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Figure 12: Flow Cytometric Analysis of ABC Transporter Expression Captured at day 8 

for Cultures Treated with 10nM Paclitaxel to Induce MDR.  

(A) ABCB1 expression in A549 cells after a single treatment of AUY922 followed by MDR 

induction with 10nM Paclitaxel (PTX) as described. (B) Quantification of the percentage of cells 

positive for ABCB1 captured at 192 hours. (C)ABCC1 expression in A549 cells after a single 

treatment of AUY922 followed by MDR induction with 10nM Paclitaxel (PTX) as described. 

(D) Quantification of the percentage of cells positive for ABCC1 captured at 192 hours.  

PTX=10nM Paclitaxel. Text before the slash indicates treatment conditions during the first 48 

hours of the experiment. Text after the slash indicates treatment conditions from days 4 to 6. All 

data is representative of the mean ±SEM of three independent experiments performed at least in 

duplicate (n=8). *P<0.05, **P<0.01, ****P<0.0001 

MDR phenotype. Furthermore, MDR induction with paclitaxel generated a robust double 

positive ABCB1 and ABCC1 population, which was not present in cultures that did not receive  

MDR induction with paclitaxel (data not shown). This was also where the greatest reduction in 

the MDR phenotype as a result of AUY922 treatment appeared to occur (Figure 13). This is a 

significant finding because ABCB1 and ABCC1 have considerable substrate overlap in  
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Figure 13.  Flow Cytometric Analysis Captured at Day 8 of All Four Populations of A549 

Cells after MDR Onduction on Day 4 with 10nM Paclitaxel (PTX)  

(A) (Top) Representative flow plots demonstrating strong induction of ABCB1+ABCC1+ 

(double positive) population that decreases under AUY922 treatment in a dose dependent 

manner. Text before the slash indicates conditions from hours 0-48, text after the slash indicates 

conditions from hours 96-144. (A)(Bottom) Same view, but with colors designating the four 

populations to give a sense of the heterogeneity within the cultures. (B) Quantification of the 

percentage of cells in all four populations captured on day 8 according to the colors in (A). Data 

is representative of the mean ±SEM of three independent experiments performed at least in 

duplicate (n=8). *P<0.05, **P<0.01, ****P<0.0001 
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chemotherapies commonly used to treat lung cancer (Sharom, 2008), and experimental evidence 

suggests expression of multiple ABC transporters are required for cancers to achieve multidrug 

resistance (Bartholomae et al., 2016; Marzac et al., 2011) (Robey et al., 2018).  This means that 

HSP90 inhibition with AUY922 has the potential to limit the formation of lung cancer cells that 

can generate the greatest efflux of chemotherapies across their cell membrane. 

LOSS OF MDR PHENOTYPE FROM AUY922 TREATMENT HAS A FUNCTIONAL CONSEQUENCE 

THAT IMPACTS A549 CELL SURVIVAL 

Our results indicating that treatment with AUY922 desensitizes A549 cells to induction 

of the MDR phenotype with paclitaxel suggest that these cells are more sensitive to cell death via 

paclitaxel treatment than controls treated with paclitaxel alone on day 4. However, given that 

ABC transporters are only one of several methods in which cancer cells can generate multi drug 

resistance, and the wide range of signaling pathways that may be altered by HSP90 inhibition, it 

is possible that we could be reducing one mechanism of multidrug resistance with AUY922 

while reinforcing another. To investigate if AUY922 altered the viability of A549 cells over the 

8-day period, we began tracking the culture growth at important time points in the experiment, in  

particular days 4, 6 and 8. A549 cells that received fresh medium every 2 days for 8 days showed 

classical unimpeded exponential growth, while A549 cells that received 20nM of AUY922 for  

the first two days followed by fresh medium every two days for the next 6 days showed a 

significant slowing of culture growth at each time point throughout the experiment, but an 

overall positive slope to the growth curve (Figure 14A).  

