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ABSTRACT

Cyberattack is a never-ending war that has greatly threatened secured information systems. The

development of automated and intelligent systems provides more computing power to hackers to

steal information, destroy data or system resources, and has raised global security issues.

Statistical and Data mining tools have received continuous research and improvements. These

tools have been adopted to create sophisticated intrusion detection systems that help information

systems mitigate and defend against cyberattacks. However, the advancement in technology and

accessibility of information makes more identifiable elements that can be used to gain

unauthorized access to systems and resources. Data mining and classification tools such as

K-Nearest Neighbors, Support vector machines, and Decision trees, among others, have been

improved over time and used to build models for intrusion detection systems. This enables

information systems, internet-connected devices, or devices running on a computer network to

gain immunity against cyberattacks. However, these classification models hit some limitations as

the sample size of data increases. Neural networks is an artificial intelligence tool that has been in

active research over recent years. It has proven to handle big data and understand complex

relationships better than the previous classification methods. Recent studies have demonstrated

to build better models by showing better accuracy for intrusion detection systems using neural

networks. In this thesis, we use a class of neural networks known as Self-Normalizing Neural

Networks, which implements a scaled exponential linear unit activation function (SELU)

developed by Klambauer et al. [12], to build a predictive model to detect cyberattacks against

normal network traffic or connections using classification, in the KDD CUP 99 dataset from the

Third International Knowledge Discovery and Data Mining Tools Competition, that was held in

1999. The accuracy and precision of the self-normalizing neural networks is compared with that

of the k-nearest neighbors and support vector machines. The self-normalizing neural network

appears to perform better. It is an excellent classifier for denial-of-service attacks, probe attacks,

and user-to-root attacks while efficiently predicting normal connection. The result in this thesis is
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also compared with existing literature which appears to perform better.
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CHAPTER 1

INTRODUCTION

With the advancements of technology over the years and its improvements from generation to

generation, the possibilities of technology and its equipment are endless. Computer systems and

technology have evolved from huge devices sitting in one spot to portable devices or gadgets that

individuals use in their everyday lives. This includes mobile phones, tablets, electric cars,

internet-powered refrigerators, and so much more. As these devices have become a massive part

of human lives, we entrust our information and our daily activities to them. These devices have

been created with security features that help restrict unauthorized access to the information we

store on them. We have trusted these devices so well that governments, large privately owned

businesses and individuals keep the most sacred and secretive information on them, allowing

everyone to securely access information from anywhere at any time. Devices can communicate

with each other, and it is possible to access remote information with these devices via a network.

A network enables connection and information exchange between devices. This network which

powers communication consists of 3 significant parameters, namely connection(or basic) features,

content features, and traffic features [3]. Networks transfer different information between devices.

Hence, they must be implemented with information security in consideration. Security

implementations are usually in the form of but not limited to, firewalls, encrypted data,

password-enabled systems, and multi-factor authentication. These security barriers can still be

breached if sensitive security information that guards these devices is exposed. For example,

firewalls are hardware or software network security guards that monitor incoming and outgoing

network traffic against some set of predefined security rules. Connections or packets violating

such rules are dropped. However, attacks such as encrypted injection attacks, where cyber

criminals use phishing emails as a decoy to enable client users to run some hidden special

program, is possible. Structured Query Language (SQL) injection attacks are a common hacking

technique to breach through firewalls and password-enabled systems. This is achieved by running

SQL commands through packets sent through a firewall, or passing commands through
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credentials, to retrieve sensitive information from databases such as credit cards, or destroy

database and system resources. Encrypted data is a form of security on data that requires a key

to be decrypted. This could be compromised if the key is not kept safe or is exposed during

information exchange and is intercepted during network traffic communication. The use of

technical shortcomings of a network security mechanism to either gain access to unauthorized

information or disrupt the elements of a network is known as a cyberattack [4]. The purpose of

cyberattacks varies, including gaining access to unauthorized information, destroying or

consuming system resources, and preventing legitimate users from gaining access. The process of

an attack begins with a malicious user trying to obtain some unauthorized information from a

destination computer, usually known as a host, using a computer known as the source over a

network connection. The attack can either happen during the transfer of information between the

client (source) and the destination (host) or directly from the cybercriminal.

Figure 1.1: An attack on the host by a cybercriminal during information transfer
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Figure 1.2: An attack directly to the host computer from a cybercriminal

There has been a trend of high-security breaches over the years. Well-known companies such as

Facebook and Yahoo have been the target of cyberattacks. These companies have a vast amount

of personal, geographical, and universal data that have been securely entrusted and stored. In

October 2016, a distributed denial of service (DDOS) attack was executed by overwhelming

different servers to disrupt network traffic, which caused a massive outage on the East Coast of

the United States botnet controlled by a malware named Mirai. In May 2017, a ransomware

software called WannaCry infected many computers by exploiting system vulnerabilities in the

Windows operating system. It encrypted data and demanded a ransom in the form of bitcoin

cryptocurrency to release user data [14]. Usually, some bits of information are sent over the

network that can be used to get some unauthorized privilege to access or manipulate data at the

destination or throw the destination computer into a state that makes it misbehave and not

function as well as it is supposed to. While these bits of information are being transferred over

the network connection, various parameters about the whole system can be studied or

investigated to detect an attack, such as the connection parameters, information being

transferred, operations being performed at the destination computer, and so many more. These

security issues can be addressed by building an intrusion detection system (IDS), a well-known

technology utilized to identify malicious connections or traffic to a target network system. IDS

systems identify attacks without human intervention and have been developed over time machine

learning algorithms have been a core part of analyzing and identifying various attack scenarios,

however, with the emergence of new and more complex attack scenarios, machine learning based

techniques have struggled to deal with such phenomenon.

The general idea of machine learning involves using a set of tools to understand data and
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observe the relationship between a set of predictors X = (x1, x2, ..., xp) and a response Y , with

the goal of estimating a function f which can be written in the general form

Y = f(X) + ϵ,

where ϵ is an error term independent of X with a mean of zero. Machine learning can be

categorized into supervised, unsupervised, and reinforcement learning. Regression and

classification problems are supervised learning tools, and predictive models are assessed depending

on the class of problems. Machine learning tools sometimes have a limitation in handling big

datasets and studying complex relationships in data, but the area of deep learning, also known as

neural networks, has been seen to handle such huge datasets and is capable of handling more

complex relationships [9]. Neural networks began to gain popularity when convolution neural

network (CNN) classified images correctly. Recurrent neural networks (RNN) also emerged, and

is capable of analyzing and studying the relationship in speech patterns and conversations. Neural

networks is a deep learning architecture that uses artificial neurons to process inputs in several

hidden layers to build a predictive model from data and produce an optimal prediction.

Neural networks can be said to consist of 3 significant layers namely the input layer, the hidden

layer, and the output layer.

The input layer typically consists of the features in the dataset. The hidden layer is responsible

for the core operations of a neural network. It consists of 3 major parameters: a set of weights,

bias and an activation function. The set of weights are used to emphasize or de-emphasize the

importance of a predictor or neuron, in a neural network. The predictors and the weights are

represented in matrix form, and then multiplied using matrix multiplication, as shown in equation

1.1,

N = ν(X,W ) = X ×W = x1 × w1 + x2 × w2 + · · ·+ xn × wn, (1.1)

where X is a vector of the input data, W is a vector of the weights, which is used to emphasize

and de-emphasize features of a dataset and N is the result of the matrix multiplication. Initially,

the weights are generated randomly and then, the network learns the best weights for the data. A
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bias can be added to a neural network after the weight is multiplied with the input. The role of a

bias in a neural network is that it is the simple assumption that our model makes about our data.

