
Marshall University Marshall University

Marshall Digital Scholar Marshall Digital Scholar

Theses, Dissertations and Capstones

2023

A path planning framework for multi-agent robotic systems based A path planning framework for multi-agent robotic systems based

on multivariate skew-normal distributions on multivariate skew-normal distributions

Peter Estephan
peter.estephan@live.com

Follow this and additional works at: https://mds.marshall.edu/etd

 Part of the Applied Mathematics Commons, Artificial Intelligence and Robotics Commons, Robotics

Commons, Systems and Communications Commons, and the Systems Science Commons

Recommended Citation Recommended Citation
Estephan, Peter, "A path planning framework for multi-agent robotic systems based on multivariate skew-
normal distributions" (2023). Theses, Dissertations and Capstones. 1758.
https://mds.marshall.edu/etd/1758

This Thesis is brought to you for free and open access by Marshall Digital Scholar. It has been accepted for
inclusion in Theses, Dissertations and Capstones by an authorized administrator of Marshall Digital Scholar. For
more information, please contact beachgr@marshall.edu.

https://mds.marshall.edu/
https://mds.marshall.edu/etd
https://mds.marshall.edu/etd?utm_source=mds.marshall.edu%2Fetd%2F1758&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/115?utm_source=mds.marshall.edu%2Fetd%2F1758&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=mds.marshall.edu%2Fetd%2F1758&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/264?utm_source=mds.marshall.edu%2Fetd%2F1758&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/264?utm_source=mds.marshall.edu%2Fetd%2F1758&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/276?utm_source=mds.marshall.edu%2Fetd%2F1758&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1435?utm_source=mds.marshall.edu%2Fetd%2F1758&utm_medium=PDF&utm_campaign=PDFCoverPages
https://mds.marshall.edu/etd/1758?utm_source=mds.marshall.edu%2Fetd%2F1758&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:beachgr@marshall.edu

A PATH PLANNING FRAMEWORK FOR MULTI-AGENT ROBOTIC SYSTEMS
BASED ON MULTIVARIATE SKEW-NORMAL DISTRIBUTIONS

A thesis submitted to
Marshall University

in partial fulfillment of
the requirements for the degree of

Master of Science
in

Electrical and Computer Engineering
by

Peter Estephan
Approved by

Pingping Zhu, PhD, Committee Chairperson
Sanghoon Lee, PhD

Mohammed Ferdjallah, PhD

Marshall University
May 2023

APPROVAL OF THESIS

We, the faculty supervising the work of Peter Estephan, a�rm that the thesis, A Path Planning
Framework for Multi-Agent Robotic Systems Based on Multivariate Skew-Normal Distributions,
meets the high academic standards for original scholarship and creative work established by the
Department of Computer Sciences and Electrical Engineering and the College of Engineering and
Computer Sciences. This work also conforms to the formatting guidelines of Marshall University.
With our signatures, we approve the manuscript for publication.

Pingping Zhu, PhD, Department of
Computer Sciences and Electrical Engineering

Committee Chairperson Date

Sanghoon Lee, PhD, Department of
Computer Sciences and Electrical Engineering

Committee Member Date

Mohammed Ferdjallah, PhD, Department of
Computer Sciences and Electrical Engineering

Committee Member Date

ii

4/16/2023

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisor Prof. Pingping Zhu for the continuous

support of my study and research, for his patience, motivation, enthusiasm, and immense

knowledge. His guidance helped me in all the time of research and writing this thesis. Besides my

advisor, I would like to thank my thesis committee Professors, Prof. Sanghoon Lee, Prof.

Mohammed Ferdjallah and the department Chair Prof. Paulus Wahjudi.

