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ABSTRACT

Surface coal mining activity has effects on watershed and lake morphology within the

Appalachian Mountains that continue to be problematic. A watershed’s natural dynamic

balance has been subject to the influence of various natural and anthropogenic parameters such

as mining sediment transport, wind, wave effects and currents. Many techniques have been

developed to improve image processing in geobiophysical modeling, which can assist

scientists, government officials, and industry personal with decisions affecting environmental

concerns. One of the more advanced techniques involves 3D visualization and geobiophysical

modeling. This process was used in combining remotely sensed digital aerial imagery with

Digital Elevation Models (DEM). This assisted the analyst by creating a much more accurate

geobiophysical model of the earth’s surface. This was accomplished as a result of simulating

the moderate to high topographic relief found within the mountainous terrain environments of

the Appalachian Mountain’s coalfields. Feature extraction was improved as well as visual

interpretation.

The research objective was to develop and evaluate new techniques for combining 3D

Models with feature extraction processes and thereby creating more accurate thematic

information classification maps. Improved techniques result from radiometric corrections,

increased resolution, and data enhancement from the DEM’s. The method used incorporated

the advantages of several software packages (ER Mapper, Surfer, and Arc View). These

packages provide different image processing and geographic information system capability.

Clusters were identified in ER Mapper with classification techniques for feature extraction.

This was the process used to identify clusters of similar data in the frequency domain of an 
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image that correlate to different vegetation, urban and/or rural areas. The research results show

a substantial improvement in feature extraction and 3D-geobiophysical modeling.
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Chapter One

INTRODUCTION

1.1 OVERVIEW

The mountains have been largely ignored within the remote sensing community

due to the complexity of the interaction contained by mountainous terrain’s geology,

hydrology, climate and biological processes. Bloemer et al, (1996) defined the problem

as:

“Remote sensing for cartography in mountainous regions has been largely

ignored because process and change often occur on a much smaller spatial

scale representing higher spatial frequencies. Higher spatial frequency

variability require higher resolution spatial analysis over similar spectral

bands to extract comparable features found on flood and coastal plains.”

Remotely sensed data has been used in studies to evaluate surface mining in the

eastern United States. This is in response to the Federal Surface Mine Control and

Reclamation Act (Public Law 95-87 enacted in 1977). It advanced the prevention of

environmental degradation and corrected problems caused in the past by previous mining

(Irons et. al, 1980). Problems that led to this action were insufficient mine reclamation,

that left unsightly landscape, ruined productive land, increased susceptibility to flooding

and created water quality problems. Other environmental troubles with surface mining

included erosion, gullying, acid-mine drainage and increased sediment load as a result of

abandoned and un-reclaimed mined lands (Parks et. al. 1987).

In reaction to this law, government agencies and mine operators were required to

monitor reclamation practices which created a need for inventorying mined acreage.



These requirements caused a problem with regulatory agencies of providing cost

effective monitoring of surface mines, so the investigation into the utility of remote

sensing for surface mine monitoring got underway.

Severe land disruption and degradation was one of the most obvious impacts of

surface mining. Mapping the aerial extent and location was important in formulating

strategies for reclamation once mining has ceased. A study by Chase and Pettyjohn

(1973) was probably the earliest to report the utility of ERTS-1 MSS data in mapping

land disruptions due to strip mining in east-central Ohio. The study concluded that strip

mines could be easily identified by satellite imagery without the aid of aerial photos or

maps. Standing water could also be delineated in either spectral band 6 or 7. Signifying

the importance of land disruption, the study stressed monitoring of lands was perhaps

most important from an ecological viewpoint. It was, however, not possible to identify

reclamation work done near the site as it was barely detectable on the ERTS-1 imagery.

Similar results in delineation of surface mine workings using ERTS-1 imagery were also

reported by Wier et al. (1973). However, another similar parallel study by Alexander et

al. (1973) to monitor and map strip mine activity near Pennsylvania along the west

branch of the Susquehanna River succeeded not only in isolating areas affected by

mining, but also sub-classifications of the strip mined areas such as trenched areas,

backfill, acid-mine drainage, new stripping and partially vegetated zones. Areas affected

by acid mine drainage could also be located on the ERTS-1 imagery by identifying areas

of dead or dying vegetation. The use of unsupervised cluster analysis on the digital data

has provided excellent results when applied with a discriminate function such as a

principal component or canonical analysis (Brumfield et. al. 1983). Carr et. al. (1983), 
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however, observed that unsupervised algorithms have maximum utility in classifying

images where limited field information was available for accurate location of training

sites or where a large number of spectral classes were present. Where numerous scenes

were to be classified with few terrain classes of interest and where field information was

available to assist training, a supervised classification was most suitable in mined-lands

applications (Carr et al, 1983).

Areas under active mining or areas that have been abandoned can present special

problems in digital classification because a considerable amount of confusion was

generated due to the similarity in spectral signatures of mined surfaces and other cover

types such as bare agricultural fields, barren or rocky surfaces, etc. A number of workers

have found the use of conventional classification algorithms unsuitable for producing

acceptable classifications for land disrupted by mining. A number of alternative schemes

for identifying land impacted by mining operations were developed. Anderson and

Schuber (1976) used band ratioing (MSS band 5 and MSS band 7) successfully to

delineate, map and inventory the effects of strip mining in the upper Potomac and

Georges Creek basins of Maryland and West Virginia. The study was further extended

by Anderson et al. (1977) to inventory effects of strip mining in a 1540-km2 area in

western Maryland. Anderson et al. (1977) used two methods to produce classification

maps. The first of these methods was a supervised parallelepiped algorithm applied to

the 4-band MSS data after selecting training areas. Variation in spectral radiance among

the 4-band signatures for various strip-mining surfaces revealed such classification

operationally ineffective in monitoring studies. There were considerable differences in

signature within a mined area and, therefore, the training statistics could not be 



extrapolated to other parts of the study area. It was observed, however, that band ratioing

prior to classification considerably minimized the effects of environmental and sensor

conditions on feature signature extraction. Band ratioing, by minimizing these

environmental effects, provided extendible signatures for features that could be used in

other parts of the study area. In all, twelve ratios (combinations of the 4 MSS bands i.e.

green, red, and near infrared) were individually compared with results of aerial

photographs to derive a standard error in classification. The ratio of band 5/band 6

(red/near infrared) was found to have the least error and was subsequently used. The

average accuracy in preparing a surface mine inventory was determined to be greater than

92 percent after comparing with aerial photographs of the area. The utility of band

ratioing (MSS-5/MSS-6) in measuring total area disturbed by mining was further

authenticated by Irons et al. (1980). They attributed the utility of MSS-5/MSS-6 ratio to

the distinct contrast between partially re-vegetated surface mine spoil and dense

vegetation in the surrounding areas.

Solomon et al. (1979) developed a tree classifier to discriminate surface mine

activity using Landsat-MSS digital data. In previous studies it had been apparent that

signatures obtained from the four bands of Landsat-MSS data had large variations for

different types of strip mining surfaces. In the development of the tree classifier, ratioing

different combinations of the original four bands generated five channels of data, in

addition to the four MSS bands. Signatures of various cover types were trained using

cluster analysis on a small subset of the data. The best four channels, i.e., the channels

that maximize repeatability, were determined and the tree classifier developed using this

information. A number of land cover classes and sub-classes which include forest, 
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agriculture, scrubland, urban, water and mining activity (rough spoil, smoothed, and

partially vegetated) could be discriminated over the study area using the classifier. The

classification output also aided in accurate estimation of areas disturbed by mining. The

classifier was, however, unable to determine cover conditions over narrow contour mines.

More recent studies in this area have emphasized a variety of techniques. In 1980

Irons et al.and Spisz and Dooley compared satellite and airborne multispectral scanner

data, along with color infrared (CIR) aerial photography, for surface mine assessment.

Brumfield et al. (1983) used canonical analysis to compare transformed datasets with

unsupervised clustering for surface mine mapping in Logan Co., West Virginia, and

found improvements of up to 15% in overall classification accuracy

Parks et al. (1987) also compared the utility of MSS, TM and simulated SPOT

data for studying surface mining activity over central Pennsylvania. The classification

scheme used for comparison was modified from Anderson (1971) to specifically address

land covers associated with mining. Findings of this study suggested that MSS data was

useful for large area monitoring but unsuitable for identification of level 3 categories of

the classification scheme. Collins et al. (1991) emphasized simulated spot and TM data

accurately identified level 3 categories that were comparable to each other with TM

having an advantage of higher spectral resolution over SPOT. Harding (1988), while

studying sand and gravel pits, has observed no significant difference in classification

accuracy between TM and SPOT data.

1.11 MINE REVEGETATION AND RECLAMATION MONITORING

Abandoned mine sites represent stressed and nutritionally deficient environments

for plant growth. Mularz (1979) highlighted some of the special problems encountered in 
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mine reclamation. Usually a considerable amount of money and effort was required in

reclaiming abandoned mine lands. Successful monitoring and reclamation programs,

therefore, relied heavily on periodic monitoring of planted areas such that the plant

growth and vigor could be regularly estimated and corrective action taken if required.

Remote sensing techniques have been used extensively for monitoring reclaimed mine

sites (Bauer 1973, Gilbertson 1973, Kirby 1974, Jaques 1977, Anderson and Tanner

1978, Bloemer et al 1981, Brumbaugh 1979, Johannsen et al. 1979, and Green and

Buschur 1980).