An activation function can then be applied to the result, which is then sent as a signal to the

neuron in the next layer. Activation functions are usually non-linear functions, as they help to

learn the non-linear relationship about our data. Some popular activation functions include the

1. Sigmoid function,

σ(x) =
1

1 + e−x
(1.2)

2. Rectified Linear Unit function (ReLU),

ReLU(x) =


x, x > 0

0, x ≤ 0

(1.3)

3. Hyperbolic tangent function

H(x) = tanh (x). (1.4)

The output layer of a neural network typically consists of the output or predicted value. For a

classification problem, the output of each observation will consist of a vector of probabilities for

each target class of the problem, and any technique can be used, such as the highest probability,

to choose the preferred class out of the vectors as the predicted value. Before the final expected

value is given, neural networks perform the operations listed so far in two passes: a forward pass

and a backward pass. The goal of neural networks is to fit a model in the form of a mathematical

function to some data. The process maps observations from a dataset, known as inputs, to some

desired predictions, known as the output, in the most optimal way. Thus, we want the predicted

value to be as close as possible to the actual value. The forward pass involves several operations

for calculating a predicted value, such as weight multiplication, the addition of a bias, and

applying an activation function. At the end of a forward pass, the neural network calculates the
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loss of the predicted value. For classification problems, the cross entropy loss function is used, and

it is defined as

CE(pi, yi) = −yi × log(pi)− (1− yi)× log(1− pi),

where i = 1, ..., n, n is the number of classes in the classification problem, pi and yi are the

predicted and actual probabilities of each class for an observation.

When the loss is computed, the forward pass is completed, but we are faced with the problem

of minimizing the loss. The backward pass is responsible for minimizing the loss, and it is

achieved by computing the partial derivative of the loss (L) with respect to the weights (W),

given as ∂L
∂W , in the neural network. This derivative is then used with a learning rate, which is a

tuning parameter usually within 0.01 to 0.1, to update the weights which leads to a better

prediction result. An optimizer determines how the weights are updated, by using a simple rule

for updating the weights of a neural network based on the gradient of the loss and parameters in

the network. There are several optimizer such as the stochastic gradient descent (SGD), adaptive

momentum estimate (Adam) and mini batch gradient descent. For example, the stochastic

gradient descent has its rule for updating the weights of a network defined as

W = W − learning rate× ∂L

∂W
, (1.5)

where W is the weight vector and L is the loss computed during the forward pass [22].

The process of supplying the whole dataset, calculating the loss and updating the weights, is

called an epoch. Several epochs are required to obtain a better loss value, however, neural

networks can learn with lesser epochs if we split our dataset into batches. A batch is a chunck of

a training dataset that will be used for training a network, for an optimal weight value. Several

chunks that contain the entire training dataset is used in each epoch training of a neural network.

The size of a chunk is called a batch size.

Some common problems of neural networks are overfitting, vanishing gradient and exploding

gradient. Overfitting occurs when a model is highly tailored to a training data such that,

introducing a new training observation, makes a huge change to the model. There are various

techniques for avoiding overfitting in neural networks, the very common ones are
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1. Early stopping technique: it involves stopping the training process once the loss no longer

improves.

2. Dropout technique: it involves randomly setting some neurons to zero based on a

probability value.

The vanishing gradient problem is a case where the derivative of the loss with respect to the

weights,
∂L

∂W
, is almost zero, due to the derivative of certain activation functions. For example,

the derivative of the sigmoid function in equation 1.2, given as

σ′(x) =
e−x

(1 + e−x)2
, (1.6)

tends to zero as the input gets large. Activation functions like the ReLU function in equation 1.3

does not face the vanishing gradient problem since its derivative

ReLU ′(x) =


1, x > 0

0, x < 0

(1.7)

is either 0 or 1. However, the problem with ReLU is that when most of the inputs to the

derivative are less than 0, the weights will not get updated. This is known as the dead ReLU. The

exploding gradient problem is the other way around of the vanishing gradient problem, that is,

the derivative of the loss with respect to the weights increases so fast, and the weights changes

drastically during training. This makes it difficult for the model to obtain optimal weight values.

Deep learning models are increasingly being used because of their ability to handle big data

and their better performance compared to traditional based machine learning solutions. We

therefore take a look at how a class of neural networks can help us in detecting a cyberattack.

The field of neural networks has been effective in studying the relationship in cyberattacks and it

is a great tool for building intrusion detection systems. In 1998, Stoflo et al. of Lincoln labs,

USA, ran a 7 week of network traffic to get a dataset consisting of compressed raw (binary)

TCP-dump data of about 4GB. This data is then processed to the KDD Cup-99 data set which

was used in the third international knowledge discovery and data mining tools contest. The KDD

7



Cup-99 dataset contains over 4 million records of connection vectors, each with 41 features, and

are labeled as either a normal connection or a form of network attack with precisely one specific

attack type. There are 22 attack types, and each falls into one of the four major categories [19]:

1. Denial of Service (DOS): The cybercriminal overloads the network with packets to the

destination computer that consumes a huge amount of system resources or computing

power, making the destination computer unavailable for legitimate users.

2. Probe: This involves observing the physical implementation of the chips of a computer

system, then using the information, such as IP addresses, port numbers, internal wires and

state of a network, to directly access a destination computer for information.

3. UserToRoot (U2R): The cybercriminal gains access to a computer as a normal user and

exploits system vulnerability to upgrade privileges as a root user, enabling access to

protected operations and information.

4. RemoteToLocal (R2L): This kind of attack involves a cybercriminal, who does not have any

form of authorized access to the destination computer, sending packets containing

information, such as a guessed account password or some form of authentication data that

can grant access to the destination computer for information.

When a predictive model is formed, its purpose is to be used to forecast the result of a set of

inputs or data supplied to it. The predictive model of a neural network is usually a function

f(X), where X can be a vector of features whose outcome is to be predicted. Several neural

network models can be formed for a dataset depending on parameters combined such as the

features, epoch, learning rate of the network and batch size. However, we need to know which of

these models is the best for a dataset. We discuss some terms and tools that is being used to

describe the performance of a predictive model [6].

1. Confusion matrix: The confusion matrix is a popularly used metric for observing the

performance of classification problems. It is a cross tabulation of the actual values in the

test data and the predicted values from a model. From this table we can obtain true
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positives (TP), true negatives (TN), false positives (FN) and false negatives (FN), which

enables the calculation of the accuracy, precision and recall of a model.

2. True Positives (TP): is the number of observations of a class that a model’s prediction

confirmed that it is that class when in reality, it is. This represents the number of correct

predictions of a sample.

3. True Negatives (TN): is the number of observations of a class that a model’s prediction

confirmed that it is not that class when in reality, it is not.

4. False Positive (FP): is the number of observations of a class that a model’s prediction

confirmed that it is that class when in reality, it is not.

5. False Negatives (FN): is the number of observations of a class that a model’s prediction

confirmed that it is not that class when in reality, it is.

6. Accuracy: is the ratio of correctly predicted classes to the total number of records. It

represents how well the model can predict correct values generally, and it is given as

accuracy =
TP + TN

TP + FP + FN + TN
.

7. Precision: Precision: A precision value is always with respect to a class. It gives us the

correctly predicted value out of all the model’s predictions about a class. This is the ratio of

the correctly predicted class by the model to the total number of classes predicted to be

positive by the model. It is given as

precision =
TP

TP + FP
.

