulate chondrogenesis and induce local 

IGF1 activity (Isaksson et al., 1982, 1985; Ohlsson, 1992b, 1998; Schlechter et al., 
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1986). In hope of translating the limb-heating model to treat children with bone 

lengthening disorders, including those with irregular GH-IGF1 regulation, it is important 

to determine if mild heat impacts GH in regulating longitudinal growth. Since the 

molecular size of GH (22 kDa) exceeds that of IGF1 (7.6 kDa) and the threshold of 

heat-enhanced vascular delivery (10 kDa) to the growth plate (Serrat et al., 2014a), the 

effects of heating would be expected to be at the level of local GH regulation. It is also 

expected that if targeted limb heating increases GH activity, it would not be independent 

of IGF1 since results from this study showed that when IGF1 activity was inhibited, and 

GH regulation was normal, the heat-enhanced growth effect was attenuated.  

 

5.5 CONCLUSION 

 In conclusion, with diminished IGF1 activity, heat-enhanced limb length is 

attenuated. Bone lengthening effects of temperature in hindlimbs of growing mice, such 

as increased femoral length and tibial elongation rate, were absent in GHR-/- mice (low 

levels of IGF1), and in JB1-injected mice (IGF1 was locally blocked). When IGF1 activity 

is blocked, the heat-induced increase in proliferation and height of hypertrophic zone is 

also attenuated. The variation between saline and JB1-injected mice in left-right 

differences of bone length, growth plate morphometry and IGF1 signaling despite both 

exhibiting normal body growth indicates that JB1 locally blocked IGF1 activity on heat-

treated sides. Together these results support the hypothesis that in the absence of IGF1 

activity, targeted limb heating cannot effectively increase bone elongation in growing 

mice. Chapter 6 will test whether heat-enhanced limb length can be maintained after 

treatment has ended into skeletal maturity.  
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CHAPTER VI: DIFFERENTIAL LIMB LENGTH IS MAINTAINED THROUGHOUT 
SKELETAL DEVELOPMENT AFTER END OF TREATMENT 

 

6.1 INTRODUCTION 

 During the post-natal development, functional growth plate cartilage augments 

bone elongation with a rapid period of growth during early life then undergoes a gradual 

decline in growth velocity and eventually ceases during adolescence. This process has 

been termed as growth plate senescence (Lui et al., 2011). Although the murine growth 

plate does not completely close and form a bony union as it does in humans, both reach 

a period of growth culmination over a similar time frame and by comparable cellular 

kinetics (Dawson, 1925, 1935; Geiger et al., 2014; Walker & Kember, 1972). Once 

skeletal maturity is reached, the growth plate ceases to contribute to linear growth. In 

mice, skeletal maturity is reached by 12 weeks of age (Kilborn et al., 2002; Li et al., 

2017; Serrat et al., 2007; Stempel et al., 2011; Zoetis et al., 2003), while humans are 

considered skeletally mature at puberty between 13-18 years of age (Kelly & Diméglio, 

2008).  

Current treatment for bone elongation disorders including the invasive surgical 

procedures to correct limb length discrepancies, and the drug regimens for GH and 

IGF1 occur before skeletal maturity. Often, there is only a partially effective outcome 

after both surgical procedures (Gurney, 2002; Hasler & Krieg, 2012) and drug regimen 

therapy (Backeljauw et al., 2013; Laron, 2001; Ranke et al., 1995b; Wu et al., 2013). A 

goal of many therapies for bone elongation disorders is to maintain corrections past 

skeletal maturity to avoid resulting problems in adulthood. In children, while treatment is 
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most effective during early childhood when growth is most rapid (Kelly & Diméglio, 

2008), therapy continues until growth ceases at the end of puberty. 

The concept of using localized heat as a noninvasive alternative to surgical 

treatment for bone elongation disorders in children has thus far been supported by data 

demonstrating that targeted limb heating can effectively lengthen extremities during 

rapid periods of growth. However, in hopes of translating the results of this study into 

developing a noninvasive method for lengthening bones as a therapy for children, it is 

important to determine if the heat-enhanced bone elongation can be maintained 

throughout skeletal development. Studies have shown that femoral and tibial lengths 

remain almost 1% longer on the heat-treated sides of 12-week-old mice (Serrat et al., 

2015). The objective of this project was to understand the ability for unilaterally 

lengthened extremities to remain longer until skeletal maturity following both a 7 day 

and 14 day unilateral heating regimen in conjunction with low dose IGF1 administration. 

It is hypothesized that differential limb length will be maintained throughout 

skeletal development after treatments have ended. It is also expected based on 

findings from Chapter 4, that persistent limb length differences will be prominent in 

IGF1-injected mice. 

 

6.2 MATERIAL AND METHODS 

6.2.1 Animals and Experimental Design 

 All procedures were approved by the Institutional Animal Care and Use 

Committee of Marshall University (Protocol 558). Female C57BL/6 (N=31) mice were 

obtained from Hilltop Lab Animals, Inc. (Scottdale, PA, USA) at 21 and 28 days weaning 
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age. Mice were singly housed at 21°C in standard plastic caging, exposed to a 12 hour 

light/dark cycle and provided with food and water ad libitum. 

 As described in the previous chapters and as indicated by the unilateral heating 

methods schematic (Fig. 28), mice post-weaning were treated with daily unilateral heat 

(40°C) under the same procedural conditions. Mice were treated for 7 days from 3-4 

weeks of age and for 14 days from 3-5 weeks of age. Subcutaneous injections of either 

saline solution (3:1, 1xPBS:dH2O) at a volume of 0.01mL/g, or IGF1 (2.5mg/kg; 

Peptrotech), were administered to mice daily at the start of the light cycle one hour prior 

to heat-treatment for 7 days and 14 days (N=6 per group). These experimental groups 

have not yet been described in previous chapters as tissue collection occurred later in 

development. A group of non-heated, non-injected 3-week-old mice (N=7) were also 

kept under equivalent housing conditions as non-treated controls. Daily mass was 

recorded during the duration of limb heating, and then weekly mass was measured until 

euthanization.  
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Figure 28. Unilateral Heating Schematic  
Mice were injected subcutaneously (SQ) with either saline or IGF1 (2.5mg/kg) one hour 
prior to treatment of 40°C unilateral heat for 40 minutes daily for 7 days from 3-4 weeks 
of age and 14 days from 3-5 weeks of age. Euthanasia and tissue collection occurred at 
12 weeks of age when mice were skeletally mature. Mouse illustration based on “mouse 
clip art black and white” from clipartstockphotos.com. 
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6.2.2 Tissue Collection and Long Bone Measurements 

 Long bones (femora and humeri) were collected and measured as described in 

Chapter 3 (Sections 3.2.2 and 3.2.3) but all experimental mice (N=31) were euthanized 

for tissue collection at 12-weeks of age at skeletal maturity. In this study tibiae were 

collected for long bone measurements since no histology was done. Non-treated 

controls (N=7) were also euthanized at the same endpoint to evaluate natural limb 

length differences at skeletal maturity.  