In one of the earlier studies, Carrel et al. (1978) used both manual and computer

based techniques to interpret aerial photographs for monitoring reclamation activity at a

strip mine in Missouri. The manual method involved first preparing a transparent overlay

clearly demarcating the total area covered by the aerial photographs. In similar fashion,

then, transparent overlays of total vegetation, woody vegetation and water bodies in the

strip mine area were also prepared interpreting low altitude aerial photographs. Areas of

bare soil or sparse vegetation were then determined by subtracting the above overlays

from the outline overlay representing total area covered by the mine. The second method

involved applying computer classification algorithms to a digitized version of the same

aerial photographs. The accuracy of the computer classification was determined by

registering the classified image print out to the aerial photograph and putting an

identically numbered equal sized grids on both of them for comparison. Classification

accuracy was observed to generally be high for bare soil and water categories but

relatively poor for the vegetation category. Misclassifications occurred mainly because 



the dark shale material was confused with surrounding vegetation and water. Both

vegetation and water appeared darker than bare soil on positive prints.

Mroczynski and Weismiller (1982) have used color aerial infrared photography

for evaluating reclaimed and non-reclaimed land in an area covering 18,783 km2 across

20 counties in southwestern Indiana. Manual photointerpretation techniques were used to

interpret 1:30,000 scale color infrared photographs. These photos were enlargements of

1: 120,000 high altitude positive transparencies acquired by NASA in 1971.

Interpretation procedures were designed to treat each county as an independent unit and

township areas within counties were examined for possible derelict sites. Maps

identifying derelict mined lands across the 20 counties were prepared from these

interpretations for use by the Indiana Division of Reclamation for their inventorying and

planning procedures. Over 4700 hectares of abandoned mined lands and 800 hectares of

possible affected water area were identified through this study (Mroczynski and

Weismiller 1982). Of the total area identified as derelict, 62 percent was barren spoil, 15

percent was courser refuse or gob piles, 14 percent probable affected water bodies and 9

percent was covered by slurry ponds. Subsequent field verifications revealed that 64

percent of the possible derelict sites were under different landcover categories as a

number of the sites had been reclaimed since the acquisition of the aerial photographs in

1971. Of the existing derelict land, estimation for accuracy revealed a very high

percentage of individual and overall (98 percent) accuracy estimations (Mroczynski and

Weismiller, 1982).

In a more recent study by Halverson (1988), high altitude aerial photography has

been used to monitor and assess success of reforestation on four mines in the state of
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Kentucky. Color infrared transparencies at a nominal scale of 1:58 000 were used for this

study. Out of these four mine sites, one mine site resisted repeated reforestation attempts.

Two of the other mine sites were reforested except for some areas and one remaining

mine site was bare and yet to be reforested. Manual interpretation of the transparencies

revealed that very dark color areas appeared on the three reclaimed sites were the areas

where reforestation problem had been encountered in the past. Similar dark areas

appearing on the site where reforestation was to start were identified as potentially

problematic areas. Although Halverson (1988), did not isolate the cause for the dark

color on the aerial photographs, the author did suggest that changes in soil moisture

(possible increase on non-vegetated site), organic matter in soil (possible increase due to

coal wasted) and iron oxide (possible increased due to the presence of iron pyrites) could

be responsible for the very dark color on each mine site that was associated with

reclamation problems.

Satellite data has been used for monitoring reclamation work on abandoned mine

sites. In one of the studies by Legg, 1986, Landsat Thematic Mapper data was used to

assess vegetation vigor at reclamation sites at the Butterwell opencast coal mine and the

Druridge Bay area of the United Kingdom. Vegetation vigor studies were carried out on

the reclaimed lands using band ratioing. A composite image depicting the sum of the

ratios of near infrared for eight co-registered scenes used in the study was produced.

Lighter tones on the composite image indicated higher ratio values and thus unstressed

vegetation. Comparisons with similar vegetation on unmined lands revealed that vigor

was, on average, lower on reclaimed lands as compared to unmined control of the

surrounding areas. This difference in plant vigor was most observable during the 



growing season in spring when the grass on reclaimed land appeared to lag behind the

grass on the unmined land in terms of growth.

1.12 WATER POLLUTION ASSESSMENT

Surface and underground mining have caused water pollution resulting in serious

environmental problems. Among other pollutants, acid mine drainage, heavy metal

contamination and high concentrations of suspended and dissolved solids have caused

specific concern. Acid mine drainage was produced when water came into contact with

pyritic material (iron sulfides) and oxygen in coal mines. Weathering of this pyritic

material eventually produced sulfuric acid, which not only lowered water pH, but also

increased solubility of metal ions such as iron, aluminum, manganese and zinc (Kenny

and McCauley 1982). Water contaminated by acid mine drainage was usually

characterized by a reddish-yellow color due to ferric oxide precipitates and was

extremely detrimental to most aquatic flora and fauna.

Digital satellite data has been used in the past to monitor pollution levels of

selected parameters in water bodies (Lathrop and Lillesand 1986, 1988, Lillesand et. al,

1987). Alfoldi (1982) gives a review of some of the issues involved in satellite remote

sensing of selected water quality parameters. Similar references to studies conducted for

the assessment of water quality over surface coal mine sites using remotely sensed data

are few. Repic et al. (1991) pointed out that the relatively poor spatial resolution of

satellite data was one of the major constraints. Most of the water bodies created by strip

mines are small or narrow and the poor spatial resolution of satellite data was not suitable

for water quality analysis.
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Kenny and McCauley (1982) used aerial photography to study stream quality

degradation due to mining and to locate point sources responsible for pollution of

streams. This study confined itself to the Cherry Creek basin area in Cherokee County,

Kansas, which had a number of abandoned surface mines. Color and color infrared

photography at 1:10 000 scale were used in this study. Twenty-six sampling stations

were established on the ground covering the stream network in this study area and water

samples collected from these sites were analyzed for parameters like stream flow, pH,

specific conductivity, dissolved iron, dissolved manganese, dissolved aluminum,

dissolved zinc, dissolved sulphate and suspended sediment. Acid mine drainage detected

from the color photographs as red-yellow precipitate of ferric oxide on streambed, waste

piles and drainage. The study found that the two major drainage areas in the study site

had different levels and types of stream water degradation. These differences were

mainly attributed to dissimilarities in surface contours, status of reclaimed lands, nature

of coal mines and the age of the mines. Aerial photographs revealed that one of these

drainage areas, the eastern part of the basin under study, was well vegetated. This

vegetation prevented soil erosion and, as a result, water in strip pits appeared clear on the

imagery. Surface water quality measurements revealed the water in these pits to be very

acidic. When these sites were inspected, it was found that water from a number of these

strip pits drained into the ground through shafts and sinkholes and that the surface was

hydraulically connected to the deep mines. Highly contaminated acidic water then found

its way to the surface through openings such as fractures, drillholes, bedding plains, air

shafts etc., creating serious pollution problems. These seepages were visible on the aerial

photographs. The other drainage area of the western part of the basin was devoid of



seeps and sinkholes. No direct connection between the surface and deep underground

mines was observed. Due to application of lime on spoil banks in this area and due to

lack of substantial vegetation, water in this area was observed to be alkaline with higher

suspended solid loads.

More recently, Repic et al. (1991) have used narrow band multi-spectral video

imagery to study acidity and metal contamination (iron) at two water bodes at a surface

coal mine in Clay County, Indiana. Video imagery was acquired in the yellow-green

(0.543 to 0.552 micro meter), red (0.644 to 0.656 micro meter) and near-infrared ranges

(0.815 to 0.827 micro meter) from an altitude of 2400 m using narrow band filters on

cameras sensitive in the visible and near-infrared regions. Water samples were collected

from 14 locations over the water bodies and analyzed for pH and iron content. These

sample locations were then identified on the video imagery and at each location; the

mean digital value of a 3 by 3 window of pixels centered at the identified sample location

was calculated to avoid mislocation errors. This was done for all 14 water samples and

each band. Digital values, at each sample location, were correlated with the pH and iron

content at that location. Correlation results showed the yellow-green band to be

positively correlated (significant at 0.05 level) with pH values, possibly because

increased iron in solution was caused by increased acidity. Repic et al. (1991) suggested

that these high correlations of the yellow-green band with pH and iron were due to the

fact that the increased iron content in the water gave it a yellow-orange color to which the

yellow-green band was more sensitive, as compared to the red or the near-infrared bands.

The study concluded that the yellow-green band of the video imagery was most sensitive 



to pH and the iron ion content of surface mine water. This band can be used to monitor

iron contamination and acidity in coal strip mine drainage area.

1.13 REMOTE SENSING AND GEOGRAPHICAL INFORMATION SYSTEMS

Barr (1981) has suggested that combining geological, geographical and Landsat

derived information in the form of a natural resource database holds great potential for

monitoring mining areas. This concept, known as a Geographical Information System

(GIS), has become an indispensable tool for environmental monitoring and planning.

Since monitoring involved periodic assessment of cover conditions in an area and remote

sensing was a practical and often used way to monitor, the input of classified images into

a GIS, which also held other thematic map layers of the area, greatly enhanced its

functionality and use. A number of issues, however, needed to be addressed in order to

couple remotely sensed data with a GIS (Jensen, 1986). In the context of environmental

monitoring of mining areas, there was very little literature on GIS applications and its

interface with remotely sensed data. A recent study however illustrated the tremendous

potential of interfacing remotely-sensed data and GIS for environmental monitoring.

Oberg et al. (1982), have monitored environmental impacts of oil shale mining in

northeastern Estonia using Landsat-MSS of 1986 and SPOT XS, band 2 data and have

used the results of this analysis in a geographical information system. The resultant image

revealed that the opencast mine area had expanded by approximately 13.01 km between

1986 and 1991. A supervised classification using the maximum likelihood classifier was

also performed on the data and the classified image was vectorized and transferred to the

ARC/ENFO system. Thematic attributed such as planned areas for future mining 
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activities were available as digitized ARC/INFO coverage from the Estonia Nature

Management Scientific Information Center (ENMSIC) GIS databases (Oberg et al. 1982).