8. Recall: A recall value is always with respect to a class. It gives us the correctly predicted

value out of all the actual values of a class. It is given as

recall =
TP

TP + FN
.
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In this thesis, we study the 10% KDD Cup 99 dataset using a class of neural networks known

as self normalizing neural networks to build a predictive model. This is achieved by preprocessing

the data, performing feature extraction and feeding a batch of the data as training data into the

neural network, then assessing the model using a test batch with reports on the model

performance.
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CHAPTER 2

LITERATURE REVIEW

Intrusion detection in cyber-physical systems, which are systems that operate independently

and make decisions without the need for human intervention, is an increasing area of research.

There is less human intervention in identifying and preventing cyberattacks in such systems.

Thus, these systems defend against attacks using defense mechanisms such as intrusion detection

systems. There is a focus on malware classification of various types of intrusion as each system

has attacks common to its unique baseline. These systems are large-scale, as they handle and

process massive real-time information. They are geographically dispersed as they need to ensure

services are provided to users near their location to avoid longer network communication time.

They are also heterogeneous, combining various specialized computing systems to perform tasks

[16]. Examples of such systems are first responder systems, such as implantable medical devices,

self-driving cars, unmanned aircraft, and smart grids. Historically, the capacity to detect certain

kinds of network intrusions relies primarily on the type and quantity of attacks carried out. The

parameters involved are difficult to get due to being legally harmful materials such as packets

with administrator commands, phishing links to execute destructive administrative tasks, and

dangerous database operations harmful to the stored data. Thus, data is often generated using

various simulations and reverse engineering. The KDD Cup 99 cyberattack dataset has been

widely studied as a binary and multiclass target variable dataset. When the target variable is

considered a binary class, the two connection classes are normal and attack. When viewed as a

multiclass, a connection can be normal, or the kind of an attack that can be categorized as shown

in Table 2.1
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Category Attack

DOS back, land, neptune, pod, smurf, teardrop

U2R buffer overflow, loadmodule, perl, rootkit

R2L ftp write, guess passwd, imap, multihop, phf, spy, warez-

client, warezmaster

Probe ipsweep, nmap, portsweep, satan

Table 2.1: Categories of the different attacks in the KDD Cup 99 dataset.

There is no best choice of machine learning models. Thus, researchers do not just rely on deep

learning. It can be observed that certain attack types can be correctly predicted by some

supervised and unsupervised learning when certain features are considered. Al-Mamory et al. [2]

took an introspect into determining the best way to classify and analyze the KDD Cup 99 data

set to get high accuracy in the classification of attacks. They concluded that specialized detectors

were needed to classify the various attacks. They studied 20 different classifiers for the four attack

types, and it was found that rare attacks, such as the U2R, can be efficiently detected with a

classifier such as the Multivariate Adaptive Regression Splines (MARS), Fuzzy Logic and

Random Forest classifiers, with accuracy ranging from 92% to 96%. Clustering techniques, such

as k-means, probabilistic, and hierarchical clustering, were better classifiers for DOS and Probe

attacks with accuracy ranging from 72% to 96%.

Ogundokun et al. [18] employed a particle swam optimization feature extraction technique to

select variables, which was modeled using KNN and Decision Trees. The KNN had a better

accuracy of 99.60% and a detection rate of 96.20%, which outperformed Hoque et al. [10] in terms

of a detection rate of 95%. However, this experiment was conducted using the normal connection

and Neptune attack label.

Fu et al. [7] addressed the problem of low detection rate in network attacks and the need for

extensive feature engineering by proposing a deep learning model for network intrusion detection

with imbalanced data for traffic anomaly detection. They addressed the imbalanced data issue by

using an adaptive synthetic sampling method to expand minority class samples, then used a
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modified stacked autoencoder for dimensionality reduction. They then combine an attention

mechanism and bi-directional long short-term memory (LSTM) network to build a predictive

model with an accuracy of 90.73% on the NSL-KDD dataset, which is also the KDD Cup 99

dataset but with redundant data removed.

The availability of big data and the breakthrough of deep learning in 2010 has led researchers

to study the KDD Cup 99 dataset using neural networks. Moradi and Zulkernine [17] analyzed

this dataset using a three-layer Multilayer Perceptron (two hidden layers with 35 neurons in

each), which is a class of neural networks together with an early stopping validation technique.

Without the technique, they encountered an overfitting problem that produced an undesirable

model as the model produced an accuracy of less than 80% when test data was fed into the neural

network. The early stopping validation technique solved the overfitting problem and improved the

test data’s accuracy to more than 90%.

Pooja and Purohit [21] modeled the KDD CUP 99 dataset using a Bi-directional LSTM, a

neural network consisting of 5 dense layers responsible for weight and bias optimization. This

network uses a dropout technique to avoid overfitting and enables faster training. The softmax

activation is used, which returns probabilities of each class of connection type, and the highest

probability is used as the target prediction. The Adam optimizer used in training the network

with 100 epochs allows for finding the best minimum gradient loss in the network. Different

activation functions were used, with softmax being the optimal activation function with a model

accuracy of 99.73%. Other activation functions include ReLU with a model accuracy of 78.56%,

Sigmoid with 99.65%, and Tanh with 81.66%. They also compared their result with traditional

machine learning algorithms, including but not limited to the logistic regression method,

classification decision trees, KNN classification method, naive bayes, and SVM. The Bi-directional

LSTM appears to have better accuracy.

Podder et al. [19] discussed the prevailing cyberattacks comprehensively in the field of the

internet of things and the effectiveness of deep learning to manage these attacks. They

emphasized how deep learning models have shown significant improvement over traditional

machine learning-based solutions, signature-based methods, and rule-based methods in order to

address cybersecurity problems by comparing 85 research results where most researchers have
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focused on malware classification and detection of various types of intrusion in the network. These

results have shown that there is no perfect or best model for classifying cyberattacks, as different

methods producing great results use different datasets. However, certain areas are remarkable.

The Restricted Boltzmann Machine (RBM) deep learning technique is the most utilized deep

learning technique in cybersecurity due to the unavailability of a dataset whose observations have

a corresponding response, and it has an accuracy of 97.11% on the KDD Cup 99 data. The

Recurrent Neural Network (RNN) is another popular solution for a large range of cybersecurity

challenges due to the fact that cyberattack data are mostly treated as time series data. The RNN

method has an accuracy of 77.55% on the KDD Cup 99 dataset. The deep belief network (DBN)

and the LSTM methods are other great solutions for classifying cyberattack data. They appear to

have high accuracies of 93.49% and 99.8%, respectively, on the KDD Cup 99 dataset. The

research concluded by encouraging researchers to venture more into deep learning to cover more

attack vectors, even though introducing new techniques is frowned upon. This is because deep

learning carries out its training in hidden layers, which seem like black boxes, and it is difficult to

identify errors in attack detection, which leads to costs and hazards to companies. A model can

falsely detect an attack, and cyberattack experts might waste time investing in a false error.

Adams et al. [1] investigated the KDD Cup 99 dataset using an artificial neural network. They

considered five classes of attack, which include the four classes, namely DOS, Probe, U2R, Probe,

and the fifth class, the Buffer Overflow attack. They modeled the dataset using an artificial

neural network (ANN) with one hidden layer consisting of 9 neurons and the hyperbolic tangent

activation function, but the output layer used the softmax activation function with cross-entropy

loss to calculate the loss during training. The model had an accuracy of 99.1%. A convolutional

neural network was used by Liu and Zhang [14] on the KDD Cup 99 dataset to build a multiclass

network intrusion detection model. They first transformed the dataset into a 2-dimensional form,

then the network was built with two convolution layers, and two pooling layers ran on 30

iterations, with a dropout probability of 0.05. The softmax activation function and the cross

entropy loss are used with an Adam optimizer to obtain an accuracy of 98.02% on the dataset.