   

6.2.3 Statistical Analysis 

 Statistical analyses were performed using SPSS 25.0 software (IBM Corporation, 

Armonk, NY) with p<0.05 as accepted significance and comparisons as described in 

Chapter 4 (Section 4.2.4). 

 

6.3 RESULTS 

6.3.1 Unilateral Heating Parameters 

 At the start of 7 day unilateral heating, a group of 3-week-old female mice (N=17) 

were partitioned out into the corresponding non-treated controls (N=5) and heat-treated 

saline (N=6) and IGF1-injected mice (N=6). At the experimental start, all mice were 

comparable in mass (F(2,16)=2.7, ns, p<0.12), weighing an average of 9.0g (Fig. 29A, 

Table 15). At skeletal maturity, mice were also comparable in mass (F(2,18)=2.3, ns, 

p=0.14), weighing an average of 23.0g. The overall gain in mass was therefore 14.0g 

with no significant differences between non-treated controls, saline mice treated for 7 

days, or IGF1-injected mice treated for 7 days, as determined by multiple comparison 
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analysis using one-way ANOVA (Table 15). At the start of 14 days unilateral heating, 

another group of 3-week-old female mice (N=12) were separated into heat-treated 

saline (N=6) and IGF1-injected mice (N=6). At the experimental start, all mice were 

comparable in mass (F(1,11)=0.1, ns, p=0.83), weighing an average of 10.0g (Fig. 29A, 

Table 15). At skeletal maturity, mice were also similar in mass (F(1,11)=2.5, ns, 

p=0.14), weighing an average of 22.5g. Although IGF1-injected mice (23.1g) overall 

gained about 1.0g more than the saline controls (22.2g), this was not statistically 

significant (F(1,11)=2.0, ns, p=0.19). Therefore, with either 7 days or 14 days of limb 

heating, mass remained comparable between groups from the start at 3 weeks of age 

until skeletal maturity at 12 weeks of age (Table 15).  

The core temperature averaged 36°C during unilateral heating. While mice were 

anesthetized, the average surface temperature of non-treated hindlimbs was 30°C and 

the heat-treated hindlimbs were 40°C. These recorded temperatures were consistent 

with parameters during the daily limb heating reported in previous chapters. As reported 

in Chapter 4, the recovery time from anesthesia was longer in IGF1-injected mice 

compared to saline controls in this study. At the end of each daily heat-treatment 

(40mins), the average time for saline mice to recover from anesthesia after 7 days and 

14 days of heating was 1.4±0.23mins and 1.1±0.04mins respectively. The average time 

for IGF1-injected mice to recover from anesthesia was 2.6±0.50mins and 2.7±0.40mins, 

which was significantly longer than the saline controls after both 7 days (F(1,11)=33.2, 

p<0.001) and 14 days (F(1,11)=101.9, p<0.001) of unilateral heating. 
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Table 15. Comparison of Mass Between Heat-Treatment Groups at the Start of 
Treatment and at Skeletal Maturity 

 
Values are mean (standard deviation). Sample size (N) is number of mice weighed. 
  

Length of Heat-Treatment Injection Mass at Start (g) 
3-weeks old 

Mass at End (g) 
12-weeks old 

Change in Mass (g) N 

None 

None 8.6 (0.8) 22.7 (1.0) 14.0 (0.9) 5 

7 days 

Saline 9.3 (0.4) 23.6 (1.1) 14.3 (1.2) 6 

IGF1 9.2 (0.3) 22.4 (0.8) 13.2 (1.0) 6 

14 days 

Saline 10.1 (0.7) 22.2 (0.9) 12.2 (1.3) 6 

IGF1 10.0 (0.4) 23.1 (0.9) 13.1 (0.9) 6 
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Figure 29. Mass did not Differ Between Non-Treated Controls, Heat-Treated Saline 
Control Mice, and Heat-Treated IGF1-Injected Mice at Either Duration of Limb 
Heating  
(A) Error bar plots comparing starting (open circles) (at 3 weeks of age) and ending 
mass (gray circles) (at 12 weeks of age) of starting and ending mass from mice 
separated for 7 days of heating. (B) Comparison of starting and ending mass from mice 
separated for 14 days of heating. Mean ± 1 standard error plotted.  
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6.3.2 Length of Long Bones Following 7 days of Heating 

 In non-treated control mice (N=7) humeral (paired t=1.5, ns, p=0.19), femoral 

(paired t=0.2, ns, p=0.84) and tibial length (paired t=0.95, ns, p=0.41) did not differ 

between left-right non-heated sides at skeletal maturity when mice were 12 weeks old 

(Fig. 30). Following 7 days of limb heating, there was no difference in humeral length at 

skeletal maturity in saline (paired t=0.21, ns, p=0.84) and IGF1-injected mice (paired 

t=0.42, ns, p=0.69) (Table 16). Femoral length was increased by 0.5% (paired t=2.1, ns, 

p=0.09) and 1.0% (paired t=5.8, p<0.01) on the heat-treated sides of saline and IGF1-

injected mice respectively (Fig. 30A(a), Table 16). Tibial length was increased by 0.5% 

(paired t=3.7, p<0.05) and 0.4% (paired t=2.5, ns, p=0.06) on the heat-treated sides of 

saline and IGF1-injected mice respectively (Fig. 30A(b), Table 16). No significant 

differences in humeral (p=0.91), femoral (p=0.16) and tibial length (p=0.96) were 

determined between saline controls and IGF1-injected mice.  
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Table 16. Comparison of Non-Treated and Heat-Treated Sides of Experimental 
Mice Bone Parameters Following 7 Days of Limb Heating. 