A polygon overlay of the two coverages highlighted aerial extents of different

landuse/cover classes, such as forests, wetlands, and peat area, for example, would be

directly impacted by future mining operations in the region. The utilization of remotely

sensed data in this manner not only provided geographically relevant information for

various environmental planning programs but also ensured that the interpreted data is

available for analysis at a later point in time.

Previous works have been concerned mainly with the ability to accurately identify

and measure the aerial extent of surface mines. Evaluation of the utility of remote

sensing varied from study-to-study depending on the data sources, analysis techniques,

and geographic areas under investigation (Bloemer et al. 81, 82). Landsat data had been

well established as accurate in its ability to identify and measure surface mines. Thus,

the current trend was toward a mixture of data sets with multisensor and multitemporal

information. Data transformations with PCA or Canonical analysis were utilized for

feature extraction in mining activities (Brumfield, et al. 1983).

1.2 STATEMENT OF PURPOSE

The demand for coal as energy had increased. This created a conflict over mining

practices and maintaining a quality environment. Currently, surface mining had

disturbed millions of acres across the United States. At present, 60% of the nation’s coal

comes from surface mining practices. Inadequate reclamation had left unattractive

landscape, destroyed previously productive land, and caused air and water pollution

(Irons et al, 1980). The influence of surface coal mining activity on lake morphology and 
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ecology within the Appalachian Mountains proved to be inadequately understood. Lake

morphology had a natural dynamic balance being subject to the influence of various

natural parameters such as sediment transport, wind, wave effects and currents. Short

and long-term lake morphology changes were of great importance to regulatory and

monitoring agencies. This study evaluated and modeled the relationship between coal

mining activity and its anthropogenic influence on lake morphology, due to a heavy-

suspended load, acid mine drainage, and stressed vegetation originating mainly from

improper mining practices. The color of the lake area affected by mining activity was

vastly different from the normal watercolor within Dewey Lake Watershed. Taking into

account the properties of the water quality and the local sediment transport, qualitative

and relative quantitative information about some parameters related to lake morphology

may be recovered from aerial images. Remotely sensed digital aerial imagery served as

the data for feature extraction in pattern recognition for geobiophysical modeling within

the project study area.

“The conditions of the mountains with regard to hydrology, vegetation, lithologic

outcrops, and their effect upon regional and, ultimately, global cycles impacting forests

are linked” (Comins and Noble, 1985). The results of this study aided in the

understanding and development of new techniques to study surface coal mining activities

in mountainous environments, that affect the delicate ecosystems within the Appalachian

Mountains.

The objective was to create a geobiophysical model with new techniques for a

combination of 3-D Models with feature extraction. The geobiophysical model

integrated the biosphere, geosphere and hydrosphere with an emphasis on mountainous
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terrain affected by surface mine activity. Brumfield (1990) gave the first definition for a

geobiophysical modeling system. He defines it as:

"... an integrated series of analytical modeling procedures. It

provides spatial and statistical scientists, engineers and multi-disciplinary

resource planners with a framework for integrating many different types of

information decision making processes. Through these procedures, the

volume of geobiophysical data (physical, biological, environmental, and

socio-economic information pertaining to the biosphere, geosphere,

hydrosphere and atmosphere), can be stored, managed, manipulated,

analyzed, modeled and displayed.”

Figure 1.1 was a schematic diagram showing the data and processing components for the

GEOBIOPHYSICAL MODELING:
A STRESSED VEGETATION/SEDIMENTATION-MOUNTAIN-MINING MODEL IN ANALYSIS FOR IMPACT

ASSESSEMENT IN DEWEY LAKE, KENTUCKY

MOUNTAIN
SUITABILITY STRESSED VEGETATION

INDICES SEDIMETATION INDEX
INPUTS

STREAMS

VEGETATION

SEDIMENTATION

TOPOGRAPHY
(DEM)

DIGITAL AERIAL
IMAGERY

IMPACT
ASSESSMENT

Figure 1.1. Diagram showing data processing component of a geobiophysical model.

geobiophysical model created for this study. The classification scheme used in this study

was modified after Irons et al. (1980). This was a three level classification scheme that

classifies detailed mine categories (Table 1.1) and had great potential for monitoring
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surface mine activity. Therefore, this was modified to include certain categories of

environmental factors specifically designed to be classified within this study.

Level I Level II Level III

Agriculture Pasture

Forest Deciduous Deciduous

Fall foilage

Conifer Conifer

Stressed vegetation
Water Suspended sediment load

Surface Mines Bare mine soil

< 20 per cent vegetation

Bare soil mine soil Ungraded

Revegetated mine soil Grass/trees

Grass

Roads

Table 1.1 A three level classification scheme for surface mines (After Parks et al.

1987).

To illustrate techniques that dealt with these complex factors, this thesis

investigated watershed forest and lake impacted by surface mining, which were located in

the Appalachian mountains. Feature extraction in pattern recognition was performed

with multivariate associations by discrimination with PCA and analysis of

variance/covariance on a high order spatial resolution or instantaneous field of view, of

less than 1.0 m IFOV, for selected spectral bands. The resulting data were used for

feature extraction affecting pattern recognition in physiognomy of species, identification

of forest associations with physical environmental parameters. Sampling variability was



evaluated by feature extraction in pattern recognition and geobiophysical modeling with

analysis of variance/covariance (Mills, et al, 1963, Bloemer and Brumfield, et at, 1996).

17



Chapter Two

METHODS AND TECHNIQUES

A broad spectrum of spatial frequencies occurs in nature. In mountainous terrain

these spatial frequencies represents numerous difficulties from a remote sensing

perspective in that processes and change often occur on a much smaller spatial scale than

typically observed on large plains. Higher spatial frequency variability requires higher

spatial resolution and spatial analysis over similar spectral bands to extract comparable

features (Brumfield, et. al., 1983; Bloemer, et al., 1996; Gervin, et al., 1996). An image

data collection system was chosen with a 1 meter IFOV that can resolve the higher spatial

frequencies in mountainous terrain. The methodologies employed in this research

involved vegetation classification, production of near infrared color imagery, and 3D-

visualization digital aerial imagery, datasets georectification and registration and 3-D

geobiophysical modeling utilizing software systems such as ER Mapper, Surfer, and Arc-

View.

2.1 SITE DESCRIPTION

The eastern Kentucky coalfield covered the eastern end of the state, stretching

from the Appalachian Mountains westward across the Cumberland Plateau to the

Pottsville Escarpment (Fig 2.1). The area was heavily forested and characterized by

rolling topography with moderate relief. Geologically, the area was underlain by

horizontal to gently dipping sedimentary strata of the Alleghany Group formed during the

Pennsylvanian geologic period. Extensive portions have been disturbed by mountaintop­

removal and contour mining. The general area had active mining and reclaimed locations
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Figure 2.1. Location map for Dewey Lake. The red star indicates location of Dewey
Lake. Modified from the Kentucky Atlas and Gazette.

making it an excellent study location. Situated within this environment was Jenny Wiley

State Resort Park complete with 1,100-acre Dewey Lake. Located in Floyd County, it

comprises 7,353 acres. The Lake was named for a brave pioneer woman who survived

Indian capture in the area. The US Army Corps of Engineers leased this area to the state

of Kentucky. Dewey Lake watershed, located in the Cumberland Plateau region of the

state, had elevations ranging from 580 to 2320 feet above sea level. Environmental

problems such as green-area damage, erosion, acid mine drainage and increased sediment

loads in local streams and in Dewey Lake have resulted from coal mining activity.

2.2 DATA SOURCES AND INSTRUMENTATION

The AA497 Airborne Multispectral Digital Camera (AMDC) was a two-

dimensional framing machine with 2000 pixels along in each onthogonal axis. Spectral
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images were created with optical filters on a movable wheel. Fast data transfer to solid­

state memory allowed fast collection of 2 to 5 spectral images with 80 to 98% overlap,

producing a multispectral frame. The fraction of overlap was dependent on V/H and the

number of spectral images in the multispectral frame. The frame was recorded to 8-mm

tape. Co-registration of the spectral images was done with a re-sampling algorithm. This

algorithm, based on a two-dimensional projective transform and a flat earth model, was

supplied for use in a ground data processing system reference

(http://www.sensystech.com, 2000).

The data contained six bands of information, ranging from visible to thermal

infrared. The data was purchased from Sensys Technologies Inc in October 1999. It

received nominal correction for velocity to height (V/H) ratio and scan distortion from

the company, but did not receive corrections for yaw errors. Due to considerable terrain

relief geometric displacements were noted within the imagery. Rectification and Digital

Elevation Models were used to correct these problems. All of the data were collected on

1 October 1999. All of the low altitude lines were flown between 11:00 a.m. and 2:00

p.m. local time. There was a total of 3 flight lines for this project labeled dl-2, dl-3, and

dl-4 (fig 2.2). They were flown at a compass orientation of north-south, with 1-meter

pixel resolution covering the mining area.

2.3 FIELD DATA COLLECTION

Dewey Lake was visited for ground based measurements. These measurements

were specifically designed to test the accuracy of the classified clusters gathered from the

digital aerial imagery. Seven sites were chosen to be tested for pH, temperature, and

dissolved metals. The sites were then photographed with a Nikon Cool Pix 990 digital
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Figure 2.2. Image created in Arc View 3.1 to
show flieht line coverage and orientation.

camera and vegetation type and condition were recorded. The pH was tested and

recorded at each site. The surface water temperature was then recorded with an Atkins

Infrared Thermometer Series 396K. The water was collected and taken back to the lab to

be analyzed for dissolved metal content using an ICP Emission Spectrometer Model

Liberty 110. This information was then entered into ArcView where a database was

created. The photographs of the sites were then hot linked to complete the database.