In the treatment groups that received 10nM of paclitaxel on day 4 followed by fresh 

medium on day 6, more complex changes in culture growth were observed. A549 cells that  
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Figure 14: Growth Curve during 8 Day ABC Transporter Experiments and Doxorubicin 

Efflux Assay  

(A) Growth curve of A549 cultures during the 8 day experiment after a single 48 hour 20nM 

treatment of AUY922. (B) Growth curve of A549 cultures exposed to 10nM of paclitaxel to 

induce MDR as described after 48 hour pretreatment with indicated doses of AUY922 (n=6). (C) 

Comparison of viable cells at hours 144 and hours 192 in cultures pretreated with 20nM 

AUY922 followed by MDR induction, indicating significant difference in viability. (D) 

Doxorubicin efflux assay representative flow cytometry histogram median fluorescence intensity 

of the total population of A549 cultures treated with 10nM of paclitaxel on day 4 (blue) and 

A549 cells pretreated with 20nM of AUY922 before receiving 10nM of paclitaxel on day 4 

(green). Black curve represents negative control. (E) Doxorubicin efflux assay quantification of 

the median fluorescence intensity of doxorubicin accumulation of the total cell population treated 

as indicated (n=8). In (B) and (C), text before the slash indicates conditions from hours 0-48, text 

after the slash indicates conditions from hours 96-144. All data is representative of the mean 

±SEM of three independent experiments performed at least in duplicate. *P<0.05, **P<0.01, 

***P<0.001, ***P<0.001, ****P<0.0001 
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remained untreated until they received 10nM of paclitaxel on day 4 showed a slowing of growth 

from days 4 to 6, but on days 6 to 8 demonstrated accelerated growth (Figure 14B black line). 

In contrast, A549 cells treated with 10nM and 20nM AUY922 showed a similar slowing of 

culture growth from days 4 to 6, but a dose dependent decrease in the slope of the growth curve 

from days 6 to 8 (Figure 14B orange and green lines). In the case of 20nM of AUY922 

treatment during the first two days, there was a negative slope to the growth curve from days 6-8.  

These results may be explained by our previous findings of reduced MDR phenotype in 

A549 cells pretreated with AUY922 captured on day 8 via flow cytometry (Figures 5 and 6). 

When A549 cells treated with AUY922 throughout the first 2 days of the experiment are unable 

to access the MDR phenotype during paclitaxel treatment during days 4-6, they cannot efflux 

paclitaxel when they receive fresh medium on days 6-8, thus promoting A549 cell death and a 

decrease in the slope of the growth curve during this time (Figure 14B, C).  

 This analysis only explains the role of ABCB1 in paclitaxel efflux, since ABCC1 

effluxes paclitaxel poorly (Borst, Evers, Kool, & Wijnholds, 2000). To account for both ABCB1 

and ABCC1 in the MDR phenotype and the results of the growth curve in cultures that received 

paclitaxel on day four, we decided to perform an efflux assay using doxorubicin as a fluorescent 

substrate. Doxorubicin is a substrate for both ABCB1 and ABCC1 (Sharom, 2008) and has 

intrinsic fluorescent properties that make it ideal to study drug efflux via flow cytometry. This 

method in using doxorubicin to study efflux activity of ABC transporters has been used by other 

investigators (Chen et al., 2015; Punia, Raina, Agarwal, & Singh, 2017) and we developed our 

assay in accordance with these studies. We performed the eight-day experiment just as before, 

but instead of immunophenotyping for ABCB1and ABCC1, we loaded the cells with 
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doxorubicin and provided a washout period to allow doxorubicin efflux, before analysis via flow 

cytometry. If our observation of the reduced MDR phenotype in AUY922 treated A549 cells is 

valid, these cultures should accumulate doxorubicin to a greater extent than A549 cells that 

received paclitaxel alone. Indeed, this was our result (Figure 14D), with significant change 

occurring in A549 cells that received 20nM of AUY922 (Figure 14E). Our efflux assay did not 

indicate a significant change between cultures that only received MDR induction with paclitaxel 

on day four compared to cultures treated with 10nM AUY922 before MDR induction with 

paclitaxel, even though there was a significant decrease in the MDR phenotype in these cells. 