The accuracy appears to be better than the other CNN models compared with other literature.

Thus, their model obtains better detection of unknown attacks, better generalization, and good
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detection ability, compared to several works of literature using other neural networks such as the

long short-term memory recurrent neural network (LSTM-RNN), gated recurrent unit recurrent

neural network (GRU-RNN) and deep belief network (DBN), on cyberattack datasets.
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CHAPTER 3

PROPOSED MODEL

A self-normalizing neural network is employed to understand better the relationship in the

KDD Cup 99 data set to build an intrusion detection model. The 10% KDD Cup 99 dataset was

used in this thesis, and it is available publicly on

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html. This dataset contains 494,021

records and 41 features; out of the 9 categorical features, 6 of them are binary values, and there

are 32 numeric features. The first step was to take a descriptive and graphical overview of the

dataset. Each of the features was observed for missing values. No missing values were found, and

there were no significant outliers from the dataset due to the domain of the data; the authors

have pre-processed it from its raw form into a CSV file, and since an attack might involve

manipulation of network parameters in a non-definite pattern, we expect that our data ranges

through extreme values. We then categorize the specific attacks into their respective categories:

DOS, U2R, R2L, and Probe.

3.1 Feature Selection

Feature selection is essential to modeling classification problems as it helps to learn meaningful

features and removes the unimportant or noisy parts of a data set. Since the specific attacks in

the dataset are being categorized, our responses are no longer the specific attacks and the normal

connection but the categories of the attack and the normal connection. Each of the features is

then observed for a relationship with the response. The responses are label encoded and

represented as integers, as we can only work with numeric values during the model-building

process. The categorical features in the dataset are scored with respect to the response using the

mutual information method, which is a statistical measure of the dependence between two

variables by evaluating the reduction in entropy in transforming a dataset. The information gain

for each random variable X is calculated as

I(X;Y ) = H(X)−H(X|Y ),
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where I(X;Y ) ≥ 0 is the mutual information for X and Y , H(X) is the entropy for X and

H(X|Y ) is the conditional entropy for X given Y . The value of I(X;Y ) represents the strength

of the relationship between feature X and the response Y . A significant positive number

represents a very strong relationship, and a small positive value represents a weak relationship. If

I(X;Y ) = 0, then the variables are independent. Thus, the features with higher information gain

I(X;Y ) is selected. We use the python function SelectKBest from the sklearn.feature selection

module. This function takes as parameters: the mutual information statistic, the number of

features to select as parameters, a set of categorical inputs, and the response, which is an encoded

categorical label. The function produces the number of features that tends to be highly correlated

with the response by scoring each feature according to their importance to the response.

The quantitative features are observed for a significant relationship with the categorized labels

by plotting a boxplot between each numeric variable and the categorized labels. While we have

the results showing which features have a relationship with the categorized labels, we use the

analysis of variance (ANOVA) method to obtain the essential numeric features in our dataset by

scoring each feature with respect to the response. The ANOVA determines the existence of

statistically significant differences among several group means. Hence, we test for statistically

significant differences among the response classes for a feature in our dataset. We use the python

function SelectKBest from the sklearn.feature selection module, more theoretical details for the

ANOVA method can be found in [5]. This function takes the ANOVA statistic, the number of

features to select as parameters, a set of numeric inputs, and the response variable, which is an

encoded categorical label. It was also ensured that the inputs were normalized with a mean of 0

and a standard deviation of 1. Using the p-value from the F-statistic computed from the ANOVA,

the function produces the number of features that tends to be highly correlated with the response

by scoring each feature according to their importance to the response.

3.2 Pre-processing

Now that we have the features that matter to the response variable, we prepare the selected

features for modeling. The categorical features are one-hot encoded, and the numeric features are

standardized with a mean of 0 and a standard deviation of 1.
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3.3 Self Normalizing Neural Networks (SNN)

The class of neural networks, known as self-normalizing neural networks, is a simple class of

neural networks that model structured data by using a set of linear layers and non-linear

activation function, known as a Scaled Exponential Linear Unit (SELU), which is given by

f(x) = λ


x, x > 0

αex − α, x ≤ 0

where λ ≈ 1.0507 and α ≈ 1.6733 are predetermined. The assumptions of a self normalizing

neural network are:

1. The inputs must have a mean of 0 and variance of 1.

2. The network weights should be lecun normalized, that is, they should have a mean of 0 and

variance of 1
n , where n is the number of neurons in the hidden layer.

3. The SELU activation function is used.

4. If dropout is used, then the alpha-dropout; which involves dropping neurons to

−λα = −1.7581 because their point of low variance is in the negative region, should be used.

The SELU activation function proposed by Klambauer et al. [12], is self-normalizing the weight,

biases and activations of the neural network. This activation function keeps a constant variance in

the network, the self normalizing property is realized by the parameters λ and α as they keep

inputs from previous layers that already have their mean and variance predefined on an interval,

in that same interval.
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Figure 3.1: Graph of SELU activation function

The SELU function is special in that, it does not have the face the vanishing or exploding gradient

problem, and it does not have the ’dead SELU’ problem unlike the ReLU activation function.

3.4 K-Nearest Neighbors (KNN) for classification

The KNN for classification tool is a machine learning tool that is used to predict qualitative

responses, given a positive integer K and a test observation x0. To make a prediction, we first

find the distance between existing observations and the new observation, any distance metric

could be used such as the Minkowski distance. We then take the K training observations closest

to x0, where K is an odd positive integer. The conditional probabilities for each class j as the

fraction of the set of K points, represented as N0 is given as

Pr[Y = j|X = x0] =
1

k

∑
i∈N0

I(yi = j)

where I(yi = j) is an indicator variable that equals 1 if yi = j, and 0 if yi ̸= j. Finally, KNN

classifies the test observation x0 to the class with the highest probability [11]. Although the KNN

technique is simple and does not produce a model, but they simply classify observations without

an existing response, by assigning them the class with the highest vote, amongst the observations
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that have a response. However, the technique is very powerful as it is being used in computer

vision applications and identifying patterns in genetic data for use in detecting specific proteins or

diseases. The KNN method represents each observation on a scatter plot, then it locates the

nearest neighbor using a distance metric. Any distance metric, such as the Minkowski and

Chebyshev distance, can be used. The distance metric commonly used is the Euclidean distance

given as

distance =
√
(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xn − yn)2,

where (x1, x2, ..., xn) and (y1, y2, ..., yn) represents the items to compare, each having n features.

An odd value K is chosen and used to vote amongst the nearest neighbors of the new observation.

The class with the highest vote is assigned to the observation. The choice of K plays a crucial

role in KNN, as it balances overfitting and underfitting a model with its training data. A common

approach to choosing K is to take the square root of the number of training sample sizes. If it is

an even number, either one is added or subtracted to make it odd. Before applying the KNN to a

dataset, it is important to scale the numeric features. One option of scaling is the min-max

normalization given as

Xnew =
X −min (X)

max (X)−min (X)
,

which transforms the data to have values between 0 and 1. Another option to scale the numeric

features is to use the z-score standardization given as

Xnew =
X − µ

σ
,

where µ is the mean and σ is the standard deviation of the feature X. It is important to scale the

numeric predictors of a dataset, as the distance formula depends on how features are measured.