 
Values are mean (standard deviation). Sample size (N) is number of left-right pairs. 
Significantly larger on heat-treated side by one-tailed paired t-test: *p< 0.05; **p<0.01; 
ns, non-significant. Significant differences in percent increase between saline controls 
and IGF1-injected mice by one-way ANOVA: ns, non-significant. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Parameter Injection Non-Treated 
(30C) 

Heat-Treated 
(40C) 

Percent 
Increase 

N 

Humeral Length (mm) 

Saline 11.89 (0.16) 11.89 (0.17)ns 0.0 6 

IGF1 11.84 (0.16) 11.82 (0.12)ns -0.1ns 6 

Femoral Length (mm) 

Saline 15.46 (0.30) 15.53 (0.25)ns 0.5 6 

IGF1 15.21 (0.18) 15.36 (0.18)** 1.0ns 6 

Tibial Length (mm) 

Saline 17.55 (0.37) 17.63(0.33)* 0.5 5 

IGF1 17.38 (0.20) 17.45 (0.17)ns 0.4ns 6 
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Figure 30. Extremities Remained Longer on the Heat-Treated Sides at Skeletal 
Maturity when Limb Heating was Coupled with IGF1 Administration  
(A) Error bar plots show percent change in heat-treated limb compared to non-treated 
limb compare in saline and IGF1-injected mice treated for 7 days. (a) Femoral length 
was 0.5% and 1.0% longer on the heat-treated sides of saline and IGF1-injected mice 
(b) Tibial length was 0.5% and 0.4% longer on the heat-treated sides of saline and 
IGF1-injected mice. (B) Error bar plots compare % increase in bone length in saline and 
IGF1-injected mice treated for 14 days. (a) Femoral length was 0.6% and 1.0% longer 
on the heat-treated sides of saline and IGF1-injected mice (b) Tibial length was 0.1% 
and 0.8% longer on heat-treated sides of saline and IGF1-injected mice. Mean ± 1 
standard error plotted. *p< 0.05; **p<0.01; ***p<0.001, significance in left-right 
comparisons; #p<0.05 comparing % change in IGF1-injected mice with saline controls. 
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6.3.3 Length of Long Bones Following 14 Days of Heating 

 Following 14 days of limb heating, there was no difference in humeral length at 

skeletal maturity in saline (paired t=0.95, ns, p=0.39) and IGF1-injected mice (paired 

t=0.06, ns, p=0.95) (Table 17). Femoral length was increased by 0.6% (paired t=2.3, ns, 

p=0.07) and 1.0% (paired t=6.7, p<0.001) on the heat-treated sides of saline and IGF1-

injected mice respectively (Fig. 30B(a), Table 17). The increase in femoral length on 

heat-treated sides was comparable (F(1,11)=2.0, ns, p=0.19) between saline and IGF1-

injected mice. Tibial length increased by 0.1% (paired t=0.74, ns, p=0.49) and 0.8% 

(paired t=7.3, p<0.001) on the heat-treated sides of saline and IGF1-injected mice 

respectively (Fig. 30B(b), Table 17). No significant differences in humeral (p=0.89) and 

femoral (p=0.28) lengths were determined between saline and IGF1-injected mice, but 

the increase in tibial length on heat-treated sides of IGF1-injected mice was greater 

than saline (p<0.01). Overall, results demonstrate that a degree of heat-enhanced bone 

length is maintained into skeletal maturity when limb heating is coupled with 

administration of IGF1 and particularly following 14 days of unilateral heat-treatment.  
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Table 17. Comparison of Non-Treated and Heat-Treated Sides of Experimental 
Mice Bone Parameters Following 14 days of Limb Heating. 

 
Values are mean (standard deviation). Sample size (N) is number of left-right pairs. 
Significantly larger on heat-treated side by one-tailed paired t-test: *p< 0.05; **p<0.01; 
***p<0.001; ns, non-significant. Significant differences in percent increase between 
saline controls and IGF1-injected mice by one-way ANOVA: #p<0.05; ns, non-
significant. 
 

  

Parameter Injection Non-Treated 
(30C) 

Heat-Treated 
(40C) 

Percent 
Increase 

N 

Humeral Length (mm) 

Saline 11.73 (0.15) 11.74 (0.13)ns 0.1 6 

IGF1 11.90 (0.20) 11.90 (0.16)ns 0.0ns 6 

Femoral Length (mm) 

Saline 15.30 (0.08) 15.39 (0.15)ns 0.6 6 

IGF1 15.41 (0.14) 15.56 (0.14)*** 1.0ns 6 

Tibial Length (mm) 

Saline 17.42 (0.17) 17.44 (0.18)ns 0.1 6 

IGF1 17.49 (0.33) 17.63 (0.32)*** 0.8# 6 
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6.4 DISCUSSION 

  In this study, differences in long bone length were examined in skeletally mature 

mice (12 weeks of age) to determine if the resulting heat-enhanced limb lengthening in 

young mice (3-4 and 3-5 weeks of age) reported in previous chapters is sustained until 

adulthood. IGF1 therapy has been shown to effectively increase skeletal growth and 

when administered in conjunction with 14 days of unilateral heating augments heat-

enhanced limb elongation (Chapter 4). Therefore, this study examined the long-term 

impact of IGF1 administration in conjunction with limb heating.  

As reported in Chapter 4, immediately following treatment end points, femoral 

lengths of saline mice treated for 7 days and 14 days were 1.7% and 1.1% longer on 

heat-treated sides respectively. Femoral length of IGF1-injected mice treated for 7 days 

and 14 days was 1.7% and 1.9% longer on heat-treated sides respectively. This study 

reports significant increases in femoral length of IGF1-injected mice after 7 days (1.0%) 

and 14 days (1.0%) of treatment, but less than significant increases in femoral length on 

heat-treated sides of saline mice after 7 days (0.5%) and 14 days (0.6%) of treatment 

(Fig. 30A(a), B(a); Tables 16, 17). Femoral length compared between sides of non-

treated mice was equivalent. Data supported the hypothesis that differential limb length 

was maintained throughout skeletal development after treatments have ended, and 

more so when heating was coupled with IGF1 administration.  