This may be due to a threshold effect, where accumulation of drug in the A549 cell population 

does not occur unless transporter activity is reduced to a threshold level. 

Together, the growth curve analysis and the efflux assay serves to support the results of 

the decreased MDR phenotype in AUY922 treated cells captured via flow cytometry during the 

eight-day experiment. The growth curve analysis also shows that we are not engaging other drug 

resistance mechanisms that are sufficient to restore cell survival as a product of AUY922 

treatment. Furthermore, the resultant reduction in ABCB1 and ABCC1 positive fraction in the 

culture is sufficient to generate a functional consequence that leads to intracellular accumulation 

of chemotherapy, promoting cell death.    

Discussion 

Previous studies have implicated HSP90 in facilitating cellular mechanisms that drive 

metastasis and drug resistance in several cancer types, and that pharmacological HSP90 

inhibition can deconstruct these mechanisms (Chong et al., 2019; Nagaraju et al., 2015; 

Whitesell et al., 2014).  However, these studies only evaluated drug resistance and metastasis 

separately. Here we demonstrate that HSP90 inhibition with AUY922 can limit both metastatic 



50 

and drug resistant features in A549 NSCLC cells at the same clinically relevant dose. Moreover, 

these changes can be maintained even in the presence of strong inducers for metastatic and drug 

resistant phenotypes over a relatively prolonged time frame.  

Our findings support the work of others demonstrating HSP90 inhibition abrogates EMT 

in other cancers (Chong et al., 2019; Nagaraju et al., 2015). However, this is the first 

documentation of these observations in A549 NSCLC cells with AUY922. The increased E-

cadherin expression in our flow cytometry studies combined with our wound healing assays and 

TER measurements indicates that AUY922 treatment enhances cell-cell adhesion. This is 

pertinent to NSCLC, which is often locally advanced at the time of diagnosis (Gabor et al., 2004; 

Popper, 2016). Immediate intervention with low dose AUY922 may be a useful treatment 

strategy in preventing further progression of the metastatic cascade in these cancers.  

By carefully studying the flow cytometry plots during the four day EMT induction 

experiments, we also have evidence that HS90 inhibition with AUY922 simplifies the 

heterogeneity in the cultures relative to untreated or paclitaxel treated cultures in terms of E-

cadherin positive and E-cadherin negative cells.  In cultures that did not receive EMT induction, 

after a single treatment with AUY922, the culture shifts to mostly E-cadherin positive, whereas 

the paclitaxel cultures and the control have more balanced percentages of E-cadherin positive 

and E-cadherin negative populations. Under paclitaxel treatment, the heterogeneity is even more 

dramatic as the flow plots reveal what appear to be two distinct populations beginning to diverge 

from one another in the culture, whereas the control culture maintains a robust positive and 

negative population that is grouped close together. During EMT induction with TGF- β, 

AUY922 cultures do not transition as far as the two cultures that retained balanced positive and 

negative E-cadherin populations. Even on this relatively short time scale, these findings support 
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the hypothesis that HSP90 inhibition can reduce ITH such that it is less prone to acquiring 

metastatic properties.  

To the best of our knowledge, we are the first to document the relationship between 

HSP90 inhibition with AUY922 in A549 cells and reduced cell surface expression of ABCB1 

and ABCC1 with any HSP90 inhibitor in any cancer cell line. A single treatment with AUY922 

is enough to maintain a significant reduction in both ABCB1 and ABCC1 for up to 8 days. 

Moreover, pretreatment with AUY922 suppressed cell surface expression of ABCB1 and 

ABCC1, even when stimulated to induce ABC transporter expression with paclitaxel. We were 

able to demonstrate a functional consequence of these findings by tracking cell growth over the 

eight-day experimental timeline and through efflux studies using doxorubicin, which is a 

substrate for both ABCB1 and ABCC1, as a fluorescent drug accumulation marker. Our findings 

and experimental design are clinically relevant since both ABCB1 and ABCC1 are thought to 

play a significant role in drug resistant NSCLCs (Berger et al., 2005; Oshika et al., 1998; Ota et 

al., 1995; Volm et al., 1991), and paclitaxel is still used to treat NSCLC. Additionally, ABC 

transporters, in particular ABCB1, can contribute to drug resistance in other cancers (Goldstein 

et al., 1989; Sharom, 2008), potentially making our findings applicable to a wide variety of 

cancers.  