2.4 IMPORTATION PROCEDURE

All data received was in ERDAS Imagine format. In order to utilize the data, ER

Mapper’s import utility was employed, by selecting with the track ball mouse on the

Utilities menu, a dropdown list appeared (fig 2.3) with highlight on Import Image

formats; this opened up another dropdown list. By selecting the Import module for

Import Image formats

T oolbars
Batch Scripts
File Maintenance

Import Landmark formats
Import SAR imagery
Import Satellite imagery
Import Schlumberger formats
Import Vector and GIS formats
Export Graphics formats
Export Raster
Export Vector and GIS formats

Figure 2.3. Picture showing locations of import dialog for ERDAS Imagine
format using ER Mapper 5.5.

I Geoscan Mark 11 scanner data
J GeoTIFF (.tif)

HDF(EODIS)
I2S S600

ERDAS Imagine ( imgl

Airphotos (Handshake CT format) ►
ARC/INFO BIL Image (.hdr) ►
BP XT ►
Disimp ►
DOQ (USGS) ►
DTED ►
ERDAS 7.5 HEAD74 ►

Import ASCII and Binary
Import Graphics formats
Import Gridding formats

Mapper 5.5

File Edit View Toolbars Process Utilities Windows Help

ERDAS Imagine (.img), the Import dialog box for the ERDAS Imagine format was

opened. To import the complete dataset, the Input path name and Output path name were

selected followed by selecting OK. Everything else was left to the default setting. This

made it easier to adjust and be used for correct map projections later.
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2.5 RECTIFICATION PROCEDURE

There are two important reasons why the data needed to be rectified. One was to

mosaic it to another dataset and the second was to reference it to a geo-coordinate system.

This allowed comparison of datasets by overlaying two or more images that are in the

same coordinate system projection. Georeferencing was important because the digital

aerial image data contained errors, for example, geometric errors due to the motion of the

scanners, sensor characteristics, and the curvature of the earth. Images were corrected by

identifying corresponding points, known as ground control points (GCP), in the dataset

and on a map (Fig 2.4). These were points on the earth’s surface where both image
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Figure 2.4. A location of ground control points, taken at a street intersection
using ER Mapper 5.5

coordinates and map coordinates were identified. They were used in the rectification

process to transform the geometry of an image so that each pixel corresponded to a 
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position in a real world coordinate system. These control points were used to

mathematically modify by ‘rubber sheeting’ the entire image. Geo-rectification or

warping the data was stretching or compressing it to align with a real world map grid or

coordinate system.

Each raw aerial image file was geocoded to a map projection. The image was

referenced to a specific coordinate system and the position of any point in the image was

related to a point on the Earth’s surface. A 7.5 minute USGS topographic quad

(1:24.000), projected in Kentucky State Plane South, NAD 83, US survey with feet as

units was applied. These were downloaded from www.state.ky.us/ agencies/ finance/ depts/

ogis/ new_web/ data/ content.htm in the format of digital raster graphics (DRG) (See Fig

2.5). The DRG files were then imported into ArcView (ESRI, 1991-1999) where pixel

Figure 2.5. A Digital Raster Graphics (DRG) of Dewey Lake imported into ER
Mapper 6.1.
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size could be determined. This step was necessary because ER Mapper does not support

(DRG) formats. In ArcView the file was opened up as a Tagged Image File Format (tiff)

file under the Add Theme module, with the Data source type set to Image Data Source.

The View menu Properties was selected in order to establish the correct map units and

projection. In the View Properties table the Map Units of feet were selected and the

Distance Units were set to meters. Selecting the Projection module set the projection. A

new table was opened called Projection Properties. The Category was set to State Plane

- 1983 and the Type was set to Kentucky, South. This made it possible to enlarge the

image and determine pixel size by using the measuring tool. This process determined a

pixel size of 2.6 meters for the DRG.

2.6 CREATED TIFF FILES

The tiff file was opened in ER Mapper and saved as a new ER Mapper dataset.

The Geocoding Wizard available in version 6.1 makes this a simple procedure. Selecting

the Geocoding Button on the main menu, opened the Geocoding Wizard window. The

name of the new dataset just created was entered, followed by selecting the Known point

registration option (Fig 2.6). Next, tab 2, the Coordinate System Setup was selected.

This was information such as Datum, Projection, Coordinate Type and Units entered on

the menu (Fig 2.6). The final tab, Registration Point Edit, was the information about

pixel size and the Easting and Northing of the top left comer cell. This was determined

previously in ArcView and entered to complete the (Fig 2.6). This became the dataset to

be used as a reference map projection for the raw remotely sensed imagery.



A. Start Menu.

B. Coordinate System Menu.

C. Registration Point Edit.
Figure 2.6. Menus for the Geocoding Wizard in ER Mapper 6.1.
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2.7 IMAGE TO MAP RECTIFICATION

ER Mapper provided several rectification operations. The rectification performed

in this section was called Known point operation. In this section the rectification of the

raw imagery to a datum and map projection using ground control points (GCP) from a

map was employed to create a rectified dataset within the new coordinate space. To

accomplish this task, the Geocoding Wizard was again used to rectify the raw imagery.

On this menu, the option Triangulation was selected. This was an image to map

rectification using ground control points, followed by choosing the Input File. This was

the raw image to be rectified (Fig 2.7). By selecting the Triangulation Setup tab, and

Figure 2.7. Geocoding Wizard dialog setup for triangulation rectification in ER
Mapper 6.1.

choosing to rectify the area outside the GCPs by using the first order polynomial method,

ER Mapper rectified the whole image rather than just the area on the map that was within 
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the GCPs on the image. The third tab was selected bringing up the GCP Setup dialog

(Fig 2.8). Next, the option, Geocoded image, vectors or algorithm, was selected. This

Figure 2.8. Ground Control Point Setup dialog with output coordinate space in
ERMapper 6.1.

was followed by: entering the file created previously; downloading a DRG; converting it

to a tiff file; importing it into ER Mapper, and saving it as a dataset created file. This

option automatically entered the correct information into the Output Coordinate Space.

Next, the GCP Setup module displayed several image windows and dialog boxes (Fig

2.9). On this menu several GCPs were picked. In Figure 2.7 a good example of locating

GCPs was chosen on the raw uncorrected image and the control image was identified.

Locations were chosen from clearly identifiable points on both the raw image and the

control image. Fifteen control points were widely distributed across the image to provide

a more stable solution. A constraint of the rural environment provided a maximum of 15

GCPs, which were selected for each image rectified. To complete the procedure, the
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Figure 2.9. Display showing the raw uncorrected image with the corrected image.
Also displayed is the Geocoding Wizard’s GCPs screen. This screen lets you add
and remove GCPs in ER Mapper 6.1.
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Rectified module was selected. ER Mapper processed the rectification and geocoding of 

the corrected image. Automatically, the raw image was displayed and referenced to any

other geocoded image. Thus, the other geocoded images were mosaicked together to 

produce an aerial image mosaic.

2.8 RADIOMETRIC CORRECTIONS

Once each aerial image was geocoded, it was radiometrically corrected by color

and intensity. Color balancing corrected the tendency for the edges of an image to be

bluer than the center of the image because they were further from the nadir. Intensity 



balancing corrected for changes in intensity in the aerial photograph from the center to

the edges resulting from the thickness of the lenses in the aerial camera. To create a

seamless mosaic image, these parameters were corrected in each image.

The linear brightness shift created a “roll off’ problem. The edge toward one side

of the image was darker, called vignetting. Within ER Mapper two basic formulas

existed for correcting vignetting. These are located in the Formula Editor dialog. The

Edit Formula module was selected within the Algorithm dialog. The File menu was

selected and opened. The built in template formulas for correcting vignetting were

located in the mosaic directory. The first formula used was ‘Linear Ramp’. It was for

images which did not have a clear ‘hot spot’, but had a definite color shift across the

image. The variables were set to 0.3 for the X Correction and theY Correction. This was

within the normal value range from -0.3 to 0.3 (fig 2.91). The next step was to combine

Figure 2.91. Formula Editor showing the Linear Ramp
formula with X and Y corrections in ER Mapper 5.5.

two formulas using the “and” command. The next formula applied was intended to 



create an intensity or radiometric roll off correction from the identified center of the ‘Hot

Spot’. For this formula, the X center and Y center of the ‘hot spots’ were identified using

the cell coordinate window. 0.3 was selected as the X and Y correction values to remove

the color shifts. A failure occurred when trying to combine the formulas with the “and”

command. This caused the screen to turn black. This was corrected by applying the

formula and saving it as a new dataset, then applying the second formula. Once the

images have been rectified, geocoded, and balanced they were ready to mosaic.

2.9 MOSAIC PROCEDURE

Mosaicking combined smaller images in order to generate a composite view of a

larger area. ER Mapper was unique in that its algorithm concept includes features such

as automatic data mosaicking. In order to assure seamless mosaics, a hidden stitch line

was created. This was the portion of the digital aerial image to be shown. ER Mapper’s

annotation tool was used to define a polygon region around the area to be shown (Fig

2.92). The middle flight line was picked to be the stitched line because it had the most

Figure 2.92. Image showing
the creation of a hidden stitch
line in ER Manner 6.1.
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overlap. A hidden stitch line eliminated the need to create a stitch line in the adjacent

images. After defining the polygon, it was given the name “Area to see”. Next the

balancing formula was edited for each layer (Red, Green, Blue) to read: IF

INREGIONfArea to see’) THEN <balancing formula> ELSE NULL(Fig 2.93). This 

masked all the area outside of the

polygon. Within ER Mapper,

mosaicking was automatic.

Adding the other digital aerial

imagery to the mosaic was

accomplished by selecting the

Add New Surface module on the

Algorithm dialog that created a

new surface layer. Another image

could be added to the mosaic. If

Ok was selected, this would apply the dataset to all the surface layers. Care must be

taken to select “Apply this layer only option” located on the Raster Dataset module.

This single process was applied to insert all images into the mosaic.