These results are not analogous to those reported by Serrat et al. (2015) in 

another study comparing persistent left-right increases in femoral length at skeletal 

maturity following 14 days of treatment. Serrat et al. (2015) reported a significant 1.0% 

increase in femoral length in non-injected 12-week-old mice treated for 14 days. 
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Discrepancy between studies may be explained by variations in methodology. It can be 

speculated whether or not an augmented limb length differential at skeletal maturity 

would have also been seen if that study were done in conjunction with IGF1 

administration. It was also reported by Serrat et al. (2015) that femoral length was 1.3% 

longer on heat-treated sides of mice treated for 14 days. Importantly, both studies show 

that despite the significant increase in femoral length maintained into adulthood, length 

differential was not sustained by the same extent at skeletal maturity as immediately 

following treatment. The diminished differential in limb length at skeletal maturity may be 

explained by similar mechanisms to those regulating the phenomenon of “catch-up” 

growth. Typically, catch-up growth is explained as recovery in linear growth from 

growth-inhibiting conditions (Lui et al., 2011; Reich et al., 2008). During catch-up 

growth, growth plates increase activity. Further investigation would be needed to 

determine if the heat-enhanced linear growth accelerates the onset of growth plate 

senescence and the non-treated side thus partially “catches-up” to the heat-treated 

side.  

Since the growth plate at skeletal maturity no longer contributes to longitudinal 

growth, tibial growth plates were not collected for growth rate and histological analysis 

as in previous studies described thus far. Therefore, the tibia served as an additional 

long bone for comparison of length. Tibial length was 0.5% and 0.1% on the heat-

treated sides of saline control mice after 7 days and 14 days of heating respectively 

(Fig. 30A(b), B(b); Tables 16, 17). The IGF1-injected mice had an increase of 0.4% and 

0.8% in tibial length on the heat-treated sides following 7 days and 14 days of heating 

respectively. Based on tibial length, the IGF1-injected mice maintained a more 
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substantial differential in length compared to saline controls, but only with 14 days of 

heating. Similar to what was observed in femoral length, the non-treated control left-

right tibial length was nearly equivalent. One limitation in this study is the possible 

discrepancy in tibiae measurements from inconsistent disarticulation and cleaning of 

bones from mice after the 7-day heat-treatment. Multiple personnel were responsible for 

the process of obtaining clean tibiae for measurement and collecting whole tibiae for 

long bone measurements was not as practiced and concise as those done for femora 

and humeri. However, the same individual consistently collected all tibiae from the 14-

day experiments.  

 

6.5 CONCLUSION 

In conclusion, heat-enhanced limb length is maintained throughout skeletal 

development after treatments have ended, and more so when heating was coupled with 

IGF1 administration. Since other studies have shown that heat-alone can maintain limb 

length differential, repeated studies are recommended to increase sample size and gain 

a better understanding of the potential of limb length differences to be maintained into 

adulthood. Nevertheless, in this study, IGF1 has a role in permanently sustaining heat-

enhanced bone growth. Future studies will investigate if heat-treatment elicits 

permanent changes to the growth plate allowing for maintenance of the limb length 

differential, such as permanent increases in vascular supply. It is important to determine 

the full potential of unilateral heat-treatment in maintaining limb length differential in 

order to translate these methods to treatment in children with bone growth disorders 
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with the prospective of producing permanent changes to be upheld throughout 

adolescence.  
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CHAPTER VII: THERMAL IMAGING REVEALS TEMPERATURE RETENTION IN 
HINDLIMBS OF MICE AFTER TARGETED INTERMITTENT LIMB HEATING 

 

7.1 INTRODUCTION 

 The relationship between the vascular system (blood and vessels) and the 

epiphyseal growth plate is a complicated one. While bone is a highly vascularized 

tissue, growth plate cartilage is avascular and requires indirect vascular routes to supply 

nutrients and hormones that are essential for longitudinal bone growth (Brodin, 1955; 

Maes, 2013; Trueta, 1968). Temperature regulates vasculature (Serrat, 2014b). Heat 

increases blood flow in the limbs (Barcroft & Edholm, 1943; Chiesa, Trangmar, & 

González-Alonso, 2016) and exposure to warm temperature has also been shown to 

increase transport into the growth plate (Serrat et al., 2009, 2010, 2014a). Therefore, it 

is plausible that the heat-enhanced linear bone growth is enabled by changes in 

vasculature. 

Infrared thermal imaging is a technique that has been used to measure surface 

limb temperature in both clinical and veterinary applications (Inagaki, Ohno, Histome, 

Tanaka, & Takeshita, 1992; Jones, 1998; Soerensen & Pedersen, 2015; Turner, 2001) 

as well as in experimental settings (Dezechache, Wilke, Richi, Neumann, & 

Zuberbϋhler, 2017; McGreevy, Warren-Smith, Guisard, 2012; Tattersall & Milson, 2003; 

Tattersall, 2016). Tattersall and Milson (2003) captured infrared thermal images of 

golden-mantled ground squirrels to demonstrate a shift in blood flow to the periphery 

associated with cooling in hypoxic conditions. The advantage to using thermal imaging 

is methodology entails minimal stress to unanesthetized animals as a non-contact 

approach of acquiring skin temperature. Studies have shown that blood flow positively 
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correlates with skin temperature (Carter et al., 2014; Senay, Prokop, Cronau, & 

Hertzman, 1963; Song, Chelstrom, Levitt, Haumschild, 1989; Turner, 2001). Therefore, 

thermal imaging can be used to measure heat retention at the surface of the limb as an 

indicator of the extent of increased blood flow. If targeted limb heating results in an 

increase in blood flow as expected, it is hypothesized that skin temperature of heat-

treated limbs will remain elevated for an extended time following treatment.   

 

7.2 MATERIAL AND METHODS   

7.2.1 Infrared Thermal Imaging 

 As an extensive pilot study (IACUC approved) to determine the period of time in 

which limb temperature remains elevated on the heat-treated side after each daily 

regimen, female C57BL/6 (N=12) mice were obtained (Fig. 31). Experimental mice were 

treated with daily unilateral heat (40°C) under the same procedural conditions as 

described in previous chapters. Mice were treated for 7 days from 3-4 weeks of age 

(N=6) and 14 days from 3-5 weeks of age (N=6). No injections were administered. 

