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Abstract

Strip mining causes major disturbances of the natural environment. One

such disturbance is the creation of valley fills, which often fill in the headwaters of

small streams. Runoff from these valley fills can cause heavy siltation as well as

acid and heavy metal deposition downstream. One way to combat this problem

is through the construction of sedimentation ponds, which slow down the flow of

water so that sediment can settle out and water chemistry can be altered before

the water is discharged into the stream. Since these ponds are, in effect,

temporarily replacing small headwaters once present, the question is raised as to

whether or not ponds support a healthy benthic macroinvertebrate community

and if these ponds are undergoing succession. In this study, two separate pond

systems were examined. First, two ponds that were first assessed by EPA Rapid

Bioassessment Protocols in 1997 were reexamined in 2000 to determine whether

or not there was a noticeable change in metrics. Taxa richness did not change

for either pond from 1997 to 2000, remaining at 11 taxa present for Rollem Fork

#2 and 16 taxa present for Vance Branch. Mostly members of the orders Diptera,

Ephemeroptera, and Odonata represented the benthic community in the ponds.

These taxa contained an abundance of tolerant members with a few facultative

ones, and in the case of Vance Branch in 1997, two species of sensitive

Ephemeroptera (Stenacron and Leptophlebia) that were lost in the 2000

sampling season. The modified Hilsenhoff Biotic Index and Shannon Diversity

indicated that the ponds were moderately to severely disturbed in both sampling

years. The percent contribution of the dominant taxon was high for both ponds in



1997 and 2000. Furthermore, dominant taxa for Rollem Fork, Oligochaete in

1997 and Chironomidae in 2000, are considered tolerant. Chironomidae, a

tolerant family, dominated Vance Branch in both years. The ratio of scraper and

filtering collector functional feeding groups, ratio of EPT and Chironomidae

abundances, EPT index, ratio of shredder functional feeding group and total

individuals, and evenness values also pointed to an unbalanced, perturbated

Overall results in 2000 indicated that there was little differencesystem.

between the benthic populations in 1997 and 2000. Additionally, the protocols

point toward two moderately to severely polluted systems. However, the validity

of using Rapid Bioassessment Protocols, meant for running waters, to analyze

lentic environments is questioned and alternative methods for these

environments are proposed. The second study, a seasonal assessment of three

ponds of different ages draining the same valley fill, gave unexpected results.

Again, the ponds were dominated by taxa from the orders Diptera,

Ephemeroptera, and Odonata. However, a different method of assessing

succession in the ponds in the seasonal study was used. These ponds were

compared to an older sediment pond that is no longer impacted by mining by

using STATISTICA Cluster Analysis. It was discovered that the youngest pond,

WB3, was actually the least dissimilar, or most similar, to the reference pond

(HBREF) in all seasons. There was also no clear evidence that the younger

experimental ponds, WB3 and WB4, are becoming more like the older

experimental pond, WB5. Other studies have indicated that constructed

temporary ponds are likely to host a limited variety of taxa and that after a period



of colonization, those taxa do not change much. It is possible that the ponds in

comparison with other ponds.

the seasonal study are different enough in habitat, chemistry, and benthic 

composition, that it is impossible to base their individual succession on
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Introduction

Surface mining of coal involves removing overlying soil and rock in

order to expose the seam of coal. This extensive disturbance of land can create

severe environmental problems. In some types of surface mining, overburden is

disposed of into nearby valleys, which typically contain headwaters for small

streams. A critical feature of strip-mine ecology is the massive erosion and

subsequent sedimentation in these streams. The procedure for reducing the

amount of acid and sediment flowing downstream in a valley fill, as set forth by

section 515 of the Surface Mining Control and Reclamation Act of 1977, is for the

construction of a sedimentation pond. By slowing the flow of water at the base of

the valley fill, sediment will settle out and not flow downstream. Also, the ponds

are treated with an agent that stabilizes pH. In general, all parties involved

understand the need for controlled operation and reclamation of the mined lands.

Coal companies see their use of the land as temporary and claim that

reclamation benefits landowners and communities by providing new uses for the

land. However, the study of the long-term effects of mining and reclamation on

an area, particularly a watershed and its inhabitants, warrants further research.

One coal company in West Virginia has found that a series of sediment

ponds is more effective than one large pond in the removal of acid and sediment

from the waterway. The West Virginia Division of Environmental Protection

enforces the regulation that, before bond release on reclamation, sedimentation

ponds must be removed and the stream returned to as close to its original



contour as possible. However, while these temporary ponds are in existence,

animal and plant communities utilize them for habitat. Gee et al. (1997) found

that plants and invertebrates were the first to colonize new pond communities.

The composition of these communities, in the case of this study, communities of

benthic macroinvertebrates, can give some insight into the quality of the ponds

and whether they are undergoing succession, that is, moving from a community

of more pollution tolerant taxa to more pollution-sensitive taxa.

The purpose of this study was to determine whether ponds of different

ages draining the same valley fill are exhibiting benthic macroinvertebrate

succession from season to season within the ponds and from season to season

among the ponds. Also, another investigation that replicates a study by an

independent environmental consulting firm in 1997 will reveal whether two other

ponds draining a different valley fill show any successional changes among

benthic macroinvertebrates.

2



Materials and Methods

Study Site

Six sedimentation ponds, belonging to one coal company, were chosen

for this study. All of the ponds were located near Dunlow, in southern Wayne

County, West Virginia. Wayne County lies in the unglaciated Allegheny Plateau

Section of the Appalachian Plateau Physiographic Province of West Virginia

(Fenneman, 1950). Shales, sandstones, and smaller amounts of limestone

primarily underlie this area (Mills and Delcourt, 1991). Surface rocks in this area

are sedimentary and consist primarily of sandstone, siltstone, shale, thin

limestones, and coal of the Pennsylvania age (Soil Conservation Service, 1961).

