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Introduction

Basement Membrane

Surrounding tissues such as muscle, nerve and adipose is a complex of proteins

and carbohydrates which forms the extracellular matrix (ECM). The region of the ECM

directly adjacent to a cell population is known as the basement membrane. This term

arose from microscopic examination of the extracellular matrix and was originally used to

designate a layer which was stained by the periodic acid-Schiff reaction. Electron

microscopy revealed subdivisions of this layer, termed basal laminae, which contained an

electron dense core (lamina densa) sandwiched by less dense layers (lamina lucida). The

lamina lucida was determined to be in contact with the cellular component of the tissue

(Junqueira 1989). Studies of the molecular composition of the basement membrane have

revealed, among other glycoprotein components, a unique type of collagen (Type IV),

heparan sulfate proteoglycans and the glycoprotein Laminin (Ln) (reviewed in Timpl

1989).

Characterization of the laminin molecule has shown it to be both abundant and

ubiquitous. It is the second most plentiful glycoprotein of the extracellular matrix after

collagen. Biochemical and ultrastructural studies of polymers of extracellular matrix

components have shown that Ln is capable of binding with a number of components,

making it a probable initiator for matrix formation (Yurchenco et al. 1992). Furthermore,

a number of different Ln variants have been discovered and characterized in tissues

1
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throughout the body. Seven mammalian isoforms, Ln-1 through Ln-7 (Burgeson et al.

1994), have been characterized as to their protein composition and tissue distribution.

Four more laminins are newly described and named Ln-8 through Ln-11 (Miner et al.

1997). Laminin is now generally referred to as a “family” of glycoproteins (Tryggvason

1993).

Laminin Structure

The laminin glycoprotein is comprised of three chains: a, P, and y (Figure 1).

Electron microscopic images of the Ln molecule show a cruciform shape which is divided

into a long arm and three short arms. The long arm has been measured at 77 nm and the

short arms measure 36 ± 6 nm for the Ln-1 glycoprotein (Beck et al. 1990). The C-

tcrminal regions of these three chains combine to form the rod-like long arm, which is

stabilized at either end by disulfide bonds, and the N-terminal portion of the chains each

form a short arm (Deutzmann et al. 1988; Beck et al. 1990; Antonsson et al. 1995). All Ln

isoforms described to date contain the characteristic a, p, y chain complement (Burgeson

et al. 1994). To date five a chains, three P chains and two y chains are cloned and the

primary protein structure is known (reviewed in Burgeson et al. 1994; Miner et al. 1995;

livanainen et al. 1997). These chains assemble into 11 Ln variants (Burgeson et al. 1994;

Miner et al. 1997; and see Figure 2).

2
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Figure 1.

Laminin-1 Trimeric Structure
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Figure 1. Ln-1 (formerly EHS [Engelbreth-Holm-Swarm tumor] laminin) is depicted

as a representative example of the trimeric structure of the Ln glycoprotein. The structural

domains are labeled for each chain. In order from the C-terminus they are: I-VI for yl; I,

a, and II-VI for 01; G, 1/ II, Illa, IVa, Illb, IVb, V and VI for al. Domains I and II of yl

and 01 plus domains G and 1/ II of al comprise the long arm of the cruciform protein.

Domains III - VI of each chain comprise a short arm. The circular regions of the short

arm depict globular domains; these are domains IV and VI in the case of the yl and 01

chains, and IVa, IVb and VI in the case of the al chain. Domains III and V of both the yl

and 01 chains as well as domains Illa, Illb, and V of al are rich in EGF-like repeats

(represented as oblong shapes). The wavy lines of the long arm depict domains with high

a-helical content that interact to form a coiled-coil. The bars connecting the chains in the

long arm represent disulfide bonds that stabilize the coiled- coil. Also shown is the region

comprising the E8 protease fragment of the long arm that was used in the original studies

of trimer formation. It consists of most of the domain I of the yl and 01 chains plus the

homologous region of the a chain, along with 4 of 5 disulfide loops of the G domain .

4
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Figure 2. The seven recognized laminin variants (Ln-1 - Ln-7) are shown with respect

to their a, (3 and y chain isotypes. Also shown are two additional a chains which have

been cloned, and are assigned to presumptive trimers Ln-8 - Ln 11 (not shown). The a3,

a4 and y2 chains are all truncated isotypes.The a 5 chain has a longer short arm due to

increased numbers of EGF-like repeats in domains Illa and V, and its domain IVb is

larger than those of al and a2 (577 amino acids to 196 amino acids). The a3 protein has

two forms, A and B. The A form is truncated at the Illb domain, while the B form adds a

small domain IV, unique among the chains. Chain a4 is comprised of domains G, I/II and

III with 34 extra amino acids (not assigned to a domain) at the N-terminus. The y2 chain

is truncated within its domain IV. These trimeric glycoproteins comprise the Laminin

“family”.

6
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Using computer-generated models of protein secondary structure, which are based

divided into six domains, I - VI, which correspond to structural motifs or groups of

structural elements (Sasaki et al. 1987a-b). In the case of the P chains, there is an

additional domain, a, between domains I and II (Sasaki et al. 1987a). Similarly, the a

chain is divided into domains I, II, Illa, IVa, Illb, IVb, Vand VI with a unique G

(globular) domain at the C-terminus (reviewed in Beck et al. 1990).

The long arm of the laminin trimer is formed by interaction of domains I and II of

the chains; these domains have a secondary protein structure which is primarily a-helical

(Barlow et al. 1984). The short arms vary according to which chain isotypes comprise the

trimer. For instance, the a3, a4, and y2 chains are all truncated within their short arms at

domain Illa, IVa and III, respectively (reviewed in Miner et al. 1997). In the full length

chain isotypes the short arms have globular domains (IV and VI) and a number of

repeated EGF-like motifs which have since been found in other extracellular matrix

proteins and are now classified as Ln- EGF-like domains. These repeats, named for their

homology to epidermal growth factor, consist of 50 - 60 amino acid residues which are

predicted to form four disulfide-bonded loops based on placement of cysteines and the

known structure of EGF (Mayer et al. 1995).

The final characteristic structural motif of the laminin chains is the globular G-

domain, found at the C-terminus of all known a chains, which contains five loops formed

7
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by intramolecular disulfide bonds. This domain of the Ln protein has been extensively

studied for its cellular adhesion properties. However, binding sites for other basement

membrane glycoproteins as well as for cell surface receptors have been mapped to sites

throughout the trimeric structure of Ln-1 (reviewed in Timpl 1989 and Beck et al. 1990).

This suggests that Ln was formed by the incorporation of a number of functional motifs

into a multifunctional glycoprotein. With the globular domains of the short arms and the

G-domain of the a chain at the C-terminus of the long arm, the trimeric molecule looks

like a cross with beads at its ends and along the crossbeam when visualized by rotary

shadowing and electron microscopy (Beck et al. 1990). This molecular anatomy of three

short arms and a rod-like long arm projecting out in three dimensions may allow laminin

to form a complex independent network which acts as a foundation for basement

membrane formation (Yurchenco et al. 1992).

Alpha-Helical Secondary Structure in Proteins

Perhaps the most well studied and recognizable secondary structure within proteins

is the alpha-helix. In the past decade the number of known crystalline structures of

proteins has become large enough such that a number of proteins containing a-helix

secondary structure have been characterized and their dimensions measured. With the

advent of techniques that allow cDNAs to be rapidly isolated and sequenced, the primary

amino acid sequence of a protein can be deduced. By comparing crystallographic data of

8



a protein to its deduced amino acid sequence, protein chemists have created theoretical

algorithms that can now predict secondary structure from primary amino acid sequence

with fairly high accuracy (Lupas et al. 1991; Cohen and Parry 1994). Therefore, the

secondary structure of a gene product can be determined before the purified protein is

isolated. Once the protein is isolated and purified, it can be subjected to biophysical

measurements that will in turn test the efficacy of the algorithms which predicted its

secondary structure.

These algorithms have allowed researchers to determine the amino acid sequences

that constitute an a-helix. Pauling first described the a-helix as a recognizable protein

secondary structure, and it has since been determined that a-helical regions contain

patterned repeats of seven amino acids which complete two turns of a helix (reviewed in

Cohen and Parry 1990). This secondary structure is stabilized by the formation of

O bond of the n amino acid and the amino (NH) grouphydrogen bonds between the C

of the n+4 amino acid (Branden and Tooze 1991).

The amino acids within the heptad repeat are designated by lower case letters, a -

g, thus an a-helix can be written as (abcdefg)n. Within this repeat, charged amino acids

occur with high frequency at the “e” and “g” positions and apolar residues occur in the

hydrophilic and hydrophobic amino acids creates “faces” down the sides of a-helices

(Beck et al. 1993). Often proteins will be folded so that the hydrophobic face is tucked

9
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into the interior of a protein, thus minimizing the interaction with the aqueous

environment (reviewed in Branden and Tooze 1991). In the case of laminin chains, it is

believed that the charged (hydrophilic) face plays an important role when a-helices

interact during protein subunit assembly (Beck et al. 1993; Nomizu et al. 1996).

Cohen and Parry (1990) defined the interaction of two (or more) right-handed a-

helices which wrap around each other to form an even more stable left-handed supercoil,

as a coiled-coil. These coiled-coils are ubiquitous motifs for assembling proteins into

tertiary and quaternary structures. Transcription factors, intermediate filaments and

extracellular matrix proteins all have examples of subunits interacting via coiled-coils

(Cohen and Parry 1990; Lumb and Kim 1995). Examination of a large number of

GenBank sequences and comparison of coiled-coil proteins to those proteins having little

or no a-helical structure allowed one group of researchers to compile a coiled-coil index.

This gives a predictive score for the presence of a particular amino acid in each of the

seven positions of a heptad repeat that interacts with another a-helix (Lupas et al. 1991).

Some notable findings are: charged amino acids (Lys, Arg, Glu, Asp) have high relative

occurrence at the “e” and “g” positions (as expected), leucine residues occur with high

frequency at the “a” and “d” positions, and proline and tryptophan, which disrupt the a-

helical structure, are almost completely absent. This study noted that the region from

amino acid 1027 to 1559 of the Ln yl chain was clearly a coiled-coil, but did have

regions of “low stability”, i.e. it was not rigidly coiled-coil (Lupas et al. 1991). Using

10



computer algorithms and statistical studies of deduced amino acid sequences some

differences in the amino acid composition have been found in a-helices which interact in

pairs versus those which interact in triplets; particularly, charged amino acids and

branched side chain amino acids have different distributions within the heptad repeat

(Cohen and Parry 1994). Another feature of coiled-coil interactions, gleaned from studies

of de novo synthesized peptides, was that placement of alanine amino acids in the heptad

repeats was different in parallel versus anti-parallel coiled coils (Monera et al. 1996). (a-

helices which come together at their N-terminal ends or C-terminal ends are parallel

coiled coils; those with the N-terminal end of one a-helix interacting with the C-terminal

end of the second a-helix are anti-parallel).

A number of biophysical studies of full-length trimeric Ln and chain fragments

have confirmed that the Ln trimer long arm is a three chain, parallel coiled-coil (I. Hunter

et al. 1990; Antonsson et al. 1995; Nomizu et al. 1996). Interactions of a-helical units

which produce higher ordered structures have led to predicted schemes for amino acid

alignment which produce two- and three-stranded coiled-coils (McLachlan and Stewart

1995). Two a-helices h and h with heptad repeats fl-g and a ’-g\ respectively, are

predicted to align such that the e amino acids interact with the g' amino acids and the g

amino acids interact with the e' amino acids (see Figure 3). The addition of a third helix

h” (heptads a ”-g”) forms a three-stranded coiled-coil where the pairs e”-g', e -g, and e-

g” interact to align the chains (Cohen and Parry 1990; Beck et al. 1993).

11
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Figure 3. A top down view of the heptad repeat structure of a-helical protein

domains. Letters “a”through “g” represent amino acid positions within the heptad repeat.

In three dimensions the a position is at the bottom with the b through g positions spiraling

upward as a coil. Within a given repeat, apolar amino acids occur with increased

frequency at the a and d positions and charged amino acids have a higher occurrence at

the e and g positions. When a-helices (here labeled A, h ’ and h ”) interact as part of

coiled-coils the heptad repeats show characteristic patterns of intermolecular interactions.

The apolar residues at the a and d positions of opposing helices generally face each other

allowing strong electrostatic interactions (dashed lines) to occur between the charged

amino acids at the e and g positions to occur. The combined effects of hydrophobic

interactions of apolar residues and electrostatic interactions of the charged residues can

produce chain interactions with a very high dipole moment. (A) In the case of a two a-

helices coiled-coil, electrostatic interactions of the intermolecular pairs e-g’ and e’-g

stabilize the structure. (B) For three stranded coiled-coils the following pairs of amino

acids form electrostatic interactions: e’-g”, e”-g and e-g’.

13



In the two-stranded alignment the a and d apolar residues face the d’ and a' residues,

the stability of the coiled-coil structure (Cohen and Parry 1990). These interactions are

diagrammed in Figure 3.

Laminin Trimer Assembly

It is known that certain cell types, such as skeletal and smooth muscle, can

synthesize and secrete more than one Ln variant (Green et al. 1992; Glukhova et al. 1993;

Martin et al. 1995; Walker-Caprioglio et al. 1995) . How a cell correctly assembles the

various chains to form the different Ln isoforms, and what sequences are involved in

specific chain interactions, are still largely unknown. To answer these questions

researchers have focused on the C-terminal a-helical regions of domain I within the

chains.

Results from a number of biophysical studies of chain interactions support the a-

helical nature of domains I and II of the Ln chains (Deutzmann et al. 1988; Beck et al.

1990; I. Hunter et al. 1990 & 1992). Analysis of the amino acid sequence of these

domains showed the presence of the characteristic heptad repeat of an a-helix. After

alignment of these heptad repeats using two different theoretical paradigms, Beck et al.

(1993) predicted both strong interactions between the P and y chains and the formation of

14

a ”-d, a '-d ” and a -d’ (Figure 3-A and B) This packing of apolar residues accounts for

respectively. In the three-stranded coiled-coils the closest intermolecular apolar pairs are



a-P-y trimers, based on proposed ionic interactions of the charged amino acids on

adjacent faces of the interacting laminin chains. Homodimers of two P chains or two y

chains (p-p or y-y) were predicted to interact poorly in this model.

Experimental support for this theoretical model was described by I. Hunter et al.

(1990), using the E8 C-terminal protease fragment of Ln (Figure 1). This fragment

contains most of domain I of all three chains of Laminin-1 plus a large portion of the G

domain of the a 1 chain. When dissociated in urea and then reconstituted, this three chain

fragment reassembled into a trimer indistinguishable from native E8, but only if the P and

y fragments were first separated from the a fragment and allowed to form dimers. These

results were evidence that the order of trimer formation was P plus y, then a.

Bacterially expressed peptides (-100 to - 200 amino acids), corresponding to the

C-terminal region of each of the chains, were used to show interactions of P with y as

well as interactions of p-y with a. The same studies detected no P-p or y-y interactions.

Furthermore, deletion studies of the y 1 chain localized two separate C-terminal sites of

approximately 10 amino acids each, one involved in dimer formation and the other in

trimer formation (Utani et al. 1994). In vitro mixing experiments suggested that the most

thermostable peptide dimer was P1 -p 1. However, since pi and y 1 peptides when mixed

together formed predominantly pi-y 1 dimers, it was concluded that kinetics favored

heterodimer and heterotrimer formation (Nomizu et al. 1994). Recently a more detailed

hypothesis of Ln chain assembly has been proposed. In this model the p and y chains

15
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interact to form a heterodimer with an “acidic pocket”, which is a less stable structure,

then the a chain fits into the “pocket” via a basic site to create the stable coiled-coil

heterotrimer (Utani et al. 1995; Nomizu et al. 1996). Kammerer et al. (1995) confirmed

the high thermostability of the P-y and p-p recombinant peptide dimers, but could not

confirm either the presence of a dimerization site or that interactions of the C-terminal

100 amino acids alone could account for the specific Ln chain interaction. These

biochemical and biophysical studies of laminin fragments strongly implicate the C-

terminal amino acids of the laminin molecule as the determining factors in the specificity

of chain assembly.

The cloning of numerous full-length cDNAs for the various chain isoforms, some

from more than one species, and the ability to express recombinant full-length Ln chains

has led to the study of intracellular assembly of both full-length and truncated laminin

chains. Yurchenco et al. (1997) showed that the al chain can be secreted by itself and

that Pl-y 1 heterodimers can form intracellularly, but these heterodimers are not secreted

unless assembled into a trimer containing the al chain. Matsui et al. (1995) showed

formation of recombinant p3-y2 heterodimers in a human squamous cell carcinoma line

(SCC-25). Niimi et al. (1997) reported that homodimers of recombinant laminins could

form in COS-1 cells and that N-terminal truncations of either recombinant pl or yl did

not prevent assembly of heterodimers or heterotrimers with full-length constitutively

expressed laminins.

16



Early work examining intracellular laminin subunit assembly utilized cell lines

which constitutively expressed laminin chains. Intracellular heterodimers of P~y chains

and trimers of P-y-a could form, but only the trimers could be secreted into cell culture

medium (Morita et al. 1985; Matsui et al. 1995). Studies of cell lines also led to the

determination of the kinetics of N-linked glycosylation and secretion. It was found that

necessary for secretion of the trimer (Green et al. 1992).

Biology of Laminin

Laminin is expressed as early as the two-cell stage of mammalian embryogenesis,

making it the earliest expressed ECM component (Dziadek and Timpl 1985). In vivo

studies of developing organs show dynamic patterns of Ln isoform expression and

distribution during embryogenesis which are temporally and spatially regulated in

apparent coordination with organogenesis. Some immunohistochemical results are

contradictory in relation to the Ln chain isotypes present in structures such as the

neuromuscular junction (NMJ) of muscle or the glomerular basement membrane (GBM)

of the kidney. For instance, Patton et al. (1997) described the Ln P2 chain as expressed

only in the synapse of the neuromuscular junction (NMJ) while Wewer et al. (1997)

reported the extrasynaptic expression of the P2 chain in muscle cells using different

antibodies. What is clear is that the Ln expression pattern does change with development

17
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of organs such as the kidney and muscle. Studies of in vitro kidney development show

expression of the Ln al chain protein (and therefore the secreted Ln trimer) is

concomitant with tubule epithelial development, while the expression of the pl and yl

chains is detectable before this early developmental stage (reviewed in Sorokin and

Ekblom 1992). In vitro examination of cultured C2C12 muscle cell lines detected

increasing levels of Ln a2 chain mRNA throughout differentiation into myotubes, and a

transient increase followed by the loss of signal for al chain mRNA during the same 6

day culture period that corresponded to myotube formation (Vachon et al. 1996).

The necessity of the Ln a2 chain protein for the survival of myotubes in cell

culture is seen in embryonic stem cell lines with disrupted a2 chains. These cells form

unstable myotubes that dissociate and collapse with the onset of the contractile phenotype

(Kuang et al. 1998). Evidence that Ln a2 is important for in vivo myotube stability comes

from the study of muscular dystrophies. One severe form of congenital muscular

dystrophy (CMD), now known as merosin-deficient CMD, has been found to be due to

mutations in the LAMA2 gene which codes for the a2 chain (reviewed in Voit 1998).

In other diseases, alteration of Ln expression leads to severe consequences for

organ development. The congenital, inherited form of the skin malformation known as

epidermolysis bullosa has been determined to be caused by a mutation in the LAMA3

gene. This leads to non-expression of the a3 laminin chain which, in turn, prevents the

secretion of the laminin-5 isoform (Ln-5) from keratinocytes. This disrupts the epidermal
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adhesion to the basement membrane at the dermal-epidermal interface. Recent studies

have shown that transfection of the wild type a3 chain gene into keratinocytes isolated

from an epidermolysis bullosa patient can restore the ability of those cells to assemble and

secrete the Ln-5 isoform (Dellambra et al. 1998). Clearly, the study of the normal

physiology and biochemistry of Ln has implications for characterization of, and possible

therapies for, specific diseases.

In other work, Ln isoforms have been implicated as mediators of cell

differentiation in vitro. Studies of mammary epithelium have shown that Ln is capable of

activating transcription and inducing differentiation (or at least markers of

differentiation). The addition of Ln to cultures of primary isolated epithelial cells

increases levels of the milk protein P-casein via a pathway that increases transcriptional

activity at the p-casein promoter (Streuli et al. 1995a). Stat5 transcription factor was later

shown to mediate transcriptional increases of milk protein messages in mammary

epithelial cell on Ln-1 containing matrix (Streuli et al. 1995b). Studies of this nature show

clear evidence of laminin’s ability to activate cell metabolism and alter cellular function.