Here too, we see how AUY922 treatment simplifies the heterogeneity in the A549 culture 

populations when the MDR phenotype is induced. In control cultures that received MDR 

induction with paclitaxel, four populations of cells emerged in terms of ABCB1 and ABCC1 

surface expression. On the other hand, AUY922 treatment reduced heterogeneity in the cultures 

in a dose dependent manner, such that the cultures became increasingly double negative for 

ABCB1 and ABCC1 expression. This is further support for the hypothesis that HSP90 inhibition 
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also improving the quality of life for cancer patients during treatment.  

Study Weaknesses 

While we were effective at demonstrating HSP90 inhibition with AUY922 restricted 

development of metastatic and drug resistant phenotypes, our work has some weaknesses. First, 

we only demonstrated our findings in a single lung cancer cell line. We did some preliminary 

studies in H596 cells, another lung cancer cell line, but we could not get the same results. This 

may be because H596 cells were relatively insensitive to HSP90 inhibition with AUY922, with 

an EC50>100nM according to our measurements. This suggests these cells are not as dependent 

on HSP90 as A549 cells are for viability. This may make the changes we document here in terms 

of cell adhesion and ABC transporters with AUY922 treatment exclusive to cancers that have a 

greater dependence on HSP90 to maintain cellular functions. In terms of cancer treatment, this 

may mean that in order to maximize the success of AUY922 in the clinic, patients should be 

stratified according to the dependence their cancers have on HSP90 in maintaining cancer 

hallmarks. Taking biopsies at different tumor regions and assessing the level of oncogene 

interaction with HSP90 via a co-immunoprecipitation assay optimized for the clinic could 

accomplish this. The more oncogenes that are associated with HSP90, the more likely a patient 

may benefit from HSP90 inhibitor therapy.  

Another putative weakness is that this work lacks reproduction in an in vivo setting. We 

say putative here because as pointed out by others (Robey et al., 2018), one major confounding 

factor in delineating the relationship between multi drug resistant cancers and ABC transporters 

was that normal tissues and infiltrating immune cells that make up the tumor stroma also express 

ABC transporters, making it difficult to accurately assess changes in ABC transporter expression 

specifically occurring in neoplastic tissue. Therefore, it was reasonable to begin studying how 
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HSP90 inhibitors like AUY922 alter ABC transporters in vitro since this had never been studied 

before. However, the assertions made in this piece are significantly weaker without reproducing 

our results in vivo. 

Contributions to the Field and Future Directions 

Despite its weaknesses, this work has made some significant contributions to the field of 

medicine and cancer biology. Since our approach was relatively straightforward using very basic 

cell culture techniques, numerous future studies can be developed from these findings. 

Moreover, A549 cells are well studied and accessible to most research universities across the 

country, adding to the utility of the work presented here.  

As previously stated, manipulating ABC transporters in multidrug resistant cancers has 

been attempted in the past with small molecule inhibition, but has come up short in delivering 

clinical efficacy (Robey et al., 2018). Here we show that it is possible to simply remove ABC 

transporters from the cell surface with AUY922, neutralizing their ability to efflux drugs from 

A549 NSCLC cells. Other cancer types prone to ABC transporter driven drug resistance should 

be studied for down regulation in ABC transporters when exposed to low doses of AUY922. 

These would include colorectal, pancreatic, liver, and breast cancers to name a few (Begicevic & 

Falasca, 2017). Additionally, other HSP90 inhibitors should be explored for this effect as well.  

HSP90 inhibitors like AUY922 that do not require dissolution in DMSO should be the primary 

focus since DMSO can induce ABC transporter expression (Nishimura, Ueda, & Naito, 2003).  