Mining activity is expected to impact approximately 146 acres of the watershed

that contains the seasonal study site. Previously, the entire area was used as

wildlife habitat and for other natural resources development. It has gone

undeveloped commercially or residentially. The second study, which involved a

one-time sample, included one pond from the seasonal study site and two ponds

from another watershed. A reference sample was collected from a third

watershed.

3



Field Collections

The one-time study was done to duplicate a study performed by an

independent consulting firm in 1997 (REIC, 1997). Two ponds from the same

watershed, Rollem Fork #2 and Vance Branch, were used in this study. Hester-

Dendy multiplate samplers and gravel baskets, both designed to mimic natural

benthic macroinvertebrate substrate, were attached to cinderblocks and placed in

the ponds 5-6 meters from the shore. The samplers were allowed to stay in

place for one month at which time they were collected and preserved in 70%

ethanol to be transported back to the lab. At the same time that the samplers

were retrieved, 1m2 kick-net samples were also taken at the inflow and outflow of

the ponds. For this study, all insects collected were separated from debris and

enumerated to the lowest practical taxon. All insects collected were identified in

order to maintain consistency between this study and the study performed in

1997.

A seasonal study site was also visited at least twice a season in Fall 1999,

Winter 1999/2000, Spring 2000, and Fall 2000. Three ponds located in the same

watershed were used in the seasonal study. Wiley Branch #5 (WB5) was the

oldest pond at approximately 3 years at the beginning of the study. Wiley Branch

#4 (WB4) was approximately 1 year old and Wiley Branch 3 (WB3) was

approximately 4 months old at the beginning of the study. Dredge samples were

4



taken in a 1 m2 area at both the inlet and outlet of the pond. Water samples were

taken and sent to an independent laboratory for analysis. A 1 m2 structure was

constructed from PVC pipe in the lab and a standard D-shaped dredge was used

to sample within the boundaries of the structure. Insects and debris caught in the

net were immediately preserved in 70% ethanol and transported back to the

laboratory where the insects were separated from the debris and enumerated to

the lowest practical taxon using standard EPA subsampling techniques (USEPA,

1999).

A reference sample was taken from Honey Branch, a 10-year-old

pond from a third watershed. The purpose of the reference sample was to

compare its insect population to those of the seasonal ponds to determine how

unlike or alike the seasonal ponds are to the reference pond. Insects were

separated from the debris and enumerated to the lowest practical taxon using

standard EPA subsampling techniques (USEPA, 1999).

Wiley Branch pond #4 with a valley fill in the background

5
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Data Analysis

One-Time Study

In order to maintain consistency between the investigations done in 1997

and the one performed in this study, the following EPA Rapid Bioassessment

protocols were utilized to analyze the collected data (USEPA, 1989).

Metric 1. Species richness - This reflects the health of the community through a

measurement of the variety of taxa, or total number of taxa, present in the

sample. Generally, species richness increases with increasing water quality,

habitat diversity, and/or habitat sustainability.

Metric 2. Modified Hilsenhoff Biotic Index - This index was developed by

Hilsenhoff to summarize overall pollution tolerance of the benthic arthropod

community with a single value. Tolerance values range from 0 to 10, increasing

as water quality decreases. The formula used for calculating the biotic index is

HBI = E x,tj/n where Xi = number of individuals within a species, tj = tolerance

value of a species, and n = total number of organisms in the sample. Tolerance

values for each genus can be found in USEPA Rapid Bioassessment Protocols

For Use In Streams And Rivers, 1999.

Metric 3. Ratio of Scraper and Filtering Collector Functional Feeding Groups -

The scraper and filtering collector functional group ratio reflects the riffle/run

community foodbase. In this environment, it provides insight into the nature of

potential disturbance factors. The predominance of a particular feeding group

may indicate an unbalanced community that is responding to an overabundance

6



of a particular food type. Functional feeding group classifications can be found in

Merritt and Cummins (1996).

Metric 4. Ratio of EPT and Chironomidae Abundances - This metric uses the

relative abundance of EPT (Ephemeroptera, Plecoptera, Trichoptera) and

Chironomidae indicator groups as a measure of community balance. A

community is considered to be in good biotic condition in relation to this metric if

there is a relatively even distribution among all four groups. The EPT groups are

considered to be more pollution sensitive and a substantial representation by

these groups is desirable. Populations with a disproportionately high number of

chironomids, which are considered generally pollution tolerant, may be

experiencing environmental stress. Chironomids generally become more

dominant along a gradient of increasing enrichment or heavy metals

concentration.

Metric 5. Percent Contribution of Dominant Taxon - This is a measure of the

overall abundance of the dominant taxon in relation to the total number of

organisms present in the community. A community dominated by relatively few

or pollution tolerant organisms indicates environmental stress.

Metric 6. EPT Index - This index generally increases with increasing water

quality. The EPT index is a measure of the total number of distinct taxa within

the orders of Ephemeroptera, Plecoptera, and Trichoptera. Members of these

particular taxa are generally considered to be more pollution sensitive.

Metric 7. Ratio of Shredder Functional Feeding Group and Total Number of

Individuals Collected - This ratio is also based on the functional feeding group

7



concept and can also indicate environmental stress as indicated by the CPOM

(Coarse Particulate Organic Matter)-based Shredder community. Shredders are

sensitive to riparian zone impacts and can indicate toxic effects when the

toxicants are absorbed directly by the CPOM.

Metric 8. Shannon Diversity - The Shannon Diversity was originally not included

in the 1997 study, but was calculated for both investigations because of its ability

to indicate environmental stress by measuring taxa diversity. It was calculated

using the Ecological Analysis software package. With the Shannon Diversity,

communities can fall into one of three pollution categories based on a score:

3-4: indicates a relatively unpolluted system

2-3: indicates a moderately polluted system

<1: indicates a severely polluted system

Metric 9. Evenness - This metric, also calculated using the Ecological Analysis

software package, was not included in the original 1997 investigation. Again, it

was included in my study because it simply looks at how evenly the represented

taxa in the community are distributed and is applicable to pond communities as

well as riffle/run communities. A more evenly distributed community indicates a

more stable environment. Evenness values range from 0 to 1, with a higher

value indicating a more evenly distributed community.