Biology of the p2 Chain : A Unique Laminin Chain

The Ln P2 chain (formerly s-laminin) was initially characterized as a laminin-like

glycoprotein which was enriched in the NMJ synaptic cleft (D. Hunter et al. 1989a). It has

subsequently been found to have restricted expression patterns in various organs such as
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the developing brain, kidney, and blood vessels (D. Hunter et al. 1992; Durjeeb et al.

1996). It was discovered after initial characterization of the p2 chain that chick ciliary

neurons would adhere to the partially purified protein. Later studies verified that motor

neuron-like cells (NSC-34 cell line), but not sensory neurons or a neuron-like cell line

(PC 12), would bind to a purified fragment of the P2 laminin chain (D. Hunter et al.

1989b, 1991). Deletion studies indicated that the motor neurons were binding to a

tripeptide epitope, L-R-E, which could inhibit neurite outgrowth in these cells. This led to

the proposal that the Ln P2 chain may act as a stop signal for motor neurons at the NMJ

(D. Hunter et al. 1991; Porter et al. 1995).

The studies of neuronal adhesion to the P2 fragment have been refuted as

artifactual, and experiments utilizing trimeric Ln-2 and Ln-4 (that contain the p2 chain)

showed that motor neurons did extend neurites on these glycoproteins. The contention is

that the L-R-E peptide in the C-terminus of laminin p2 chain is masked in the trimeric

molecule and therefore unavailable to cellular adhesion molecules of the neurons

(Brandenberger et al. 1996). Whether or not this is true in vivo has not been studied.

The Ln p2 chain has other apparent functions beyond its neuronal adhesion

properties. Transgenic mice which have had both copies of the laminin P2 chain gene

deleted die soon after birth. They exhibit slightly abnormal neuromuscular junctions and

have severely impaired kidney function (Miner et al. 1995). These abnormalities coincide

with the expression of the P2 chain in both neuromuscular junction and kidney glomerular
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basement membrane and implicate the laminin 02 isoform in proper function, if not

proper development, of these organs. The presence of the 02 chain at specialized

structural features of several organs makes this an interesting protein for study.

Furthermore, the ability of the muscle to spatially restrict the expression of the 02 chain to

the NMJ and the 01 chain to the extrasynaptic basement membrane has prompted the

usage of the 02 chain in these studies.

Yeast Two-hybrid Assay

To examine and measure the interactions of the Ln chains, including the amino

acid sequences required, the yeast two-hybrid system was utilized. This ingenious

technique was developed by Fields and colleagues (1989) to study interactions (or

potential interactions) of protein pairs. The developers recognized the ability of the yeast

GAL4 transcriptional activator protein to be separated into domains. One domain could

function independently as a DNA binding element, which recognized a specific sequence

(the GAL4 promoter). The second domain could activate gene transcription but not bind

DNA. The gene fragments coding for these separate domains were then placed into

separate plasmid vectors. The plasmids, GBT9 (containing the DNA binding domain) and

GAD424 (containing the transcriptional activation domain), have multiple cloning sites

which allowed genes of interest to be ligated into the plasmid so that the reading frame of

the GAL4 domain is maintained, thereby creating a hybrid gene.
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The transcriptional activator domain and the DNA-binding domain have no ability

to interact with each other. But if protein x cloned into the GAD424 vector did interact

with protein y in the GBT9 vector, the two hybrid proteins bound together could then

form a viable transcription factor that would activate transcription of genes under the

control of the GAL4 promoter. In the Matchmaker® two-hybrid system (Clontech; Palo

Alto, CA) the yeast strain SFY 526 contains a reporter gene (P-galactosidase) under the

control of the GAL4 promoter. This allows detection of a protein-protein interaction of

the two hybrid constructs by a simple colorimetric assay. A schematic representation of

the two-hybrid assay is shown in Figure 4.

The two-hybrid assay was originally used to detect interactions of known

transcription factors with potential regulating factors or other transcriptional activators

(Fields et al. 1989; Chien et al. 1991). It has since been utilized by researchers to screen

libraries for gene products which are able to interact with a protein of interest. To date a

wide variety of protein-protein interactions have been detected and characterized, such as

the interaction of transcription factor dE2F with cyclins (Du et al. 1996; Jordan et al.

1996), estrogen receptor dimerization (Wang et al. 1995), and intermediate filament

interactions (Meng et al. 1996). A novel use for the system, the evaluation of the

interactions of an extracellular matrix molecule, is described here. By using this

technique, dimer formation by pairs of Ln chain fragments can be quantified in an in vivo

(yeast) model.
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Figure 4. Schematic of Two-Hybrid Assay
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Figure 4. Schematic diagram of the events in a two-hybrid assay. The example shown

The first step is insertion of the Ln chain fragment

(yl/or P2/J into the GAL4 activation domain vector (GAD424) or the GAL4 binding

domain vector (GBT9). These constructs (yl//GAD424 and p2//GBT9) are then

transformed into yeast made competent by the LiAc/ PEG method. Once in the yeast these

respectively. These fusions

must cross the nuclear membrane to interact with the GAL4 promoter site, and provided

the two fusions interact, they will activate transcription of the P-galactosidase gene that

has been attached to the GAL4 promoter. The reporter gene mRNA is then transcribed by

the cellular machinery to yield a functional enzyme that is then assayed. Cultured cells are

lysed by a rapid freeze/ thaw and P-galactosidase activity is assayed for its ability to

cleave o-nitrophenylpyranogalactoside (ONPG) into pyranogalactoside and yellow-

colored o-nitrophenol. The amount of o-nitrophenol is detected by measuring the light

absorbance at 420 nm (OD420). The amount of activity for each sample was then divided

by that of a positive control reaction and reported as the % of control.
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Research Aims

Many of the laminin chain assembly experiments described above have been

performed under controlled conditions; i.e., in solution,and not in a cellular environment.

This work examines the ability of domain I, and fragments of domain 1, to interact within

the cellular milieu by using the yeast two-hybrid assay to detect and measure protein­

protein interaction of fusion proteins containing recombinant fragments of the laminin p2,

y 1, and al chains. This assay replicates the recombinant studies described above, but in a

cellular context.

If only domain I of the laminin chains is necessary for dimer formation, then a full-

length laminin chain should interact with another chain only through domain I. To test the

ability of domain I to drive specific P-y dimer formation, two unique hybrid laminin

chains were created. One fused domain I of P2 to the domains II through VI of yl, and

the second fused domain I of y 1 to the domains a through VI of P2. These hybrids allow

the assembly role of domain I to be assessed as part of a full-length laminin protein, and

within a cellular environment. As a whole, this research is intended to extend previous

knowledge of laminin chain assembly by studying chain interactions within cells.
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Materials and Methods

Subcloning of cDNA

Standard protocols for subcloning cDNA, including ligation into plasmid vectors,

transformation of competent bacteria, and screening for correct constructs was performed

for all plasmids constructed. Modifications in these protocols, as well as specific enzymes

used create a particular vector, are noted below for the individual constructs. All cDNAs

noted.

The initial step in subcloning required either digestion of the plasmid incorporating

the full-length cDNA or amplifying a fragment of the cDNA by PCR. After a ligation

reaction that created a circular plasmid DNA (which is then capable of replication in a

bacterium), it was transformed into competent bacteria. For most ligations, the entire

reaction (approximately 200 ng of DNA) was added to a tube containing 200 pl of

competent XL-1 Blue (Stratagene, La Jolla, CA) bacteria and placed on ice for 30

minutes. Subsequently, 800 pl of LB medium (10 g/L Bacto® peptone, 5 g/L yeast extract,

85.5 mM NaCl. pH 7.4) was added to the tube, which was placed in a heat block at 37° C

selection marker. This selective plate was placed overnight at 37° C. A number of the
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described here were originally cloned by other laboratories and donated by researchers as

for one hour. From this 1 ml solution, 250 pl was removed and spread onto a LB agar 

plate containing 50 Hg/m] of ampicillin (LB-amp). All plasmids used contained the amp
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colonies which grew on the plate were removed, placed in a 2 ml culture of LB-amp

medium, and incubated overnight at 37° C. The next day rapid plasmid isolation using the

method of Berghammer and Auer (1993) was performed. From the culture tube, 1.5 ml of

bacterial culture was moved to a 1.5 ml microcentrifuge tube while the rest was placed at

4° C for storage. Bacteria were pelleted by centrifugation at maximum speed in a

microcentrifuge for 30 seconds and the supernatant was removed. This pellet was

resuspended in 75 pl of “EZ-prep” lysis solution [10 mM Tris-HCl (pH 8.0), 1 mM

EDTA, 15 % w/v sucrose, 2 mg/ml lysozyme, 0.2 mg/ml pancreatic RNase, 0.1 mg/ml BSA],

shaken for 5 minutes, boiled for 1 minute and placed on ice for 1 minute. Cell debris,

(including genomic DNA) was pelleted by centrifugation at 14,000 xg in a

microcentrifuge for 10-15 minutes. The supernatant contained relatively pure, mostly

supercoiled plasmid DNA. To check for the presence of insert cDNA, 10 - 15 pl of this

supernatant was used in a restriction digestion, and the products were separated on a 0.7

in order to isolate enough purified supercoiled plasmid to sequence. Sequenced plasmids

were either used for subsequent subcloning steps or used in experiments. To purify large

amounts of plasmid DNA, reserved bacteria from the initial isolation were streaked onto

an LB-amp plate, then a single colony removed and cultured in 30-50 ml of LB-amp
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or 1 % agarose minigel. Reserve bacteria containing these positive constructs were

cultured in 5 - 8 ml of LB-amp medium overnight at 37° C and a second plasmid 

isolation, using the Wizard miniprep columns (Promega, Madison, WI), was performed



medium. Plasmids were isolated from these bacteria using a Qiagen (Santa Clarita, CA)

midiprep kit, following manufacturer’s instructions. These generally yielded 1 - 3 pg of

DNA per ml of culture.

DNA Sequencing

DNA constructs were sequenced using the Sequenase 2.0 sequencing kit

(Amersham, Arlington Hts, IL) following manufacturer’s instructions.

DNA Constructs

Txvo-hybrid constructs

All PCR reactions were done using Pfu polymerase from Stratagene (La Jolla, CA)

unless otherwise noted. For all activation domain constructs the expression vector was

GAD424 (Bartel et al. 1991), and for binding domain constructs the expression vector

assay are diagrammed in Figures 5 and 6. Constructs created by PCR or restriction

digestion and placed into both two hybrid vectors, are shown in Table 1.
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was GBT9 (Bartel et al. 1991). The cDNA fragments generated for use in the two-hybrid
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Figure 5.

P2 Chain Fragments Used in Two-Hybrid System
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Figure 5. PCR or restriction digestion was utilized to create long arm fragments of the

02 chain. For all PCRs shown the cDNA was the full-length 02 cDNA of Green et al.

(1992). Roman numerals designate structural domains as per standard nomenclature.

Fragments correspond to the following nucleotides of the cDNA and amino acids of the

mature protein as determined from the primary amino acid sequence reported by D.

Hunter et al. (1989a): 02/and

acids 1410-1766, 02//corresponds to nucleotides 3648-4301 and amino acids 1159-1377,

and 0275 corresponds to nucleotides 5245-5550 and amino acids 1691-1766. The asterisk

(*) in the

5466 that was created via three PCRs as described in Materials and Methods. Arrows

represent PCR primers designated with letters A-F. Construct names on the left are used

throughout the text. The sequences of the PCR primers are shown in Table 1. The

restriction sites for EcoR I and Sal I at the ends of the fragments are the result of

sequences in the PCR primers. Xmn I site is an internal restriction site at nucleotide 5245.
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c->s02/ correspond to nucleotides 4401-5550 and amino

c->s02/ fragment indicates the single base pair (T to A) substitution at nucleotide



Figure 6.
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Figure 6. (A) Fragments of the y 1 chain were created by PCR. The template for the

y 17 PCR was the cDNA provided by Dr. Y. Yamada. For the y 1/7and y 175 fragment

PCRs the template was the cDNA provided by Dr. A. Chung. The y 1/ fragment

corresponds to nucleotides 3907-5067 and amino acids 1188-1574 of the y 1 chain as

reported by Sasaki and Yamada (1987b). Fragment y 1/7 corresponds to nucleotides 3271-

3840 and amino acids 993-1183 of the yl chain, while the yl75 fragment corresponds to

nucleotides and amino acid sequences are based on sequences reported by Durkin et al.

(1988). Arrows represent PCR primers labeled with numbers 1-5. The sequences of these

primers are shown in Table 1. The BamH I, EcoR I and Sal I sites at the ends of these

fragments are primer derived sequences.

A fragment of the al chain corresponding to nucleotides 5230-6447 and amino(B)

acids 1694-2109 of the full-length cDNA and protein sequences, respectively (based on

sequence data of Sasaki et al. [1988]) was generated by RT- PCR. The template for the

RT-PCR was mouse kidney poly-A+ RNA. The product of this reaction was used as the

template in a subsequent PCR using primers Al and A2. The sequences of these primers
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are shown in Table 1. Again, the BamH I and Sal I sites were part of the PCR primers.

nucleotides 4782-5007 and amino acids 4992-5067 of the yl chain. Both y 1/7 and yl75



Table 1. Laminin Fragments Subcloned into Two-hybrid Vectors

Ln Fragment PCR Product PCR Template Cloning corresponding

Size (base Restriction cDNA nucleotides

pairs) Sites

02/ 94°C - 1 ”, 61 °C - 1,149 T. Green, EcoRI 4401-5550 :

02 cDNAl”,72°C-2” Sai I D. Hunter et al.

(20 cycles) (1989)

Yl/ 94°C - 1”, 59°C- 1,179 Y. Yamada, BamH I 3907-5067 : Sasaki

1”, 72°C-2” yl cDNA Sal I and Yamada

(20 cycles) (1987b)

02// 95°C - 1”, 60°C- 675 T. Green, EcoR I 3648-4301 :

02 cDNA1”, 72°C-2” Sal I D. Hunter et al.

(30 cycles) (1989)

yl// 95°C - 1”, 60°C- A. Chung,589 BamH I 3271-3840 :

l”,72°C-2” yl cDNA Sal I Durkin et al.

(30 cycles) (1988)

Not Applicable 310 N/A XmnI 5225-5550 :

Sall D. Hunter et al.

(1989)

95°C - 1”, 54°C- A. Chung, 4782-5007:310 EcoRI

1”, 72°C-2” Sal I Durkin et al.yl cDNA

(1988)(30 cycles)

33
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Table 2. PCR Primers Used in Creating the Two-Hybrid Constructs

Domain I of p2

upper primer (A) 5'-gaattctgcagtggagcagcagccaca-3'

lower primer (B) 5'-gtcgacagccaagagctctttaatgtc-3’

Domain I of y 1

upper primer (1) = 5’-ggatcctcaatcaaactgcgctggaga-3'

lower primer (2) = 5’-gtcgacgggcttctcgataga-3'

Domain I of al

upper primer (A 1) 5’-cccgggatccgaccttgagctcaaggctgct-3'

lower primer (A2) 5'-cccggggtcgacgtctctgtctgcagacacggcgact-3’

Domain II of |32

upper primer (C) = 5’-cccggggaattccatgcatgctttgcag-3'

lower primer (D) 5'-acgcgtcgaccagctcatttactcc-3'

Domain II of y 1

upper primer (3) = 5’-cgggatccttgagtgtccggcttgt-3'

lower primer (4) = 5’-acgcgtcgacttctcctgccagggt-3'

C-terminal 75 amino acids of yl

upper primer (5) 5'-gaattcctcaatgagatcgaa -3'

lower primer (6) = 5'- gtcgacgggcttctcgataga -3’
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Table 2. PCR Primers Used in Creating the Two-Hybrid Constructs

Cys to Ser mutation of p2 Domain I

PCR-I upper primer (E) = 5'-cagatctacaacaccAgccagtga-3'

lower primer (F) = 5’-atcgatgtcgacgctagccaagagctc-3’

PCR-II upper primer (A) = 5'-gaattctgcagtggagcagccaca -3’

lower primer (G) 5’-agggagtggtcactggcTggt gtt-3’

PCR-III upper primer (A) 5’-gaattctgcagtggagcagccaca -3'

lower primer (F) = 5’-atcgatgtcgacgctagccaagagctc-3’

Primers above were utilized to amplify portions of a particular Ln chainTable 2.

cDNA by PCR. Letters and/or numbers in parentheses denote the primer designation in

Figure 6. Bold letters represent the restriction sites used to subclone these fragments.
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Table 3. PCR Primers Used in the Creation of Ln Chain Expression Constructs

Upstream Region of 32 cDNA

upper primer 5'-cttgatatcgaattcagtgactgctggtcggacc-3’

lower primer 5'-tccaaagcatgcatgggccaatgtggcagccagcac-3 ’

Creation of Hybrid Ln Chain P2(yl)1

PCR-I upper primer (H3) 5'-ccccgctgtggcctcggtaatcaaactgcgctggagatt-3 ’

lower primer (H4) 5’- gcgatcctctctgcctcatgggccttgttc-3 ’

PCR-II upper primer (He) 5'-cccgcaacacctcagctgcgtctactgcaa-3'

lower primer(Hd) =5'-aatctccagcgcagtttgattaccgaggccacagcggggttg-3’

PCR-III upper primer (He) 5'-cccgcaacacctcagctgcgtctactgcaa-3’

lower primer (H4) 5 gcgatcctctctgcctcatgggccttgttc-3  ’

Creation of the Hybrid Ln Chain yl(P2)1

PCR-I upper primer (Hl)=5,-ttgaggaccctggcaggagaatgcagtggagcagcagcagccaca-3l

lower primer (H2) = 5’-tgcttggagacaaggctaaaccctagggagtggtca-3’

PCR-II 5'- ctgattgagatcgcctccagggagctcgagaaa-3'upper primer (Ha)

lower primer (Hb) = 5'-tgtggctgctgctccactgcattctcctgccagggtcctcaa-3'

PCR-III upper primer (Ha) 5’- ctgattgagatctgcctccagggagctcgagaaa-3’

lower primer (H2) = 5'-tgcttggagacaaggctaaaccctagggagtggtca-3'
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Table 3. PCR Primers used in the Creation of Ln Chain Expression Constructs

Creation of Domain IV-V Deleted 02 Ln Chain

PCR-1 upper primer = 5’-ggtaccgaattcccctgccagtgtgac-3'

lower primer = 5’-atcgatgtcgacgctagccaagagctc-3'

PCR-II upper primer 5’-gcgccccggggcggccggagtgactgctggtc-3 ’

lower primer 5'- gggcccgaattcgcggatgacaagttcatagagagc-3 ’

Hybrid Ln chains were created by utilizing PCR to fuse domain I of 02 withTable 3.

domain II of yl and to fuse domain I of yl with domain II of 02. To do this two PCR

reactions were performed, and the products of each were fused to create a template for a

third PCR, which created the hybrid product. These reactions are described in Materials

and Methods and diagrammed in Figures 7 and 8. Letters and numbers in parentheses

represent the designations for the primers in Figures 7 and 8.
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al j /GAD424 and al ^/GBT9: Domain I of Ln al chain in yeast two-hybrid vectors.

Domain I of al was generated via RT-PCR using mouse kidney poly-A+ RNA

(CLONTECH, Palo Alto, CA) as the template. 100 ng of RNA was reverse transcribed

with 40 U of M-MLV RT (Life Technologies, Grand Island, NY) in 50mM Tris [pH 8.3],

42° C for 1 hour. The al cDNA was amplified by PCR with the upper primer 5'-

cccgggatccgacttgagctcaaggctgct-3' and the lower primer 5'- cccggggtcgacgtctctgtctgcaga

cacggcgact-3'. This 1,241 base pair fragment corresponds to nucleotides 5230-6447 and

amino acids 1694-2109 of al, based on domain sequences reported by Sasaki et al.

(1988). This PCR fragment was digested with the BamH I and Sal I restriction

endonucleases and ligated into BamH I and Sal I -digested GAD424 and GBT9 two-

hybrid vectors.

p2j /GBT9: Cysteine to serine mutation of amino acid 1765

within domain I of Ln @2 chain in yeast two-hybrid vectors.

To create a P2 domain I cDNA construct with a T to A substitution mutation at

nucleotide 5466 (which changes amino acid 1765 from cysteine to serine), three PCR

reactions were performed using Taq polymerase and full-length P2 cDNA as the template.