Categorical data should be dummy encoded as integers. For example, a feature on two classes,

male and female, can be represented with 0 and 1. A feature with n-nominal classes can be

represented with (n− 1) binary indicator variables. For example, a feature on four classes, such as

fruits, vegetables, proteins, and carbohydrates, can be represented, regardless of their order, with

integers 1,2,3 and 4, respectively.
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3.5 Support Vector Machines (SVM)

The support vector machines is a classifier that uses a hyperplane, an interpolating polynomial

whose dimension is the number of predictors of a dataset, to classify observations. The

hyperplane must be carefully chosen to avoid overfitting and the support vector machine solves

this problem by using a maximal margin hyperplane. If X is a p-dimensional dataset, then

support vector machines forms a hyperplane, represented as

f(x) = β0 + β1x1 + β2x2 + · · ·+ βpxp = 0.

If an observation satisfies the hyperplane, then f(x) = 0 otherwise, either f(x) > 0 or f(x) < 0.

The maximal margin hyperplane defines the greatest minimum distance between observations and

the separating hyperplane. The closest observations to the separating hyperplane are known as

the support vectors. The width of the maximal margin hyperplane determines how much

misclassification is allowed to be obtained by the model. We locate the positions of the

misclassified observations represented as ϵi, and our goal is to find the best width for maximal

margin hyperplane such that ∑
i

ϵi ≤ C,

where C ≥ 0 is a tuning parameter for tuning the width of the hyperplane [13]. If C = 0, then no

misclassification is accommodated, and this can lead to overfitting of the data. Formulating the

hyperplane for the SVM classification requires an interpolating polynomial defined as the kernel of

the SVM method, which includes linear, polynomial, radial basis function (RBF), and many more.

3.6 Evaluation Metrics

The confusion matrix is a popular metric for assessing a classification model’s performance. It

is a cross-tabulation of the actual labels in the test data and the predicted labels from a model.

From this table, we can obtain true positives (TP), true negatives (TN), false positives (FN), and

false negatives (FN), which enables the calculation of the accuracy, precision, and recall of our

model.
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CHAPTER 4

RESULTS

The KDD Cup 99 cyberattack dataset was imported into a python data frame and contained

494,021 records. The labels column contains 23 connection types, and each record is categorized

into one of the four classes of attacks (DoS, U2R, R2L, Probe) or a normal category. We have

imported the data to only include the best 24 features produced during our feature selection

process, using the selectKBest function from the scikit-learn library as shown in table 4.1.

1. service 13. hot

2. loggedin 14. diffsrvrate

3. protocoltype 15. srvdiffhostrate

4. flag 16. samesrvrate

5. isguestlogin 17. dsthostsrvserrorrate

6. rootshell 18. serrorrate

7. count 19. srvserrorrate

8. dsthostcount 20. dsthostserrorrate

9. srvcount 21. rerrorrate

10. dsthostdiffsrvrate 22. dsthostsrvrerror rate

11. dsthostsamesrcportrate 23. srvrerrorrate

12. dsthostsrvdiffhostrate 24. dsthostrerrorrate

Table 4.1: The 24 selected features

We selected 24 features to include features that fall into the three main categories listed in [15]

while still maintaining the selections that best correlate with the target variable. The selectKBest

function was used to select the top 6 categorical columns, using the mutual information method

of selecting features, while the top 18 numeric columns were selected using the ANOVA F-value

method. The categorical features were one-hot encoded. The quantitative variables were
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standardized. The labels were also encoded using a label encoding scheme, as we need to

represent our labels as integers. Then the data was split into train and test data so that we could

train our model. The training and test data are 80% and 20% of the whole data, respectively.

A neural network consisting of an input dimension of 24, 5 layers of 30 neurons, and an output

of 5 dimensions, since we have five classes of output, is constructed. We choose five layers as we

want our neural network to learn the complex relationship in our dataset. We also want to choose

the least layer efficient for a model, as the training time increases with the number of layers in a

model. We also want to select at least 24 neurons since we have 24 features, and the number of

layers and neurons are tuning parameters in a neural network. After several tunings for our

model, a 5-layer and 30 neurons model performs efficiently for our dataset. Each layer performs

the linear operations of weight multiplication and bias addition. It then applies the SELU

activation function and uses the AlphaDropout technique with a dropout probability of 0.0002,

which is the best value for our model after several tuning. The dropout probability is also a

tuning parameter. Using a probability of 0.0002 means, there is a 0.0002 chance that an input

neuron will be set to −1.7581, which is the dropout value for self-normalizing neural networks,

instead of 0, like the traditional dropout technique. We use 500 epochs, a batch size of 10,000,

and a learning rate of 0.05. Since this is a multiclass classification problem, we use cross-entropy

loss to evaluate the loss in our model for each epoch and the Adam optimizer. The training data

is then fed into the neural network model.

The performance of the model is evaluated on the test data. The SNN model can be seen in

table 4.2 to have 99.97% accuracy in prediction with very high precision in detecting Normal

connections, DoS attacks, and Probe attacks. Thus, our model is excellent for an intrusion

detection system that intends to prevent such attacks. Our model is also great for R2L attacks

with a high precision of 94%, but as for U2R attacks, we have a 70% precision. This is not bad

for intrusion detection systems that do not primarily have U2R attacks.

Parameter tunings were made, such as selecting different combinations of 24 features that fall

into the three main categories as listed in [15]. Batch sizes of 10,000, 20,000, and 60,000 were

combined with the stochastic gradient descent and Adam optimizers. Table 4.3 shows some

results of the different parameter tuning applied to the network.
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Figure 4.1: SNN Confusion Matrix for the 20%
test data from the 10% KDD Cup 99 cyberattack
dataset

Class Precision Recall

SNN
(99.97%)

Normal 100% 100%
DoS 100% 100%
Probe 99% 98%
R2L 94% 93%
U2R 70% 78%

Table 4.2: SNN report on the 20% test
data from the 10% KDD Cup 99 cyberat-
tack dataset

Batch Size Learning Rate Hidden Neurons Dropout Probability Optimizer Accuracy

10,000 0.05 30 0.0002 Adam 99.97%

10,000 0.01 30 0 Adam 99.95%

20,000 0.01 32 0 SGD 99.48%

20,000 0.01 32 0.05 SGD 99.95%

60,000 0.01 30 0.001 SGD 99.94%

Table 4.3: Our neural network results with some of the different parameter tuning

The KNN algorithm is applied to the cyberattack dataset consisting of our selected features

and also with 80% training data and 20% test data. Consequently, a 99.32% accuracy is achieved

by choosing an odd k of 629, which is the square root of the number of training records in the

KDD Cup 99 dataset. This does not perform as well as our SNN. The KNN can be seen in table

4.4 to have less precision for the attack classes than the SNN model. The SVM was also

considered, and we obtained a 99.85% accuracy, which does not perform as well as the SNN. The

SVM can be seen in table 4.5 to have less precision for the attack classes compared to the SNN

model. It can be observed from table 4.4 that the KNN method has a precision of 0% for the U2R

class of attack. This implies that both the KNN method fails to identify U2R attacks.
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Figure 4.2: KNN Confusion Matrix for the 20%
test data from the 10% KDD Cup 99 cyberattack
dataset

Class Precision Recall

KNN
(99.32%)

Normal 98% 99%
DoS 100% 100%
Probe 95% 84%
R2L 71% 28%
U2R 0% 0%

Table 4.4: KNN report on the 20% test
data from the 10% KDD Cup 99 cyberat-
tack dataset

Figure 4.3: SVM Confusion Matrix for the 20%
test data from the 10% KDD Cup 99 cyberattack
dataset

Class Precision Recall

SVM
(99.85%)

Normal 99% 100%
DoS 100% 100%
Probe 100% 94%
R2L 95% 87%
U2R 83% 56%

Table 4.5: SVM report on the 20% test
data from the 10% KDD Cup 99 cyberat-
tack dataset
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CHAPTER 5

CONCLUSION

In this thesis, we propose using a class of neural networks, known as self-normalizing neural

networks (SNN), on the KDD Cup 99 cyberattack dataset to detect network intrusion. The

response variable consists of 22 attack types categorized into four categories (DoS, U2R, R2L, and

Probe) and one normal connection. The dataset consists of 41 predictors, and we chose 24

predictors for the modeling problem employing feature selection. The categorical predictors were

scored according to their relationship with the response variable. The top 6 predictors with a

strong relationship with the response variable were selected using the mutual information method.