Seasonal Study

While EPA Rapid Bioassessment Protocols were used in the one-time

study in order to simply maintain consistency and comparability between the

1997 and 2000 investigations, a more effective tool was sought to analyze the

8



community structures of the ponds used in the seasonal study. The purpose of

this study was to see if, as the ponds grew older, their benthic community more

closely resembled that of the 10-year-old reference site. In order to do this, a

measure of community similarity is needed. Christman and Voshell (1993) used

the Bray-Curtis community similarity index to measure the change in community

structure in a pond over a two-year period. Originally this index was chosen to

measure community similarity between the same seasons of the experimental

ponds and the reference and among different seasons in the same pond and the

reference in this study. A multivariate analysis, Cluster Analysis, was used

instead. Cluster Analysis is part of the STATISTICA software package and

instead of measuring the percentage of community similarity; it can measure the

percentage of community dissimilarity. It indicates how dissimilar each pond is to

the reference pond and to the other experimental ponds in the study. The less

dissimilar the pond is to another pond, the more their community structures are

alike. If ponds are undergoing successional change, they should show a trend of

becoming less dissimilar to the reference pond and, in the case of WB3 and

WB4, the older experimental pond (WB5) as they age. Percent dissimilarity is

expressed with a correlation matrix and graphically as a joining tree cluster.

Water Chemistry

Several water chemistry parameters were analyzed for each pond in order

to determine the role of water chemistry in the composition of benthic

communities. Field pH, total sulfates (mg/L), total aluminum (mg/L), total iron

(mg/L), total suspended solids (mg/L), total dissolved oxygen (mg/L), and total

9



conductivity (umhos/cm) were considered the most significant parameters. The

concentrations of these parameters from each pond and each season were

compared with the acceptable concentration limits for drinking water as set forth

by the West Virginia Division of Environmental Protection Water Quality Board.

However, some of the water chemistry data was incomplete. Samples were

taken at each pond at every sampling period and were analyzed by Standard

Laboratories, Inc. in South Charleston, West Virginia. This laboratory analyzes

all water samples collected by the coal company. The water chemistry reports

sometimes had incomplete or missing data because of either laboratory error or

a particular parameter was not tested on that date, so all of the significant

parameters could not be taken into account for every pond or every season.

10



Results

EPA Rapid Bioassessment

Metric 1. Taxa Richness

Taxa richness did not change for either pond between 1997 and

2000. Eleven taxa were counted for each season in Rollem Fork #2

(Table 1) and sixteen were counted each season for Vance Branch (Table

2). The percent tolerant (T) taxa in Rollem Fork #2 decreased from 94.8%

in 1997 to 94.4% in 2000 (Figs. 1, 2). No sensitive (S) taxa were

observed in either year. For Vance Branch, the percent tolerant taxa

increased slightly, from 86.1% to 86.4%. Also, in 1997, two sensitive taxa,

Stenacron and Leptophlebia, were present but in 2000, these taxa were

not observed in the community but were instead replaced by two

unclassified (U) taxa, Notonecta and Lestes (Figs. 3, 4).

Metric 2. Modified Hilsenhoff Biotic Index

For both ponds, the Modified HBI change two-hundredths of a point

between 1997 and 2000. The HBI decreased in Rollem Fork #2 from 5.93

to 5.91 and increased in Vance Branch from 5.67 to 5.69 (Table 3). These

values indicate a moderately polluted system that is not changing although

the numbers have shifted slightly.

11
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Taxon 1997 2000 Taxon 1997 2000

1 0

Oligochaete (T) 311 4

1 0

0 1014

0 21

1007

12

Diptera
Ceratopogonidae (T)
Chironomidae (T)
Tipulidae

Dicranota (T)
Ephemeroptera

Baetidae
Baetis (F)

Caenidae
Caenis (F)

Ephemeridae
Ephemera (F)
Hexagenia (F)

Hemiptera
Corixidae (T)

Coleoptera
Hydrophilidae

Berosus (T)
Peltodytes (T)

Table 1. Abundances of benthic macroinvertebrates with tolerance values collected per 
sample from Rollem Fork #2 1997 and 2000. T=tolerant taxa, F=facultative taxa

0
0

19
288

3
1

1
13

28
672

0
4

Odonata
Anisoptera
Gomphidae

Gomphus (T)
Zygoptera 

Coenagrionidae 
Argia (T) 
Enallagma (F)
Hesperagrion (T)

Trichoptera
Polycentropodidae

Cyrnellus (F)

Hirudinea
Glossiphoniidae (T)

1
0
3

2
2
0



1997 200020001997

560

02
40

3 0
121 0
7 5
9 0

04

1 0
0 108

2340

20

13

Table 2. Abundance of benthic macroinvertebrates with tolerance values collected per 
sample from Vance Branch, 1997 and 2000. T=tolerant taxa, F=facultative taxa, 
S=sensitive taxa, U=unclassified taxa.