The first amplified the 3’ end of domain I (nucleotides 5451-5553 of the cDNA) using the

upper primer 5'-cagatctacaacaccAgccagtga-3' (capital A represents the altered nucleotide)
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75mM KC1, 3mM MgCL, 0.5mM dNTPs, and 30 U RNasin (Promega, Madison, WI) at



and the lower primer 5'-atcgatgtcgacgctagccaagagctc-3'. After an initial 3 minute

incubation at 94° C, 25 cycles of 94° C for 1 minute, 54° C for 1 minute, and 72° C for 1

minute were done. The resulting product was 115 base pairs long and for reference will

be called PCR-I.

The second PCR from this construct amplified the region from nucleotides 4400-

5483 of the 02 domain I sequence. The upper primer was 5'-gaattctgcagtggagcagccaca -3'

5’-agggagtggtcactggcTggt gtt-3’ (capital T represents the altered

nucleotide). The 1,089 base pair PCR product (PCR-II) was amplified by incubating for 3

and 72° C for 2 minutes. In the third PCR, equimolar amounts of the PCR-I and PCR-II

for 5 minutes, then the complementary strands were filled in by Taq polymerase at 72° C

for 7 minutes. The product was amplified by PCR for 25 cycles of 94° C for 1 minute,

primer of PCR-II and the lower primer was the lower primer of PCR-I. This created a

1,171 base pair fragment corresponding to 02 domain I sequence, with a one base pair

substitution.

203 base pair fragment. This fragment was then ligated into Nde I and Sal I -digested

pGEM-T. The Nde I - Sal I fragment was subsequently removed and subcloned into wild-
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and the lower primer was

This PCR product was purified and digested with Nde I and Sal I, which yielded a

fragments were denatured at 94° C for 3 minutes and reannealed to one another at 25° C

63° C for 1 minute, and 72° C for 2 minutes. The upper primer was the same as the upper

minutes at 94° C, then performing 25 cycles of 94° C for 1 minute, 62° C for 1 minute,



type p2 domain I (in the pSK? vector [Stratagene, La Jolla, CA]), which had also been

digested with Nde I and Sal I. The resulting plasmid was named

was digested with EcoR I and Sal I and the mutant domain I was subcloned into GAD424

and GBT9 at the EcoR I and Sal I sites.

Cell Culture Expression Constructs

p2 lall-up / SP72: A truncated cDNA containing the sequence of the long arm domains

of the f2 chain, in-frame with the signal sequence of the @2 cDNA.

The 5' upper region of the P2 chain was created from the full-length cDNA via

PCR. The reaction consisted of 30 cycles of 94° C for 1 minute, 64° C for 1 minute, and

72° C for 1 minute, and utilized the upper primer 5'-cttgatatcgaattcagtgactgctggtcggac

cct-3’ and the lower primer 5’-tccaaagcatgcatgggccaatgtggcagccagcac-3’. The PCR

product was 203 base pairs long and corresponded to bases 1- 173 of the p2 chain cDNA.

The generated product was digested with EcoR I and Nsi I, then ligated into EcoR I and

Nsi I digested SP72/P2 plasmid. The digestion of the SP72/P2 cut out the sequence for

the domains III - VI, leaving only the long arm sequences of P2 (domains I-a-II) still in

the vector. This construct was used later for creation of other P2 fragments.

p2 /cDNAl: Full-length Ln (32 chain in the CMVpromoter- containing mammalian

expression vector.
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The full-length cDNA for the Ln P2 chain (Green et al. 1992) was digested with

EcoR I and Nhe 1 and ligated directionally into EcoR I - Xba I -digested pcDNAI/Amp

expression vector (Invitrogen, San Diego, CA).

yl /cDNAl: Full-length Ln yl chain in the CMVpromoter- containing mammalian

expression vector.

A full-length cDNA coding for the mouse Ln yl chain was a gift of Dr. Albert

Chung. This cDNA was digested with Hint/ III and Dra I and subcloned into pSP72,

digested with Hint/ III and Sma I. This removed the polyadenylation site from the 3' end

of the cDNA but left the 5’ signal sequence, the entire open reading-frame and some of

the 3' untranslated region. Initial sequencing of the construct showed the clone was

correct, but later sequencing revealed a one base pair substitution from the published

sequence at nucleotide 4958. It is unclear if this mutation occurred in our laboratory or if

the nucleotide sequence was misreported. The nucleotide substitution would lead to a Leu

-Met amino acid change; based on studies of amino acid composition of alpha-helices,

this change would not disrupt the secondary structure nor the charge interactions of

domain I. To ligate the y 1 chain cDNA into the pcDNAI expression vector, the newly

created SP72/y 1 plasmid was digested with Hind III and Eco RV and subcloned into

pcDNAI/ Amp (Invitrogen, San Diego, CA) digested with the same two restriction

endonucleases.
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02(y1)j /cDNA3: Hybrid Ln chain of Domain I of yl fused to Domains a-VI of f2 in the

CMVpromoter- containing mammalian expression vector.

Creating a Ln chain which fused domain I of yl with domains a- VI of 02

required three initial PCR steps (Figure 7). All three utilized Taq polymerase enzyme.

The first PCR utilized a cDNA of the y 1 chain donated by Dr. Y. Yamada to amplify the

domain I region. The upper primer was 5'-ccccgc/grggcc/cgg/aatcaaactgcgctggagatt-3';

the italicized letters correspond to nt 4380 - 4400 of the 02 cDNA and the last 21

nucleotides correspond to nt 3907 - 319927 of the yl cDNA. The lower primer of this

PCR was 5'- gcgatcctctctgcctcatgggccttgttc-3', corresponding to nt 4538 - 4509 of the y 1

sequence. This reaction consisted of 20 cycles of 94° C for 1 min., 63° C for 1 min., and

72° C for 2 min. A 653 base pair (bp) fragment was isolated.

The second PCR utilized the 02 cDNA as a template, with the upper primer 5'-

cccgcaacacctcagctgcgtctactgcaa-3', which anneals at nt 3817 - 3847 on the 02 sequence,

and the lower primer 5'-aatctccagcgcagtttgattaccgaggccaca.gcggggttg-y. The italicized

letters of the lower primer correspond to nt 3927 - 3902 in the y 1 cDNA and the

remaining 21 nt correspond to nt 4400 - 4377 in the 02 cDNA. The reaction was run for

20 cycles of 94° C for 1 min., 64° C for 1 min., and 72° C for 2 min. This created a 605 bp

overhang. The 5’ end of the upper primer in PCR 1 is complementary to the 3' end of the

lower primer in PCR 2. The third PCR utilized the PCR products from the first two
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I

reactions as the template; the upper primer was the same as the upper primer of reaction 2

and the lower primer was the same as the lower primer of reaction 1.

added and the reaction was reheated to 72° C for 5 minutes to fill-in overhanging ends.

The product was cycled 20 times at 94° C for 1 minute, 64° C for 1 minute, and 72° C for

2 minutes. The resulting 1217 bp product was a hybrid molecule of domains II and a of

the P2 chain in the same reading frame as domain I of y 1. This third PCR product was

ligated into the vector pGEM-T utilizing the 3' adenine residue added by Taq polymerase

To facilitate the subcloning of the P2(y 1 )j chain, the P2 cDNA was subcloned into

the pBS vector (Stratagene, La Jolla, CA) using the EcoR I and Hint/ III sites which cut at

nt 1 and 3846, respectively. To create a full-length hybrid, the P2jj(y l)j / GEM-T DNA

was digested with Hint/ III and Sal I enzymes, and the hybrid portion was ligated to P2 in

pBS vector, also digested with Hint/ III and Sal I. This plasmid was termed p2(y 1 )j /pBS.

This cDNA did not contain a termination codon, and therefore the region containing the

termination codon was removed from the y 1 cDNA with BamH I and Dra I and ligated

into the BamH I and EcoR V sites of pSK+ vector. This fragment was removed again with
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Equimolar amounts of the double-stranded PCR products used as templates were

heated to 94° C for 3 minutes, cooled to 25° C for 2 minutes, then Taq polymerase was

denatured and cooled to allow the two complementary ends to anneal. The DNAs were

enzyme. This construct was called P2jj(y l)j / GEM-T.



create a full-length (termination codon included) hybrid laminin chain. To make the final

product, a vector capable of expressing this hybrid laminin in mammalian cells, this DNA

EcoR I and Xho I. This construct was called p2(y l)j /cDNA3.

YKPZ^/SK: Hybrid Ln chain of Domain I of (32 fused to Domains II-VI of yl in pSK+ .

As with the p2(y 1 )j /cDNAl construct, three PCR steps were needed to create the

hybrid portion of this laminin chain (Figure 8). The first PCR utilized the full-length P2

cDNA as a template to create a 1,128 base pair fragment corresponding to domain I of the

P2 chain which could anneal to nucleotides 3886-3906 of domain II of the yl chain. In

the reaction, the upper primer was 5’-//g<7gg6rccc/ggc^gg6rga6rtgcagtggagcagcagcagccaca-

3’. The italicized letters correspond to nucleotides 3886-3906 of domain II of the yl

cDNA and the normal characters represent nucleotides 4401- 4421 at the 5' end of domain

I in the P2 chain sequence. The lower primer was 5'-tgcttggagacaaggctaaaccctag

ggagtggtca-3', which correspond to nucleotides 5507-5472 in the 3' untranslated region of

the P2 cDNA. The PCR was run for 20 cycles of 95° C for 1 minute, 65° C for 1 minute,

and 75° C for 2 minutes.
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was cleaved with EcoR I and Sal I, then ligated into the pcDNA3 vector digested with

Nde I and Sal I enzymes and subcloned into Nde I - Sal I digested p2(y l)j /pBS DNA to



Figure 7.

PCRs Performed in Creating the pityl^Laminin Chain
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Figure 7. The hybrid laminin chain 02(y 1 \, which fuses domain I of the yl chain to

domains a-VI of the 02 chain was created in part by PCR. Shown is a schematic of the

three PCRs, which enabled fusion of the two chain fragments. The first PCR (PCR I)

amplified the domain I of yl (nucleotides 3907-4538) using the cDNA donated by Dr. Y.

Yamada as the template. In this reaction the upper primer (primer Hl) contained 21

nucleotides, which annealed to nucleotides 3907-3928 of the yl cDNA plus 18

nucleotides at the 5' end (in italics and angled off the box representing the cDNA); this

corresponded to nucleotides 4380-4400 of the coding strand of the P2 cDNA. The second

PCR (PCR II) amplified the region from nucleotide 3907 through 4400 of p2

(corresponding to part of domain II and all of domain a). In this second PCR the lower

primer (primer HB) contained 24 nucleotides that annealed to nucleotides 4377-4000 of

the P2 cDNA (italics) and 21 nucleotides at it 5’ end (in normal font and angled off the

box representing the cDNA), which were complementary to nucleotides 3907-3927 of the

coding strand of yl cDNA. Therefore, the 38 nucleotides at the 5' end of the coding

strand of the PCR I product (primer Hl sequences) were complementary to the 38

nucleotides at the 5' end of the non-coding strand of the PCR II product (primer HB

sequences). This overlapping region is shown as the sequences in the middle of the figure

under the PCR III heading. The PCR primers for the PCR III reaction were the upper

primer of PCR II (primer H-A) and the lower primer of PCR I (primer 2). The product of

PCR III was a 1217 base pair fragment corresponding to nucleotides 3817-4400 of 02
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sequence fused to nucleotides 3907-4538 of the yl sequence. This product, shown

diagrammatically at the bottom of the figure, was ligated into the pGEM-T vector using

the overhanging “A” nucleotide left by the Taq polymerase. Subsequent subcloning to

create the full-length hybrid chain is described in Materials and Methods.
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Figure 8.

PCRs Performed in Creating the yl(p2), Hybrid Laminin Chain
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Figure 8. PCR was utilized to create the region which fuses domain I of the 02 chain

to domains II-VI of the yl chain in the hybrid laminin chain y 1 (02),. Shown is a

schematic of those three PCRs. The first PCR (PCR I) amplified the domain I of 02

(nucleotides 4401-5507) using the full-length 02 cDNA as the template. In this reaction

the upper primer (primer H3) contained 21 nucleotides which annealed to nucleotides

4401-4421 of the y 1 cDNA plus 18 nucleotides at the 5' end (in normal font and angled

off the box representing the cDNA), which corresponded to nucleotides 3886-3906 of the

coding strand of the y I cDNA. The second PCR (PCR II) amplified the region from

nucleotide 3670 through 3906 of y 1 (corresponding to domain II). In this second PCR the

lower primer (primer HD) contained 21 nucleotides that annealed to nucleotides 3906-

3926 of the 02 cDNA (normal font) and 21 nucleotides at it 5’ end (in italics and angled

off the box representing the cDNA), which were complementary to nucleotides 4401-

4421 of the coding strand of 02 cDNA. Therefore, the 45 nucleotides at the 5’ end of the

coding strand of the PCR I product (primer H3 sequences) were complementary to the 45

nucleotides at the 5’ end of the non-coding strand of the PCR II product (primer HD

sequences). This overlapping region is shown as the sequences in the middle of the figure

under the PCR III heading. The PCR primers for the PCR III reaction were the upper

primer of PCR II (primer HC) and the lower primer of PCR I (primer 4). The product of

PCR III was a 1344 base pair fragment corresponding to nucleotides 3670-3906 of yl

sequence fused to nucleotides 4401-5507 of the 02 sequence. This PCR product (bottom
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of the page) was ligated into Sma I - digested pSK '. Creation of the full-length hybrid

chain is described in Methods section.
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The second PCR utilized the full-length yl cDNA as a template with 5’- ctgattgaga

tcgcctccagggagctcgagaaa-3' as the upper primer. This primer annealed at nucleotides

3670-3702 in the domain II of y 1. The lower primer sequence was 5'- tgtggctgctgct

ccflcrgcflttctcctgccagggtcctcaa-3'. The italicized letters correspond to nucleotides 4421-

4401 of the 02 sequence and the normal letters correspond to nucleotides 3906-3886 of

the domain II of the y 1 sequence. Using Taq polymerase (Promega, Madison, WI) as the

PCR enzyme, 20 cycles of 94° C for 1 minute, 62° C for 1 minute, 72° C for 2 minutes

were run. This reaction created a 258 base pair product corresponding to a portion of the

domain II of the y 1 chain that was able to anneal to the first PCR product.

For the third PCR the first two PCR products were utilized as the template. The

first cycle of the PCR functioned to create the proper template. First, equimolar amounts

of the PCR products

another by cooling to 25° C for 5 minutes. Where a single strand of one PCR product

annealed to the complementary end of a strand from the second PCR product, the Pfu

polymerase enzyme could synthesize the rest of the complementary strands in the 5’ to 3’

direction. This was done in the final step of the first cycle at 75° C for 7 minutes. The

amplification of a complete double-stranded hybrid product consisting of domain II of the

yl chain in-frame with domain I of the 02 chain was completed by addition of the upper

primer of the second PCR reaction (5'- ctgattgagatcgcctccagggagctcgagaaa-3’) and the

lower primer of the first PCR reaction (5'-tgcttggagacaaggctaaaccctagggagtggtca-3’). The
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were denatured at 95° C for 3 minutes, then allowed to anneal to one



final 20 cycles consisted of 95° C for 1 minute, 65° C for 1 minute, 75° C for 2 minutes.

The resulting hybrid fragment was 1344 base pairs in length and named yl(02)j-PCR. To

facilitate subsequent subcloning of this PCR product, it was ligated into the pSK+ plasmid

digested with the restriction endonuclease Sma I, which leaves blunt ends. The plasmid

containing the hybrid PCR product within the pSK+ vector was called yl(02)j-PCR/ SK+.

02(a IV - V) /cDNA3: Domain IV-V deletion of Ln /32 chain in the CMV promoter­

containing mammalian expression vector.

The first step in creating this construct was to make a PCR fragment corresponding

to domains I-III of the 02 chain cDNA. Using the 02 cDNA as a template and the upper

primer 5’-ggtaccgaattcccctgccagtgtgac-3' and the lower primer 5'-atcgatgtc

gacgctagccaagagctc-3’, the region coded by nucleotides 2420-5553 was amplified. 30

cycles of 94° C for 1 minute, 63° C for 30 seconds, 72° C for 7 minutes were done. The

product was gel purified, digested with EcoR I and Sal I enzymes and subcloned into the

pSK+ plasmid. The resulting construct was named 021-111/ SK.

In the second step, the full-length cDNA of 02 was again used in a PCR to amplify

the 5’ untranslated region, the signal sequence, and domain VI of the 02 chain. The region

from nucleotide 1-917 was amplified using the upper primer 5'-gcgccccggggcggccgga

gtgactgctggtc-3’ and the lower primer 5’- gggcccgaattcgcggatgacaagttcatagagagc-3'. The

DNA was amplified for 30 cycles at 94° C for 1 minute, 65° C for 1 minute, and 72° C
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for 2 minutes. This PCR product was gel purified, digested with EcoR I and Not I, and

named P2UT-SS-VI/ SK.

To join the two portions of the Ln chain, P2UT-ss-VI/ SK was digested with EcoR

I and Not I enzymes, and the insert was separated from pSK+ plasmid by electrophoresis

and gel purification. The upper region, signal sequence and domain VI of P2 was then

ligated into P21-III/ SK plasmid, which had also been digested with EcoR I and Not I. The

resulting construct, P2^A jy

P2 sequence and subcloned into the pcDNA3 vector at the Not I and Xho I sites.

Yl(P2)]-P2up-HA /cDNAl and P2(yl)j-P2up-HA /cDNAl: Epitope-tagged hybrid Ln

chains in the CMVpromoter-containing mammalian expression vector.

The construction of these vectors is diagrammed in Figure 9. Two

protein recognizable by commercially available HA antibodies, were synthesized by the

Marshall University School of Medicine DNA Core Facility. The sequence of the first

was 5’-gatcctacccatacgac gtcccagactacgctgag atctccg-3’, which corresponds to the

nucleotide sequence coding for these nine amino acids plus 5 nucleotides corresponding

to consensus site for the EcoR 1 restriction enzyme. This oligonucleotide was termed

“HA-coding”. The second oligonucleotide sequence was 5'-

aattcgaagatctcagcgtagtctgggacgtcgtatgggtag-3’, which corresponds to the complementary
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subcloned into the pSKT plasmid. The resulting construct was

y) /SK was then digested with Not I and Sal I to remove the

oligonucleotides, corresponding to a nine amino acid fragment of hemagglutinin (HA)



Figure 9.

Construction of the Epitope Tag Vector and Tagged Hybrid Ln Chains
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Figure 9. A schematic overview of the construction of the vector used to create

epitope-tagged hybrid laminin chains. The £2 upper region was removed from the

construct p2 I-a-II-up/ SP72 (not shown) by digestion with Nsi I (followed by blunt-

ending with T4 DNA polymerase) and EcoR I, then ligated into the plasmid pSK+

construct p2 up/ SK

construct containing the HA epitope sequence (SP72/ HA) in the EcoR I and BamH I

sites to create the construct named P2-up/ HA7 SP72. Next, the P2~upper and HA coding

sequences were removed from the SP72 vector by partial digestion with EcoR I followed

by digestion with Hind III. This 254 base pair fragment was ligated into the pcDNAI/

Amp plasmid (Invitrogen, San Diego, CA) to create the construct called p2-up/ HA/

cDNA I, or alternatively “HA vector”. The P2(yl), hybrid was subcloned into this vector

at the Bgl II and Xho I sites, and the y 1 (p2\ hybrid was subcloned into the EcoR I and

Xba I sites.
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(Stratagene, La Jolla, CA) at the EcoR I and Sma I sites. This new

was digested with EcoR I and BamH I and the P2 upper fragment was ligated into a



bases of the HA coding region and also contains 5 nucleotides comprising the consensus

site of the BamH I restriction enzyme. It was termed “HA complementary”. To achieve a

double stranded DNA capable of being ligated into a plasmid, the two oligonucleotides

were annealed using the following conditions. Approximately 2 /zmoles of HA coding

DNA ligase buffer [300 mM Tris HC1 (pH 7.8), 100 mM MgCL 100 mM DTT, 10 mM

ATP] (Promega, Madison, WI) and brought to a final volume of 20 /2I with H2O. This

tube was capped and placed in a 9600 Thermocycler (Perkin Elmer- Cetus, Foster City,

CA) and heated at 95° C for 2 minutes followed by cooling at a rate of 3° C per minute

until a temperature of 50° C was reached. Once at 50° C the tube was removed and placed

at room temperature for 2 hours and finally stored a 4° C for later use.