The quantitative predictors were also scored according to their relationship with the response

variables. The top 18 predictors with a strong relationship with the response variable were

selected using the ANOVA F-value method.

The response variable and the categorical predictors are integer encoded, and the numeric

predictors are normalized before they are passed through the neural network. The self-normalized

neural network is made up of 5 layers with 30 neurons. Each layer has its weights to be lecun

normalized, and it is supplied with batches of inputs of size 10,000 with a learning rate of 0.05 and

a dropout probability of 0.0002. After running the neural network on 500 epochs with an adam

optimizer, we get a 99.97% accuracy, which happens to be the best out of the several parameter

tuning made to the network. Our predictive model using the SNN class of neural networks with a

99.97% accuracy appears to perform better than the KNN and SVM models, where the accuracy

is 99.32% and 99.85%, respectively. We also look at the precision of our models in classifying the

connections, and our SNN model appears to be a good predictor for Normal connections, DoS,

R2L, and Probe attacks with 100%, 100%, 94%, and 99% precision, respectively.

Our self-normalizing neural network also appears to have better accuracy than Liu and Zhang

[14], which uses a convolutional neural network with an accuracy of 98.02%. It is also performing

better than Adams et al. [1], which used an artificial neural network with the hyperbolic tangent

activation function, had an accuracy of 99.1%. The SNN also appears to perform better than
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Pooja Purohit [21], which used a Bi-directional LSTM and performs better than most traditional

machine learning methods, with an accuracy of 99.73%.

A possible future development is that this class of self-normalizing neural network can be

evaluated against other well-known cyberattack datasets such as the NSL-KDD, UNSW-NB15,

and ISCX 2012 [8]. These datasets have been generated to simulate more recent network traffic

scenarios, wide varieties of low-footprint intrusion, and the possible attack complexities that may

occur on a network in the present time, which are not present in the KDD Cup 99 dataset as it

was generated two decades ago. The KDD Cup 99 dataset also suffers from certain limitations,

such as redundancy of data, as a result of which bias may occur [20].
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LETTER FROM INSTITUTIONAL RESEARCH BOARD
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APPENDIX B

CODES

Feature Selection for Categorical Variables

# Categorical feature selection

from numpy import unique

from sklearn.feature_selection import SelectKBest

from sklearn.feature_selection import mutual_info_classif

from sklearn.preprocessing import OrdinalEncoder

from sklearn.preprocessing import LabelEncoder

import pandas

import numpy

number_of_features_to_select = 9

missing_values = ["n/a", "na", "--"]

df = pandas.read_csv("kdd_cyberattack.csv", na_values=missing_values, usecols=[’

protocoltype’, ’service’, ’flag’, ’land’, ’loggedin’, ’rootshell’, ’suattempted’, ’

ishostlogin’, ’isguestlogin’, ’labels’])

mapping = {

’back.’: ’DOS’, ’land.’: ’DOS’, ’neptune.’: ’DOS’, ’pod.’: ’DOS’, ’smurf.’: ’DOS’, ’

teardrop.’: ’DOS’,

’ftp_write.’: ’R2L’, ’guess_passwd.’: ’R2L’, ’imap.’: ’R2L’, ’multihop.’: ’R2L’, ’phf

.’: ’R2L’, ’spy.’: ’R2L’,

’warezclient.’: ’R2L’, ’warezmaster.’: ’R2L’,

’buffer_overflow.’: ’U2R’, ’loadmodule.’: ’U2R’, ’perl.’: ’U2R’, ’rootkit.’: ’U2R’,

’ipsweep.’: ’Probe’, ’nmap.’: ’Probe’, ’portsweep.’: ’Probe’, ’satan.’: ’Probe’,

’normal.’: ’Normal’,

}

df[’labels’] = df.labels.map(mapping)

print(df.columns)

columns = df.columns.values

array = df.values

X = array[:, 0:len(array[0]) - 1]

print(X[0:5])

Y = array[:, len(array[0]) - 1]

print(Y[0:5])

print(unique(Y))

oe = OrdinalEncoder()

oe.fit(X)

X = oe.transform(X)

le = LabelEncoder()

le.fit(Y)

Y = le.transform(Y)

fs = SelectKBest(score_func=mutual_info_classif, k=number_of_features_to_select)

fs.fit(X, Y)

scores = fs.scores_
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sortedScore = numpy.sort(scores)[::-1]

print(scores)

print(sortedScore)

bag = {}

for index, value in numpy.ndenumerate(scores):

if numpy.isnan(value):

continue

bag[value] = index

cols = []

loop = 0

feature_count = 0

print(len(sortedScore))

while feature_count < number_of_features_to_select and loop < len(sortedScore):

if numpy.isnan(sortedScore[loop]):

print("loop is ", loop, "and sorted score is ", sortedScore[loop])

loop += 1

else:

print("loop is ", loop, "and sorted score is ", sortedScore[loop])

cols.append(columns[bag[sortedScore[loop]]])

feature_count += 1

loop += 1

print(cols)

Feature Selection for Numeric Variables

# Numeric feature selection using

from sklearn.feature_selection import SelectKBest

from sklearn.feature_selection import f_classif

import pandas

import numpy

number_of_features_to_select = 32

missing_values = ["n/a", "na", "--"]

df = pandas.read_csv("kdd_cyberattack.csv", na_values=missing_values, usecols=[’duration

’, ’srcbytes’, ’dstbytes’, ’wrongfragment’,

’urgent’, ’hot’, ’numfailedlogins’,

’numcompromised’, ’numroot’,

’numfilecreations’, ’numshells’, ’numaccessfiles’, ’numoutboundcmds’,

’count’, ’srvcount’, ’serrorrate’,

’srvserrorrate’, ’rerrorrate’, ’srvrerrorrate’, ’samesrvrate’,

’diffsrvrate’, ’srvdiffhostrate’, ’dsthostcount’, ’dsthostsrvcount’,

’dsthostsamesrvrate’, ’dsthostdiffsrvrate’, ’dsthostsamesrcportrate’,

’dsthostsrvdiffhostrate’, ’dsthostserrorrate’, ’dsthostsrvserrorrate’,

’dsthostrerrorrate’, ’dsthostsrvrerror_rate’, ’labels’])

mapping = {

’back.’: ’DOS’, ’land.’: ’DOS’, ’neptune.’: ’DOS’, ’pod.’: ’DOS’, ’smurf.’:’DOS’, ’
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teardrop.’: ’DOS’,

’ftp_write.’: ’R2L’, ’guess_passwd.’: ’R2L’, ’imap.’: ’R2L’, ’multihop.’: ’R2L’, ’phf