Diptera
Ceratopogonidae (T) 
Chironomidae (T) 
Simulidae (T)
Tipulidae

Tipula (T)

Ephemeroptera
Baetidae

Baetis (F)
Caenidae

Caenis (F)
Ephemerellidae

Ephemerella (F)
Heptageniidae

Stenacron (S)
Leptophlebiidae

Leptophlebia (S)
Siphlonuridae

Siphlonurus (F)
Hemiptera

Corixidae (T)
Notonectidae

Notonecta (U)

0 
0 
0

46
1006
30

2
1
1

23 
804 
0

Trichoptera
Hydropsychidae (F)

Zygoptera
Coenagrionidae

Argia (T)
Enallagma (F)
Hesperagrion (T)

Lestidae
Lestes (U)

1
1

0 
0 
0

4
0
12

0
0

1
1
1

0
21 
0

Taxon_____________
Coleoptera

Dytiscidae
Dytiscus (T)

Hydrophilidae
Hydrochara (T)
Hydrophilus (T)
Peltodytes (T)

Taxon____________
Odonata

Anisoptera
Gomphidae

Gomphus (T)
Hagenius (T)

Libellulidae
Erythemis (F)
Libellula (F)
Plathemis (F)



Fig. 1 Percent taxa according to tolerance value, Rollem Fork #2 1997

Facultative 5.2%

v

Tolerant 94.8%

Fig. 2 Percent taxa according to tolerance value, Rollem Fork #2 2000

Facultative 5.6%

Tolerant 94.4%
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Fig. 3 Percent taxa according to tolerance value, Vance Branch 1997

Sensitive 0.4%

Fig. 4 Percent taxa according to tolerance value, Vance Branch 2000

Unclassified 0.6%

15

Facultative
X 13%

Tolerant
86.4%

Tolerant
86.1%

Facultative
s. 13.5%

X '.:x>
X



EvennessPond I.D.

5.93 0:00 3 0.0% 1.405 0.421

5.91 0:10 1.7%2 0.504 0.210

75.67 4:33 0.0% 0.935 0.330

0:005.69 2 0.9% 0.958 0.346

16

Table 3. Modified Hilsenhoff Biotic Index, Ratio of Scrapers to Collectors/ 
Filterers, EPT Index, Percent Shredders to Total, Shannon Diversity 

And Evenness for Rollem Fork #2 and Vance Branch in 1997 and 2000

Modified 
Hilsenhoff

Biotic
Index

Ratio of Scrapers 
to 

Collectors/Filterers

Percent
Shredders Shannon 

to Diversity 
Total

Rollem
Fork #2 

1997

Rollem
Fork #2 
2000

Vance 
Branch 
2000

Vance 
Branch 
1997

EPT
Index



Metric 3. Ratio of Scraper and Filtering Collector Functional Feeding

Groups

Rollem Fork #2 had no scrapers present in the 1997 and 2000

samples and no filterers present in the 1997 sample. One taxon of

filterers was found in the 2000 sample (Table 3). Vance Branch

experienced a drop from a scraper/filterer ratio of 4:33 to a scraper/filterer

ratio of 0:0 (Table 3). The loss of these particular taxa indicates a

possible disturbance but it must be remembered that the scraper/filterer

ratio is meant for riffle/run communities.

Metric 4. Ratio of EPT and Chironomidae Abundances

In 1997, Rollem Fork #2 had 18 EPT individuals for every 288

chironomids (Fig. 5). In 2000, there were 25 EPT individuals for every 672

chironomids. Although the total number of EPT individuals increased,

their overall abundance as compared to chironomid presence decreased

slightly because of the increase in chironomid abundance (Fig. 6). Vance

Branch, however, experienced an increase in the ratio of EPT individuals

to chironomids. In 1997, there were 149 EPT individuals to every 1006

chironomids (Fig. 7). In 2000, however, chironomid abundance dropped

by 202 individuals. EPT abundance also decreased from 149 individuals

in 1997 to 113 individuals in 2000 but the overall ratio increased slightly

(Fig. 8).
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Figure 6. Ratio of EPT and Chironomidae abundances, Rollem Fork 2000
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in Rollem Fork #2

family Chironomidae replaced Oligochaete as the dominant taxon in 2000

and represented 90% of the total individuals in the population (Figs. 9, 10).

In Vance Branch, Chironomidae was the most dominant taxon in both

years; its contribution decreased from 77.9% in 1997 to 76% in 2000

(Figs. 11, 12). Both ponds have a very high percentage of a dominating

taxon, and this indicates environmental stress in the system.

Metric 6. EPT Index

The EPT index for Rollem Fork #2 decreased slightly from 3 taxa in

1997 to 2 taxa in 2000. In Vance Branch, the decrease was more

dramatic, from 7 EPT taxa in 1997 to only 2 in 2000 (Table 3).

Metric 7. Ratio of Shredder Functional Feeding Group and Total Number

of Individuals Collected

In 1997, no shredders were present in the Rollem Fork #2 sample.

However, in the 2000 sample, one taxon of shredders, 13 specimens of

Peltodytes , represented 1.7% of the population. In the Vance Branch

sample as well, no shredders were present in 1997 while in 2000, one

shredder, a single specimen of Peltodytes, represented 0.09% of the total

population (Table 3).
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Metric 5. Percent Contribution of Dominant Taxon
In 1997, Oligochaete was the dominant taxon

and represented 47.9% of the individuals in the population. However, the



Fig. 9. Percent Dominant Taxon for Rollem Fork #2,1997

Fig. 10. Percent Dominant Taxon for Rollem Fork #2, 2000
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Fig. 11. Percent Dominant Taxon for Vance Branch, 1997

Fig. 12. Percent Dominant Taxon for Vance Branch, 2000

Chironomidae 76%
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Metric 8. Shannon Diversity

The Shannon Diversity decreased for Rollem Fork #2 from 1.405 to

0.504 and increased in Vance Branch from 0.935 to 0.958. However, both

ponds remained in the severely polluted category of scores (Table 3).

Metric 9. Evenness

In Rollem Fork #2, evenness decreased substantially between

1997 and 2000, from 0.421 to 0.210. The change was less dramatic for

Vance Branch, which experienced a slight increase in evenness between

1997 and 2000, from 0.330 to 0.346 (Table 3). None of these numbers

represent a particularly even distribution although the decrease in

evenness in Rollem Fork #2 indicates somewhat worsening environmental

conditions.