After the images were mosaicked, further balancing was possible utilizing

histogram matching. Histogram matching was a process that modified the transform

lines for several datasets, which forced the output histograms to match the histogram of a

reference dataset. Utilizing the standard technique to balance brightness across the

mosaic, minimized image joining (mosaic) and made them appear to be one image. This

was accomplished by selecting the Edit Transform Limits module in the Algorithm 



dialog. Selecting the Histogram match option for all layers and color completed the

histogram match.

The Feathering option was used to increase the quality of the mosaic. Feathering

was the process of blending the data values in areas where two datsets overlap so there

was gradual transition from one to the other. Feathering also reduced the visual effect of

seams. Feathering worked by averaging the data values between two images in the zone

where there was overlap.

2.10 THREE-DIMENSIONAL MODELING PROCEDURE

3-demensional modeling was important to the research project, not only for its

improvement in visual observation, but for clarification of classification in feature

extraction. Digital Elevation Models (DEMs) were a digital representation of elevation,

organized as a regular grid of numbers. 3-D model applications existed for monitoring

surface water flow and evaluating elevation disturbances due to surface mine activity and

urban development. DEMs were created and mosiacked into the finished product. The

spacing between grid elements represents the interval between samples. The DEMs used

were 30-meter grid spacings, meaning one elevation contour was sampled every 30

meters. The numerical value in each grid element represented the elevation at that point.

The number was a floating point, to ensure that small variations in elevation can be

recorded accurately.

These DEMs data files were produced by the U.S. Geological Survey (USGS) as

part of the National Mapping Program and were available under the Download Data

option from USGS. This was accomplished by selecting “Us Geo Data for selected

geographic data in 7.5-minute” which was included in the large scale category. The 



DEM data for the 7.5-minute units corresponded to the USGS 1:24,000 and 1:25,000

scale topographic quadrangle map series for all of the United States and its territories.

Each 7.5-minute DEM was based on 30- by 30-meter data spacing with the Universal

Transverse Mercator (UTM) projection. Each 7.5- by 7.5-minute block provided the same

coverage as the standard USGS 7.5-minute map series

(http://rmmcweb.cr.usgs.gov/elevation/, 2000).

The DEM Data files were downloaded and translated from Spatial Data Transfer

Standard (SDTS) into DEM files. The American National Standards Institute’s (ANSI)

approved Spatial Data Transfer Standard (SDTS) was a mechanism for archiving and

transferring of spatial data, including metadata, between dissimilar computer systems.

The SDTS specified exchange constructs, such as format, structure, and content, for

spatially referenced vector and raster, including gridded, data. The program used to

translate the SDTS DEM files was SDTS2DEM.C created by Sol Katz, version .012. The

program dumped SDTS DEM modules to a data file, which reconstructed the original

dem source file. This was obtained from a website called Geocommunity located at

www. geocomm.com. It utilized a DOS based format using Microsoft C. After

downloading the program, it was uncompressed and opened. Trial and error instructions,

used in the instructions, gave the first four character of the base file name (1234xxxx.ddf)

then gave the output file without the .DEM extension. The first thing entered had to be

the four character base (1234), followed by selecting return then by again entering 1234

then return again. The final step was to enter the cell id. This was the character in the 7th

and 8111 position of the filename, usually a L0 or 10. Care was taken here to enter zero (0) 
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instead of Letter O. The files were transferred into .DEM file extensions, which were

compatible with ER Mapper.

A problem discovered with the DEMs was that edges did not match correctly (Fig

2.94 a. and b.) in ER Mapper. This was corrected by importing and merging the SDTS

DEMs in Surfer (See Table 2.1 below). Figure 2.95 displayed corrected DEMs.

Merging SDTS DEM in Surfer

1. In Surfer, go to Grid/Grid Node Editor and determine the area in the DEM that
needed to be used by writing down the row and column. Close this screen.

2. Next open up Grid/Extract and enter in the file name and click open. The Extract
Grid screen will open up and enter in the row and column.

3. The extracted grid file (.grd) can now be converted to XYZ ASCII file through
Grid/Convert. Enter the grid name that was extracted and click open. On the Save
Grid As screen and “save as type” ASCII XYZ(*dat). This allowed opening the file
in the worksheet. This was done for both DEM and Grid files.

4. Go to worksheet and open file, then go to bottom of file and click on cell. This will
import the next file to bring in. Next go to File/Import and bring in the other DEM.

5. Then highlight the three columns at the top. Go to Data/Sort and Sort Column C by
Ascending.

6. Next delete all the null values in the columns and save the file.
7. Then go to Plot screen and open Grid/Data. Set the spacing to 30.
8. To bring into ER Mapper again Grid/Convert to an ASCII XYZ (.dat) file. Then

import in ER Mapper under Utility/Import Gridding Formats/XYZ ASCII.

Table 2.1 Procedure to correct errors with DEM in Surfer.
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a.

b.

Figure 2.94a and b. Display showing problems with digital elevation models before
correction in Surfer. Figure a.is showing problem with elevations. Figure b. demonstrated
errors with edges not lining up properly. Display a. and b. in ER Mapper 6.1
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a.

b.

Figure 2.95a and b. Display showing corrected digital elevation models.
Figure a.is showing a planametric view. Figure b. Showed the corrected 3-D
image. Displays in ER Mapper 6.1



2.11 PRINCIPAL COMPONENT ANALYSIS

Principal Component Analysis (PCA) was used in this study. This statistical form

of data compression was used on the information content within six multiple spectra

image bands available, reduced to three “principle component” images. This was

important in reducing the dimensionality and file size of the multispectral datasets that

also improved processing time.

Understanding the representation of new components was important when using

(PCA). The term “loads” was used to describe how each band variability was associated

with each principle component. This was computed by the correlation of each band with

each component. This makes possible the determination of how each band loads

variability. Component 1 has the highest loading of variability, component 2 the next

highest loading of variability and etc.

To calculate the (PCAs) in ER Mapper the Formula edit module was used within

the Algorithm dialog. This used raster layers to define and include mathematical

functions that combine multi-band data on a point by point basis. A number of common

formulae have been supplied with ER Mapper to accomplish processing such as

vegetation indexing, supervised classification, ratios and principal components. From the

Principle Component menu, select Landsat TM PCI (Fig 2.96). This loads the principle

component following formula into the Generic formula window:

SIGMA (I1..I6))? * PC_COV(I1..I6), Rl,)?,l))

This formula generated principal component 1 ( PC 1) from all six bands. Principal

component 2 (PC 2) was generated by changing the 1 to a 2 in the Generic formula

window, so the formula was as follows:



SIGMA (I1..I6 ))? * PC_COV(I1..I6), Rl,)?,2))

Change to 2

Then by selecting the Apply changes process to verify the formula syntax. This step was

repeated to generate principal component 3 (PC 3). A color composite was created using

the (PCAs). The display was PC 1 in blue, PC 2 in green, and PC 3 in red (Figure 2.97).

The image was then classified using ISOCLASS unsupervised classification with ER

Mapper.

Figure 2.96. Formula Editor in ER Mapper 6.1 showing
PCA.
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Figure 2.97. Image generated from PC 1 in blue, PC 2 in green, and PC 3 in red using
ER Mapper 6.1.
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2.12 CLASSIFICATION PROCEDURE

A classification procedure was developed for the mosaicked image. The objective

of the analysis was feature extraction in pattern recognition in order to discriminate

environmental factors within and around the water body from the surrounding land area

or watershed. Water had a very distinct spectral signature that enabled its easy

discrimination. In this study six bands were available to identify the extents of the

suspended sediment within the water body. Traditionally, researchers and others collect

field measurements of water variables at the same time as the satellite or aerial imagery

was acquired. In this study there was no ground truth taken at the time the imagery was

taken. Therefore, alternative techniques were developed for Dewey Lake. Supervised

classification was experimented within combination with unsupervised classification

techniques. The general steps required for feature extraction in this project were

summarized in Table 2.2. The actual classification was performed using a variety of

algorithms for supervised and unsupervised classification.

In the supervised classification, the identity and location of some of the land cover

types, such as urban, forest, and mined area, was known previously, through fieldwork

experience. Training sites were chosen from homogeneous representative, specific sites

for known land-cover types. These areas have spectral characteristics that are known.

Area spectra are to be used in the classification algorithm for land-cover mapping for the

image.
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General Steps Used for Feature Extraction
from Digital Aerial Imagery.

Nature of the Classification Problem
• Define environmental parameter
• Identify the classes of interest

Image Processing for Extracting Feature
• Radiometric correction
• Geometric rectification
• Image classification logic

• Supervised
-Maximum likelihood

• Unsupervised
-ISOCLASS

• Extract data from training sites using most bands
• Select the most appropriate bands using feature selection

• Statistical
• Extract thematic information

• By class (supervised)
• Label pixels (unsupervised)

Error Evaluation
• posteriori knowledge of the study area
Results
• Digital classified 3-D visualization thematic maps

Table 2.2. General Steps required for feature extraction from digital aerial imagery.

2.121 SUPERVISED CLASSIFICATION

The following procedure was for performing supervised classification. By using

the annotation tool located under the Edit menu in ER Mapper, then selecting

Edit/Create Regions, the New Map Composition dialog box opens. The "Raster

Region’ option had to be selected, and Ok selected. In ER Mapper, the Tools palette

option containing the vector annotation tool was opened. On this module the Polygon

mode was selected to draw a circle around a representative sample within the coal mining

area. The Map Composition Attribute module was entered in the name. This 
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procedure was repeated for all training site classes. Selecting the Save file option on the

Tools module saved the results. Figure 2.98 was an unsupervised classified image that

had training regions defined on it was processed as a supervised classification. This was

a common hybrid technique to combine unsupervised with supervised classification.