Infrared thermal images were captured at 320 X 240 resolution using a FLIR E8 infrared 

camera (sensitivity <0.06C in temperature range of -20 to 250°C). Images were 

captured 1 hour prior to limb heating and then 1, 4 and 8 hours post-heating. Imaging 

times were chosen based on a pilot study conducted prior to experiments that 

determined the optimal imaging settings. During the 7-day and 14-day heating regimen, 

5 separate days (over a total of 14 days of treatment) were chosen for imaging. 

Temperatures recorded over the 5 days (N=6 mice per day) were pooled at each time 
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point (N=5 recordings per time point) for a total of N=30 temperature recordings per 

time point.  

When each mouse was removed from the cage for imaging, the sleeping position 

was noted (if possible) to account for any positioning impact on surface temperature. 

Imaging intervals were chosen to avoid excessive imaging that negatively impacted 

daily gain in body mass. Mice were positioned consistently on a 4 inch cylindrical piece 

of polyethylene foam mounted to a mouse cage lid on a customized imaging cart. The 

camera was placed in a tailor-made stand at a 67.5° angle. Surface temperatures of the 

heat-treated (right) and non-treated (left) hindlimbs were obtained from calibrated 

images using the FLIR tools 2.1 software. Mean surface temperature was averaged 

from three different points along the distal end of each limb approximately above the 

tibia. 
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Figure 31. Infrared Thermal Imaging Schematic 
Mice were treated with 40°C unilateral heat for 40 minutes daily for 7 days from 3-4 
weeks of age or 14 days from 3-5 weeks of age. Thermal images of hind limbs were 
captured using a FLIR E8 infrared thermal imaging camera (2008 © FLIR® Systems, 
Inc) 1 hour prior to, and 1 hour, 4 hours, and 8 hours post-heating. Euthanasia and 
tissue collection occurred 1 day after the last day of heat-treatment. Mouse illustration 
based on “mouse clip art black and white” from clipartstockphotos.com. 
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7.2.2 Statistical Analysis and Sample Size 

 Statistical analyses were performed using SPSS 25.0 software (IBM Corporation, 

Armonk, NY) with p<0.05 as accepted significance. Non-treated and heat-treated side 

comparisons for surface temperatures were done using one-tailed paired t-tests. The 

one-way ANOVA with a Tukey post hoc test was used to determine significant 

differences between multiple treatment days that infrared thermal images were captured 

throughout the duration of limb heating. Data were reported as mean ± standard 

deviation (SD) in tabular format and as mean ± standard error (SE) in graphical format. 

Sample sizes for measurements that are documented as less than the size of the 

experimental sample set were a result of failure to confidently obtain surface 

temperatures from thermal images such as when the limbs were properly positioned. 

 

7.3 RESULTS 

7.3.1 Temperature Retention in Hindlimbs Post-Heating 

Hindlimb surface temperature of female mice (N=6) was assessed using infrared 

thermal imaging recorded over 5 days throughout the duration of limb heating. Data 

were pooled at each time point (1hr prior to heating, and 1hr, 4hrs and 8hrs post-

heating) since no significant differences were observed between the multiple treatment 

days that infrared thermal images were captured (F(1,29)=0.20, ns, p=0.94). Surface 

limb temperature was 31.1±0.2°C on the non-treated side (left) and 30.8±0.2°C on the 

intended heat-treated side (right), 1hr prior to treatment (Fig. 32A). The 0.8% difference 

in temperature was not significant between contralateral sides (paired t=1.6, ns, 

p=0.13). Surface limb temperature was 30.3±0.9°C and 30.4±0.9°C on the non-treated 
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and heat-treated sides respectively, 1hr following treatment (Fig. 32A). The 0.4% 

difference in limb temperature was not significant between contralateral sides (paired 

t=0.7, ns, p=0.51). Surface limb temperature was 31.1±0.7°C and 31.5±0.8°C on the 

non-treated and heat-treated sides respectively, 4hrs following treatment (Fig. 32A, B). 

The 1.2% increase in limb temperature on the heat-treated side was significantly 

warmer than the non-treated side (paired t=2.3, p<0.05). Surface limb temperature was 

31.1±0.9°C and 30.9±0.7°C on the non-treated and heat-treated sides respectively, 8hrs 

following treatment (Fig. 32A). The 0.4% difference in limb temperature was not 

significant between contralateral sides (paired t=0.8, ns, p=0.40). Therefore, limb 

temperature remained elevated on the heated side up to 4 hours after treatment. 

If apparent at the onset of imaging, the sleeping position of the mouse was noted 

to compare if the hindlimb surface temperature reflected the huddled position of the 

mouse during sleep. Since mice have been shown to demonstrate a degree of 

handedness (Biddle, Coffaro, Ziehr, & Eales, 1993), if they also displayed sleep position 

preference (left versus right side sleeping) that may account for the measured limb 

temperature differentials. However, while some positions were not obvious, the 

positions that were observed did not relate to measured surface limb temperature of 

individual mice. Therefore, sleeping position seemed to be independent of hindlimb 

temperature.  
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Figure 32. Thermal Imaging Shows Hindlimb Surface Temperature Remains 
Elevated up to 4 Hours Post-Heating  
(A) Error bar plot shows the difference in limb temperature between non-treated and 
heat-treated limbs at each time point (N=30, N=6 left-right limb temperatures pooled 
over N=5 days of heating). The heat-treated side was -0.8%, 0.4%, 1.2% and -0.4% 
warmer than the contralateral non-treated sides. (B) Captured infrared thermal images 4 
hours post-heating of non-treated (left) and heat-treated (right) hindlimbs. Image 
analyzed in FLIR tools using the iron color pallet to distinguish thermal profiles between 
23°C and 36°C. Warmer temperatures as seen by the lighter color profile, are observed 
on the heat-treated side.  
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7.4 DISCUSSION 

 Warm temperature increases blood flow in limbs (Barcroft & Edholm, 1943; 

Chiesa et al., 2016) and measured skin temperature is positively correlated to blood 

flow (Carter et al., 2014; Senay et al., 1963; Song et al., 1989; Turner, 2001). Thermal 

imaging data revealed that temperature remained elevated (1.2% increase) on the 

heated side up to 4 hours post-heating. Therefore, data support the hypothesis that skin 

temperature of heat-treated limbs will remain elevated for an extended time following 

treatment. Results indicate that targeted limb heating caused an increase of blood flow 

in the limbs that is sustained up to 4 hrs after treatment ends. It is possible that this 

retention in limb temperature is due to a heat-enhanced increase in blood flow that 

facilitates bone lengthening.  