Water Chemistry

Both ponds experienced a general increase in water chemistry

parameters from 1997 to 2000. In Rollem Fork #2, field pH increased

from 7.68 to 7.89 although both parameters are well within limits set forth

by the West Virginia DEP. Total aluminum also increased from 0.093

mg/L in 1997 to 0.250 mg/L in 2000. Iron increased from 0.273 mg/L in

1997 to 0.120 mg/L in 2000 while total suspended solids decreased from 5

mg/L in 1997 to BDL, or below detection limit, in 2000. Data for both

dissolved oxygen and sulfates are incomplete. In 1997, the concentration

of dissolved oxygen was 9.51 mg/L and for sulfates, 133 mg/L, both within
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acceptable limits. No data were made available for the 2000 sampling

season, however. Conductivity data was unavailable for both years

(Tables 4 and 6).

Water chemistry data were more complete for Vance Branch. Total

field pH increased from 7.26 in 1997 to 8.67 in 2000, both within

acceptable limits. Aluminum, however, decreased from 0.104 mg/L in

1997 to BDL, or below detection limit in 2000, indicating that aluminum

concentrations were so low as to be undetectable by sampling equipment.

Iron concentrations decreased from 0.204 mg/L in 1997 to 0.060 mg/L in

2000. Both of these concentrations meet the acceptable limit for iron of

1.5 mg/L. Total suspended solids decreased from 11 mg/L in 1997 to 6

mg/L in 2000; both of these concentrations comply with the acceptable

limit of 500 mg/L. Conductivity data was available for Vance Branch. In

1997, conductivity was 701 umhos/com while in 2000 it increased to 1320

umhos/cm. Neither of these is within the accepted limit of 500 umhos/cm.

Sulfates also increased from 1997 to 2000, from 211 mg/L to 762 mg/L.

The 1997 concentration complied with the DEP limits but the 2000

concentration exceeded the limit of 250 mg/L. Dissolved oxygen data was

missing for Vance Branch in 2000. In 1997, however, the concentration

was 8.92 mg/L, which complied with the acceptable limit of greater than 5

mg/L (Tables 5 and 6)
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1997 2000Parameter

7.897.68Field pH

0.093 mg/L 0.25 mg/L

5 mg/L BDL mg/L

0.12 mg/L0.273 mg/LIron (Fe), Total

9.51 mg/LOxygen

133 mg/LSulfates

1997 2000Parameter

8.677.26Field pH

762 mg/L211 mg/L

0.104 mg/L 801 mg/L

1100 mg/L534 mg/L

8.92 mg/LOxygen

1320 umhos/cm701 umhos/cm
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Table 4. Water chemistry data for Rollem Fork #2, 1997 and 2000.
BDL= Below Detection Limit

Table 5. Water Chemistry Data for Vance Branch, 1997 and 2000 
BDL= Below Detection Limit

Aluminum (Al) 
Total

Solids, Total 
Suspended

Conductivity, 
Total

Solids, Total 
Dissolved

Sulfate, Total - 
Turbidity

Aluminum, Total



Parameter Concentration

Field pH 6-9

Aluminum (Al), Total 0.750 mg/L

Iron (Fe), Total 1.5 mg/L

Solids, Total Suspended 500 mg/L

Sulfate, Total 250 mg/L

Conductivity 500 umhos/cm

Total Dissolved Oxygen

Seasonal Study

Dissimilarity between the same seasons of different ponds

Using the STATISTICA multivariate cluster analysis of dissimilarity, a

simultaneous comparison was allowed between the reference site, a one-time

sample taken at Honey Branch in fall 1999, and each seasonal sample of the

three ponds. In the fall of 1999, WB3, the youngest of the three ponds, was the

least dissimilar (or most similar) to the reference, Honey Branch (HBREF) with a

percent dissimilarity of 52%. WB5, the oldest of the three experimental ponds,

was the most dissimilar to the reference; it was 62% dissimilar to HBREF. The

26

Table 6. Acceptable parameters for water chemistry as set forth 
by the West Virginia DEP Environmental Quality Board (2000).

> 5 mg/L



percent dissimilarity between WB4 and the reference was between that of WB3

and WB5 at 55% (Fig. 13, Table 7).

The same trend can be seen when the winter 2000 sample is compared to

the reference. Again, WB3 was the least dissimilar to the reference sample

WB4 ranges between WB3 and WB5 with a percent dissimilarity of 55% (Fig. 14,

Table 8). There was a slight change in dissimilarity order in spring 2000. While

WB3 remained the least dissimilar to HBREF at 52% dissimilarity, WB4 became

the most dissimilar to HBREF with a percent dissimilarity of 62%.

In spring 2000, WB5 was 55% dissimilar to HBREF, which is between

WB3 and WB4 (Fig. 15, Table 9). In summer 2000, WB3 remained the least

dissimilar to HBREF at 55%. However, WB5 became dramatically more

dissimilar to HBREF, jumping from 55% dissimilar in spring 2000 to 76%

dissimilar in the summer sample. WB4 also increased in dissimilarity, moving

from 62% dissimilar in spring 2000 to 69% dissimilar to HBREF in summer 2000

(Fig. 16, Table 10).

The last season of sampling, fall 2000, showed the same trend as the

other seasons. WB3 remained the least dissimilar to HBREF at 59%. WB4

dropped back to the spring 2000 dissimilarity of 62% and WB5, while it did drop

from the dissimilarity of summer 2000, remained the most dissimilar to HBREF at

66% (Fig. 17, Table 11).
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having a percent dissimilarity of 48% while WB5 was the most dissimilar at 59%.