Water

Coal ------

Silty Water

Deciduous

Urban

Figure 2.98. An unclassified image displaying training regions located in ER Mapper
6.1.
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2.122 UNSUPERVISED CLASSIFICATION

This was an unsupervised method to transform multispectral image data into

thematic information classes. The classification program ISOCLASS searched for

natural groupings or clusters of the spectral properties of each pixel, and assigned it to a

class, based on initial clustering parameters defined.

ISOCLASS first calculated statistics for the image to be classified. Statistics

were calculated by first selecting Calculate Statistics from the Process menu, and

entered in the name of the file to be calculated. The computer program calculated the

statistics for each band. Once the statistics were calculated, the dateset could be 

classified with the ISOCLASS method. To open the Unsupervised Classification 

dialog (Fig. 2.99), from the Process menu, the Classification/Unsu pervised

Classification option was selected. Next, the input dataset name and output dataset name

Figure 2.99. Unsupervised classification window in ER Mapper 6.1. This showed
the parameter setup used in this study.
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were entered. The method employed to set up the parameters for ISOCLASS utilized the

maximum standard deviation, divided it by two and set the Minimum number in a

class to 1.0, while setting the Desired percent unchanged to 95.0 and Sampling row

interval to 4. This helped to lower the number of classes to a manageable number and

decreased processing time.

2.13 ER MAPPER INPUTS TO ARCVIEW

The digital aerial remotely sensed data in ER Mapper was interfaced with

ArcView via a ‘plugin’ available for ArcView. The ‘plugin’ was download from ER

Mappers home page (www.ermapper.com). Once the ‘plugin’ was installed images

created within ER Mapper could be accessed and displayed in ArcView. In ArcView

under File menu the Extensions module was selected followed by selecting ECW v2.0

and ER Mapper Images. A new view was selected and the Add Theme module opened.

In the “Data Source Types” box “Image Data Source” was selected. This loaded all ER

Mapper files into the Add Theme menu, which could then be opened into ArcView.

Themes were added to the view containing the image interfaced within ArcView

from ER Mapper. A theme was created for geographically and environmentally

important areas. This was accomplished by utilizing the New Theme module under the

View menu. The New Theme module gave the option of “Feature type”, which could be

point, line, or polygon. The polygon mode was selected for feature such as surface mine

and forest. The line option was selected for streets and streams. The point option was

chosen for locations of sampling locations and hot links. After the area of interest was

traced from the image, “Stop Editing” under the Theme menu saved it. These steps
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created figure 2.991 in ArcView 3.1. The hot link feature in ArcView 3.1 was then used

to link sample location with field photograph of vegetation. The photos taken from

sample location were first brought into ArcView 3.1 by adding a theme to a new view, 

which contained the photo. Then with the

theme created with the sample locations

opened the Open Theme Table module

was selected. Next from the Table menu,

“Start Editing” was selected. The Add

Field module was selected for the Edit 

menu (fig. 2.992). In this dialog box was typed the name of the new field “Photo” and

from the dropdown list, “String” was selected. Next the Edit Tool module was selected

and the name of the views created earlier were typed in the photo field for the

corresponding sample location. The Theme Properties module was opened and the Hot
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Link module was selected (fig 2.993). From the Field drop-down list “Photo” was

chosen and the “Link to Document” was selected under the “Predefined Action” drop­

down list. This completed the hot links for the Picture site theme (fig 2.994).
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Chapter Three

RESULTS AND DISCUSSION

Of the different parameters influencing lake morphology, several combinations of

techniques were utilized to evaluate the impact of mining activity on Dewey Lake. The

selection of environmental indicators was the first task in studying environmental

degradation caused by coal mining. The environmental factors used for the study area

are discussed.

3.1 STRESSED VEGETATION

Remotely sensed data provided a powerful tool for inspecting stressed vegetation on a

large scale. Specific interest was damage to vegetation from surface mining activity.

Mining activity increased the interaction of surface water with high sulfur coal forming

acid mine drainage (AMD) when high sulfur coal comes into contact with water and air.

AMD produces acidic surface water with high concentrations of sulfate and metals

including aluminum, cadmium, copper, iron, and zinc. These surface waters could

become highly acidic with concentration of minerals such that plants could not survive or

were pathologically damaged.

A 3D-visualization image in a color infrared (Fig 3.1) was chosen to view

vegetation because healthy vegetation showed well as a red color and stressed vegetation

showed in different colors, depending on the stage of stress. This was broken into two

groups, first of which was the previsual stage this displayed in a pink to blue color. The

next stage was the visual stage of stressed vegetation. This was displayed in a cyan color

(Table 3.1). Unfortunately, the imagery was captured in October when the leaves were

going through senescence, changing colors, which complicated the issue of classification
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Figure 3.1 3-D visualization model displayed in color infrared (CIR), created in
ER Mapper 6.1.

because the stressed vegetation and senescence have similar spectral signature. Figure

(3.2) below was an enlarged view of a color composite and a false color IR image around

Table 3.1 Terrain signature on normal color images and color infrared images.
(Modified from Sabins 1997).

Subject Normal Color Infrared
£CIR)

Healthy Vegetation:
Broadleaf Type Green Red to magenta
Needle-leaf type Green Reddish Brown to purple

Stressed Vegetation:
Pre visual stage Green Pink to blue
Visual stage Yellowish green Cyan

Autumn leaves Red to yellow Yellow to white
Clear water Blue to Green Dark blue to black
Silty water Light green Light Blue
Red bed out crops Red Yellow
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a settling pond that were of the same scale to demonstrate the effect of vegetation 

senescence in the color IR image. This effect made the detection of stressed vegetation

difficult to identify and classify. Figure (3.3) shows the mining operation at Stratton



Branch. Stressed vegetation was not identified as a result of acid mine drainage because

of confusion with fall leaf senescence. This would have shown up in a pink to blue color

around the mining area.

Figure 3.3. Classified 3-D visualization composite image illustrating mining
operation. Mine operation in shades of green. Stressed vegetation in association
with mining confused with fall leaf senescence. Displayed in ER Mapper 6.1.

3.2 ACID MINE DRAINAGE

Acid mine drainage results when the mineral pyrite (FeSi) was exposed to air and

water resulting in the formation of sulfuric acid and iron hydroxide. Pyrite was

commonly present in coal seams and associated rock layers. Acid mine drainage

formation occurs during surface mining when overlying rocks are broken and removed to 
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obtain the coal. Surface mining could devastate water resources by lowering the pH and

coating stream bottoms with iron and aluminum hydroxides.

Several techniques were examined to evaluate the extent of contamination from

Acid mine drainage. The first was to construct a color 3-D geobiophysical image model

for selected locations enlarged to visually examine for iron staining (yellow boy). The

enlarged views provided no evidence of “yellow boy” for the chosen locations shown in

Figure (3.4).

The next method for locating acid mine drainage was to photo interpret the image

for stressed vegetation around streams entering the lake. Stressed vegetation would be a

possible indicator of acid mine drainage. The same sample locations as Figure 3.4 were

chosen in the examination for stressed vegetation in a color infrared image (Fig 3.5). The

results were negative indicating that vegetation was not influenced discemibly by a lower

pH due to acid mine drainage. This was because the fall colors could be masking any

noticeable effects.

3.3 SUSPENDED SEDIMENT LOAD

Acid mine drainage often contained high levels of dissolved metals and sediment.

Sedimentation quilts the bottom of the steam channel making breeding and feeding for

species of fish and benthics difficult or impossible. Elevated levels of metals such as

aluminum were toxic to aquatic life. These conditions could degrade many portions of the

Dewey Lake to the point where no aquatic life could exist. Table (3.1) was especially

useful in helping to delineate some import environmental factors on the imagery. For

example in Figure 3.1 there was a pronounced colorshift in Dewey Lake. The water was

light blue where Stratton Branch was entering the lake. Farther away the coloration was
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Figure 3.4. Color composite 3-D geobiophysical model (c.) with enlarged areas (a, b, d, and e)
to visually examine for acid mine drainage in ER Mapper 6.1.
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Figure 3.5. CIR 3-D geobiophysical model (c.) with enlarged areas (a, b, d, and e) to visually
examine for stressed vegetation associated with acid mine drainage. Created in ER Mapper 6.1.
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darker blue to black. This showed the increased sediment load coming from the surface

mine which entered the lake from Stratton Branch.

A geobiophysical model showing the extents of the suspended sediment was

created. This required adjusting the ISOCLASS unsupervised classification module to

highlight the suspended sediment in the water without creating too many clusters.

3.4 FEATURE EXTRACTION

3.41 ALL BANDS

Different band combinations and statistical procedures were used to analyze the

data. This process was then tested in ER Mapper utilizing the ISOCLASS unsupervised

classification algorithm. The results were then displayed to test the accuracy of each

class or cluster. Band combinations were chosen from several methods. The first method

was to use all bands supplied with the imagery. There was a maximum of six bands to

choose from within each dataset. The band wavelengths starting with the blue and

working to longer wavelengths were as follows 0.45-0.52, 0.52-0.6, 0.63-0.69, 0.76-0.9,

0.91-1.05, and 8.5-12.5 micro meters. This method gave the maximum amount of useful

information, but also created the largest file size with an average 128.6 megabytes before

processing. This amount of data processing required 12 hours on twin Intel 400 MHz

processors, and windows NT 4.0, using the default settings, or more time, depending on

the parameters chosen in the ISOCLASS unsupervised classification module, but with

proper adjustments to the statistic settings, the time could be decreased to approximately

one half-hour. The default settings were adjusted as follows: Maximum iterations: 20,

Maximum number of classes: 30, Desired percent unchanged: 95, Minimum members in

a class (%): 1, Sampling row interval: 4, Maximum standard deviation: 10, Sampling 
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column interval: 4, and the auto resampling was selected. Other settings were left to the

default settings (Fig 3.6).

class(es)

□ BSDrF Unsupervised Classification

Input Dataset

Output Dataset I

Starting Classes

Figure 3.6. Unsupervised classification module, displayed with proper
adjustments to parameter settings in ER Mapper 6.1.