Temperatures were nearly equivalent (0.4% difference) 1 hr following treatment 

suggesting a systemic post-anesthesia thermoregulatory response. By 8 hrs post-

heating, limb temperatures were again similar (0.4% difference) reflecting increased 

activity as mice approached the dark cycle. Another possible explanation for these 

results are exemplified in a study by Song et al. (1989) measuring blood flow in heated 

human forearms (40°C for 60 mins). They found that blood flow momentarily declined 

before increasing for several minutes and then rapidly declining corresponding with 

changes in volume and speed of red blood cells (Song et al., 1989). Comparable, this 

study demonstrated a similar trend in changes in skin temperature but over a period of 

hours instead of minutes. This time differential may be due to whole limb warming 

versus only a localized portion of the limb, as well as a much smaller animal (mouse) 

compared to humans.  
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 One important question at the start of this pilot study was whether or not heat 

retention was additive with consecutive days of heat-treatment. After collection of 

temperatures at various time points during different treatment days, no differences were 

seen in the mean hindlimb temperature at each time point. While hindlimb surface 

temperature remained elevated up to 4 hours after treatment, it was independent on the 

day of heating. Comparable temperatures recorded between the days of treatment 

indicated that temperature retention does not increase with additional days of heating, 

and heat-enhanced temperature effects occur within the first 4 hours post-heating.  

Results in this study suggest heat-enhanced linear growth is enabled by changes 

in vasculature since blood flow positively correlates with skin temperature (Carter et al., 

2014; Senay et al., 1963; Song et al., 1989; Turner, 2001). However, the means by 

which heat-induced changes in vasculature occur remain unknown. In addition to the 

transport and delivery of essential nutrients and hormones, the vascular system also 

has a role in the delivery of heat (Scholander, 1955; Serrat et al., 2008; Serrat, 2014b). 

Therefore, vasculature has the potential to facilitate limb growth through the delivery of 

warm blood to the growth plate and module temperature-sensitive genes and pathways.  

During endochondral ossification, hypertrophic chondrocytes secrete angiogenic 

factors that initiate vascular invasion and recruitment of bone absorbing and forming 

cells that replace mineralized cartilage with bone (van der Eerden et al., 2003; 

Filipowska et al., 2017; Gerber et al., 1999b; Horner et al., 1999; Hunziker, 1994b; 

Maes et al., 2004; Zelzer & Olsen, 2005). The key regulator involved in this process of 

endochondral ossification is vascular endothelial growth factor (VEGF) (Emons et al., 

2010; Gerber et al., 1999b). Other factors expressed in the growth plate, such as IGF1 
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(Ahmed & Farquharson, 2010; Álvarez-García et al., 2010), have also been shown to 

stimulate VEGF and induce vascular invasion.  

One method for assessing heat-induced changes in vasculature at the site of the 

growth plate is to study expression of angiogenic factors (VEGF and CD31) in 

hypertrophic chondrocytes with heat-treatment. A preliminary study collected (non-

quantitated) images of the proximal tibial growth plate from mice treated for 7 days from 

3-4 weeks of age dual stained with fluorescent antibodies against VEGF (magenta) and 

CD31 (yellow) (Fig. 31). Expression of angiogenic markers (CD31 and VEGF) appeared 

to increase in the hypertrophic zone on heat-treated sides. However, a method for 

standardizing and quantifying these images is necessary to determine significance.  

Another methodology for studying vascular changes at the growth plate is by 

multiphoton microscopy (MPM). MPM is a novel method of in vivo live animal imaging 

(Zipfel et al., 2003) and can be used to fluorescently label and track transport of small 

molecules into the growth plate (Serrat & Ion, 2017). Serrat et al. (2009, 2010, 2014a) 

have already shown that temperature increases solute uptake into the growth plate. By 

fluorescently labeling specific regulators or linear growth (such as IGF1 and VEGF), this 

method could be used in future studies to determine if targeted limb heating increases 

vascular transport of these molecules to the growth plate to promote heat-enhanced 

limb elongation. Although vasculature stands out as a key player in facilitating the heat-

enhanced limb growth response, it is also possible that heat may modulate 

temperature-sensitive genes and pathways through more direct mechanisms as an 

alternate to, or in addition to, vascular transport.  
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Figure 33. Expression of VEGF and CD31 Appeared to Increase in the Growth 
Plate on the Heat-Treated Sides  
Left-right comparison of proximal tibial growth plate from mice treated for 7 days from 3-
4 weeks of age. A greater trend in positive immunofluorescent staining for VEGF 
(magenta) and CD31 (yellow) was observed on the heat-treated sides. Sections were 
stained using immunohistochemistry methods and primary antibodies were detected by 
double immunofluorescence (IF). Mouse monoclonal antibody against VEGF (1:50, 
ThermoFisher Scientific, MA1-16629) and rabbit polyclonal antibody against CD31(1:50, 
abcam, ab28364) were detected by the VectaFluor Duet double labeling kit (Vector 
Laboratories, DK-8818) using Dylight® 488 anti-rabbit IgG and Dylight® 594 anti-mouse 
IgG. Since using a mouse primary antibody on mouse tissue, the Vector M.O.M. kit 
(Vector Laboratories, MP-2400) was used to eliminate high background staining. 
Imaged using the Leica DM2500 optical microscope and filters blue (DAPI), green 
(CD31) and red (VEGF) to detect fluorescence. Exposure was adjusted uniformly for 
both CD31 and VEGF, but DAPI was taken at a lower exposure (a great deal brighter in 
comparison). The same section of sample was taken at 20X for each filter for 
consistency when images were merged in ImageJ.  
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7.5 CONCLUSION 

While results from this extensive preliminary study support our hypothesis that 

skin temperature of heat-treated limbs will remain elevated for an extended time 

following treatment, future studies are necessary to further validate the connection 

between increased blood flow and linear growth. These studies will be important for 

determining if the duration of elevated skin temperature is associated with an increased 

blood supply to the growth plate. The results from this chapter preface future studies 

into possible mechanisms of the targeted heating-model, as it suggests a heat-induced 

increase in blood flow that accelerates bone lengthening. 
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CHAPTER VIII: CONCLUDING REMARKS AND FUTURE DIRECTIONS 

 

 Bone elongation disorders, whether congenital or acquired in origin, can lead to 

painful musculoskeletal disabilities in adulthood (Gurney, 2002). Intervention is 

recommended for children during critical stages of postnatal longitudinal bone growth. 