Figure 13. Percent disagreement between all ponds and reference, fall 1999
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Table 7. Cluster analysis for percent disagreement between all ponds and 
reference, fall 1999
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Figure 14. Percent disagreement between all ponds and reference, winter 2000
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Table 8. Cluster analysis for percent disagreement between all ponds and 
reference, winter 2000
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Figure 15. Percent disagreement between all ponds and reference, spring 2000
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Table 9. Cluster analysis of percent disagreement between all ponds and 
reference, spring 2000.
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Figure 16. Percent disagreement between all ponds and reference, summer 2000
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Table 10. Cluster analysis for percent disagreement between all ponds and 
reference, summer 2000
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Figure 17. Percent disagreement between all ponds and reference, fall 2000
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Table 11. Cluster analysis for percent disagreement between all ponds and 
reference, fall 2000
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Dissimilarity between different seasons of the same pond

Comparing every season of the same pond to HBREF at the same time

also gives unexpected results. When all seasons of WB3 are compared to

HBREF, winter 2000 is shown to be the least dissimilar to HBREF at 74%. The

most dissimilar, fall 2000, was the oldest stage of WB3 that was sampled. The

percent dissimilarity between fall 2000 and HBREF is 89%. The other seasons

fell between winter 2000 and fall 2000 in dissimilarity with HBREF - fall 1999 at

79%, spring 2000 at 79%, and summer 2000 at 84% (Fig. 18, Table 12).

WB4 showed a trend of slightly increasing dissimilarity with HBREF as it

aged. The fall 1999 and winter 2000 samples were most similar to HBREF at

55% dissimilarity for both sampling periods. As the pond aged, however,

similarity increased and reached a peak in summer 2000 with a dissimilarity of

69%. The dissimilarity dropped again to 62% in fall 2000 (Fig. 19, Table 13).

However, it is interesting to note that the fall 2000 sample, the oldest stage of the

pond sampled, was more dissimilar to the reference than the fall 1999 sample,

the youngest stage of the pond sampled.

In the case of WB5, dissimilarity to HBREF dropped with each season

from 69% in fall 1999 to 65% in winter 2000 to the spring 2000 sample, which

was the least dissimilar to HBREF at 62% dissimilarity. This drop followed the

expected trend. However, in summer 2000 dissimilarity to HBREF increased

dramatically to a high of 85% dissimilar. Dissimilarity dropped again to 73% in

fall 2000 but still remained higher than the fall 1999, winter 2000, and spring

2000 sampling seasons (Fig. 20, Table 14).
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Figure 18. Percent disagreement between all seasons of WB3 and reference
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Table 12. Cluster analysis of percent disagreement between all seasons of WB3 
and reference
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Figure 19. Percent disagreement between all seasons of WB4 and reference
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Table 13. Cluster analysis for percent disagreement between all seasons of 
WB4 and reference
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Figure 20. Percent disagreement between all seasons of WB5 and reference
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Table 14. Cluster analysis for percent disagreement between all seasons of 
WB5 and reference
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Water Chemistry

The same water chemistry parameters, except for dissolved oxygen,

which was not available for any of the seasonal ponds, used for the one-time

study, were also analyzed for the seasonal study. Again, some of the water

chemistry data was incomplete for the varying seasons and ponds. In WB3,

water chemistry parameter stayed fairly stable throughout the seasons with just a

few shifts occurring (Table 15). Field pH remained within the acceptable limits

except for fall 2000, when it reached 9.38, exceeding the limit of 9. Also,

aluminum exceeded the acceptable parameters only once, at 1.21 mg/L in fall

1999. Iron met the acceptable limits every season, never exceeding acceptable

limit of 1.5 mg/L. Total suspended solids fell within normal limits in all seasons,

in fall 1999 at 17 mg/L and fall 2000 at 6 mg/L, and in all other seasons at BDL,

or below detection limit. Conductivity remained within limits in all seasons as did

total sulfates.

Water chemistry data for WB4 was unavailable for summer and fall 2000.

In the other seasons, however, parameters closely followed those of WB3 (Table

16). Field pH always remained within acceptable limits as did conductivity and

total sulfates. Aluminum was within acceptable limits in all seasons; in fall 1999

with a concentration of 0.30 mg/L, and in winter and spring 2000 at BDL, or

below detection limit. Iron concentration always complied, never exceeding

acceptable limits in all reported seasons. Total suspended solids met acceptable

limits in all seasons as well.
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Water chemistry data for WB5 was not provided for the fall 1999, winter

2000, and summer 2000 seasons. Field pH and total iron exceeded acceptable

limits in spring 2000 while all other parameters were within limits (Table 17). In

fall 2000, however, pH fell back into acceptable limits while iron remained high

and aluminum concentration decreased to BDL , well under the limit of 0.750

mg/L.

Honey Branch water chemistry data reveals the same basic trend as the

other ponds (Table 18). Field pH, aluminum, iron, total suspended solids,

sulfates, and conductivity were well within acceptable limits.
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Parameter Fall 2000Fall 1999

6-98.07.32 6.94 9.38pH 7.36

0.750 mg/L1.21 mg/L 0.13 mg/L 0.14 mg/L 0.31 mg/L

0.06 mg/L 0.05 mg/L0.57 mg/L 0.07 mg/L 1.5 mg/L

6 mg/L 500 mg/L801 mg/L801 mg/L17 mg/L

250 mg/L72.2 mg/L78 mg/L49.6 mg/L 82.0 mg/L
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Solids, Total 
Suspended

Conductivity, 
Total

Iron (Fe), 
Total

Sulfate, 
Total

Aluminum 
(Al), Total

Table 15. Water chemistry parameters for all seasons of WB3 compared with 
acceptable limits as established by the West Virginia DEP Water Quality Board 
(2001).

240 
umhos/cm

Winter
2000

0.12 
mg/L

0.16 
mg/L

801 
mg/L

190 
mg/L

21 
mg/L

459 
umhos/cm

Summer
2000

337 
umhos/cm

321 
umhos/cm

Spring
2000

WVDEP
Limits

500 
umhos/cm



Parameter Fall 1999 Fall 2000

pH 7.68 7.537.61 6-9

0.30 mg/L 801 mg/L 0.750 mg/L

0.12 mg/L0.10 mg/L 1.5 mg/L

801 mg/L7.0 mg/L 500 mg/L

250 mg/L188 mg/L72.0 mg/L
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Solids, Total 
Suspended

Conductivity, 
Total

Iron (Fe), 
Total

Sulfate, 
Total

Aluminum 
(Al), Total

290 
umhos/cm

Winter
2000

Spring
2000

Summer
2000

500 
umhos/cm

Table 16. Water chemistry parameters for all seasons of WB4 compared with 
acceptable limits as established by the West Virginia DEP Water Quality Board 
(2001).