This double-stranded oligonucleotide was ligated into pSP72 vector (Promega,

Madison, WI). EcoR I-digested pSP72 and the double-stranded HA oligonucleotide were

incubated for approximately 4 hours at 16°C, and the T4DNA ligase was inactivated by

heating to 70° C for 15 minutes. Next, the salt concentration was adjusted to 150 mM by

addition of 1 pl of 1 M NaCl. Then 2 pl of BSA (10 nig/mI) and 1.0 pl BamH I enzyme

were added and the DNA was digested for approximately 2 hours at 37° C. The reaction

products were separated by electrophoresis on 0.7% agarose, which separated the

linearized ligated species from unligated or concatamerized HA oligonucleotides.

Linearized DNA was cut out from the gel and extracted from the agarose. This linearized,
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and HA complementary were added to a 0.5 ml microcentrifuge tube containing 2.0 /zl T4



extracted product was again ligated to yield circular plasmid DNA, which was

transformed into competent XL-1 Blue bacteria. Colonies were selected on LB-ampicillin

plates and 12 colonies were cultured for use in plasmid isolations. The plasmids were

checked for presence of HA insert by digestion with Dde I, which has one site in the HA

oligonucleotide sequence. This means that compared to pSP72 digested with Dde I, an

extra band was seen in insert positive DNAs. In this case, the 686 base pair fragment (one

of six seen in the pSP72 DNA digestion) is cleaved into two smaller fragments of 540 and

165 base pairs. Note that the smaller two fragments do not add up to 686 bp. This is due

to the difference of 19 base pairs between the amount of DNA inserted (46 bp) and the

amount of DNA cut out by the EcoR I- BamH I digestion (23 bp).

When the DNA from one of these positive colonies was sequenced, it contained a

truncated HA coding region that had only 28 out the 51 bp that were HA sequence. For

this reason all other putative HA DNAs were digested with Xbal and EcoRI, which cut

out the multiple cloning site of pSP72 plus any inserted DNA. These digestion reactions

were run on 6 % Tris-Borate-EDTA (TBE) polyacrylamide gel to detect several base pair

differences in insert sizes. Compared to the known truncated positive, DNA from five

clones appeared to be the proper size. This was confirmed by sequencing; two DNAs

were intact full length HA in pSP72. The positive clones were termed pSP72/HA.

The next step involved placing the upper region of the P2 laminin chain (which

contained the signal sequence) into the pSP72/HA construct. This was done before the
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hybrid Ln chains were inserted because the enzymes used in this step would digest the

construct containing the signal sequence of the (52

chain in-frame with the HA-tag sequence could be used repeatedly to epitope-tag genes of

interest and allow them to be targeted to the endoplasmic reticulum for processing.

generated by digesting the plasmid 02 IaII-up/

SP72 (described above) with Nsi I, creating a blunt end using T4 DNA polymerase, and

digesting with EcoR I. The 02 upper region was separated by electrophoresis on 1.0%

agarose, excised, and extracted from the agarose. This was ligated to SK+ (Stratagene, La

Jolla, CA), which had been digested with EcoR I and Sma I. The heat inactivated ligation

reaction was transformed into XL-1 Blue, and plasmid DNA was prepared from twelve

colonies on LB-amp plates. These DNAs were screened for presence of insert by

restriction digestion with Bsu36 I and visualization of DNA bands on a 1.0% agarose gel.

One positive clone was sequenced and termed 02up/SK.

The upstream/signal sequence of 02 laminin was removed from the 02up/SK

construct by digestion with EcoR I and BamH I. This 203 base pair fragment was

separated from the 2.96 kilobase SK+ plasmid, extracted from 1.0 % agarose, and ligated

into the pSP72/E!A DNA, which had also been digested with EcoR I and BamH I.

Correctly ligated HA + 02 upper DNAs were determined by Bsu36 I digestion, which

yielded a 3 kilobase linear DNA band in the case of insert-containing constructs. This

new plasmid was called SP72/HA-02up. Sequencing of this plasmid revealed that the HA
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hybrid Ln chains. Furthermore, a new

The upstream region of 02 was



epitope portion was not in-frame with the signal sequence portion of the construct.

To place the upper region and HA epitope into the expression vector, the

pSP72/HA-Sup plasmid was partially digested with EcoR I enzyme, then cleaved with

Hind III. A fragment of 254 base pairs in size, which corresponded to the size of the

upper region and HA epitope, was removed from the gel and ligated into pcDNA 1/ Amp

(Invitrogen, San Diego, CA), which was also digested with EcoR I and Hind III. DNAs

from six colonies were tested for the presence of insert by digesting with Bsu 36 I, which

yielded a 5 kilobase linear DNA for P2up-HA- positive constructs. The one DNA

containing the insert was called p2up-HA/cDNAl.

Two changes were deemed necessary to keep the P2 signal sequence in-frame with

the HA epitope fragment. First, p2up-HA/cDNAl was digested with BamH I, ethanol

precipitated, resuspended in TE, and subsequently treated with the Klenow fragment of

DNA polymerase I (Promega, Madison, WI), which filled in the restriction site 5'

overhangs. The Klenow enzyme was inactivated by heating at 75° C for 25 minutes. Next,

5 Units of T4 DNA ligase (Promega, Madison, WI) plus ligase buffer were added and the

ligation reaction was allowed to proceed overnight at 4°C. After initial transformation

two plasmids that were not digested by BamH I enzyme were found and isolated. Next,

this p2up-HA/cDNAl, with the filled-in BamH I site, was digested with Xmn I (a site

which was created when the P2 upstream region ligated to the HA epitope-tag sequence),

and filled in with the Klenow fragment enzyme. Religation yielded a circular plasmid,
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and sequencing confirmed that the P2 upper region (containing the start site) was now in­

frame with the HA coding region.

second EcoR I site at the 5' end of the upper region of the corrected p2up-HA/cDNAl

was removed. This was done by digesting the p2up /SK plasmid with EcoR I, heat

inactivating, and blunt-ending with the Klenow fragment of DNA pol I (Gibco BRL,

DNA ligase. DNAs which were not cleaved by EcoR I were isolated. The new plasmid,

named p2upAEco/SK was digested with Hind III and Bsu36 I. A 131 base pair fragment

was extracted and ligated into p2up-HA/cDNAl, also digested with Hind III and Bsu 36

region and signal sequence of the laminin p2 chain attached to (and in-frame with) the

HA epitope. The 3' end of the HA epitope sequence contained a Bgl II site and an EcoR I

site, which allows for the cloning of cDNA in 2 of the 3 possible open reading frames.

The y 1 (P2)j hybrid Ln chain cDNA was introduced into the P2up-HA/cDNAl

vector. yl(p2)I/SK (described earlier)

filled-in with the Klenow fragment of DNA polymerase I (MBI Fermentas, Amherst,

NY). The P2up-HA/cDNAl vector was digested with EcoR I and filled in with the

Klenow fragment of DNA polymerase I. The two linear DNAs were mixed and ligated by

T4 DNA ligase in an overnight incubation at 4°C. After heat inactivation, transformation
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was digested with Neo I, and the 5* overhang was

To facilitate cloning at the EcoR I site at the 3’ end of the HA epitope sequence, a

I. The result of this cloning strategy was an expression vector that contained the upper

Gaithersburg, MD). This linear molecule was ligated into a circular plasmid using T4



r

of the ligation reaction and plating of transformed bacteria on selective medium, DNA

from 20 colonies was digested with Xmn I to yield fragments of 3329, 1898, 1400, 1283,

848 and 166 base pairs that were the correct sizes for insert positive DNA. Sequencing of

signal sequence and HA epitope tag, but the Neo I digestion removed the 3' most 677

nucleotides of P2 1 domain. To complete the full-length hybrid DNA, y 1 (P2\ /SK was

digested with Xho I and Avr II, which removed a 1,292 bp fragment corresponding to

nucleotides 3694-3905 of the y 1 sequence and nucleotides 4400-5481 of the P2 domain I

sequence. This fragment was ligated to Xho I - Xba I digested y 1 (P2)j /cDNAl/ p2up-

HA to create the full-length hybrid. Transformation, selection and culture of bacteria were

done as before. Twelve transformed colonies were screened by plasmid isolation and Bgl

II restriction digestion, which generated three fragments (5.4 kilobases, 3.6 kilobases and

1, 028 base pairs) for insert-containing DNAs. Five DNA clones were putatively positive

and named y l(p2)j /cDNAl/ P2up-HA, or y l(p2)rHA for short. Sequencing the C-

terminal end of the molecule revealed that the Avr II site had indeed annealed to the Xba

I site and that the sequence of the p2I inserted, including the stop codon, was correct.

The introduction of P2(y l)j hybrid LN chain cDNA was achieved by digesting the

P2(yl)/SK construct (described elsewhere) with Aat II, removing the 3' overhang of the

Aat II site with T4DNA polymerase, and digesting with Sal I. This separated the P2(y 1),

cDNA, excepting the p2 upper region, from the SIC vector. The P2up-HA/cDNAl
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one positive clone revealed that the cDNA for the y 1 (P2), chimera was in-frame with the



construct was digested with Bgl II, treated with Klenow fragment of DNA Pol I to fill-in

the 5’ overhang, and digested with Xho I, which forms a complementary 5' overhang with

Sal I -digested DNA. To ligate the Aat II- Sall -digested P2(y 1 )j to Bgl II-Xho I -digested

P2up-HA/cDNAl, the two DNAs were mixed with 2.0 //I of 10X ligase buffer (Promega,

Madison, WI), 0.5 jA of 50 mM Hexamine Cobalt Chloride, and 1.1 [A (6 U) of T4DNA

Polymerase enzyme (Promega, Madison, WI). To aid in the annealing of the adhesive

ends, the reaction was placed at 4° C for 15 minutes, then incubated at room temperature

(approximately 20° C) for 5 hours. Heat inactivation was achieved by heating to 75° C for

15 minutes. Plasmid extraction and restriction digestion with Xba I enzyme was carried

out on 10 clones. Three of these clones generated restriction fragments of 6.6,3.0 and 1.0

kilobases which indicated the presence of inserted P2 (yl)i DNA. One of these clones

was sequenced at the 5’ and 3' ends and found to be both in-frame with the P2 upper-HA

epitope sequence and full-length hybrid chain. This clone will be referred to as P2(y l)r

p2 up-HA/cDNAl or just P2(yl)rHA.

Yeast transformation

The yeast strain used was SFY526, which was provided in the Clontech

Matchmaker™ kit. For all transformations, one 2-3 mm colony from a YPD (20 S/L Difco

peptone, 10 mg/L yeast extract, 2 % dextrose) plate was used to inoculate 20 ml of YPD

medium. This culture was incubated at 30° C overnight with vigorous shaking to attain a
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static culture. From this culture an aliquot was added to 300 ml of YPD medium in a 1 L

about 15 ml of the overnight culture. This culture was incubated with vigorous shaking at

30°C for 3 hours. Cells were then pelleted by centrifugation for 5 minutes at

approximately l,500xg. The medium was decanted and the cells were resuspended in 50

ml of reagent grade water. The cells were spun again for five minutes at l,500xg and the

TE/LiAc (0.0IM Tris-HCl, ImM EDTA, 0.1M lithium acetate, pH 7.5).

For the transformation, 100 ng of each construct (one activation and one binding

domain hybrid) and 100 ng of carrier DNA (herring testis DNA; Clontech Palo Alto, CA)

were added to a 1.5 ml microcentrifuge tube along with 100 pl of competent cells. Next,

600 pl of freshly prepared PEG/LiAc solution (40% polyethylene glycol [M.W. 3,350] in

TE/LiAc) were added to each transformation tube and the contents mixed by inversion.

The tubes were then incubated at 30°C for 30 minutes with shaking. After incubation, 70

pl of 100% DMSO were added and the tubes were incubated at 42° C for 15 minutes. The

cells were briefly placed on ice, then pelleted by centrifugation at 14,000 rpm in a

microcentrifuge. After removal of supernatant liquid, the cells were resuspended in 0.5 ml

lx TE buffer (10 mM Tris-HCl, 1 mM EDTA). Finally, 250 pl of transformed cells were

plated onto a synthetic dextrose (SD) [6.7 g/L Difco yeast nitrogen base without amino

acids, 2% dextrose, 30 mg/L L-isoleucine, 150 mg/L L-valine, 20 mg/L adenine hemisulfate
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supernatant removed. Cells were then resuspended in 1.5 ml of freshly prepared 1 x

Erlenmeyer flask to achieve an OD600 of between 0.2 and 0.3, which generally required



salt, 20 mg/L L-arginine HC1, 20 mg/L L-histidine HC1 monohydrate, 30 mg/L L-lysine HC1,

20 mg/L L-methionine, 50 mg/L L-phenylalanine , 200 mg/L L-threonine, 30 mg/L L-tyrosine, 20

nis/L L-uracil] plate lacking both tryptophan and leucine (-leu, -trp) to select for yeast that

Beta-galactosidase assay

A single colony of transformed yeast, 2-3 mm in diameter (or several smaller

colonies which comprised the same mass), from SD (-leu, -trp) plates was used to

inoculate 10 ml of SD (-leu, -trp) medium and grown overnight at 30° C to yield a static

culture. The next day 2 ml of this culture was added to 8 ml of YPD medium and grown

for this

culture was measured and recorded. Next, 1.5 ml of the culture were placed in a

microcentrifuge tube, then pelleted, washed once with 0.5 ml of Z buffer and resuspended

in 0.3ml of Z buffer (63mM Na2HPO4, lOmM KC1, 2mM MgSO4; pH 7.0 ). This aliquot

was divided into 3 tubes with 100 pl each and the assays were performed in triplicate for

each transformant. Cells were next frozen for 1.5 minutes in liquid nitrogen, then thawed

quickly at 37°C to lyse the yeast. Subsequently, 600 pl of Z buffer + 0-mercaptoethanol

(0.27%) were added. At this point a timer was started and immediately 160 pl of o-

nitrophenylpyranogalactoside (ONPG) [Sigma, St. Louis, MO) at a concentration of 4

in Z-buffer were pipetted into the tubes. Tubes were gently inverted to mix and then
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were transformed with both vectors. These plates were incubated 3-6 days at 30°C.

for approximately 3 hours to achieve a culture in logarithmic growth. The OD600

mg/
'ml
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incubated at 30° C for 1.5-6 hours until a yellow color developed. In some cases

reactions were allowed to proceed overnight to allow possible weak interactions to occur.

Reactions were stopped by adding 0.4 ml of 1, M NaHCO3 (Fisher Scientific, St. Louis,

MO), and the tubes were centrifuged for 10 minutes to remove cellular debris. The

spectrophotometer. Beta-galactosidase activity was then determined using the formula: P-

gal units = 1000 x OD420/ (t x v x OD600), where t = time in minutes, v = 0.1 x

concentration factor (usually 5). Values were then normalized for daily differences in the

assay by dividing by a positive control interaction TD1 + VA3. The data is represented as

a percentage of this control.

In one experiment yeast were lysed via the glass bead disruption method (Dunne

and Wobbe 1988) to determine if the freeze-thaw disruption method was yielding

sufficient enzyme for assay. For these lysates, a liquid P-galactosidase assay was also

performed on 100 pl of sample extract from each transformant using the above protocol.

The number of P-galactosidase units was calculated using the equation: specific activity =

(0.0045

of a 1

VA3+TD1 positive control value to give a relative value to compare among different

assays. The relative values among transformants for assays of the glass bead disruption
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equation, 1.36 is a correction factor for the volume of the reaction and 0.0045 is the OD420

x protein cone, x extract vol. x time) [Rose et al. 1990]. For this(OD420 x 1.36)

nmole/nil solution of o-nitrophenol. The values for this assay were divided by the

supernatant was then transferred to a cuvette and the OD420 was determined on a



extracts showed no difference from those of the freeze-thaw method outlined above. This

observation assured us that the extracts used in detection could indeed give an accurate

representation of hybrid interaction as well as hybrid protein expression.

Statistical Analysis

one-way analysis of variance was performed. Statistical comparison between pairs within

a set of samples was performed by a pairwise Student-Neuman-Keuls post-hoc test. All

Statistical significance was determined at the p< 0.05 level.

Detection of Hybrid Expression

One colony of approximately 2-3 mm in size or an equivalent mass of smaller

colonies of transformed yeast from selective (-leu, -trp) plates was inoculated in 5 ml of

C with vigorous shaking. The next day 2 ml of this culture were added to 8 ml of YPD

medium in 50 ml conical tubes and incubated at 30° C for 3 hours. At the end of the

of cell density among the cultures. The remaining 9 ml were pelleted by centrifugation at

approximately 1,500 xg in a Beckman GS-6R centrifuge. The medium was aspirated and
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To assess differences among P-galactosidase assay results from a set of samples, a

SD(-leu, -trp) medium, vortexed briefly to eliminate clumps, and grown overnight at 30°

analyses were performed using SigmaStat™ statistical software from Jandel Scientific.

incubation 1 ml was removed and the OD600 was measured to allow a relative comparison



the pelleted cells were resuspended in 100 pl of glass bead disruption buffer (20 mM

Tris-HCl, pH 7.9; 10 mM MgCl2; 1 mM EDTA; 5% glycerol; 1 mM DTT; 0.3 M

ammonium sulfate; 1 mM PMSF; 2 H8/ml aprotinin; 1 g8/mI pepstatin A; 0.5 MS/ml leupeptin).

This yeast cell suspension was then frozen overnight a -20° C. After thawing, 200 pl of

glass bead disruption buffer and 400 mg of 0.45 mm acid-washed glass beads (Sigma, St.

Louis, Mo) were added to the tube. To lyse the yeast, this mixture was vortexed

vigorously 10-12 times for 30 seconds each with at least 2 minutes incubation on ice

checked for cell breakage under a light microscope. This technique yielded about 90 %

cell breakage. After the last vortex step, the glass beads were allowed to settle out of the

buffer for approximately 5 minutes. Next, the supernatant lysate was carefully removed

from the beads, 200 pl of glass bead disruption buffer was added to the left-over beads,

and the tube was gently inverted several times to remove residual lysate. Once the beads

had settled, the resulting supernatant was again removed and combined with the first

supernatant. This lysate was centrifuged at approximately 14,000 xg to remove cellular

debris. The resulting supernatant was removed and this cleared lysate was used for the

protein assay and western blot.

Protein concentration of each of the transformed yeast cell extracts was determined

using the Bradford reagent (Bio-Rad, Richmond, CA). For each sample, 2 pl of extract

was removed, placed into a microcentrifuge tube with 10 pl of 0.1 M NaOH and allowed
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between vortexing. Approximately 10 pl from each of two of the sample lysates were



to stand at room temperature for 5 minutes. Next, 790 pl of reagent grade H2O and 200 pl

added to each sample tube and again allowed to stand for 5

minutes. The full contents of each tube were subsequently added to separate 2 ml

statistical software, which allowed protein concentrations of samples to be extrapolated.

Alternatively, a Beckman model DU650 spectrophotometer was used, and preloaded

software calculated these values. Expression of hybrid proteins was determined by

western blot using equal amounts of protein (-100 pg) from each transformant extract.

Mammalian Cell Transfection

The human embryonic kidney cell line HEK 293 (ATCC, Rockville, MD) was

detected in western blots of these cells using available antibodies that recognize the Ln

trimer or specific Ln chains. Other laboratories have shown the same results (Yurchenco

etal. 1997).