Existing treatment options to correct left-right asymmetry in limb length involve invasive 

surgery and/or drug regimens, which are often only partially effective (Gurney, 2002; 

Hasler & Krieg, 2012; Niedzielski et al., 2016; Pendleton et al., 2013; Sabharwal et al., 

2015; Stevens, 2016). Therefore, it is important to find alternative, less invasive 

treatment options for bone lengthening. Previous studies in weanling mice 

demonstrated that after 14 days of targeted limb heating (40°C) on one side of the body, 

femoral length (1.3%) and tibial elongation rate (>12%) increased on heat-treated sides 

(Serrat et al., 2015). The goal of this dissertation was to build upon an established 

method using targeted limb heating as a potential non-invasive alternative to enhance 

bone lengthening.  

The epiphyseal growth plate is the main site of longitudinal growth and the main 

regulator of local cartilage growth is IGF1. Therefore, investigation focused on the 

effects of temperature on chondrocyte morphology and IGF1 action in the growth plate. 

It was hypothesized that exposure to warm temperature augments the actions of 

IGF1 in the growth plate and permanently increases length of the extremities. The 

central aims of the study were 1) determine if IGF1 enhances bone elongation in heat-

treated extremities and 2) determine potential vasculature modifications and long-term 

extent of left-right limb length asymmetries resulting from unilateral heat-treatment.  
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 The application of the model for targeted limb heating (unilateral heating model) 

and its functional impact is described in Chapter 2. X-ray and weight bearing data 

indicated that even small discrepancies in limb length (nearly 1%) have a functional 

impact on hindlimb weight distribution (nearly 20%) in young mice. These findings set 

the foundation for following experiments using the unilateral heating model as a means 

to test the overall hypothesis. The impact of heat-treatment on the cellular level of the 

growth plate had previously been unexplored. Others have determined that the main 

contributing factors to longitudinal growth include the rate of chondrocyte proliferation 

and hypertrophy (Cooper et al., 2013; Farnum, 2007, Hunziker et al., 1987; Hunziker & 

Schenk, 1989; Hunziker, 1994b; Kember, 1993; Rolian, 2008; Walker & Kember, 1972; 

Wilsman et al., 1996a,b, 2008). It was expected that targeted limb heating would be 

accompanied by an increase in bone elongation, chondrocyte proliferation (assessed by 

PNCA expression in proliferative zone), hypertrophic zone height, and expression of 

IGF1 signaling (IGF1R, pIGF1R, pAkt) in growth plate chondrocytes. Mice treated for 7 

days from 3-4 weeks of age (determined in Chapter 2 and 3 to be an efficient age range 

for heat-induced bone elongation), femoral length (1.7%), tibial elongation rate (7.7%), 

hypertrophic zone height (8.6%) and chondrocyte proliferation (8.6%) increased on 

heat-treated sides of saline-injected controls (Chapter 3). There was also an increase in 

IGF1R (14.5%) and pIGF1R (7.7%) expression in the proliferative zone demonstrating 

heat-enhanced IGF1 activity in the growth plate (Chapter 5). Left-right limb length 

asymmetry, along with enhanced growth plate kinetics was also observed in mice 

administered a low dose of IGF1 (2.5 mg/kg, once daily) in conjunction with targeted 

limb heating. However, advanced bone elongation compared to heat alone (saline-
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injected controls) was only observed when IGF1 was administered with 14 days of heat-

treatment (Chapter 4).   

There was no heat-induced increase in the parameters assessing linear bone 

growth when IGF1 activity was blocked in JB1 injected mice and levels were low in 

GHR-/- mice (Chapter 5). The overall gain in mass, one physiological outcome 

subjective to changes in IGF1, did not differ between groups suggesting targeted limb 

heating affects local regulation of IGF1 in growth plate chondrocytes. Future studies 

may re-examine the potential differences between male and female mice that may be 

observed with heat-enhanced IGF1 activity in the growth plate. While previous studies 

showed no differences in heat-enhanced bone elongation between sexes (Serrat et al., 

2015) these mice were not administered IGF1.  

 In the preliminary investigation of heat-induced changes in vascular supply, skin 

temperature was measured by infrared thermal imaging. Limb surface temperatures 

were recorded prior to, and at various times following, unilateral heat-treatment. It was 

concluded that limb surface temperature remained elevated (1.2%) on the heat-treated 

sides up to 4 hrs post treatment (Chapter 7) but this heat-retention was not 

accumulative after consecutive days of heating. These results suggest that the retention 

in skin temperature may be due to an increase in blood flow that normalizes after 4 

hours of heat-treatment. To verify if there is a true correlation between the observed 

retention in limb temperature and increased blood flow, experiments to quantify blood 

flow (such as the Doppler method) would need to be conducted in conjunction with 

thermal imaging. In vivo multiphoton microcopy would also be useful to quantify if 
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increased blood flow correlates to increased delivery of growth enhancing molecules to 

the growth plate.  

An additional study to determine heat-enhanced changes to vascular supply 

observed angiogenic factors (VEGF and CD31) in hypertrophic chondrocytes by 

immunohistochemistry (IHC) analysis. Images seem to indicate an increase in VEGF 

and CD31 expression in hypertrophic chondrocytes signifying a heat-induced increase 

in angiogenesis in the growth plate (Chapter 7). Future studies will be necessary to 

quantify expression levels and to determine if increased expression of angiogenic 

markers is a result of heat-induced increases in transport of signaling molecules, or a 

result of temperature-sensitive genes and pathways (either directly or by indirect 

delivery of warm-blood through the vasculature). 