371 
umhos/cm

801 
mg/L

0.38 
mg/L

801 
mg/L

319 
mg/L

63.4 
mg/L

WVDEP
Limits



Fall 2000Parameter Fall 1999

6-98.789.24pH

0.750 mg/L801 mg/L

1.5 mg/L801 mg/L

8 mg/L 500 mg/L

447 mg/L

250 mg/L132 mg/L
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Solids, Total 
Suspended

Conductivity, 
Total

Iron (Fe), 
Total

Sulfate, 
Total

Aluminum 
(Al), Total

Table 17. Water chemistry parameters for all seasons of WB5 compared to 
acceptable limits as established by the West Virginia DEP Water Quality Board 
(2001).

Winter
2000

Spring
2000

6.0 
mg/L

Summer
2000

500 
umhos/cm

0.26
mg/L

0.43 
mg/L

393 
mg/L

63.4 
mg/L

WVDEP
Limits



Parameter

pH 7.07 6-9

0.37 0.750 mg/L

0.78 1.5 mg/L

500 mg/L5.0

357

250 mg/L56
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Table 18. Water chemistry parameters for Honey Branch (HBREF) compared 
with acceptable limits as established by the West Virginia DEP Water Quality 
Board (2001).

Conductivity, 
Total

Solids, Total 
Suspended

Iron (Fe), 
Total

Sulfate, 
Total

HBREF
11/1/99

Aluminum 
(Al), Total

500 
umhos/cm

WVDEP
Limits



Discussion

The EPA Rapid Bioassessment Protocols applied to the Rollem Fork #2

and Vance Branch ponds in 1997 and 2000 indicated little change in the

condition of the ponds. Taxa richness did not change for either pond, which

indicates that overall there is no net influx of new taxa. In the case of Rollem

Fork #2, the percentage of tolerant and facultative species did not change

noticeably (Fig. 1). Vance Branch experienced a more noticeable change.

Percent tolerant taxa remained almost the same; however, the loss of sensitive

species from 1997 to 2000 indicates increased perturbation in the pond. These

species were replaced by unclassified species, Notonecta and Lestes. Both

families to which these species belong are represented in the sample by other

members, all of which are either tolerant or facultative (Table 2). Nevertheless,

the percentage represented by the loss of sensitive species and gain of

unclassified species was so small that the change may be insignificant.

The modified Hilsenhoff Biotic Index, although it increased slightly in both

ponds between 1997 and 2000, did not change enough to indicate either

degradation or improvement. The index indicated a moderately polluted system

for both ponds for both years (Table 3). There was little change in the ratio of

scraper and filtering collector functional feeding groups for Rollem Fork #2, while

Vance Branch experienced a loss of the scraper and filterer functional feeding
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groups. While this ratio may seem to indicate an extremely disturbed system

upon first examination, it must be remembered that this and all Rapid

Bioassessment metrics are designed for lotic systems. Filterer and collector

functional feeding groups are more likely to be found in lotic environments where

the constant influx of new organic matter and riffle areas can support these

groups. In Rollem Fork #2 and Vance Branch, while there is some overhanging

vegetation that can contribute new organic matter, it is not of the volume usually

found in riparian areas. Also, the ponds have no water flow or shallow riffle

areas that are the typical habitat of some of these feeding groups.

When comparing Ephemeroptera, Plecoptera, and Trichoptera

abundances with Chironomidae abundances, there is a disproportionately high

number of chironomids as compared to the more sensitive EPT taxa. However,

Williams (1997) found that, in temporary ponds constructed in Britain, North

America, and Australia, chironomids were among the small variety of

invertebrates that are characteristic of the pond habitats. No members of the

orders Ephemeroptera, Plecoptera, or Trichoptera were among the common

inhabitants. The ability of the mostly tolerant chironomids, makes it a suitable

candidate for living in a pond community. They are able to tolerate harsh

physiological conditions, modify their life history, and migrate after emergence

from the larval stage (Williams, 1997). This may also explain why Chironomidae

is the most dominant taxon in Rollem Fork #2 in 2000 and in both years of Vance

Branch.
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In many temporary or new ponds, there is a definite pattern for succession

of benthic macroinvertebrates. Dipterans, which include chironomids, appear

first followed by the insect orders Coleoptera, Ephemeroptera, and Odonata

(Layton et al., 1991). This trend is followed in Rollem Fork #2 and Vance Branch

alike. There were several species that belong to Ephemeroptera, Coleoptera,

and Odonata present in both ponds although not in great abundance as is

reflected for Ephemeroptera by a low EPT index for both ponds in both years

(Table 3). The low ratio of the shredder functional feeding group and the total

number of individuals collected also indicates a disturbed system. Once again,

the Rapid Bioassessment Protocols are meant for lotic systems and shredder

functional feeding groups are more likely to be found in riffle areas.

The Shannon diversity and evenness metrics, as the other metrics,

indicated that the ponds systems experience disturbance and are relatively

polluted. Because the Shannon diversity and evenness values are based on

taxa richness, however, it is expected that the values for these metrics will be low

since pond environments tend to have a low diversity of species as mentioned

before.

Upon examination of all of these metrics combined, a question should be

raised as to the validity of using the EPA Rapid Bioassessment Protocols to

gauge health of the ponds. The results as a whole can be used to indicate that

there is little change in metrics between 1997 and 2000 and therefore no

measurable succession. However, they also suggest that the ponds are

moderately to severely disturbed, which is not necessarily the case. Rollem Fork

45



#2 and Vance Branch show similar benthic composition to temporary ponds in

other studies. The cyclic nature of ponds, while they do not allow for the great

diversity of species found in lotic systems, encourage the success of small

numbers of adaptable species (Williams, 1997). If the ponds were stream

environments, the results of the EPA Rapid Bioassessment Protocols would be

cause for concern.