The HEK 293 cells and the stable-transfected cell lines derived from the HEK 293

cells initially showed poor adhesion in the low serum Opti-MEM® medium and therefore

the following protocol was adopted. The day before transfection the medium from a 10
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of Bradford reagent were

used to create both stably and transiently expressed Ln chains. No Ln chains were

the assay was calculated using known concentrations of bovine IgG from 1 HS/pl

From the graph of the standard curve, a linear regression was calculated using SigmaStat®

- 20

disposable spectrophotometric cuvettes and the OD595 was measured. A standard curve for
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cm dish of confluent, or nearly confluent, HEK 293 (or derived cell lines) cells was

removed and replaced with 12 ml of fresh 293 medium (DMEM + 10 % heat inactivated

horse serum), then the cells were detached from the plate by trituration of the medium,

using a glass tissue culture pipette. A 2.5 ml volume of the removed cells was aliquoted

onto 60 mm tissue culture plates coated with collagen type I (rat tail collagen;

Collaborative Research, Bedford, MA). To coat the plates, 80 pl of a 100 pg/ ml solution

of rat tail collagen in sterile water was added to the dish and spread using the plastic

pipette tip. Excess solution was removed. This solution was allowed to dry, then the plate

was washed twice with 0.7 ml of lx PBS and allowed to dry again. Cells suspended in

medium were added to this plate. After transfer to 60 mm dishes the cells were replaced

in the tissue culture incubator overnight.

used as per manufacturer’s directions with

modifications made empirically to optimize conditions. For most transfections, 6 pg of

added to 200 pl of Opti-MEM® medium pre-warmed to 37° C in a 3

C Opti-MEM® medium were added and allowed to stand for 30 minutes. The entire

contents of the first tube were added drop-wise to the second tube, and the mixture was

stirred gently by tapping the side of the tube. This mixture was then allowed to incubate

in the tissue culture hood at room temperature for 15 minutes. Subsequently, 1 ml of
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(Life Technologies, Grand Island, NY) was

plasmid DNA were

. ®For both stable and transient transfections the Lipofectin cationic lipid reagent

ml plastic test tube. Into a second test tube, 15 pl of Lipofectin® reagent and 200 pl of 37°



warm Opti-MEM® was added to the mixture tube, and the entire contents were pipetted

onto a 60 mm tissue culture dish containing an approximately 80 % confluent growth of

HEK 293 cells. Prior to adding the transfection mixture, the plate had already been rinsed

medium was added. This plate with the transfection mixture was then placed overnight in

a tissue culture incubator at 37° C, 5 % CO2 and 95 % humidity. The next afternoon

(about 16 hours later), the Opti-MEM® transfection medium was removed and replaced

with standard 293 medium (DMEM + 10 % heat inactivated horse serum). For most

transient transfections, this plate was incubated in the tissue culture incubator for 48

hours.

Stable Transfection and Characterization of Laminin Chain Expressing Cell Lines.

To create cell lines which could constitutively express both the P2 and y 1 Ln

chains, HEK 293 cells

vectors, using the transfection protocol above. As a selectable marker for the transfected

cells the SV2-Neo vector, which conferred Neomycin (or the synthetic analog G418)

resistance, was added to transfected DNAs. The following amounts of the three DNA

plasmid vectors were used: 25.6 pg, 24.7 pg and 1.73 pg of (52 /cDNAl, yl /cDNAl and

SV2-Neo, respectively, which represented a 5:5:1 molar ratio.

After incubating overnight, the Opti-MEM® medium with DNA was removed and
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were transfected with the P2 /cDNAl and yl /cDNAl expression

with 0.5 ml of Opti-MEM®, which was removed, and 1 ml of prewarmed Opti-MEM®



replaced with 3 ml of fresh 293 medium, and this plate

for three days. At this time the medium was replaced with 2 ml of fresh 293 medium, and

the cells were removed from the plate by trituration using a plastic pipette tip. The

resuspended cells were then aliquoted, 400 pl each, into five 150 mm tissue culture

low density of cells that could then be isolated as clones. These plates were incubated in

the tissue culture incubator for 28 days with medium refreshed after the first two weeks,

then weekly. After 28 days, 12 colonies were removed from the five plates. This was

achieved by removing the medium from the 150 mm plate, then soaking a small

autoclaved circular piece of filter paper (the size of a hole punch) in 0.05% trypsin- 0.53

mM EDTA (Gibco BRL, Gaithersburg, MD) and placing it on top of a previously

identified and marked clone. The filter papers were quickly removed in a wiping motion

with sterilized tweezers, and each was placed in one well of a 24 well tissue culture dish

containing 293 medium plus 500 MS/m| G418. Three days later this procedure was used to

remove twelve more clones. Shortly thereafter, the cells of the 150 mm plates were too

numerous to isolate as individual clones, so the remaining cells were removed as a

population and frozen down for storage in liquid nitrogen.

After placement into the 24 well plates, the cloned cells were cultured for one to

two weeks with medium changes every three or four days. When an individual clone in its

well became confluent as judged by light microscopy, the cells were removed from the
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was placed back into the incubator

plastic dishes, each containing 15 ml 293 medium plus 500 H8/ml G418. This achieved a



well by trituration in fresh medium and transferred to a 60 mm tissue culture dish

containing 2.5 ml of 293 medium plus 500 pg/ ml G418. Plates also contained several

circular glass coverslips coated with rat tail collagen, which were used later for

immunofluorescent detection. Expression levels of Ln 02 within individual clones of

determined using either the C4 or DI9 monoclonal

antibody. These antibodies

in domain I or domain III, respectively. Expression of the y 1 chain was detected by the

polyclonal serum YY13 (gift of Dr. H. Kleinman, NIH). Visualization of these antibodies

was achieved by addition of a 1:200 dilution of fluorescein-conjugated goat, anti-mouse

IgG secondary antibody (Boeringer-Mannheim, Indianapolis, IN), respectively.

570 nm incident light was used and a green (518 nm) signal for a 494 nm incident light,

when visualized by a fluorescent microscope. Transfer to 24 well plates and the low

adhesion of these cells plus the added time of exposure to G418 caused the demise of

about half of the 24 original clones. Thus, less than 10 went on to be effectively stained.

From this group, six (A-l, A-2, B-4, C-2, D-2 and D-4) showed good enough expression

of one or both chains to be immunoblotted. Western blot results showed that two of the

cell lines (A-l and C-2) had high levels of both 02 and yl chains, one cell line (A-2)

contained only 02, and a fourth cell line (D-4) expressed only y 1. These four stable cell
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Therefore, cells which expressed both Ln chains would emit a red (590 nm) signal when a

were raised against the 02 chain and they recognize epitopes

transfected HEK 293 cells were

IgG secondary antibody (Sigma, St. Louis, Mo) or rhodamine-conjugated goat, anti-rabbit



lines were utilized in subsequent transfection and immunoprecipitation experiments.

Mammalian Cell Lysis

Cultured 293 cells were removed from the incubator and placed on ice. The

medium was removed and the cells were rinsed twice with cold IX PBS (1 ml for 10 cm

plates and 0.5 ml for 60 mm plates). After removal of the PBS the cells were lysed in cold

RIPA lysis buffer (50 mM Tris, 150 mM NaCl, 10 mM EDTA, 0.5 % Na Desoxycholate,

60 mm plates and 900 pl was added to 10 cm plates. After a 2 -3 minute incubation on

ice, cells were removed using a plastic Falcon® cell scraper (Becton-Dickinson, Lincoln

Park, NJ), and the lysate was transferred to a 1.5 ml centrifuge tube. 100 pl of RIPA were

lysate. The protease inhibitors aprotinin (2 M8/ni,) and leupeptin (0.5 M8/ml) were added to the

cell lysate tube on ice and then gently mixed. Next, the cellular debris was pelleted by a 4

minute centrifugation at approximately 12,000xg in a microcentrifuge at room

temperature. The cleared supernatant was the cell lysate used in subsequent western blots

and immunoprecipitations. These cell lysates were often frozen at -20° C for later use.
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added to the plate to remove any residual cells, which were then pooled with the original

1.0 % NP-40, 0.1 % Na dodecyl sulfate, 0.1 m8/ml PMSF). A 300 pl volume was added to



Western Blot

This protocol is based on that of Laemmli (1970). Cells were lysed and protein

protein sample was 40 pl. Prior to loading the sample into a well, 10 pl of 5x sample

buffer (50 % glycerol, 25 % 2-mercaptoethanol, 0.6 M Tris, 0.6 M sodium dodecyl

sulfate, 0.1% bromophenol blue) were added, then the sample was boiled for 3-5

minutes and centrifuged for 10 seconds in a bench-top microcentrifuge. Polyacrylamide

gel electrophoresis was carried out using a vertical electrophoresis apparatus, at a current

setting of approximately 10 mV, and allowed to run overnight (approximately 16 hours).

increased to approximately 30 mV and run an

additional hour after the bromophenol blue (BPB) tracking dye ran out the bottom of the

gel.

All acrylamide gels were made as described by Harlow and Lane (1988). The

acrylamide concentration differed according to which recombinant molecules or cell

examined, but generally a 6 % acrylamide gel (29:1 ratio of acrylamide to

N,N-methylene bis-acrylamide) was used when separating full length laminin chain

proteins, and a 10 % gel was utilized for blots of yeast lysates containing the two-hybrid

fusion proteins. For all denaturing protein gels, a 5% stacking gel was poured atop the

running gel with a comb inserted to create sample wells.

After the samples were separated by electrophoresis, the gel, after marking to
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concentrations were determined as previously described. A common volume of lysate or

lysates were

The next morning the current was



denote the molecular weight marker lanes, was equilibrated in glycine transfer buffer

(12.5 mM Tris-base, 100 mM glycine, 20% methanol). A sandwich of nitrocellulose

membrane and the polyacrylamide gel between two layers of blotting paper was placed

transferred to nitrocellulose membrane for 1.4 hours at 0.4 amperes.

The cassette was removed from the transfer apparatus, and the nitrocellulose

membrane was separated from the gel and blotting paper. Next, the molecular weight

marker lane was cut off from the rest of the membrane using a clean razor blade. This

portion of the membrane was stained with 0.5 % Ponceau Red protein stain. The rest of

the membrane containing the protein samples

(Rival, Clinton, MO) with 5 % non-fat dry milk in Tween-Tris-Saline [T-T-S] (15 mM

NaCl, 200 mM Tris, 200 mM EDTA [pH 8.0], 0.05% Tween-20) as a blocking reagent.

The membrane was incubated in this solution for 30 minutes. Membranes that were to be

stained with the polyclonal antibody YY15 also had normal mouse serum (NMS) at 1:200

dilution added to this blocking step to reduce background levels during the detection step.

After the blocking step, the milk was discarded and the primary antibody was

of the monoclonal antibody (mAb) D5, the

dilution was either 1:1,000 from ascites or 1:2 from D5 culture medium. For the mAb to

hemagglutinin, anti-HA (BAbCo, Berkeley, CA), the polyclonal antisera R49 (anti-Ln

P2), YY15 and YY13 (the latter two being anti-Ln yl), the optimal dilution was 1:3,000
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added in 2.5 % non-fat dry milk. In the case

was placed into a Seal-A-Meal plastic bag

into the transfer apparatus containing glycine transfer buffer. The proteins were



in 5 % non-fat dry milk. The anti-GAL4 binding domain (anti-GAL-DBD) antibody

(Santa Cruz Biotechnologies, Santa Cruz, CA) was used at a dilution of 1:2,000 in 5 %

non-fat dry milk. The membrane was incubated in the primary antibody solution in one of

three incubation conditions: one hour at 37° C, 2.5 hours at room temperature, or

overnight at 4° C. All incubation conditions produced approximately equal outcomes. At

the end of the incubation time, the membrane was removed from the primary antibody

solution and washed three times with T-T-S for 10 minutes each.

The secondary antibodies were conjugated to horseradish peroxidase enzyme

(HRP), which permitted detection using chemiluminescent substrate for the HRP enzyme.

anti-mouse IgG (HRP-Rb-anti-MoIgG)[Santa Cruz Biotechnologies, Santa Cruz, CA]. If

IgG (HRP-G-anti-RbIgG)[Sigma Co., St. Louis, Mo]. The dilution for the HRP-Rb-aMo

-IgG antibody was 1:3,000 in 5 % non-fat dry milk. For the HRP-G-aRb-IgG antibody the

empirically found to yield strong signal and minimize background during detection.

The detection of secondary antibody utilized the ECL chemiluminescent system

(Amersham, Arlington Hts., IL), following manufacturer’s instructions. Equal volumes of

solutions 1 and 2 were mixed shortly before use, then poured evenly over the protein-

blotted side of the nitrocellulose membrane. This solution was allowed to stand for one
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the primary antibody was a polyclonal antibody, the secondary antibody was goat anti-Rb

When the primary antibody was a monoclonal antibody the secondary antibody was rabbit

dilution was either 1:4,000 or 1:5,000 in 5 % non-fat dry milk. These concentrations were



minute then removed, and the membrane was wrapped in cellophane or enclosed in a

Seal-A-Meal09 bag. The wrapped membrane was then placed in a cardboard film cassette,

protein side up, and a piece of X-ray film was placed atop the membrane. The film was

marked to allow the measurement of protein migration for comparison to later antibody

detections. The first film was generally exposed for two minutes, then quickly removed

and placed in an X-ray film developer. Additional films, if needed, were exposed for

more or less time based on the outcome of the first film.

For most samples two or more proteins recognized by different antibodies were

detected on the same nitrocellulose membrane. To do this the primary and secondary

antibody were removed before beginning another antibody detection by incubating the

membrane in antibody stripping buffer ( 2% SDS, 37.5mM Tris [pH 6.8], 0.7% 0-

mercaptoethanol) in a Seal-A-Meal® bag at 50° C for 30 - 60 minutes.

Immunoprecipitation

Immunoprecipitation was carried out essentially as described by Green et al.

(1992) with modifications made in our laboratory to optimize conditions. TachiSorb-M or

TachiSorb-R immunosorbent precipitation reagent (Calbiochem, San Diego, CA) was

used to precipitate complexes of mouse mAb or rabbit polyclonal Ab, respectively. For

most experiments equivalent amounts of protein (as determined by Bradford assay) were
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held in place with a piece of tape and the position of the film relative the membrane was



precipitated. To clear the cell lysate of proteins which nonspecifically bound to

immunoglobulin, 15 pl of NMS or normal rabbit serum were added to 100 pl of

TachiSorb solution and incubated for one hour at 4° C, with shaking. The normal serum­

bound TachiSorb matrix

added to the pellet and the matrix resuspended. This mixture was allowed to incubate for

one hour at 4° C, with shaking. At the end of this incubation the TachiSorb matrix was

again pelleted, and the resulting supernatant was termed the “cleared lysate”.

During the first incubation, the primary antibody was added to 350 pl of TachiSorb

hour at 4° C, with shaking. The primary antibodies (and

amounts used) were DI9 (3 pl), which recognized the Ln p2 chain; YY13 (2 pl) which

recognized the yl chain; a-HA (4 pl), which recognized HA epitope-tagged hybrid Ln

chains. After the incubation, the TachiSorb matrix with the primary antibody adsorbed

was pelleted and washed three times with 500 pl of RIP A buffer. The primary antibody-

TachiSorb pellet was then resuspended in the cleared lysate and allowed to incubate for

two hours at 4° C.

After the incubation, the primary antibody-TachiSorb matrix was pelleted and

washed three times in RIPA buffer. This pellet was resuspended in 80 pl of

immunoprecipitation sample buffer [50 mM Tris (pH 6.8), 2 % SDS, 0.1 % BPB, 10 %

glycerol and 100 mM DTT (added just prior to use)]. The resuspended pellet was boiled
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solution and incubated for one

was then pelleted and washed three times with 100 pl of cold

RIPA buffer. After the washes 300 - 400 pl cell lysate (~ 1 mg of total protein) were



for 5 minutes and centrifuged at 14,000 xg for 3 minutes. The supernatant was removed

and placed in one well of a polyacrylamide gel for electrophoresis and western blotting.
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Results

Yeast Two-Hybrid Assay

Recombinant fragments of the a, P and y chains have been utilized in the study of

Ln chain interaction (Nomizu et al. 1994; Utani et al. 1994 & 1995; Kammerer et al.

1995) Most of these studies, given their biophysical nature, were performed in a test tube,

not in a cellular context. Intracellular studies of Ln assembly have focused on full-length

chains and their ability to be secreted (Matsui et al. 1995; Yurchenco et al. 1997). Niimi

et al. (1997) have tested whether fragments of the pl and yl Ln chains could assemble

intracellularly with full-length Ln chains to form P- y dimers or the a- p- y trimer. They

reported that the carboxyl terminal 200 amino acids of pi and yl Ln chains were both

able to form dimers.

The studies described do detect Ln chain interactions but they only tell whether or

form. The yeast two-hybrid assay links protein-protein

interaction to a quantifiable enzyme assay, thereby allowing not only detection of dimer

formation but also the assessment of levels of dimeric interaction in pairs of chain

fragments. These two-hybrid assay experiments were performed to assess the relative

levels of interactions between pairs of Ln chain long fragments and then determine the

minimal essential regions responsible for these interactions.

The cDNA fragments of the Ln chains were created by PCR (or restriction

digestion in the case of the p275 fragment) [Figures 4 and 5] and inserted into the
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not dimers (or trimers) can



activation domain containing vector (GAD424) and the binding domain containing vector

(GBT9). This created hybrid constructs which encode fusion proteins; e.g., P2//GAD424

Yeast strain SFY526 was transformed with paired

activation and binding domain constructs, plated on appropriate medium, and single

galactosidase activity, which served as a measurement of Ln domain interaction.

The two-hybrid assay by design detects the interaction of two separate proteins (or

protein fragments); one fused to the GAL4 activation domain and one fused to the GAL4

binding domain. The proximity of the two interacting proteins then allows the two GAL4

subunits to function as a transcriptional activator. This design is short-circuited, however,

if one of the fusion proteins acts

protein-protein interaction of the two-fusions within the yeast, and not a single fusion

acting alone to activate transcription, control interactions

each binding domain hybrid construct with empty GAD424 plasmid. Only one of the 14

able to activate transcription in these controls. This construct

yl75 will be discussed later, but these control transformations found that the remaining

two-hybrid fusions were not activating transcription of the P-galactosidase reporter gene

(data not shown).
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transformations combined each activation hybrid construct with empty GBT9 plasmid or

fusion proteins created was

were performed. These control

ensure that the presence of measurable P-galactosidase activity was due only to the

as a transcriptional activator on its own. Therefore, to

colonies were cultured for use in a spectrophotometric assay to determine the p-

024, and 02// GBT9 = 02/bind.



To rule out the possibility that differences in p-galactosidase activity for a given

assay were due to differences in protein expression levels, western blots of yeast

transformant lysates were done to detect fusion proteins and visualize relative levels of

expression. Binding domain fusions were detected using the anti-GAL4-DBD antibody,

and the p2 containing fusions, except P238, could be detected with the R49 antibody.

Expression levels of these proteins, as determined by visualization, could not explain the

differences in P-galactosidase activity seen in the assays for a particular group of

transformants. For instance, in Figure 12A levels of binding domain fusion proteins for

i

P27bind) no enzyme activity was seen with average protein levels. Contrasting this to to the

group yl/acl+ P2/bind with its average protein expression but high levels of p-galactosidase

activity, it appears that levels of fusion protein expression do not correspond to activity

levels.

Furthermore, the expression levels of the P2/act fusion (Figure 12B, white arrows)

which all hadare consistent in the groups p2Zact+ p2/t

very different levels of activity in enzyme assays (Figures 10 and 11). Another example of

the discontinuity between expression levels of fusion proteins and P-galactosidase activity

is the Ln domain II fusions. The activity of these transformants is not above background

and expression of these proteins is low in western blots, but when compared to the

expression level of the VA3 binding fusion (which is half of the positive control fusion
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all transformant lysates are similar. In several of these groups (yl/act+ al/bind and al/act+

bind, P24t+ yl/bindand P2/act+ alZbind,



pair) the levels are quite similar. The activity level for the TD1+VA3 transformants is

orders of magnitude above the domain II transformants’ activity. The results of the

western blots implicate protein-protein interaction, and effectively rule out differences of

fusion expression levels, in determining the activity of a given yeast transformant in these

two-hybrid assays.

Fusion proteins containing domain I of f2 interact most strongly with fusion proteins

containing domain I of yl.