Long-term effects of heat-treatment were also assessed by the heat-induced left-

right asymmetries in limb length sustained at skeletal maturity (12 weeks of age) 

(Chapter 6). Femoral length was increased on heat-treated sides of saline (0.5%) and 

IGF1-injected (1.0%) after 7 days of unilateral heat-treatment. Heat-treated femora were 

also increased in saline (0.6%) and IGF-injected (1.0%) mice after 14 days of heating. 

While femoral length differential was observed at skeletal maturity at both durations of 

treatment, these differences were only statistically significant in mice administered IGF1 

during heat-treatment. Tibial length increase on heat-treated sides (0.8%) was also 

maintained in IGF1-injected mice at the 12 week of age endpoint, but only following 14 

days of treatment. Further studies will need to be done to understand how IGF1 

administration in conjunction with heating elicits a more permanent limb lengthening 

effect compared to saline control mice. Next steps of this study will also be to collect x-
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ray images and weight bearing data (as described in Chapter 2) at skeletal maturity to 

provide translation relevance.  

The purpose of this study was to build upon the established method using 

targeted limb heating. The findings reviewed in the chapters of this dissertation have 

achieved this by determining that heat-enhanced growth is dependent on IGF1 and its 

local regulation of growing cartilage, which may involve changes to vasculature supply. 

While aware that other factors play a role in regulating longitudinal bone growth, IGF1 

was the focus of these studies since it has been shown to be essential for normal linear 

growth. Throughout this dissertation the role of IGF1, GH and VEGF have been 

described in detail to regulate longitudinal bone growth in the growth plate (Fig. 34). 

Both endocrine (GH and IGF1) and autocrine/paracrine (IGF1 and VEGF) actions of 

these factors have shown to be important in regulating linear growth. However future 

studies will be needed to determine how heat-treatment affects GH and VEGF, as well 

as other factors that regulate chondrocytes of the growth plate, including the Ihh/PThrP 

feedback loop (not demonstrated in Fig. 34).  
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Figure 34. Diagram Summarizes the Action of Important Factors in the Different 
Zones of the Growth Plate  
(A) Demonstrates regions of the growth plate in which growth hormone receptor (GHR), 
insulin-like growth factor 1 receptor (IGF1R), IGF1 and VEGF are expressed. (B) 
Indicates the effects of GH, IGF1 and VEGF on growth plate chondrocytes. Illustration 
focuses on main factors discussed in this dissertation and excludes other endocrine and 
autocrine/paracrine factors that also regulate the growth plate. Illustration based on 
Mackie et al. (2008).  
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Filling gaps in these studies mentioned above would be beneficial for expanding 

upon the unilateral limb-heating model in the mouse. However, further studies using a 

larger animal model will be fundamental to advancing toward the ultimate goal of 

translating these methods clinically to humans in the hopes to develop an alternative, 

non-invasive treatment to enhance linear growth in children with bone lengthening 

disorders. The next step would be to use the targeted limb heating approach using 

larger animal models to work towards answering questions such as: how does 40°C 

heat-treatment translate into a larger animal? Is 40-minutes long enough to warm the 

entire limb and elicit lengthening effects (considering the threshold of heat-tolerance in 

larger animals)? What is the optimal period of postnatal growth in larger animals for 

heat-treatment (such as the comparable toddler to elementary school age in humans)? 

What device can be used to administer localized heat (such as a heating cuff)? This 

device would help control for uniform heating as an alternative to warming the entire 

side of the body done in mice. Continuing these studies using the targeted heating 

model may lead to new approaches to increase bone lengthening in children with linear 

growth disorders that would otherwise cause painful, chronic musculoskeletal conditions 

in adulthood. Summaries of the concluding remarks (Table 18) and future directions 

(Table 19), for this dissertation are found on the following pages.  
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Table 18. Summary of Concluding Remarks. 
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Table 19. Summary of Future Directions. 
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APPENDIX B: LIST OF ABBREVIATIONS 

 
ABC…avidin-biotin complex 

ALS…acid labile subunit 

BMP…bone morphogenic protein 

BrdU…bromodeoxyuridine 

CD31…cluster of differentiation 31 

DAPI…4’,6-diamidino-2-phenylindole  

EDTA…ethylenediaminetetraacetic acid 

ERK…extracellular receptor kinase 

FGF…fibroblast growth factor 

GH…growth hormone 

GHR-/-…growth hormone receptor knockout  

GnRH…gonadotropin releasing hormone 

GP…growth plate 

H2O2…hydrogen peroxide  

HSP…heat-shock protein 

HZ…hypertrophic zone of growth plate cartilage 

IF…immunofluorescence 

IGF1…insulin-like growth factor 1 

IGF1R…insulin-like growth factor 1 receptor 

IGF2…insulin-like growth factor 2  

IGFBP…insulin-like growth factor binding protein 

IHC…immunohistochemistry 
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Ihh…Indian hedgehog 

LID…liver IGF1-deficient  

LLD…limb length discrepancy 

MAPK… mitogen-activated protein kinase 

MPM…multiphoton microscopy 

OTC…oxytetracycline 

pAkt…phosphorylated Akt  

PBS…phosphate buffered solution 

PCNA…proliferating cell nuclear antigen 

PECAM1 (CD31)…platelet endothelial cell adhesion molecule 

PI-3…phosphatidylinositol-3  

PI3K…phosphoinositide 3-kinase 

pIGF1R…phosphorylated insulin-like growth factor 1 receptor 

PTHrP…parathyroid hormone-related protein 

PZ…proliferative zone of growth plate cartilage 

RZ…reserve zone of growth plate cartilage 

SD…standard deviation 

SE…standard error 

SQ…subcutaneous 

T3…triiodothyronine  

TKI…tyrosine kinase inhibitors 

TRα1…thyroid hormone receptor alpha 1  

TRβ…thyroid hormone receptor beta  
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VEGF…vascular endothelial growth factor 

WISP3…Wnt induced secreted protein 3  

Wnt…wingless/integrated  
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