.’: ’R2L’, ’spy.’: ’R2L’, ’warezclient.’: ’R2L’, ’warezmaster.’: ’R2L’,

’buffer_overflow.’: ’U2R’, ’loadmodule.’: ’U2R’, ’perl.’: ’U2R’, ’rootkit.’: ’U2R’,

’ipsweep.’: ’Probe’, ’nmap.’: ’Probe’, ’portsweep.’: ’Probe’, ’satan.’: ’Probe’,

’normal.’: ’Normal’,

}

df[’labels’] = df.labels.map(mapping)

print(df.columns)

columns = df.columns.values

array = df.values

X = array[:,0:len(array[0])-1]

Y = array[:,len(array[0])-1]

test = SelectKBest(score_func=f_classif, k=number_of_features_to_select)

fit = test.fit(X, Y)

scores = fit.scores_

sortedScore = numpy.sort(scores)[::-1]

print(scores)

bag = {}

for index, value in numpy.ndenumerate(scores):

if numpy.isnan(value):

continue

bag[value] = index

cols = []

loop=0; feature_count=0

print(len(sortedScore))

while feature_count < number_of_features_to_select and loop<len(sortedScore):

if numpy.isnan(sortedScore[loop]):

print("loop is ", loop, "and sorted score is ", sortedScore[loop])

loop+=1

else:

print("loop is ", loop, "and sorted score is ", sortedScore[loop])

cols.append(columns[bag[sortedScore[loop]]])

feature_count+=1

loop+=1

print(cols)

Self Normalizing Neural Network (SNN)

import math

from collections import OrderedDict

import matplotlib.pyplot as plt

import numpy as np

import time

import pandas as pd

import seaborn as sns

import torch as T
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from numpy import unique

from sklearn.metrics import confusion_matrix, classification_report,

plot_confusion_matrix, ConfusionMatrixDisplay

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import LabelEncoder, OrdinalEncoder, StandardScaler

device = T.device("cpu") # apply to Tensor or Module

selected_categorical_non_binary_columns = [’service’, ’protocoltype’, ’flag’]

selected_categorical_binary_columns = [’loggedin’, ’isguestlogin’, ’rootshell’]

selected_numeric_columns = [’count’, ’dsthostcount’, ’srvcount’, ’dsthostdiffsrvrate’, ’

dsthostsamesrcportrate’,

’dsthostsrvdiffhostrate’, ’hot’, ’diffsrvrate’, ’srvdiffhostrate

’, ’samesrvrate’,

’dsthostsrvserrorrate’, ’serrorrate’, ’srvserrorrate’, ’

dsthostserrorrate’, ’rerrorrate’,

’dsthostsrvrerror_rate’, ’srvrerrorrate’, ’dsthostrerrorrate’]

target = [’labels’]

columns_to_use = selected_numeric_columns + selected_categorical_binary_columns +

selected_categorical_non_binary_columns + target

print("columns to use is ", columns_to_use)

class Dataset(T.utils.data.Dataset):

def __init__(self, src_file, n_rows=None):

all_xy = pd.read_csv(src_file, usecols=columns_to_use)

mapping = {

’back.’: ’DOS’, ’land.’: ’DOS’, ’neptune.’: ’DOS’, ’pod.’: ’DOS’, ’smurf.’: ’

DOS’, ’teardrop.’: ’DOS’,

’ftp_write.’: ’R2L’, ’guess_passwd.’: ’R2L’, ’imap.’: ’R2L’, ’multihop.’: ’R2L

’, ’phf.’: ’R2L’,

’spy.’: ’R2L’,

’warezclient.’: ’R2L’, ’warezmaster.’: ’R2L’,

’buffer_overflow.’: ’U2R’, ’loadmodule.’: ’U2R’, ’perl.’: ’U2R’, ’rootkit.’: ’

U2R’,

’ipsweep.’: ’Probe’, ’nmap.’: ’Probe’, ’portsweep.’: ’Probe’, ’satan.’: ’Probe

’,

’normal.’: ’Normal’,

}

all_xy[’labels’] = all_xy.labels.map(mapping)

print("total number of columns is ", len(all_xy.columns))

n = len(all_xy)

print("total number of record is ", n)

tmp_x = all_xy.iloc[0:n, 0:len(all_xy.columns) - 1]

tmp_y = all_xy.iloc[0:n, len(all_xy.columns) - 1]

oe = OrdinalEncoder()

tmp_x[selected_categorical_non_binary_columns] = oe.fit_transform(

tmp_x[selected_categorical_non_binary_columns])
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scaler = StandardScaler()

tmp_x[selected_numeric_columns] = scaler.fit_transform(tmp_x[

selected_numeric_columns])

global le

le = LabelEncoder()

tmp_y = le.fit_transform(tmp_y[:, ])

self.X_train, self.X_test, self.y_train, self.y_test = train_test_split(tmp_x,

tmp_y, test_size=0.20,

random_state

=12345)

self.x_data = T.tensor(self.X_train.values, dtype=T.float32).to(device)

self.y_data = T.tensor(self.y_train, dtype=T.int64).to(device)

def __len__(self):

return len(self.x_data)

def __getitem__(self, idx):

preds = self.x_data[idx]

trgts = self.y_data[idx]

sample = {

’predictors’: preds,

’targets’: trgts

}

return sample

# -----------------------------------------------------------

class Net(T.nn.Module):

def __init__(self, in_dim, n_layers=5, hidden_dim=32, dropout_probability=0.8):

super().__init__()

n_layers = n_layers

hidden_dim = hidden_dim

out_dim = 5

dropout_prob = dropout_probability

print("in neural network")

print("input dim is ", in_dim)

print("n layers is ", n_layers)

print("hidden dim is ", hidden_dim)

print("output dim is ", out_dim)

print("dropout prob is ", dropout_prob)

layers = OrderedDict()

for i in range(n_layers - 2):

if i == 0:

layers[f"fc{i}"] = T.nn.Linear(in_dim, hidden_dim, bias=False)

else:
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layers[f"fc{i}"] = T.nn.Linear(hidden_dim, hidden_dim, bias=False)

layers[f"selu_{i}"] = T.nn.SELU()

layers[f"dropout_{i}"] = T.nn.AlphaDropout(p=dropout_prob)

layers[f"fc{i + 1}"] = T.nn.Linear(hidden_dim, 5, bias=False)

layers[f"selu_{i + 1}"] = T.nn.SELU()

layers[f"dropout_{i + 1}"] = T.nn.AlphaDropout(p=dropout_prob)

layers[f"fc_{i + 2}"] = T.nn.Linear(out_dim, out_dim, bias=True)

self.network = T.nn.Sequential(layers)

self.reset_parameters()

def reset_parameters(self):

for layer in self.network:

if not isinstance(layer, T.nn.Linear):

continue

T.nn.init.normal_(layer.weight, std=1 / math.sqrt(layer.out_features))

if layer.bias is not None:

fan_in, _ = T.nn.init._calculate_fan_in_and_fan_out(layer.weight)

bound = 1 / math.sqrt(fan_in)

T.nn.init.uniform_(layer.bias, -bound, bound)

def forward(self, x):

return self.network(x)

# -----------------------------------------------------------

def accuracy(model, ds):

# assumes model.eval()

# granular but slow approach

n_correct = 0

n_wrong = 0

for i in range(len(ds)):

X = ds[i][’predictors’]