Bands to use:

£ OK

Cancel

I............................. .. ' Status...

— Help

(• Autogenerate: |1

C Use classes: f

--------------- . . .. . . ----:;--------—

Maximum iterations: 20 Maximum number of classes. 30

Desired percent unchanged: 95 Minimum members in a class [%]. 1

Sampling row interval: 4 Maximum standard deviation. 10

Sampling column interval: 4 Split separation value: 0.0

[7 Auto Resampling Min. distance between class means: 3.2
_____:--------------------- ----- .--------

Figure 3.7 was a classified mosaic with all bands included in the classification.

The image was first colormatched using ER Mappers balancing wizard. The limits were

clipped to 99%. The dataset created was used in the ISOCLASS unsupervised

classification. Note the good separation in Figure 3.5 between the clear water in Dewey

lake and the water with a heavy suspended sediment load closer to the surface mine. This

resulted from the spectral similarities between urban areas and barren soil relating to the

surface mining operation. Another area of confusion in classification was with the

spectral signature of water and coal.



Figure 3.7. Classified mosaic created in ER Mapper 6.1 with all
bands included in processing.

3.42 ALL BANDS WITH DEM

ER Mapper had the ability to incorporate DEM data into the ISOCLASS

unsupervised classification. Topography was valuable in classification within
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mountainous terrain. The spectral signature observed within Figure 3.7 previously

between the urban and surface mine were very similar.

Another image created used the same raw dataset as in Figure 3.7. It had the

same parameters setup but included the DEM as a band of information to be processed

with the ISOCLASS unsupervised classification. This created the classified image in

Figure 3.8, that increased the separability displayed in the coal and water. This process

Figure 3.8. Classified image created in ER Mapper
6.1 with all bands including a height band.



also increased the separability between urban and surface mines as shown in Figure 3.9.

Including the DEM data as a band of information created the most accurate model (Fig

3.10 and 3.11).

Figure 3.9. Side by side comparison of classified mosaic images. Figure a. was
processes with all band. Figure b. was processed with all bands including a height
dataset.
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Classified Map of Dewey Lake
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Figure 3.10. Completed classified map created with all bands plus a height layer.
Created in ER Mapper 6.1.
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Figure 3.11. Same image as figure 3.8 displayed in 3-D.
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3.43 OPTIMUM BANDS SELECTION

For each class, a determination was made to select the most effective bands in

discriminating it from the others. This process was called feature extraction. This

reduced the amount of redundant spectral information analyzed but did not affect the

accuracy of the results. This process minimized the time of the digital image

classification process. Feature extraction involved statistical analysis to determine the

degree of between-class separability. Statistical methods of feature extraction were used

to quantitatively select which subset of bands provides the greatest degree of statistical

separability between any two classes (see Table 3.2). This involved computing the

minimum and maximum values for each band of imagery, the mean, standard deviation,

between band variance-covariance matrix, correlation matrix, and frequencies of

brightness values (Jahne, 1991; Jensen et al., 1993).

This study used remotely sensed multispectral measurements of reflected or

emitted light from environmental objects influencing Dewey Lake in more than one band.

Therefore it was useful to look at the multivariate statistical measurements such as

covariance and correlation matricies among the six bands. The univariate statistics were

of minimum, maximum, mean, median and standard deviation, but did not provide

information concerning whether or not the spectral measurements in the six bands varied

dependently or independently. In remote sensing spectral measurements for each pixel

often changed in some predictable manner. The spectral measurement values were

mutually independent if there was no relationship between the brightness value in one

band or another for a pixel data element. An increase or decrease in one band did not

produce an increase or decrease in another band. Because of this independence, a
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STATISTICS FOR DATASET: dewlake complete mo:saic_with_dataset.ers

Bandl
REGION: All

Band2 Band3 Band4 Band5 Band6

Non-Null Cells 10347264 10347264 10347264 10347264 10347264 10347264
Area In Hectares 1055.416 1055.416 1055.416 1055.416 1055.416 1055.416
Area In Acres 2607.990 2607.990 2607.990 2607.990 2607.990 2607.990
Minimum 0.000 0.000 0.000 0.000 0.000 0.000
Maximum 255.000 255.000 255.000 255.000 255.000 255.000
Mean 71.443 76.686 59.914 61.552 65.025 70.316
Median 62.000 70.000 50.000 60.000 66.000 68.000
Std. Dev. 51.529 48.571 42.143 29.465 27.294 36.764
Std. Dev. (n-1) 51.529 48.571 42.143 29.465 27.294 36.764
Corr. Eigenval. 3.932 1.495 0.411 0.097 0.041 0.023
Cov. Eigenval. 7404.246 1471.563 564.883 226.859 62.815 24.811

Correlation Matrix Bandl Band2 Band3 Band4 Band5 Band6— — — — — —_.— —
Bandl 1.000 0.906 0.911 0.246 0.257 0.643
Band2 0.906 1.000 0.961 0.439 0.431 0.677
Band3 0.911 0.961 1.000 0.307 0.316 0.649
Band4 0.246 0.439 0.307 1.000 0.962 0.446
Band5 0.257 0.431 0.316 0.962 1.000 0.498
Band6 0.643 0.677 0.649 0.446 0.498 1.000

Determinant 0 000

Covariance Matrix Bandl Band2 Band3 Band4 Band5 Band6— — — — — — —
Bandl 2655.270 2267.138 1978.717 373.275 360.924 1217.331
Band2 2267.138 2359.154 1966.653 628.957 572.007 1209.329
Band3 1978.717 1966.653 1776.027 381.355 363.895 1004.814
Band4 373.275 628.957 381.355 868.164 773.823 483.200
Band5 360.924 572.007 363.895 773.823 744.989 499.335
Band6 1217.331 1209.329 1004.814 483.200 499.335 1351.573

Determinant 2176124492533634.700

Cov. Eigenvectors PCI PC2 PC3 PC 4 PC5 PC 6— — — — — —-- —---
Bandl 0.567 -0.313 -0.038 0.760 -0.034 -0.024 1
Band2 0.552 -0.031 -0.246 -0.401 0.652 0.216
Band3 0.471 -0.172 -0.151 -0.466 -0.689 -0.183
Band4 0.154 0.656 -0.273 0.125 0.095 -0.668
Band5 0.146 0.611 -0.163 0.143 -0.296 0.686
Band6 0.327 0.259 0.902 -0.092 0.036 -0.051

Table 3.2. Statistics for Dewey Lake Mosaic from ER Mapper 6.1.

measure of their mutual interaction was used. This measure was covariance which was

the joint variation of two variables about their common mean. The correlation coefficient

was a ratio, and a unitless number. This was used to estimate the degree of interrelation
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between variables in a manner not influenced by measurement units. Therefore the

correlation coefficient ranged from +1 to -1 where a correlation coefficient of +1

indicated a very high correlation relationship between the brightness values of two bands

and conversely, a correlation coefficient of -1 indicated that the two bands had high

inverse correlation.

The data shown in table 3.2 illustrated a low correlation and covariance for bands

2, 3, and 5, which have been highlighted and underlined. Band 2 was chosen first

because of it ability to highlight low pH and iron oxide.

3.44 PCA SELECTED BANDS

The result of the calculated statistics table (Table 3.2) indicated the bands that

were correlated with each principal component. For example, the highest covariance

(loading) for principle component 1 were for bands 1, 2, and 3 (0.567, 0.552, and 0.471,

respectively, (Table 3.2) suggesting that this component was in the visible bands.

Conversely, principle component 2 had high loading in the near infrared bands 4 and 5

(0.656 and 0.611), and component 3 had high loading in the thermal band 6 (0.902).

Therefore, to include all bands of information into the principal component image, PCA’s

1, 2, and 3 were combined for classification to compare the results against the classified

image with all bands. Figure 3.12 was a comparison between two images, one created

with all three PCAs, and the other with PCA 1 and 2 leaving out the third. The image

created with a combination of PCA 1 and 2 shows improvement in classification over the

PCA combination of 1, 2, and 3. Note that in Figure 3.12 a. there was no separation

between the clear and sediment water because most of the information about the water

was located in PCA 1. PCA 1 contained most of the information from the visible region.
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Figure 3.12. Side by side comparison of classified PCA mosaic images. Figure a. was processes
with PC 1,2, and 3. Figure b. was processed with PC 1 and 2. Displayed in ER Mapper 6.1

a. b.

PCA 3 contained little to no information with regards to sediment plume of the water, and

therefore making it an unnecessary component in the classification thus reducing the

dataset.
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3.45 PCA WITH DEM

To incorporate the DEM data into the combination PCA I and 2 image and check

for improvements in clustering, a classified image was performed. The water and coal

already displayed good separation in the classified PCA image. The improvement

between urban and surface mine was within the combination PC 1 and 2 image (Fig 3.12

b.). The image created by the combination PC 1 and 2 with the DEM was shown in 

figure (3.13). Note the separation within the water was gone. This image included a high

Figure 3.13. Classified image with combination
PC 1 and 2 with the DEM in ER Mapper 6.1.
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percentage of null values, which appeared black. This occurred when a pixel was not

placed into a cluster thereby decreased the desired percentage unchanged on the

ISOCLASS module. This caused excessive iterations that greatly increased processing

time. The DEM was weighted too heavily within the PC combination of 1 and 2. The

combination and elimination of data from the dataset bands, going from 6 bands of

spectral information to 2 bands, proved to place too much loading importance on the

DEM data. This decreased weighted feature extraction capabilities within the

combination PC 1 and 2 imagery. In Figure 3.13 the red coloration was due to elevation

variability alone and presented a false spectral feature on the classified image.