Ln domain I hybrid constructs

assessed by P-galactosidase activity assay. Examination of the data

for domain I fusions showed the strongest interactions occurred between a P2Z fusion and

or yl + al) were compared separately from homodimeric pairings (p2 + P2, yl + yl, and

al + al) because heterodimeric interactions

homodimeric interactions are only found in in vitro experiments that utilize fragments of

Ln chains.

was

significantly greater than all other groups (Figure 10). Activity of the reciprocal pair,

but still stronger than all

83

are the ones seen in vivo, whereas

of fusion proteins was

were introduced into yeast in pairs and interaction

The P-galactosidase activity in yeast transformed with P2/act + yl/bind

was significantly weaker than P2Zact + ylZbind>Y^act+ P2Zbind,

a y 1/ fusion. Weaker interactions were seen for the P2/acl + P2/bind pair and the p2/act +

alZbind Pair- Heterodimeric pairings (that is transformants which paired P2 + y 1, p2 + al



other heterodimer pairs. Pairwise comparison determined that, among other heterodimeric

had P-galactosidase activity significantly greater than

the negative control group TD1+LAM5’. Since p-galactosidase activity is directly

proportional to the strength of interaction, the intracellular interaction of the fusion

is stronger than the interaction of fusion proteins

statistically significant interactions above background.

i

84

no other domain I heterodimer pair showed

protein p2Iact with fusion protein ylZbjnd

Except for P2Zact + al/bind,Y^act + 02Zbind.

interactions, only the P2/act + al/bind
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Figure 10. Heterodimeric interactions of the domain I fragments of the al, 02, and yl

transformed with pairs of one activation domain construct and one binding domain

construct, which generated activation fusions or binding fusions with the domain I Ln

chain fragments. Pairs of activation and binding fusions are listed in rows at bottom of the

graph. Interactions of the paired fragments drive expression of the reporter gene, 0-

galactosidase. This enzyme activity is then assayed as described in Materials and

Methods. They- axis represents the 0-galactosidase activity of lysates from yeast

percentage of the positive control interaction TD1+VA3. The negative control interaction

TD1+LAM5' is shown as background for this assay. For the data shown a one-way

done followed by a pairwise Student-Neuman-Keuls post-hoc

transformant is significantly greater than all

transformant

transformant but significantly

transformants. Bars without symbols indicate that the activity for these transformants is

not above background (TD1+LAM5’) levels. Statistical significance was determined at
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Ln chains were compared using the yeast two-hybrid assay. Yeast strain SFY526 was

transformed with the pairs indicated below the bar. This activity is reported as a

analysis of variance was

activity significantly above the four transformants TD1+LAM5', alZact + 02Zbind,

but less than the 02Zact + y lZbind

other transformants in pairwise comparisons. # indicates the y lZact + 02Zbind

and ylZacl+ 02Zbind

has significantly less activity than the 02Zact + ylZbjnd

and alZact + y lZbind,a^bind?

Y14t +

test. * indicates the activity of 02Zact + ylZbind

greater activity than all other pairs. @ signifies that the 02Zact + a lZbind transformant has



and

(n=6). Note the chart break which

deleted the region from 25-45 on the vertical axis in order to see smaller bars more

clearly.
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the p< 0.05 level. The “n” number of assays for each transformant (in parentheses) are as

(n=7) , £2/ac, + al/bind

+ al4.nd

and yl/act+ P2Zbind

andal/acl+Yl/birid

follows: TD1+LAM5' (n=9), £24, + Yl/bmd

a^act + P2/bind (n=5), yl/ac,



For the homodimeric interactions (Figure 11), only P2/had P-galactosidase

activity levels significantly above background; i.e., P-galactosidase units for

TD1+LAM5'. No p-galactosidase activity could be measured for either the yl/or the al/

homodimers. Thus, while only the P2 domain 1 is capable of homodimeric interactions in

this assay, it is important to note that this interaction is much weaker than the

heterodimeric interactions of p2 domain I with y 1 domain I. These results indicate that

intracellular conditions are most favorable for formation of yl - p2 dimers, but

Western blots detected similar expression levels for all binding domain fusion

proteins in all transformants (Figure 12A). Also, the P2/act fusion protein was detected in

similar amounts for the three transformants with this construct (Figure 12B). Therefore,

the amount of p-galactosidase activity measured does not correlate to fusion expression

levels. This indicates that the ability to activate transcription is due to interaction of the

two fusion proteins and not to greater protein expression in those transformants that show

activity.

88

homodimeric interactions of P2 can occur.



Figure 11.
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Figure 11. Homodimeric interactions of the Ln domain I fragments were assessed by

the yeast two-hybrid assay. Pairs of an activation domain construct with a binding domain

construct were transformed into yeast and fusions created by these constructs are noted in

the rows at bottom of the graph. The P-galactosidase activity of the transformed yeast

presented as the percentage of the positive control transformant TD1+VA3, is plotted as

transformant is significantly

and

(n=4).
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was not significantly above background TD1+LAM5' levels. The number

for each transformant was TD1+LAM5' (n=9), P2/act + P2Zbind

greater (p<0.05) than the other three transformants. The activity of yl/act + yl/bind

ftl/act ^l-^bind

of assays “n” and yl/act +

Y14nd (n=7), and al/act + alZbind

vertical bars. * indicates the activity of the P2/act + P2/bjnd



Act.

Bind.
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Figure 16.
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I Figure 12. Western blots were performed to determine the expression levels of the

(Act.) and binding domain (Bind.) fusions are named in rows above the respective sample

lanes. The lane labeled “—” for both Act. and Bind, rows is a cell lysate from HEK 293

cells transfected with a truncated P2 chain, which is a positive control for the anti-p2

antibody R49. The secondary antibody was detected via the ECL chemiluminescent

system (Amersham, Arlington Hts., IL) and exposure to x-ray film.

(A) A representative immunoblot with the anti-GAL4 binding domain antibody (anti-

GAL-DBD). The antibody was diluted 1:1,000 in 5% non-fat dry milk (NFDM) and

temperature. The secondary antibody was goat anti-rabbit

IgG conjugated to horseradish peroxidase enzyme (G-anti-RblgG-HRP), diluted 1:4,000

(upper arrow)

(B) The same nitrocellulose membrane in A was stripped of the anti-GAL-DBD antibody

and immunoblotted with anti- p2 antibody R49 diluted 1:3,000 in 5 % NFDM. The

protein in three

of the lanes and white arrows point to p2Zact fusion protein.
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i

incubated for 2.5 hrs at room

or P2/bind (lower arrow) fusion proteins.

secondary antibody was the same as in A. Black arrows point to the P2/bind

and yl/bindin 5% NFDM. Arrows mark the bands corresponding to al/bind

domain I fragment fusion proteins. The Ln chain fragments of the activation domain



I

The C-terminal 75 amino acids of @2 form heterodimers with domain I of yl but not

homodimers with domain I of /32.

Other investigators have shown that a ten amino acid sequence 10-20 residues

from the C-terminus of the y 1 chain is essential for dimerization with the P2 chain (Utani

et al. 1994), and much of the study of Ln chain interaction has focused on the C-terminal

100 - 200 amino acids of domain I in each chain. To evaluate the strength of interaction

of smaller portions of domain I, hybrids were constructed which fused the last 75 amino

and
i

respectively). The interaction of these fusions with domain I fusions of P2 or yl

chains was evaluated by the two-hybrid assay as described above.

P-galactosidase activity for colonies transformed with a p275 construct together

significantly above background and of similar magnitude to the

The P-

transformants was not statistically different

P2/bind transformants is the same as for the first experiment. These results indicate that

fusions containing only the C-terminal 75 amino acids of P2 are not different from
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y lZact + p2/bind and p2/act + yl/bind.

with a yl/ construct was

+ P2.

transformed colonies, but was less than the yl/act + P275

activity of colonies transformed with yl/+ p27 pairs (Figure 13). Statistically, the yl/act

+ Y14nd,

+ Yl/bind

P275_bjnd,

from the activity of y l/acl +p2Zbind

galactosidase activity of the P275.act

other heterodimeric pairs P275.act

transformants. The activity data for P2Iact+ yl/bind and y l/acl +-bind and P27act +y!Zbind

75-bind transformants had significantly greater p-galactosidase activity than the three

acids of P2 with either the activation domain or binding domain of GAL4 (p275.act



fusions containing the entire domain I of P2 in their ability to interact with domain I

fusions of y 1.

In order to compare the homodimeric interaction potential of the C-terminal 75

constructs or transformed together to test for interaction in the two-hybrid system The

did not have activity significantly above background, differing from the data shown

previously for the P27act+ p2/bind transformants. Furthermore, the P275 fusions paired with

did not show significant activity above background. These

not form homodimeric interactions, whether with all of domain I of P2 or with another

P275 fusion. These results suggest that the structure of the C-terminal 75 amino acids

allows for heterodimeric but not homodimeric interactions. Western blots showed similar

expression levels of the fusions in these experiments.

94

or P2experiments indicate that fusions of the last 75 amino acids of P2 (P275_act 75-bind) did

+ P^75-bind

either P2Zact or P2Zbind

results are seen in Figure 14. They show that transformants containing P275.act

amino acids of the P2 chain, the constructs containing p275 were paired with P2/
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Figure 13. Yeast were transformed with activation domain- Ln fragment fusion +

domain I fragment of Ln P2 chain, p275 represents the C-terminal 75 amino acids of the

Ln P2 chain, and yl 7 represents the domain I of the Ln yl chain. The TD1 + LAM 5*

transformant is a negative control as these fusions do not interact. Numbers are given

below pairs of fusion proteins to easily identify transformants discussed. Bars represent

the mean P-galactosidase activity ± the standard error reported as a percentage of the

positive control interaction, TD1+VA3. The number of assays for each fusion pair

(n = 6). # indicates that bar number 2 activity is

significantly less than that of bar number 5 but is significantly greater than activity of all

other transformants in pair-wise comparisons. @ indicates that the activities of bar

number 3 and bar number 4 are not significantly different from one another and that both

of these transformants have activity significantly less than bar number 2. Both number 3

5 was significantly greater than all other transformants in pair-wise comparisons.
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and yl/act+ p2/bindtransformant (n) is P27act + yl/bind (n = 7); TD1 + LAM 5' (n = 9); P275.

binding domain- Ln fragment fusion pairs as listed below the graph. P27 represents the

act+Yl/bind andyl/act+P275-bind

& number 4 are also significantly less than number 5. * indicates that group bar number
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Figure 14. P275 - activation and binding domain constructs were transformed into yeast

together or with the complementary P2Z construct to assess homodimeric interactions of

this shortened chain fragment. Pairs of transformed constructs are given below the graph

and numbers are used to denote these pairs. Bars represent mean p-galactosidase activity

± standard error reported as a percentage of the positive control paired transformant (TD1

+ VA3). The TD1 + LAM 5' transformant is a negative control as these fusions do not

(n = 6). * represents the significant

difference of bar number 2 from all other groups by pair-wise comparison. Bar number 3,

4 and 5 are not significantly different from background levels (bar number 1).
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interact. The number of assays for each transformant (n)is P2Zact+ P27bind

+ P2/bjnd + P^VS-bindP^VS-bind (n = 4), P275.actand P275.act

(n = 7); P2/act +



form homodimers.

To further narrow down the region of laminin chain dimer interaction, fusions

fusion in two-hybrid assays

fusions were transformed together into yeast to detect the presence of homodimeric

interaction.

statistically significant activity for the

transformants, unlike that of P2/act+ p2/bind transformants (Figure 15).

fusion had no activity

above background either (Figure 15). Western blots for these assays did not detect any

protein due to technical problems with the anti-GAL4-DBD antibody and the anti-P2

fusion

(Figure 16). These assays did not have appreciable P-galactosidase activity either. This

indicates that the construct created can generate a fusion protein, and that absence of

activity is not likely a result of the lack of fusion protein. These results suggest that the C-

terminal 38 amino acids of the P2 chain can not form stable interactions with the yl

chain, nor can it form stable homodimeric structures.
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Repeated P-galactosidase assays showed no

were created which combined the GAL4 activation and binding domains with the C-

fusion was paired with the yl/bind

fusion paired with the yl/bind

antibody R49. Lysates from other assays showed detectable levels of the P238.bind

terminal most 38 amino acids of the P2 chain. These fusions were named p23g.act

to determine their affinity for domain I of the yl chain. Also, the p238.act and p238.bind

P^38-act + P^38-bind

and P238_

Transformants containing the p23g.act

6^, respectively. The p238.act

The C-terminal 38 amino acids of (32 do not form dimers with yl, nor do they combine to
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Figure 15. Fusions of the C-terminal 38 amino acids of Ln 02 chain were created and

transformed into yeast in pairs as shown below the graph. Bars represent mean 0-

galactosidase activity ± standard error reported as a % of the positive control, TD1+VA3.

Three assays were performed for each transformant. Neither of the transformants showed

significant difference from the negative control transformant TD1 + LAM5'. Note the

extremely small numerical values on the y - axis.
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Figure 16. A representative western blot showing expression levels of the p2

fusion proteins. Equal amounts of protein from each sample were loaded

onto the gel. Bands of the appropriate sizes are recognized by the anti-GAL4-DBD

band in

the lane labeled P275 for activation fusion and Yl75for the binding domain fusion. The

band is also absent in the lane labeled p238 for activation fusion and y!75 for the binding

fusion protein is detected in the lane for yl

these three lanes only the lack of fusion protein corresponds to the lack of activity for that

fusion protein present, this assay did have

fusion only, the

amount of activity does correspond to the amount of protein. This is likely due to the fact

that this fusion can activate transcription on its own.
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75-act + Y^75-bind.

measurable P-galactosidase activity. This indicates that for the Ybs-bind

fusion (black arrows), P275.bindantibody and marked with arrows. These bands are P23g.bjnd

(white arrows). Note the absence of the Ybs-bind

75-bind, P^38-

domain fusion. The yl 75-bind

assay. In the one lane with the yl 75-bind

(black arrowheads) and Y175-bind

bind. andYl75-bind



■

Two-hybrid assays using the P238 fusions with constructs of the C-terminal 75

amount. These results were not compared to the others due to the confounding activity of

the yl

Fusion proteins containing the C-terminal 75 amino acids of yl have mild transcriptional

activity.

To examine the regions of the yl chain involved in dimer interactions with the P2

chain, a fragment corresponding to the C-terminal 75 amino acids of yl was created by

PCR and ligated into both the GAD424 and GBT9 vectors. As before, these constructs

galactosidase activity. The activity seen in these assays was not replicable from one assay

for any of the transformants were those which

fusion

alone. The yl75/GBT9 construct was transfected by itself into competent yeast and plated

on selective medium lacking tryptophan. Colonies containing this fusion alone were

assayed for activity as for other transformed yeast. Three repeated assays all showed a

104

were transformed into yeast and fusion protein interaction was determined using the P-

to the next. The only activity seen

bind) assays did show a low level of activity.

+ y l75.bind, did sporadically show activity, albeit a small

These observations led to testing the transcriptional activity of the yl75.bind

construct. In fact, one of the control transformant (GAD424 + y 175.

bmd >but the reciprocal pair, p238.act

+ P238.amino acids of y 1 were also done. These showed no activity in the case of yl75.act

75-bind > as discussed below.

contained the yl75.bjnd



low level of p-galactosidase activity, confirming the ability of this fusion protein to act as

a transcriptional activator in this assay. This transcriptional activity is not sufficient to

+

What may explain the differences are expression levels of

the yl fusion is seen for

+ yl

fusion to activate transcription of the

reporter gene on its own and because the expression levels affected activity of the

transformants, these fusion proteins were not used in this assay.

Substitution of the C-terminal cysteine of /32 Domain I does not ablate interactions of (32

with yl.

It is known that the P and y chains form a disulfide cross-bridge between their

in yl) [reviewed in

Beck et al. 1990; see I. Hunter et al. 1992]. Antonsson et al. (1995) reported that

disruption of disulfide bonding by alkylation of the Ln chains did not alter the a-helical

nature of the Ln chains nor did it prohibit dimer formation of pi chain fragments with y 1

chain fragments. To determine if this covalent bond was necessary for the domain I

interaction to occur in our system, a domain I fragment of the P2 chain cDNA was created
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in P2 and Cys1563respective C-terminal cysteine residues (Cys1765

act+Yl

75-bind)? butno expression of the fusion

protein is detectable in two lanes which did not show activity (P275.act

P^75-act

Y ^75-bind’

75-bind)* Because of the ability of the yl75.bind

and p238.act + Y 1 75-bind-

+ Y 175-bind’

+ Y 175-bind and P238_

75_bind. In one immunoblot (Figure 16) expression of the yl75.bind

explain the activity seen in the double transformed pairs such as yl75.act

the transformant which had activity (y l75.act



with a mutation at nucleotide 5466. The single base pair mutation resulted in a cysteine to

serine switch at residue 1765 of the mature protein. This mutated cDNA fragment was

used to create hybrids in the GAD424 and GBT9 vectors. The fusion products were called

In repeated two-hybrid p-galactosidase assays, the mutated 02/ fusions showed

differences from wild-type 02/ fusions in both homodimeric and heterodimeric

interactions. The differences from the wild-type were not seen in the reciprocal pair,

was seen for the cys -

had significantlyser mutants as well (Figure 17). That is, the pairing of

02/bindin 0-galactosidase assays. For other

transformants was not

transformants in thesesignificantly different from the activity of the

pair was, however, significantly

pair was reduced to

levels not statistically above background.

For homodimeric pairs we saw similar results between mutant and wild-type

had

activity significantly above background levels in 0-galactosidase assays. The activity of

mutant

106

act +

c’*sP24tand

P24ind

assays. The 0-galactosidase activity of the yl/act + P2/bind

interaction being stronger than the reciprocal pair Yl/act + p2/bind

C"*s02/t

heterodimer pairs (Figure 17), the activity of 02/act + y l/bind

C“*S02/a

greater activity than the pairing of y l/acl

+C-»S

+c->s

c~*s02/bind) was not significantly different

c"*sp2Zac[ + ylZbind

different from the y l/act +

C"*s02/acl + y l/bind

C->S02/fusions together ('

bind, respectively.

however. In fact, the same statistically significant difference of the P2Zact + y lZbind

C"*SP2Zbind,

C"*S P2Zbind pair, and the y lZact

fusions as well (shown in Figure 18). All pairs tested, except P2Zacl +
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Figure 17. P27 fusions that substituted ser for cys at amino acid 1765 were created and

compared to wild-type P27 fusions for their ability to interact with fusions in the two-

hybrid assay. Yeast were transformed with the pairs of activation and binding domain

fusions indicated below the graph of P-galactosidase activity. Symbols show statistical

differences between transformants in pair-wise comparisons. *indicates that bar numberl

transformants have a statistically higher activity than either bar number 4 or bar number

5 transformants. @ indicates that bar number 2 transformants have higher activity than

either bar number 4 or bar number 5 as well. # denotes no significant difference between

bar number 2 and bar number 3 transformants. S denotes that bar number 4 has

significantly greater activity than bar number 5 and indicates that the activity of bar

number 5 is not significantly above background.
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Figure 18.

Homodimer Formation of 02 Domain I Cys To Ser Mutation
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Figure 18. Cys ser mutated 02/ constructs were transformed together or with the

complementary wild-type 02/ construct to assess homodimer formation in the absence of

disulfide bonding. The bar graph is the results of assays performed on those

reported as a percentage of the positive control transformant, TD1 + VA3. The number of

assays performed for each transformant (n) was: TD1 + LAM5’ and 02/acl + 02/bind(n=

7);’

transformant number 4 is significantly less than numbers 2, 3 and 5 in pair-wise

comparisons, and is not significantly above transformant number 1 (background levels).

Transformants bar numbers 2, 3 and 5

individual pair-wise comparisons none is greater than any other. Note that the scale of the

vertical axis is less than that of Figure 17.
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are greater than transformant number 1 but in

transformants. Individual bars represent mean P-galactosidase activity ± standard error

r c—s 
bind.sp2/t+ c';c^P2/act P2/act + P24ind and P2Zact + c-*s02/bind(n = 6). * indicates that



■ Similarly,

had activity which was not different from +

pairs and was significantly less than the P2/act + P2/t

+ R

results show some differences between the

I

fusions in their ability to interact with the y 17act fusions, it is postulated that the cysteine

1765 residue does play a role in dimer formation. But since transformants which

contained always showed activity when paired with the

complementary y 1/ fusion, this mutation does not ablate P2-y 1 interaction. This indicates

the Cys

interactions of P2/ with y 1/, but is not absolutely required for these interactions in this

system.

Unfortunately, the

knowledge of the system the lack of signal for this procedure is likely due to antibody

binding difficulties and not lack of protein expression. Also, since the mutant P2Z fusions

were so similar in their interaction patterns compared to wild-type p2/ fusions it is

reasonable to assume that expression levels of the fusion proteins are not responsible for

the differences in P-galactosidase activity seen in these assays. These results, though,
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must come with the caveat that protein expression is not known.

Constructs of Domain II of f2 and yl, separate from Domain I, do not interact3

The domain II region of each of the Ln chains is part of the long arm of the

trimeric molecule and presumably involved in chain assembly, but little work has been

done to study the role of domain II in interactions between the chains. To determine the

contribution of domain II to the p2-yl dimer formation apart from domain I, we created

activation and binding fusions which contained domain II of P2 or y 1 for use in the two-

hybrid assay. As shown in Figure 19, none of the two-hybrid transformants had P-

galactosidase activity above background levels as determined by statistical analysis. The

absence of interaction is not due to lack of fusion protein, as shown in a western blot with

the anti-GAL4-DBD antibody (Figure 20). Unlike the domain I heterodimeric

interactions, yeast colonies transformed with a P2ZZ fusion together with a y 1ZZ fusion did

not have activity levels above background. These results indicate that interactions of

domain II, apart from domain I, are transient or non-existent.
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Figure 19.