Y = ds[i][’targets’] # [0] [1] or [2]

with T.no_grad():

oupt = model(X) # logits form

big_idx = T.argmax(oupt) # [0] [1] or [2]

if big_idx == Y:

n_correct += 1

else:

n_wrong += 1

acc = (n_correct * 1.0) / (n_correct + n_wrong)

return acc

# -----------------------------------------------------------

def accuracy_quick(model, dataset):
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# assumes model.eval()

# en masse but quick

n = len(dataset)

X = dataset[0:n][’predictors’]

Y = T.flatten(dataset[0:n][’targets’]) # 1-D

with T.no_grad():

oupt = model(X)

# (_, arg_maxs) = T.max(oupt, dim=1) # old style

arg_maxs = T.argmax(oupt, dim=1) # collapse cols

num_correct = T.sum(Y == arg_maxs)

acc = (num_correct * 1.0 / len(dataset))

return acc.item()

def accuracy2(y_true, y_pred):

correct_predictions = 0

# iterate over each label and check

for true, predicted in zip(y_true, y_pred):

if true == predicted:

correct_predictions += 1

# compute the accuracy

accuracy = correct_predictions / len(y_true)

return accuracy

# -----------------------------------------------------------

def getTrainDataSet():

train_file = "../../../data/kdd_cyberattack.csv"

train_ds = Dataset(train_file)

return train_ds, le

def main(batch_size=20000, max_epoch=500, lr_rate=0.01, n_layers=5, hidden_dim=32,

dropout_probability=0.8, optim=’sgd’):

# 0. get started

np.random.seed(1)

T.manual_seed(1)

# 1. create DataLoader objects
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print("Getting cyberattack dataset ")

train_ds, le = getTrainDataSet()

bat_size = batch_size

train_ldr = T.utils.data.DataLoader(train_ds, batch_size=bat_size, shuffle=True)

# 2. create network

net = Net(train_ds.X_train.shape[1], n_layers=n_layers, hidden_dim=hidden_dim,

dropout_probability=dropout_probability).to(device)

# 3. train model

max_epochs = max_epoch

ep_log_interval = 100

lrn_rate = lr_rate

# -----------------------------------------------------------

loss_func = T.nn.CrossEntropyLoss() # apply log-softmax()

if optim == ’adam’:

optimizer = T.optim.Adamax(net.parameters(), lr=lrn_rate)

else:

optimizer = T.optim.SGD(net.parameters(), lr=lrn_rate)

print("\nbat_size = %3d " % bat_size)

print("loss = " + str(loss_func))

print("optimizer = {0}".format(’adam’ if optim==’adam’ else ’SGD’))

print("max_epochs = %3d " % max_epochs)

print("lrn_rate = %0.3f " % lrn_rate)

print("\nStarting train with saved checkpoints")

net.train()

for epoch in range(0, max_epochs):

T.manual_seed(1 + epoch) # recovery reproducibility

epoch_loss = 0 # for one full epoch

for (batch_idx, batch) in enumerate(train_ldr):

X = batch[’predictors’] # inputs

Y = batch[’targets’] # shape [10,3] (!)

optimizer.zero_grad()

oupt = net(X) # shape [10] (!)

loss_val = loss_func(oupt, Y) # avg loss in batch

epoch_loss += loss_val.item() # a sum of averages

loss_val.backward()

optimizer.step()

if epoch % ep_log_interval == 0:

print("epoch = %4d loss = %0.4f" % \

(epoch, epoch_loss))
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print("Training complete ")

# 4. evaluate model accuracy

print("\nComputing model accuracy")

net.eval()

acc_train = accuracy(net, train_ds) # item-by-item

print("Accuracy on training data = %0.4f" % acc_train)

acc_train = accuracy_quick(net, train_ds) # item-by-item

print("Quick Accuracy on training data = %0.4f" % acc_train)

inpt = T.tensor(train_ds.X_test.values, dtype=T.float32).to(device)

with T.no_grad():

logits = net(inpt) # values do not sum to 1.0

probs = T.softmax(logits, dim=1) # tensor

_, y_pred_tags = T.max(probs, dim=1)

train_ds.y_test = le.inverse_transform(train_ds.y_test)

y_pred_tags = le.inverse_transform(y_pred_tags)

report = classification_report(train_ds.y_test, y_pred_tags)

conf_matrix = confusion_matrix(train_ds.y_test, y_pred_tags)

print(report)

print(conf_matrix)

ConfusionMatrixDisplay.from_predictions(train_ds.y_test, y_pred_tags)

plt.savefig(’foo_{0}_{1}_{2}_{3}_{4}_{5}.png’.format(batch_size, max_epoch, lr_rate,

n_layers, hidden_dim, dropout_probability), bbox_inches=’tight’)

if __name__ == "__main__":

main(batch_size=10000, max_epoch=800, lr_rate=0.01, n_layers=5, hidden_dim=30,

dropout_probability=0.0, optim=’adam’)

k-Nearest Neighbor(kNN)

import math

from sklearn.neighbors import KNeighborsClassifier

from results.selfnormresults.result2.result2 import getTrainDataSet

from results.selfnormresults.result1.result1 import accuracy2

from matplotlib import pyplot as plt

from numpy import unique

from sklearn.metrics import classification_report, confusion_matrix,

ConfusionMatrixDisplay

39



train_ds, le = getTrainDataSet()

k = int(math.sqrt(len(train_ds.X_train)))

k = k if k % 2 != 0 else k + 1

classifier = KNeighborsClassifier(n_neighbors=k, metric=’minkowski’, p=2)

classifier.fit(train_ds.X_train, train_ds.y_train)

y_pred = classifier.predict(train_ds.X_test)

train_ds.y_test = le.inverse_transform(train_ds.y_test)

y_pred = le.inverse_transform(y_pred)

report = classification_report(train_ds.y_test, y_pred)

conf_matrix = confusion_matrix(train_ds.y_test, y_pred)

print(report)

print(conf_matrix)

acc_train = accuracy2(train_ds.y_test, y_pred) # item-by-item

print("Accuracy on training data = %0.4f" % acc_train)

ConfusionMatrixDisplay.from_predictions(train_ds.y_test, y_pred)

plt.savefig(’foo_{0}.png’.format(k), bbox_inches=’tight’)

Support Vector Machine (SVM)

from matplotlib import pyplot as plt

from numpy import unique

from sklearn import svm

from sklearn.metrics import classification_report, confusion_matrix,

ConfusionMatrixDisplay

from results.selfnormresults.result1.result1 import getTrainDataSet

from results.selfnormresults.result1.result1 import accuracy2

def runResult(classifier, train_ds, le, C, kernel, param=""):

y_pred = classifier.predict(train_ds.X_test)

train_ds.y_test = le.inverse_transform(train_ds.y_test)

y_pred = le.inverse_transform(y_pred)

report = classification_report(train_ds.y_test, y_pred)

conf_matrix = confusion_matrix(train_ds.y_test, y_pred)

print(report)

print(conf_matrix)

acc_train = accuracy2(train_ds.y_test, y_pred) # item-by-item

print("Accuracy on training data = %0.4f" % acc_train)
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ConfusionMatrixDisplay.from_predictions(train_ds.y_test, y_pred)

plt.savefig(’foo_{0}_{1}_{2}.png’.format(C, kernel, param), bbox_inches=’tight’)

train_ds, le = getTrainDataSet()

C = 0.1

kernel=’linear’

param = ’’

classifier = svm.SVC(C=C, kernel=kernel).fit(train_ds.X_train, train_ds.y_train)

runResult(classifier, train_ds, le, C, kernel, param)
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