3.46 FIELD MEASUREMENTS

Field samples were taken from selected locations of Dewey Lake. Samples taken

back to Marshall University were test for dissolved metals (See Appendix 1). There was

a total of 36 elements tested, 5 of which are commonly associated with acid mine

drainage. These included aluminum, cadmium, copper, iron, and zinc, none of which

showed increased levels due to surface mining activity. However, 3 elements, calcium,

magnesium and potassium, had elevated concentrations as a result of the mining activity.

The high concentrations of calcium and magnesium helped explain the high pH

measurement taken from Dewey Lake. The activity of these metals was directly related

to the pH of the water. For example, iron only goes into solution at low pH levels.

Therefore, within Dewey Lake metals associated with acid mine were not expected

drainage because the lower pH level was not present.

The samples were tested for suspended sediment by pouring the water into glass

beakers and visually examining for clarity. There was a pronounced colorshift within the 
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sample collected outside of the water classified as carrying the suspended sediment load.

This sample was crystal clear upon visual examination. Where as the samples collected

within the area classified as suspended sediment load was cloudy indicating higher levels

of sediment in suspension.
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Chapter Four

CONCLUSION AND FUTURE TRENDS

The present work demonstrated the utility of digital remotely sensed data for

geobiophysical modeling the environmental impacts of surface coal mining in the

Appalachian coalfields. The study was carried out using various digitally processed

imagery, histogram equalization, 3-D visualization, and unsupervised classification

techniques for feature extraction in pattern recognition and geobiophysical modeling.

From the six bands available for processing the band selection 5, 3, and 2 were

found most useful for delineating and differentiating several environmental factors,

including coal, water bodies, barren lands, sediment load, and vegetation. On the other

hand, bands 4, 3, and 2 were suitable for delineating and differentiating the different

vegetation types (e.g., deciduous forests, conifer forest, and stressed vegetation).

Classification was improved by incorporating DEM data into the statistics

calculated within ER Mapper as a separate band of information for feature extraction.

This was most effective for areas of similar spectral signature but with a large separation

in elevations. There were four areas improved in feature extraction classification with the

inclusion of DEM data. The classes improved were coal, water, urban, and barren soil.

Principal component analysis was useful in reducing the amount of data and

discrimination of features in extraction for pattern recognition. This data reduction

occurred without losing valuable information for feature extraction. The inclusion of

DEM data with the PCA’s demonstrated a need for a weighting factor for the DEM data.

The decrease in the amount of redundant information demonstrated an increase in the

DEMs weighting on the classification. This influence was extremely strong which 
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deterred classification and showed contour zoning around elevation, this proved to be a

negative influence on the classification.

PC 1 and 2 proved better in clustering the images than did PC 1,2, and 3. The

explanation lies within the data, because PC 3 included most of the periodicity and noise,

thereby providing much unwanted information. This caused a high percentage of null

cells not used in the classification. A desired level of null cell values would be in the

range of 5% or less. With the inclusion of PC 3, this level was in the range of 40 %.

The classification worked best when all bands were included in the calculations as

compared with band combination 6, 5, and 2. The latter were chosen statistically to

provide the least amount of redundant information and demonstrated visually the best

combination to separate coal from water. This was a three band classified image which

improved processing time by reducing file size, but at the same time reduced the

accuracy substantially in the classification. Whereas the PCA combination 1 and 2

reduced file size more so than even the three band combination, but it did not seem to

diminish the quality of the classified image.

Several environmental indicators associated with surface coal mining were

evaluated. These included suspended sediment load, acid mine drainage, stressed

vegetation and land degradation, due to surface mining activity. Only two indicators

were found to be affecting Dewey Lake, a heavy suspended sediment load and land

degradation. Although not all were found within the study area, the techniques

developed here were valid for locating all four environmental indicators. These

techniques can be applied for a quick evaluation of mining activity within the

Appalachian mountains.
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A more detailed model could be made to research the environmental impact of the

mining operations. This would include additional physical parameters to the input data

for geobiophysical modeling. Some of these would include temperature, moisture, and

percentage cloud cover to develop a short-term trend evapotranspiration suitability index.

To develop a long term trend of climate suitability, data included would be relative

humidy, temperature, precipitation, wind velocity, and rain location. Adding data such as

vegetation, crops, and wildlife habitat would create a vegetation index.
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APPENDIX

Sample Sample 1 Location: close to dam

Element Concentration PPm
Ag 0.0074 Ppm
Ti -0.0754 PPm
Pd 0.0240 PPm
Zr -0.0565 PPm
Y -.00116 PPm
As 0.6089 PPm
Sn 0.2822 PPm
Se -0.5534 PPm
Ca -1.348 PPm
Al 0.2234 PPm
Mo 0.2418 PPm
Sr -0.3558 PPm
La -0.0142 PPm
Ba 0.0843 PPm
Co 0.0567 PPm
Ni -0.0563 PPm
Si 4.169 PPm
Sb 16.35 PPm
Mn -0.000 PPm
Fe -0.001 PPm
Pt -0.0521 PPm
Au -0.0113 PPm
Cr -.0016 PPm
Mg 24.14 PPm
V 0.005 PPm
Na 35.89 PPm
Be -0.0261 PPm
B 2.636 PPm
Ca 26.88 PPm
Zn 0.1452 PPm
Cd -0.0060 PPm
P -0.7617 PPm
Cu 0.0095 PPm
Pd 0.0816 PPm
Li 0.00217 PPm
K 9.873 PPm
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Sample Sample 2 Location: Boat ramp down from

camp ground

Element Concentration ppm
Ag -0.0144 PPm
Ti -0.08144 PPm
Pd 0.02755 PPm
Zr 0.01792 PPm
Y -.00113 PPm
As -0.08269 PPm
Sn 0.6575 PPm
Se 0.4733 PPm
Ca 52.01 PPm
Al 0.01506 PPm
Mo -.00890 PPm
Sr 0.9458 PPm
La -0.0149 PPm
Ba 0.09013 PPm
Co -0.0029 PPm
Ni -0.06157 PPm
Si 3.944 PPm
Sb 15.68 PPm
Mn -0.000 PPm
Fe -0.0058 PPm
Pt -0.0515 PPm
Au -0.0029 PPm
Cr -.00367 PPm
Mg 26.14 PPm
V 0.01362 PPm
Na 41.20 PPm
Be -0.0255 PPm
B 2.248 PPm
Ca 32.63 PPm
Zn 0.004083 PPm
Cd -0.08814 PPm
P -1.363 PPm
Cu 0.00408 PPm
Pd 0.0816 PPm
Li 0.002 PPm
K 11.44 PPm
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Sample Sample 3 Location: Sediment pond

Element Concentration PPm
Ag 0.016 PPm
Ti -0.08069 PPm
Pd 0.0049 PPm
Zr -0.02454 PPm
Y -.000660 PPm
As 0.7386 PPm
Sn 0.1641 PPm
Se 1.285 PPm
Ca 134.6 PPm
Al 0.4964 PPm
Mo -0.058 PPm
Sr 1.340 PPm
La -0.0138 PPm
Ba 0.0759 PPm
Co 0.0481 PPm
Ni -0.0666 Ppm
Si 2.524 PPm
Sb 9.886 PPm
Mn -0.000 PPm
Fe -0.000 PPm
Pt -0.0633 PPm
Au -0.0166 PPm
Cr -.01021 PPm
Mg 83.34 PPm
V 0.0118 PPm
Na 12.04 PPm
Be -0.02584 PPm
B 2.280 PPm
Ca 91.57 PPm
Zn -0.07 PPm
Cd -0.00 PPm
P -0.212 PPm
Cu 0.001586 PPm
Pd 0.6520 PPm
Li 0.001939 Ppm
K 31.30 PPm
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Sample Sample 4 Location: close to marina

Element Concentration ppm
Ag -5.048 Ppm
Ti -0.0778 PPm
Pd 0.01695 PPm
Zr -0.039 PPm
Y -.0015 PPm
As -1.031 PPm
Sn 0.4542 PPm
Se 1.110 PPm
Ca 49.50 PPm
Al 0.2701 PPm
Mo -0.000 PPm
Sr -0.9281 PPm
La -0.0146 PPm
Ba 0.0931 PPm
Co 0.000 PPm
Ni -0.0596 PPm
Si 3.889 PPm
Sb 14.96 PPm
Mn -0.000 PPm
Fe 0.010 PPm
Pt -0.0670 PPm
Au -0.02686 PPm
Cr 0.0110 PPm
Mg 26.88 PPm
V 0.014 PPm
Na 42.56 PPm
Be -0.0255 PPm
B 2.065 PPm
Ca 29.86 PPm
Zn 0.09677 PPm
Cd 0.1366 PPm
P -0.8540 PPm
Cu 0.0040 PPm
Pd 0.1745 PPm
Li 0.0011 Ppm
K 13.72 PPm
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Sample Sample 5 Location: Stratton Branch

Element Concentration ppm
Ag -0.0514 ppm
Ti -0.0771 ppm
Pd 0.0027 ppm
Zr -0.02613 PPm
Y -.001549 PPm
As 0.0759 PPm
Sn 0.07703 PPm
Se -0.6854 PPm
Ca 48.96 PPm
Al 0.00710 PPm
Mo -0.2110 PPm
Sr 0.9510 PPm
La -0.0141 PPm
Ba 0.0900 PPm
Co 0.01313 PPm
Ni -0.05967 PPm
Si 3.805 PPm
Sb 14.97 PPm
Mn -0.000 ppm
Fe -0.001 PPm
Pt -0.0693 PPm
Au 0.02887 PPm
Cr .00013 PPm
Mg 26.61 PPm
V -0.006 PPm
Na 42.55 PPm
Be -0.02312 PPm
B 1.892 PPm
Ca 29.66 PPm
Zn -0.026 PPm
Cd 0.08954 PPm
P -1.075 PPm
Cu 0.0014 PPm
Pd 0.1311 PPm
Li -.002724 Ppm
K 12.79 PPm
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