Domain II Fusions of [32 or yl Do Not Interaction in Any Pairings
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Figure 19. Constructs of the domain II of the p2 and yl chains were created and

transformed into yeast in complementary (activation and binding domain) pairs for

detection of their interactions by the two-hybrid assay. Pairs of p2// and yl// fusions are

reported as a percentage of the positive control TD1 + VA3. Pair-wise comparisons

showed none of the transformants had significantly greater activity than any other and

none was greater than background (TD1+LAM5'). For each transformant, three assays

were performed.
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Figure 20.

Domain II Hybrids are Expressed in the Two-Hybrid System

TD1 P2Z7 P2ZI ylll ylll allAct. :

Bind.: VA3 P2/Z ylll $211 ylll all
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Figure 20. A representative blot of lysates from transformants used in domain II [3-

galactosidase assays. Equal amounts of protein from each sample were separated on

denaturing 10 % polyacrylamide gel. The proteins were then blotted onto nitrocellulose

membrane that was probed with the anti-GAL4-DBD antibody to detect binding domain

fusions. The size of the molecular weight markers is given in kilodaltons. Specific bands

of the appropriate size for VA3 (white horizontal arrowhead), P2Z/bind (black vertical

(black

horizontal arrow) protein was run on the same gel as a control because its expression

level was already determined to be sufficient for antibody recognition. The bands seen for

the domain II fusions are faint, but it is believed that this low expression does not account

for the lack of activity detected in these assays.
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Two-Hybrid Summary

The two-hybrid assay provided a good system for measuring the relative strength

of dimer interaction of long arm domains and domain fragments. The results of these two-

hybrid assays are summarized as follows:

1) The strongest interactions in this system are those of domain I of P2 with y 1 domain I.

weak in one pair, non-existent in the other.

4) Mutation studies showed that replacement of Cysteine 1765 in p2/did alter, but did not

ablate, the ability of these fusions to interact with either yl / or P2/ fusions.

interactions with y 1, but homodimeric interactions of this fragment are not seen.

6) Fusions of the last 38 amino acids have no affinity for y 17, nor do they form

homodimers.

7) Lastly, domain II, while part of the “long arm”, does not seem to be involved in p2 -y 1

dimer formation.
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3) Dimeric interactions of the a chain with y 1/ are not seen; interactions with P27 are

2) Homodimers of p27 fusions (but not a 17 or y 1/) did occur.

5) The most C-terminal 75 amino acids of P2 are sufficient to generate heterodimeric



Mammalian Cell Culture and Immunoprecipitation

The question of which regions or amino acids of the Ln chains are responsible for

dimer and trimer formation has until now been studied using either fragments of the Ln

chains mixed in a test tube or by deleted segments of recombinant chains in intracellular

assembly studies. What these fragments lack is the context of the full-length glycoprotein.

Deleting a portion of the internal structure of the chain does remove a potential

interaction site, but also leaves the remaining coiled-coil domains out of alignment. By

domain of the P2 chain it is possible

to study the role of domain I as part of a full-length molecule. If this region is responsible

for specific P-y dimer formation as postulated, this hybrid chain would interact with full-

length y 1 chain but not with full-length p2 chain. Likewise, a hybrid which replaced

domain I of Ln P2 with domain I of yl would be expected to interact via domain I with

full-length P2 chain but not with the y 1 chain. Will domain I of P2 interact with domain I

of y 1, regardless of the primary structure of the rest of the Ln chain to which either is

attached?

To test this hypothesis, hybrid Ln chains, which had their domain I region replaced

with another Ln domain I,

immunoprecipitation experiments that would detect dimerization with a wild-type

recombinant Ln p2 or y 1 chain. To assure that adequate amounts of the wild-type protein

were expressed in transformed cells, stably transfected cell lines were created which
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replacing domain I of the Ln y 1 chain with the same

were created by PCR and subcloning. These were then used in



constitutively expressed either recombinant Ln 02 chain, or Ln y 1 chain, or both 02 and

yl chains. One other cell line, which expressed a partially deleted 02 chain, was also

used. It contained the long arm domains, and because it was smaller than the full-length

02 chain, it was easily differentiated from the hybrid Ln chains after polyacrylamide gel

electrophoresis and western blotting.

The mammalian cell culture experiments involved transient transfection of these

stably transfected cell lines with epitope-tagged hybrid laminin chain cDNAs. An

immunoprecipitation was performed to precipitate the hybrid Ln chain and any proteins

associated with it. This precipitated material

electrophoresis and the Ln chain(s) associated with the hybrid were detected by blotting

with specific antibodies to the 02

from the hybrid chains by antibody specificity and size differences. The size differences

were determined by marking the position of the nitrocellulose membrane relative to the

film during the chemiluminescent detection step. In this manner bands which appeared

when blotting with one antibody could be differentiated from bands that appeared on

subsequent blots with a second (or third) antibody.
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or yl chain. The wild-type chains were differentiated

was then separated by polyacrylamide gel
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- Stable transformation yielded several cell lines that constitutively express recombinant
«

laminin chains.

Several daughter cell lines were generated from HEK 293 cells by transfection

with the cDNA for 02 and y 1 in separate expression vectors together with a plasmid

containing a selectable marker (neomycin resistance). Two G418-resistant cell lines,

chains in western blots. Two other cell lines were characterized which expressed only one

Ln chain. The A2-293^ cell line expressed only the 02 chain in western blots, and the D4-

293Y cell line expressed only y 1 chain. It is believed that the D4-293Y cell line is unique

in its expression of only the yl chain, as another laboratory has noted their inability to

create such a cell line (Yurchenco et al. 1997). These single chain expressing clones were

not unexpected since the cDNA for the chains were on separate vectors, allowing a

percentage of transfected cells to incorporate only the 02 or y 1 chain cDNA into their

genome. Each of these cell lines were used to study the assembly of full-length Ln

molecules within the cell.

Another cell line created by transfection of HEK 293 cells, called 02 (A IV-V)-

293, was also utilized in Ln assembly studies. These cells express a 02 Ln chain which

has the domains IV and V deleted. The cDNA for this recombinant molecule was

incorporated into the vector pcDNA3, which has a CMV promoter and the selectable
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(C2-293P’y

Rmarker gene, Neo . This allows a stable cell line to be generated in the presence of G418.

and A1-293^’Y), showed high levels of constitutive expression of both Ln



The recombinant Ln chain of these cells is expressed at high levels and is approximately

55 kilodaltons smaller in size than the full-length [32 chain, but it is still recognized by the

anti-p2 antibody R49 (Figure 21). For ease of reference a table is provided to show which

cell lines express which Ln chains (Table 4).

The C2-293p-Y cells were lysed in RIPA buffer, and this lysate was

immunoprecipitated with the DI9 anti-[32 mAb, which precipitates the P2 chain and any

proteins in a complex with it. After precipitation and separation on 4.5 % polyacrylamide

gel, a western blot was performed using the anti-Ln Ab (Polysciences, Warrington, PA) to

detect the presence of y 1 protein. The results did show the y 1 chain was co-precipitated

the [32 and yl chains “assembled” into a stable dimer.
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with the [32 chain in these cells which express both chains (Figure 22). This indicates that



Figure 21. Polyacrylamide gel electrophoresis (PAGE) of lysates from cell lines A-1P‘Y

293 and P2 (aIV-V) 293 blotted with the anti-[32 Ab, R49. One band is seen for each

lysate (arrows), which is the p2 chain expressed constitutively by that particular cell line.

In A-1P y293, the chain is full-length p2 (approx. 190 kD); in P2 (aIV-V) 293 the p2

chain is deleted for domains IV and V and is therefore approximately 55 kD smaller in

size than the full-length P2 chain.

!
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Table 4. Stably Transfected Cell Lines

i

Cell Line

A2-293p full-length p2

D4-293Y full-length y 1

P2 deleted in domains IV and VP2 (a IV-V)-293
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Recombinant Laminin Chain Expressed

full-length P2 and full-length y 1

full-length P2 and full-length yl

C2-293P’Y

A1-293^Y



I

I

Cell Line:

yr

Nidogen

IP Ab: D19

1

Anti-Ln
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Figure 22. The Ln yl Chain is Co-precipitated 
with the Ln p2 Chain in Stable Transfected Cells

RMo vector only C-2^Y

293 293



Figure 22. PAGE of immunoprecipitated lysates from 3 cell lines - rat muscle cells

(RMo), HEK. 293 cells, and A-1P’Y293 cells. The precipitation antibody was the anti-p2

antibody DI9. The blotting antibody was anti-Ln antibody that recognizes the P1, y 1 and

al Ln chains, but not the P2 chain, on a western blot. Also, because it was raised against

native, partially purified Ln, it recognizes nidogen /entactin, which is tightly attached to

Ln in basement membrane extracts. Note that this nidogen band is seen in the RMo cell

line but not in the A-1P'Y 293, indicating the difference in matrix protein expression

between these cell lines. The plasmid in the vector only control is pcDNA 1/ Amp. A band

of the correct size for y 1 (labeled arrow) is seen in both RMo cells and A-1P'Y293 cells.

No band is seen in the vector only control lane. These results demonstrate that

recombinant P2 and y 1 are assembling into a dimer.
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be expressed and recognized by selective

antibodies.

Since the recombinant Ln chains were constitutively expressed at significant levels

and that these recombinant molecules could assemble, these cell lines were used to study

the role of domain I in chain assembly. Is only domain I of @2 required for correct

assembly or are other sequences involved as well?

To test this, two hybrid Ln chains were made- P2(yl)j-HA, which combined

domain I of yl with domains a - VI of P2, and yl(P2)j-HA, which combined domain I of

P2 with domains II - VI of yl chain (diagrammed in Figures 7 and 8). The “HA” in the

name of these hybrids denotes that they are also epitope-tagged with a nine amino acid

peptide of the H. influenza hemagglutinin protein (diagrammed in Figure 9). This peptide

facilitated the identification and immunoprecipitation of these hybrids because

commercially available antibodies could selectively recognize the tagged hybrids in the

presence of both y 1 and P2 full-length Ln chains, which antibodies selective for one or

the other full-length chain could not do.

A commercial monoclonal antibody to a nine amino acid HA peptide (anti-HA

mAb) was used to precipitate the tagged hybrid laminins from cell lysates and to

recognize these chains on western blots. The expression level of both hybrids, P2(yl)r

HA and yl(P2)rHA, was tested by transiently transfecting HEK 293 cells with the

P2(yl)j-HA/cDNAl and y l(p2)j-HA/cDNAl constructs, then performing western blots

127

Epitope-tagged hybrid laminin chains can



after harvesting the cells. Initial blots showed both the yl(02)j-HA and the 02(yl)j-HA

hybrid chains were expressed and recognized by the anti-HA mAb (Figure 23 A & B). In

addition to the anti-HA mAb, the anti-02 antibodies, D5 and R49, as well as the anti-yl

antibody, YY15, were tested for their ability to recognize the hybrid chain proteins on

western blots. D5 and R49 recognized yl(02)pHA but not 02(yl)j-HA. On the other

hand, YY15 had good affinity for 02(yl)j-HA, but also had a low affinity for yl(02)j-

HA. Next it was determined if the HA epitope-tagged proteins could be precipitated by

the anti-HA mAb. In the immunoprecipitation protocol, this antibody did precipitate a

protein from HEK 293 cell lysates transfected with either the P2(yl)pHA/cDNAl or the

yl(P2)]-HA/cDNAl construct. This protein could be detected by the anti-HA mAb upon

western blotting. However, the band for the 02(yl)j-HA/cDNAl hybrid was faint. These

proteins were of the size expected for the hybrid laminin chains (between 200 and 160

kilodaltons) and were recognized by the same antibodies previously shown to bind the

hybrids in western blots. After correcting for low expression of the P2(yl)j-HA protein

by increasing the amount of plasmid DNA used (8 pg up from 6 pg) in later transfections

this hybrid also yielded strong bands in immunoprecipitation experiments.
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Hybrid Ln Chains
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Figure 23. Hybrid Ln chains were created and epitope-tagged by subcloning in-frame

into the P2-up/ HA/ cDNA I vector. A) PAGE of HEK 293 cell lysates transiently

transfected with 6 pg DNA each of P2(y 1 )l5 y 1 (p2)j or p2-up/ HA/ cDNA I and probed

with the anti-HA antibody at 1:1,000 dilution. Proteins of the expected sizes (~ 190 kD)

were recognized in cells transformed with a hybrid construct but not those with the vector

I
alone. This demonstrates that these cells express the hybrid protein, that the protein does

contain the HA epitope, and the anti-HA antibody recognizes specifically the tagged

protein and not other proteins in HEK 293 cells.

B) HEK 293 cells were transiently transfected with 6 pg each of the DNA construct listed
I

above the lanes. All “-HA” names indicate that hybrid is in the P2-up/ HA/ cDNA I

vector. “F.S. P2(yl)I” is a frame-shift mutant of the P2(y l)j hybrid chain which has the

signal sequence and the epitope tag region fused in frame plus the hybrid Ln chain fused

out of frame. HA/cDNA I is the empty p2-up/ HA/ cDNA I vector and — is the

untransfected C-2 P’Y293 cell lysate. The lysed transfected cells were precipitated with the

antibodies listed below the figure. NMS is normal mouse serum, and D19 is an anti-P2

subjected to PAGE and blotted with the anti-HA

antibody at 1:1000 dilution. Proteins of the appropriate sizes were only detected in lanes

with in-frame epitope-tagged hybrid Ln chains precipitated with the anti-HA antibody.

This indicates that these proteins are recognized by the anti-HA antibody by both western

blot and immunoprecipitation.
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Domain I of the hybrid laminin chains determines interaction specificity.

Once the hybrids were shown to be expressed and were able to be precipitated by

anti-HA antibody, these hybrid laminin chains were then transiently transfected into the

assemble with wild-type P2 or y 1 chains or the truncated P2. Cell lines were transiently

of three DNA plasmid constructs, P2(y 1)j-HA/cDNA1, y l(P2)j-

HA/cDNAl or the empty HA/ cDNAl vector. After an overnight incubation with the

DNA, the medium was changed to 293 medium + 200 ps/ml G418 and the cells were

I incubated for 48 - 72 hours. Immunoprecipitation followed by western blot detected the

presence of chains which co-precipitated with the HA-tagged hybrid chain.

chain co-precipitates with the yl(P2)j-HA hybrid Ln chain but not with the p2(yl)j-HA

hybrid, when precipitated with anti-HA mAb. No y 1 chain protein was detected in the

empty HA vector control lane (not shown). On one western blot utilizing the YY15 Ab, a

doublet can be seen in the lane containing transfected yl(P2)j-HA hybrid

immunoprecipitated by the anti-HA mAb (Figure 24). As mentioned before, the YY15

antiserum did cross-react slightly with yl(P2)j-HA chain. Careful comparison with the

anti-HA mAb blot of the same membrane showed that the lower band was the yl(p2)j-

HA hybrid and the upper band

chain then, was co-precipitated with yl(P2)j-HA by the anti-HA mAb.
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was the full-length yl chain (Figure 24). The wild-type yl

transfected with one

YIn the D4-293 cell line, which constitutively express only yl chain protein, the y 1

C2-293^ \ A2-293^, D4-293^ and P2 (A IV-V)-293 cell lines to determine if they could



Figure 24.
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Yl(P2)rHA
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Figure 24. D-4Y- 293 cells, which express the y 1 chain, were transiently transfected

with 8 pg of HA epitope-tagged p2(yl)I/HA/cDNA I or 6 pg of HA epitope-tagged

yl(P2)I/HA/cDNA I. The cells were lysed and protein concentrations were measured.

Equal amounts of protein from each cell lysate were precipitated by anti-HA antibody.

Immunoprecipitated proteins were separated by electrophoresis on a 4.5 %

polyacrylamide gel, and transferred to nitrocellulose membrane for detection by YY15

(anti-yl) antibody (right blot). This same membrane was stripped of the first Ab and

reprobed with anti-HA antibody (left blot). The left blot (anti-HA) shows a strong signal

for both yl(P2)!-HA and P2(yl)rHA protein, indicating that both proteins were

precipitated by the anti-HA Ab. In the right blot, the larger of the two bands in the y 1 (p2\

-HA lane is the wild-type yl chain, based both on its recognition by the YY15 antibody,

but not the anti-HA antibody, and the size of the band. Wild-type y 1 is not detected in the

P2(yl)rHA lane of this same blot. p2(yl)rHA, and to a lesser extent yl(P2)j-HA, are

both recognized by YY15 antibody. The bands for these hybrid chains are labeled in the

right blot as well. The co-precipitation of yl chain with yl(p2)!-HA but not with P2(yl)r

HA indicates that native p-y dimerization is mediated by the domain I sequences and not

inhibited by domain II or other sequences.
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hybrids showed more evidence for the specificity of domain I in Ln chain interactions.

The full-length P2 constitutively expressed in these cells was co-precipitated with the

transiently expressed P2(yl)pHA hybrid by using the anti-HA mAb (Figure 25).

not co-precipitated with this hybrid (Figure 25). Precipitation with the anti-HA mAb of

the empty HA vector transfected cells did not show a recognizable band upon

immunoblotting with R49 or D5 antisera (not shown). Thus, the hybrid chain containing

domain 1 of the y 1 chain, but not the hybrid containing domain I of the p2 chain,

interacted with the full-length P2, indicating that heterodimeric (P - y) chain interaction is

due to domain I sequences.

chain co-precipitated with the P2(yl)j-HA hybrid, but not with the yl(P2)j-HA hybrid,

in immunoprecipitations with the anti-HA mAb. No bands were seen in lysates of cells

transfected with the empty HA vector, precipitated by the anti-HA mAb, and

immunoblotted with anti-HA, anti-P2, or anti-y 1 (not shown). As seen in Figure 26,

domain I of yl in the hybrid protein showed affinity for the IV-V deleted P2 chain, while

domain I of P2 in the hybrid did not. This again implicates domain I sequences in forming

P - y interactions. Since this truncated P2 chain was capable of forming heterodimers
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However, the same was not true with the yl(P2)j-HA hybrid; full-length P2 chain was

Transfection of the A2-293^ cell line with the yl(P2)j-HA and the P2(yl)j-HA

Using the P2 (a IV-V)-293 cell line, the interaction of p2 with the P2(yl)j-HA 

hybrid seen in the A2-293^ line was confirmed. The constitutively expressed truncated P2
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The A-2p-293 cell line, which constitutively expresses the 02 chain, wasFigure 25.

transiently transfected with 8 pg of HA epitope-tagged 02(yl)!/HA/cDNA I or 6 pg of

HA epitope-tagged yl(02),/HA/cDNA I. The cells were lysed and protein concentrations

were measured. Equal amounts of protein from each of the cell lysates were precipitated

by anti-HA antibody or DI9 Ab as indicated below the blots. Immunoprecipitated

proteins were separated by electrophoresis on a 4.5 % polyacrylamide gel, and transferred

to nitrocellulose membrane for detection by R49 (anti-P2) antibody (right blot). This

same membrane was stripped of the first Ab and reprobed with anti-HA antibody (left

blot). The D19 Ab recognizes an epitope in domain III of the P2 chain; thus it does not

recognize the yl(02)j-HA chain but does recognize full-length p2 expressed in these

cells. In the left blot, the band detected by the anti-HA antibody is 02(y l)j-HA,

demonstrating that the immunoprecipitation with anti-HA Ab worked. No protein is

recognized by anti-HA antibody in the yl(P2)j-HA lane. Therefore, the yl(P2)j-HA did

not co-precipitate with the full-length p2 chain that was precipitated by the D19 Ab.

In the right blot the R49 Ab does recognize the full-length 02 chain in cells

transfected with y l(02)j -HA indicating that the precipitation with D19 Ab did occur. The

band of the same size in the 02(yl)I-HA lane is also full-length 02 chain, but since the

immunoprecipitation Ab was anti-HA Ab, this demonstrates that the 02 chain is co­

precipitated with 02(yl)!-HA chain. Thus, 02(yl)1-HA does associate with the 02 chain,

but the yl(02)j-HA hybrid does not.
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A second (52 chain expressing cell line, P2(AIV-V)-293, was transientlyFigure 26.

transfected with the P2(yl)I-HA and y1(P2)j-HA hybrids. This cell line constitutively

expresses a P2 chain which has domains IV and V deleted and is therefore approximately

55 kD smaller than full-length P2; however, it is still recognized by the R49 Ab (Figure

21). Since it still contains the entire long arm plus domain III, it should still assemble in

the same manner as full-length P2 and be recognized by D19 Ab in immunoprecipitation.i

Transiently transfected cells were lysed and protein concentrations were measured.