The influence AUY922 has on ABC transporters in A549 cells shown in this work should 

be investigated in more detail to develop strategies to apply this effect in normal tissues. The 

ability to manipulate ABC transporter expression in normal tissues is relevant to medicine since 

it may improve bioavailability and tissue penetration of pharmacological therapies. For example, 
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a reason some drugs are not orally bioavailable is due to ABC transporter expression in the gut 

lining that pumps drugs back into the lumen before they can reach the basolateral membrane and 

cross into the bloodstream, significantly reducing the therapeutic effect of some drugs (Dietrich, 

Geier, & Oude Elferink, 2003). Furthermore, the blood brain barrier of the central nervous 

system is covered in ABC transporters that serve to protect it from xenobiotic insult, but 

becomes a significant obstacle for physicians attempting to apply pharmacological therapy to the 

central nervous system (Begley, 2004). It is unlikely that normal tissue will behave in the same 

way as neoplastic tissue when exposed to AUY922 because neoplastic tissue contains more 

activated HSP90. But if a mechanism can be identified in A549 cells that drives the reduced 

MDR phenotype when exposed to AUY922, that mechanism can be explored in detail in normal 

tissue and potentially exploited to down regulate ABC transporters to aid therapies in reaching 

their target tissue.  

Finally, this work is distinct from other cancer research in that it successfully 

demonstrates the possibility of diminishing metastasis and drug resistance together, at the same 

dose, with a single drug. This is a significant discovery since the cellular mechanisms driving 

metastasis and drug resistance we show here are not known to operate through shared cellular 

mechanisms. Here we show evidence they are linked by HSP90. A549 cell xenograft studies in 

mice should be carried out immediately to evaluate whether the changes in metastatic and drug 

resistant features we observed with AUY922 in vitro are carried over in vivo. AUY922 should be 

administered to mice in low doses paired with paclitaxel or other chemotherapies in a clinically 

achievable treatment schedule. Mice should be followed for several months to evaluate 

progression of their tumors. Other HSP90 inhibitors that have shown success in low doses, such 

as ganetespib, should also be evaluated in parallel. If successful, this makes a strong case for 
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designing human clinical trials using HSP90 inhibitors in low doses to simultaneously restrict 

metastasis and drug resistance from developing in a patient’s tumor.  

Final Remarks 

Clinical trials have demonstrated that AUY922 and other HSP90 inhibitors are more 

potent in combination with other conventional chemotherapies (Bendell et al., 2015; Johnson et 

al., 2015; Kong et al., 2016; Modi et al., 2011) than by themselves (Doi et al., 2014; Piotrowska 

et al., 2018; Seggewiss-Bernhardt et al., 2015). This is uncannily similar to the the antibiotic, 

clavulanic acid. Clavulanic acid is a weak antibiotic on its own (Brumfitt & Hamilton-Miller, 

1984), but when combined with beta-lactam antibiotics, significantly potentiates their action 

through inhibition of microbial derived lactamases. Lactamase activity is an adaptive mechanism 

microbes developed to fight beta lactam producing fungi and is the main source of treatment 

failure of beta lactam antibiotics (Sykes, 2010). This was a significant problem until clavulanic 

acid was discovered, and it essentially revived a whole class of antibiotics that were rapidly 

becoming obsolete. Now, clavulanic acid is routinely used in combination with beta lactam 

antibiotics to successfully treat microbial infections resistant to beta lactam monotherapy.  