The fact that the protocols used in the Rollem Fork #2 and Vance Branch

study are biased against pond environments brings forth the question of what are

good protocols for assessing the health and succession of pond environments.

A measure of community similarity would more accurately gauge whether a pond

system is undergoing succession. The Bray-Curtis similarity index analyzes the

presence and relative abundance of all taxa simultaneously and is probably the

strongest tool for comparing two different sample years. The index ranges from

0 to 1, with 1 being the most similar. This index, teamed with the total density of

benthics in each sample, taxa richness, and Shannon Diversity, can more

accurately measure the health and succession of a pond system (Christman and

Voshell, 1993).

Water chemistry did not seem to play a large role in the succession of

benthics in Rollem Fork #2 and Vance Branch. The parameters, while some

exceeded acceptable limits for drinking water, remained relatively stable over the

course of the two sampling events (Tables 4 and 5).
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Seasonal Study

In the comparison of dissimilarity between the same seasons of different

ponds, WB3, the youngest pond, was always the least dissimilar, or most similar

to the reference (HBREF). This results go against the logic that, as the ponds

age, they will become more like the older reference pond. These results, in fact,

show the opposite, that as the ponds age, they become less and less like the

reference pond. In most seasons, WB5, the oldest of the three experimental

ponds, was the most dissimilar to HBREF, while WB4 ranged between WB3 and

WB5. Only once did WB4 become the most dissimilar to HBREF (Figs. 13, 14,

and 15).

This phenomenon can also be illustrated by examining all seasons of

WB3, the least dissimilar pond to HBREF. The oldest stage of WB3, fall 2000

was the most dissimilar to HBREF (Fig. 18, Table 12). The reference sample

was taken at the same time the fall 1999 sample was taken at WB3, WB4, and

WB5 so seasonal effects would be minimal when comparing the fall 1999 and fall

2000 samples. WB4 showed the same trend when compared with HBREF; the

dissimilarity increased as the pond aged (Fig. 19, Table 13). Dissimilarity

between WB5 and HBREF began by showing the expected trend; dissimilarity

decreased as the pond got older until the summer 2000 sampling season was

reached. Suddenly, the dissimilarity spiked and remained high through the fall
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2000 season (Fig. 20). The summer spike could have been caused by a mass

emergence of a certain taxa or a disturbance in the pond. Unfortunately, water

chemistry data was not provided for the summer 2000 sampling season of WB5

so it is unknown whether or not a water chemistry disturbance occurred.

However, aluminum and iron concentrations in the fall 2000 sample are very high

and could indicate a disturbance in that season (Table 17).

Habitat differences also play a role in the dissimilarity between the

experimental ponds and HBREF. The three experimental ponds are in open

areas with little to no overhanging vegetation or macrophytes. Honey Branch

(HBREF), however, more closely resembles a wetland environment. There is an

abundance of overhanging vegetation, facultative wetland plants such as cattails

(Typha sp.), and soils that are characteristic of wetland soils. The entire area is

more enclosed and shaded.

The Honey Branch site is not part of an active mining operation and is,

therefore, no longer disturbed. The experimental ponds are active sedimentation

ponds, and because of this, they are routinely treated with calcium hydroxide

(CaOH)2 and sodium hydroxide (NaOH) to elevate the pH of the water before it is

discharged into the stream. They are also regularly dredged in order to remove

excess sedimentation. This activity not only severely disturbs animal

communities within the ponds, but also any successional plant communities. In

addition, total suspended solids are naturally increased during one of these

dredging events or even during a period of rain or excess runoff from the valley

fill. Sediment in the ponds is extremely fine and takes a long time to settle.
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Another approach to determining whether the younger ponds, WB3 and

WB4, are undergoing any successional change is to compare them with the

oldest of the three experimental ponds, WB5. This comparison shows, that as

WB3 ages, it became slightly less dissimilar to WB5. This trend was broken in

summer 2000 and fall 2000 when dissimilarity to WB5 increases again. WB4

does not change in dissimilarity to WB5 until summer, when it increased in

dissimilarity with WB5 (Figs. 13-17 and Tables 7-11). Again, this may be due to

a water chemistry disturbance, but without the summer 200 data for both WB4

and WB5, that issue cannot be addressed. Gee et al. (1997) found that there is

no significant relationship between pond age and number of taxa living in that

pond. Other studies have shown that there are significant changes in benthic

communities for the first several years after the construction of ponds, especially

in the first and second years (Barnes 1983, Voshell and Simmons, 1984,

Krzyzanek et al. 1986). But, these are temporary ponds that are naturally

occurring and, therefore, have terrestrial organic matter in the water.

Decomposition of this material can support a large community of invertebrates as

well as plants. Constructed ponds more than likely have this food source

removed during construction. In construction of sedimentation ponds in this

study, all woody vegetation was removed prior to construction; after the ponds

are created, the areas around them are mulched and revegetated with grasses

(Pen Coal Corp., 1997).

Layton and Voshell (1991) found that artificially constructed ponds act

differently. In the beginning, these ponds quickly colonize with a few taxa and
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then species evenness levels off. Perhaps the ponds eventually reach a stasis

regarding taxa diversity and then do not significantly change after that.

Depending on the habitat availability, water chemistry, and other extrinsic factors,

those low-diversity ponds are host to just enough different and unchanging taxa

to retain a high degree of dissimilarity.

It must be remembered that ecological succession cannot be

determined in a one or even a three-year period. It is also important to

acknowledge that the ponds from both of these studies are part of a mining

operation and are, therefore, subject to disturbances such as water treatments,

runoff events, and dredging. These disturbances can have a profound impact on

the benthic communities inhabiting the ponds and can, therefore, mask or even

upset any ecological succession that is occurring.
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