Equal amounts of protein from each cell lysate were used in immunoprecipitations with

the anti-HA antibody or DI9 Ab as indicated below the blots. Immunoprecipitated

proteins were separated by electrophoresis on a 4.5 % polyacrylamide gel, and transferred

to nitrocellulose membrane for detection by R49 (anti-P2) antibody (right blot). This

same membrane was stripped of the first Ab and reprobed with anti-HA antibody (left

blot).

In the R49 blot (at right), the lane labeled yl(P2)j-HA has a band showing that the

P2(AIV-V) chain was precipitated by the DI9 Ab. But a band corresponding to y 1 (P2\-

HA is absent, demonstrating no co-precipitation with the P2(AIV-V) chain. The P2(AIV-

V) chain band is also seen in the P2(yl)!-HA lane, indicating that it was co-precipitated

with the P2(yl)j-HA hybrid.

In the anti-HA blot (at left) the band marked by the arrow is the P2(yl)j-HA

hybrid protein. No band was detected in the yl(p2)1-HA lane, indicating that it did not
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co-precipitate with P2(AIV-V). These results, as with the results from the D-4Y- 293 and

of y 1 and P2. They also show that domain IV and V sequences of p2 are not necessary

for chain assembly.
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A-2p-293 cell lines, shown in Figures 24 and 25, implicate domain I in dimer formation
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with yl like the full-length chain, it also indicates that domains IV and V are not involved

in dimer formation.

Unlike the yeast two-hybrid system, which showed dimer formation of two P2

fragments, the P2 chain (full-length

HA hybrid. This may be do to the weak nature of these interactions, which are unstable in

a full-length dimer. Another possibility is that they have formed but make up such a small

cell line, which express both full-length

P2 and yl, full-length P2 did not co-precipitate with the P2(yl)j-HA hybrid nor did full-

length y 1 chain co-precipitate with the yl(P2)j-HA hybrid when the precipitation

antibody was anti-HA mAb. Occasionally the full-length y 1 chain co-precipitated with

the anti~P2 mAb DI9. These

results do not necessarily refute those found with the other cell lines, it may only indicate

that the conditions for interaction are different in cells which constitutively express both

P2 and y 1 versus those cells which express either P2 or y 1 alone.

Summary’ of the mammalian cell transfection and immunoprecipitation experiments

In order to determine the role of domain I of the p2 and yl chains within the

context of the full-length protein, hybrid laminin chains were created and utilized in

immunoprecipitation experiments to determine their ability to assemble with the wild-
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the full-length P2 chain when the precipitation antibody was

or IV-V deleted) did not interact with the yl(P2)j-

percentage of the total number of chains that they are not detectable by blotting.

B-y
In transient transfections of the C2-293



type p2

1) The epitope-tagged hybrid laminin chains P2(yl)j-HA and yl(P2)j-HA are expressed

or the derived cell lines C2-293

2) These hybrid chains are recognized and precipitated by the antibody to HA.

3) Full-length or truncated Ln p2 chains co-precipitate with the p2(yl)j-HA but not with

the yl(P2)j-HA hybrid.

4) The Ln yl chain co-precipitates with the yl(P2)j-HA but not with the p2(yl)j-HA

hybrid.

, which constitutively expresses both the P2 and yl chains.

6) The empty HA vector does not produce proteins that are recognized or precipitated by

the anti-HA mAb.

These results (schematically diagrammed in Figure 27) support the hypothesis that

domain I sequences, and only domain I sequences, are involved in the interaction of the p

and y chains.
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or y 1 chain. The results of the mammalian cell culture expression of wild-type

and hybrid laminin chains and immunoprecipitation experiments are:

5) Neither hybrid Ln chain can co-precipitate a wild-type P2 or y 1 chain in the cell line 

C2-293P’Y

at high levels when their respective vectors are transiently transfected into HEK 293 cells

P"Y, A2-293P, D4-293Y and P2(a IV-V)-293.
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Schematic representation of the results of immunoprecipitation studiesFigure 27.

using the hybrid laminin chains. In the top row, the hybrid chains P2(y 1),-HA and

yl(p2)!-HA are diagrammed on either side of the P2-y 1 dimer, which was shown to form

in the C-2 p-293 cell line (Figure 22). The P2 portions (stippled bars) and y 1 portions

(checked bars) of the hybrid chains are shown. In the second row, interactions of the

P2(yl)i hybrid with full-length P2 or yl chains are diagrammed. P2(y 1 )i -HA associates

with P2 (arrows pointing together) but not with yl (shown by Xs). Results with y 1 (P2),-

HA (bottom row) demonstrate lack of interaction with P2 (at left), and dimeric interaction

with yl (at right). These results indicate that p2-yl dimers are formed by interactions of

the domain I of the hybrids.
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Discussion

In order to determine the role of domain I in ordered specific assembly of the

laminin chains and the regions within it that are responsible for this role, Ln chain

interaction was assayed using both the yeast two-hybrid system and immunoprecipitation

of full-length laminin molecules in mammalian cells. The immunprecipitation results

indicate that domain 1, and not other parts of the glycoprotein, is responsible for

mediating specific 0-y dimer formation. The two-hybrid assay showed that dimers of

domain I can occur in the pair 02 with yl, but not in the pairs 02 with al or yl with al.

Dimers of 02-02 also occur, but are weaker. The region from 38-75 amino acids from the

C-terminus of the 02 chain is implicated in the mediation of the interaction with the y 1

chain. Finally, 0-y dimer formation is not dependent on disulfide bonding, based on the

02/ fusion proteins to form dimers with y 1.ability of the

The long arm of the laminin trimer, which contains domain I and II, has been

studied by both biochemical and biophysical methods. This has led to the discovery of its

alpha-helical secondary structure and its dominant role in coiled-coil formation (reviewed

in Beck et al. 1990). In conjunction with biochemical experiments of the reassembled E8

fragment, which first must form a dimer, then a trimer, an order of Ln chain assembly was

postulated (I. Hunter et al. 1990). First the 0-y dimer forms followed by the addition of

the a chain to complete the secreted trimeric glycoprotein. These studies have focused

predominantly on the first step of this assembly, dimer formation.
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Earlier experiments have focused on the very C-terminal region of domain I.

Biophysical studies using small recombinant peptides of the Ln-2 domain I in in vitro

assembly experiments determined that several 10-20 amino acid sites in the last 100

amino acids of the y 1 chain were responsible for dimer or trimer formation. Also,

deletion of the C-terminal 17 amino acids of the 01 chain was sufficient to ablate its

binding to a 217 amino acid C-terminal fragment of the yl chain (Utani et al. 1994). In

this dissertation, the yeast two-hybrid system was used to study intracellular interactions

of the entire 358 amino acids of domain I of the 02 chain as well as two fragments of it.

Based on these results (Figures 13, 14 and 15), the C-terminal 75 amino acids are

sufficient for strong interactions with the domain I of yl, but the C-terminal 38 amino

acids do not form dimers with yl. Furthermore, both the 75 amino acid and the 38 amino

acid fragment did not form homodimers, as did the full domain I fragment. This shows

that the 37 amino acids from 1691- 1728 of the 02 chain may be involved in dimer

formation with the y I chain. Because 0275 interacts with y 1 but not with another 02

fragment, this region may impart specificity to Ln chain interactions by favoring

interactions with only the yl chain.

The presumptive dimerization region found here for the 02 chain is more distal

from the C-terminus than the one described by Utani et al. (1994), but in that work it was

noted that trimer formation was abolished by deletion of the C-terminal 40 amino acids of

the 01 chain. This may indicate that dimer structures are more stable intracellularly than
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in vitro. Alternatively, it may simply show a difference in assembly regions for these two

P chain isoforms. The results of the two-hybrid assays reported here do support the

contention that the region of domain I that guides P-y dimer formation is very near the C-

terminus of these chains.

Cystine disulfide bridges have been shown to stabilize the coiled-coil structure of

the Ln long arm and are found to occur in P-y dimers (Antonsson et al. 1995; Kammerer

et al. 1995; Niimi et al. 1997). Similarly, a mutation of the Cys

to Ser (which prevents cystine disulfide bonding with other chains) does decrease, but

does not ablate, domain I P-y dimer formation in the two-hybrid system. This indicates

that the C-terminal cysteine is not required for dimers to form, but may stabilize them.

One of two transformants containing the mutant

decreased activity compared to transformants containing both wild-type P2/ and wild-typ<.

y 1Z; however, no difference in homodimer formation is seen between

conformation that is most likely to form coiled-coils. Homodimer formation of the P2 C-

terminus may therefore occur as a default assembly of two proteins with a strong

capability to form these structures. The fact that the

homodimers indicates that the a-helical nature of this fragment is not disrupted by the

amino acid substitution. These domain I mutants also behave like wild type in that there is
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a significant difference between the

type P27 fusions (Figure 17). Of the three Ln chain types the P chains have a

1765 residue of the P2 chain

c“*sp27 mutant fusions still form

C“*SP27 and wild-type y 1/ has

c"*sp2/ and wild-

C"*sp27act + y l/bind transformants and the y l/acl +



the P2/act (either wild-type or mutant) fusion was not able to be determined in this system.

One possible explanation is that the P2 domain I fragment, when fused to the activation

domain, takes on a conformation that is better able to form a coiled-coil with the y 1/

fragment. This would make the proximity of the activation and binding domains more like

the native conformation and therefore better able to activate transcription.

Besides domain I (and domain a of P2), the long arm of Ln also includes domain

II (Figure 2). This domain, separate from domain I, has not been studied as to its role in

chain assembly, since domain I fragments are able to form dimers and trimers in the same

manner as the entire protein (I. Hunter et al. 1990 & 1992; Nomizu et al. 1994 & 1996;

Utani et al. 1994; Kammerer et al. 1995; Niimi et al. 1997). The a-helical nature of this

domain suggests that it may mediate chain interactions (reviewed in Beck et al 1990).

Results of two-hybrid assays revealed that domain II fragments of P2 and yl formed

neither heterodimers nor homodimers. It may be that domain II plays a passive role in

chain assembly and is simply a filler domain giving length to the Ln glycoprotein to allow

proper spacing of its numerous cell and ECM-binding sites (reviewed in Beck et al.

1990). Alternatively, domain II interactions may require domains I and a to place them in

proper register.

One intriguing and confounding observation also came from studies of domain I

fragments in the two hybrid assay. The C-terminal 75 amino acids of y 1 in a fusion
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protein with the GAL4 binding domain (yl

own; i.e., apart from an activation domain fusion. One possible explanation is that this 75

amino acid fragment is able to interact with another transcriptional activator via non­

specific a-helical interactions. Another explanation, given observations that the Ln £2

and y 1 proteins are found in nuclear fractions of transfected cell lines (Cui and Green,

unpublished observations), is that the yl chain does have some transcriptional regulatory

was the only fusion tested that showed a correlation between

expression levels of the fusion protein and P-galactosidase activity. This differs from the

other two-hybrid fusions, which required interaction to activate transcription. The amount

of activity in these fusion proteins is related to the strength of interaction and not on

amounts of protein.

The two-hybrid assay was an informative tool for studying the interactions of the

Ln chains. It can be used to characterize further the individual amino acids responsible for

guiding the specific interactions of Ln dimer formation. For instance, charged amino

acids in the “a” and “d” positions of the heptad repeats of the P2 and y 1 chains could be

substituted with apolar residues. Also, characterization of the differences between the pi

and p2 chains could be studied. As mentioned earlier there seems to be a discrepancy

between the region responsible for dimer formation in pi(Utani et al. 1994) and P2

chains. With this system it would be possible to use the same fragments studied in

biophysical recombinant peptide studies, such as the C-terminal 200 amino acids of pl

148

75-bind) was able to activate transcription on its

capability. Also, yl75.bind



chain and its deletions, in order to detect differences between intracellular and in vitro

interactions of Ln chain fragments.

As mentioned in the Materials and Methods section, sequencing revealed a single

base pair difference between the y 1 cDNA, used to construct both the C-terminal 75

nucleotide 4958 (Durkin et al. 1988). This mutation changes amino acid 1589 from a

leucine to a methionine residue. This amino acid was assigned to the “c” position in the

heptad repeat structure of the y 1 chain by Beck et al. (1993). It is not a critical position

for chain interaction because neither is it part of the hydrophobic face nor is it one of the

charged amino acid positions, which interact to impart specificity to coiled-coil

interactions. Furthermore, while methionine residues do not occur at this position with

high frequency in coiled-coil proteins, they are not unusually rare (Lupas et al. 1991). For

these reasons this mutation should not effect the protein structure and subsequent

interactions in the recombinant proteins.

In order to achieve high yield of Ln chain proteins for study, cell lines were

created that expressed either recombinant rat p2 chain (A2-293p), recombinant mouse y 1

chain (D4-293Y), or both together (C2-293P'Y and A1-293P’Y). Another cell line that

expressed a truncated recombinant rat p2 chain (P2(a IV-V)-293) was also created. With

these cell lines the intracellular interaction of full-length (or truncated) Ln chains was

studied. In vivo immunohistochemical labeling and in vitro cell culture studies have
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amino acid fusion and the mammalian expression vectors, and the published sequence at
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shown the presence of native (non-recombinant) P-y dimers in cells that were not part of

recombinant Ln chains can be assembled and secreted as trimers, and that disulfide

portion of these proteins was found to be essential for these interactions, as fragments

corresponding to amino acids 1540-1765 of the pl chain were seen to form both dimers

with yl and trimers with al(Niimi et al. 1997). In this work, recombinant P2 could form

dimers with yl in HEK 293 cells.

The newly created stably transfected cell lines will be a useful model system for

further studies of Ln chain assembly. With the addition of a full-length cDNA for an a

chain, and antibodies which recognize that chain, it will be possible to examine trimer

assembly as well. Furthermore, these cell lines are capable of post-translationally

modifying the native Ln chains, making the recombinant molecule similar to the wild­

type glycoprotein. Western blots and immunoprecipitations indicate that high levels of the

transformed Ln chains are expressed in these cells. Using biochemical methods such as

affinity chromotography, these cells could be harvested to provide purified Ln chains in

native (or near native) conformation for use in biophysical or biochemical

characterization of the Ln structure. Similarly, these purified chains could provide

material for studies such as cell-binding or matrix formation properties like those
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a trimer (Sorokin and Ekblom 1992; Matsui et al. 1995). Subsequent studies using larger

bonded P-y dimers do form (Matsui et al. 1995; Yurchenco et al. 1997). The long arm

or full-length recombinant Ln chains expressed in mammalian cells have shown that
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performed by Cheng et al. (1997), who studied polymerization of Ln trimers into a matrix

in vitro. These studies would normally require purifying Ln isoforms that may be

produced only in small quantities from organs such as kidney.

To assess the role of domain I in determining Ln chain interactions, it was studied

in the context of a full-length molecule by creating two different hybrid Ln chains. The

first hybrid, Y1(P2)t, fused domain I of 02 to domains 11-VI of y 1, and the second hybrid,

P2(yl)i, fused domain I ofyl with domains a-VI of 02. Subsequently, HA-epitope

well as the 02 signal

sequence (cDNA nucleotides 69-173 as reported in D. Hunter et al. 1989a), and which

placed the HA epitope at the N-terminus of the protein. Placing the HA epitope at the N-

terminus should avoid possible disruption of the interactions to be examined, which occur

in the C-terminal portion of the protein. Also, using the authentic Ln signal sequence

like the processing of

the native protein.

The hybrid proteins were transfected into the Ln chain expressing cell lines to

determine the role of domain I in interaction specificity. The yl(02)j-HA hybrid

interacted with full-length y 1 chain but not with full-length or truncated 02 chains, and

form dimers with full-length y 1 chain. This indicates that the domain I of 02 or yl could
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should make the processing of the recombinant glycoprotein more

the 02(yl)pHA hybrid interacted with full-length and truncated 02 chains but did not

created that retained the 5' untranslated region of the 02 cDNA as

tagged versions of these hybrids (yl(02)j-HA and 02(yl)j-HA, respectively) were



mediate dimer formation of full-length glycoprotein similarly to native Ln chain

assembly. Thus, domain I alone can guide specific assembly of Ln chains into dimers.

The fact that the hybrid containing P2 domain I did not interact with the full-length

P2 chain appears contradictory to the results of the two-hybrid system which showed

interactions of two P2 domain I fragments. Remembering that the strength of these two-

hybrid interactions was weaker than that of heterodimer interactions, it is probable that in

the mammalian cell these interactions are too weak to sustain the dimerization of the

whole molecule. Furthermore, in the HEK 293 cell the presence of chaperones may also

play a role in specific interactions thereby preventing the P2 domain I region of the hybrid

from coming into proximity of the full-length P2 chain.

These hybrid Ln chains provide a good model for studying the function of domain

I as part of a full-length molecule. Again, with the addition of an a chain cDNA and

antibodies to Ln a protein, these hybrids could be studied for their ability to form trimers.

Their usefulness need not stop at the study of assembly. Any number of functions

ascribed to the long arm of the Ln chain, such as cell attachment and neurite outgrowth

stimulation (reviewed in Beck et al. 1990), could be restudied using a recombinant trimer

with one or the other hybrid chains incorporated. Because studies of motor neuron

adhesion to Ln p2 chain (D. Hunter et al. 1991) have been criticized for not utilizing a

full-length or native glycoprotein (Brandenberger et al. 1996), the yl(P2)j-HA hybrid,

which has the sequences proposed to bind motor neurons, could be utilized to re-evaluate
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this binding to the P2 chain as part of a dimeric or trimeric molecule.

The p2-up/ HA/cDNA I vector (HA-vector) itself should be a useful tool for later

studies. Since this vector contains the native p2 upper region in frame with the HA

epitope sequence it can be utilized to tag full-length or truncated versions of the P2 chain,

which could then be purified using the anti-HA antibody in affinity chromatography. And,

since other laboratories have utilized signal sequences from non-Ln cDNAs to drive

production of Ln chains (Niimi et al. 1997; Yurchenco et al. 1997) it seems that for in

vitro studies this HA-vector could be used to epitope-tag any recombinant protein at its

N-terminus.

The two-hybrid assay results support earlier work indicating Ln chain assembly is

initiated by C-terminal sequences of the p and y chains, which are part of the long arm of

the Ln trimer. A 37 amino acid sequence near the C-terminus of the P2 chain (a chain not

previously studied in this manner) is implicated as essential for specific interactions with

the y 1 chain. Finally, by utilizing hybrid Ln chains with wild-type Ln chains in

immunoprecipitations, it is concluded that P2 domain I and y 1 domain I, as part of full-

length chains, are responsible for the specific p-y dimers seen in vivo.
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ABSTRACT

Laminin, a major component of basement membrane, is a trimeric glycoprotein

comprised of three chains - a, P and y (Burgeson et al., 1994). An order for trimer

assembly has been deduced: first, the p and y chains bind to form a dimer and

subsequently a is added to complete the trimer (I. Hunter et al., 1990 & 1992; Utani et al.,

1994 & 1995). The C-terminal portions, found within the protein structural domain I of

the p and y chains, are implicated in dimer and trimer formation by biochemical studies

performed extracellularly (Utani, et al., 1994 & 1995; Nomizu et al., 1995).

Using the yeast two-hybrid system, long arm fragments of the laminin chains P2,

y 1, and al were assayed for their ability to form dimers. This assay confirmed the strong

specific interactions between the p and y chains seen in other studies of recombinant

laminin fragments (Nomizu et al., 1994 & 1996; Utani et al., 1994 & 1995). Interactions

of the al fragment with P2 or y 1 were weak or non existent in this assay. A region

necessary for dimerization within the P2 chain was found between the C-terminal 75 and

38 amino acids, as the C-terminal 75 amino acids interacted strongly with yl domain I

but the C-terminal 38 amino acids did not. Additionally, a domain I fragment of P2

containing a cysteine to serine substitution at amino acid 1765 (created to prevent

disulfide bonding) was able to form dimers with y 1 domain I, indicating that non-

covalent forces can mediate this interaction.

To determine the ability of domain I alone to mediate specific dimerization of the
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P2 with the yl chain, the domain I regions of p2 and yl were switched to create two

chimeric laminin chains. Epitope-tagged chimeras were tested for their ability to interact

with the full-length wild-type P2

associated only with the chimera containing domain I of yl and wild-type y 1 co­

precipitated only with the chimera containing domain I of P2. These results indicate that

the domain I of laminin chains as part of a full-length chain can impart specificity to

chain assembly within a cell.
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or yl. In immunoprecipitation experiments wild-type P2
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