The heat shock response, which is considered an adaptive response to cellular stress 

(Schlesinger, 1990), is known to play a significant role in cancer progression (Calderwood & 

Gong, 2016). Furthermore, a major chaperone protein integral to the heat shock response, 

HSP90, appears to support the evolution of metastatic and drug resistant cancers, which are 

responsible for the bulk of treatment failure. This is further strengthened when considering that 

HSP90 has multiple protein clients in each of the original six hallmarks of cancer (Hanahan & 

Weinberg, 2000) (Figure 4) including the hallmarks of “resistance to apoptosis” and “activation 

of invasion and metastasis”. The results presented here demonstrate that AUY922, a potent 
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HSP90 inhibitor, can limit some of the phenotypic changes associated with metastatic and drug 

resistant cancers simultaneously. To date, there is not a class of drugs specifically used to 

suppress the evolution of metastatic and drug resistant phenotypes in cancer like there have been 

for the evolution of drug resistant microbial infections in the case of clavulanic acid. Could 

AUY922, and other HSP90 inhibitors, be operating like clavulanic acid by targeting an adaptive 

mechanism that many cancers appear to rely on to evolve metastatic and drug resistant 

phenotypes, both of which are responsible for treatment failure? Our results in addition to others 

certainly support that notion. Perhaps it is time to begin taking a closer look at using HSP90 

inhibitors to shape the cancer, rather than kill it, to improve cancer treatment outcomes. 

It is also possible that HSP90 inhibition in cancer has less to do with directly 

hamstringing HSP90’s adaptive function and more to do with reducing ITH and revealing 

evolutionary “dead ends” stored in HSP90’s capacitor function. Since HSP90 chaperones clients 

in every core cancer hallmark, limiting its function significantly reduces a cancer’s ability to lean 

on any individual cancer hallmark to maintain survival since their gene products would all be 

simultaneously compromised (Figure 15). This may force the emergence of phenotypes that are 

far less aggressive and may actually represent evolutionary “dead ends”. In terms of the natural 

course of cancer, this refers to phenotypes that are less metastatic and drug resistant. We have 

some evidence for that here in this work. Another possible evolutionary “dead end” could be  
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Figure 15: Hypothetical Illustration of HSP90 Inhibition Crippling Tumor Evolution 

As in previous illustrations, HSP90 is shown orchestrating the cancer hallmarks in order to 

promote evolution of three tumor phenotypes (orange, pink purple), with enlarged colored boxes 

to denote the collective level of dependence the tumor has on the cancer hallmarks (LEFT). 

HSP90 inhibition shuts down the cancer hallmarks simultaneously, denoted by the shrunken 

colored boxes, bringing the tumor to a new state that is less able to evolve new neoplastic 

characteristics (sea green crosshatches). This may reveal evolutionary “dead ends” hidden in the 

cancer’s genome, making the neoplasm more vulnerable to selective pressures it previously 

evolved to thwart, such as the immune system and chemotherapy. 

resensitization of cancer cells to the immune system.  There is already some evidence for this 

forming in studies demonstrating that ganetespib can sensitize cancer cells to T-cell mediated 

anti-tumor responses (Mbofung et al., 2017), though they do not discuss their findings in terms 

of tumor evolution. Revealing these evolutionary “dead ends” could fundamentally alter the 

trajectory of tumor evolution, perhaps even resulting in sustained tumor remission.  

Given the complex nature of the mechanisms that drive metastasis and drug resistance in 

cancer, HSP90 inhibitors are unlikely to be a silver bullet. If we reframe cancer as a moving 

target that strives to evolve metastatic and drug resistant features over time according to the 
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theory of tumor evolution, we may discover alternative ways to prevent these features from 

manifesting in the first place. Therefore, more work should be dedicated to identifying cellular 

mechanisms and microenvironmental factors that drive both metastasis and drug resistance from 

the earliest stages of carcinogenesis to the final stages of advanced disease. If possible, we 

should develop drugs against single targets that are essential in driving both metastasis and drug 

resistance so as to leave room for combination therapy with cytotoxic agents to control tumor 

growth. Some investigators have already started working on this idea (Cao et al., 2018). This 

may not turn out to be the most effective way to kill the cancer outright, but if we can prevent 

drug resistance and metastasis from developing, there is a good chance we can control the 

disease and extend the lives of cancer patients. Even more, we may learn that approaching cancer 

treatment in this way may not require the levels of cytotoxic therapy currently recommended for 

cancer treatment, thus significantly improving the quality of life for patients during the treatment 

process. 
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