iii

TABLE OF CONTENTS

List of Tables . vi

List of Figures . vii

List of Acronyms . viii

Abstract . ix

Chapter 1 INTRODUCTION . 1

Chapter 2 PROBLEM FORMULATION . 3

Chapter 3 BACKGROUND . 4

3.1 GAUSSIAN DISTRIBUTION . 4

3.1.1 NORMAL DISTRIBUTION . 4

3.1.2 GAUSSIAN MIXTURE MODEL . 5

3.2 SKEW NORMAL DISTRIBUTION . 6

3.2.1 FUNDAMENTAL SKEW NORMAL DISTRIBUTION 6

3.2.2 SKEW NORMAL MIXTURE MODEL . 8

3.3 BERNOULLI RANDOM FIELD BASED HILBERT OCCUPANCY 9

3.3.1 HILBERT OCCUPANCY CLASSIFICATION . 9

3.3.2 BERNOULLI RANDOM FIELD . 10

3.4 PARAMETER LEARNING . 11

3.4.1 EXPECTATION-MAXIMIZATION METHOD . 11

3.5 PATH-PLANNING BASED ARTIFICIAL POTENTIAL FIELD 12

3.5.1 L-2 NORM FUNCTION . 13

3.5.2 CAUCHY-SCHWARZ DIVERGENCE . 13

3.6 PATH-PLANNING BASED DISPLACEMENT INTERPOLATION. 14

Chapter 4 MULTIVARIATE SKEW-NORMAL MIXTURE MODEL 16

4.1 BERNOULLI RANDOM FIELD SKEW-NORMAL DISTRIBUTION 16

4.2 BERNOULLI RANDOM FIELD SKEW-NORMAL MIXTURE MODEL 18

4.3 PARAMETERS LEARNING FOR SKEW-NORMAL MIXTURE MODEL . . . 18

iv

4.3.1 PARAMETER LEARNING FOR BRF-SN . 19

4.3.2 PARAMETER LEARNING FOR BRF-SNMM . 23

Chapter 5 PATH-PLANNING BASED ON SKEW-NORMAL MIXTURE MODEL 29

5.1 PATH-PLANNING FOR SKEWED NORMAL DISTRIBUTION 29

5.1.1 PATH-PLANNINGOF DISTRIBUTIONS BASEDONDISPLACEMENT

INTERPOLATION FOR SND . 29

5.1.2 PATH-PLANNING OF DISTRIBUTIONS BASED ON ARTIFICIAL

POTENTIAL FIELD FOR SND . 30

5.2 PATH-PLANNING BASED ON SNMM . 36

5.2.1 PATH-PLANNING BASED ON DISPLACEMENT INTERPOLATION

FOR SNMM . 36

5.2.2 PATH-PLANNING BASEDONARTIFICIAL POTENTIAL FIELD FOR

SNMM . 37

5.3 PATH-PLANNING FOR GAUSSIAN MIXTURE MODEL 39

Chapter 6 SIMULATIONS AND RESULTS . 42

6.1 LEARNING PARAMETER COST FUNCTION COMPARISON 42

6.2 SIMULATION OF MULTI-AGENT PATH-PLANNING BASED BRF-SNMM 44

Chapter 7 CONCLUSION AND FUTURE WORK . 51

7.1 CONCLUSION AND DISCUSSION . 51

7.2 FUTURE WORK . 51

References . 52

Appendix A IRB Approval Letter . 55

Appendix B DERIVATIVE OF PARTIAL DERIVATIVES IN (4.13) and (4.14) 56

Appendix C DERIVATIVE OF PARTIAL DERIVATIVES IN (4.28) 58

v

LIST OF TABLES

Table 1 Performance Comparison . 46

vi

LIST OF FIGURES

Figure 1 Samples (N = 300) generated according to the BRF-SN distribution are

deployed with the obstacle in the workspace. The red points indicate the

samples, and the gray rectangle indicates the obstacle. 42

Figure 2 Comparison of parameter learning performances. (top) The NLL for di↵er-

ent approaches and di↵erent values of NC , and (bottom) the CS-divergences

between the ground-truth distribution and the estimated distributions (solid

curves) and the CS-divergences between the groundtruth PDF and the ap-

proximated PDFs from samples via the KDE method (dash curves). 44

Figure 3 The path-planning problem for VLSR systems in the artificial forest envi-

ronment. (a) Left - The red points indicate the initially deployed agents,

and the black circles represent the “trees” in the forest. (b) Right - The

desired agents’ PDF is shown, where the white areas are occupied by “trees”. 46

Figure 4 Snapshots of the trajectory of agents and corresponding PDFs generated by

the SNMM-DI approach. 47

Figure 5 Snapshots of the trajectory of agents and corresponding PDFs generated by

the SNMM-APF approach. 48

Figure 6 Snapshots of the trajectory of agents and corresponding PDFs generated by

the GMM-APF approach. 49

Figure 7 The path-planning problem for VLSR systems in the complex artificial forest

environment. (a) Left - The red points indicate the initially deployed agents,

and the black circles represent the “trees” in the forest. (b) Right - The

desired agents’ PDF is shown, where the white areas are occupied by “trees”. 49

Figure 8 Trajectories of agents in di↵erent colors generated by the SNMM-DI ap-

proach in the Forest-II simulation. 50

Figure 9 Trajectories of agents in di↵erent colors generated by the SNMM-APF ap-

proach in the Forest-II simulation. 50

vii

LIST OF ACRONYMS

Acronym Description

APF Artificial Potential Field

BHF Bernoulli Hilbert Field

BRF Bernoulli Random Field

BRF-SN Bernoulli Random Field Skew-Normal

BRF-SNMM Bernoulli Random Field Skew-Noemal Mixture Model

CDF Continuous Density Function

CSD Cauchy-Schwartz Divergence

DI Displacement Interpolation

DOC Distributed Optimal Control

EM Expectation Maximization

FUSN Fundamental Skew-Normal

FUSNMM Fundamental Skew-Normal Mixture Model

GMM Gaussian Mixture Model

MARS Multi-Agent Robotic System

MLE Maximum Likelihood Estimate

MVSN Multivariate Skew-Normal

NLL Negative Log Likelihood

PDF Probability Density Function

ROI Region of Interest

SN Skew-Normal

SNMM Skew-Normal Mixture Model

VLSR Very Large Scale Robotics

viii

ABSTRACT

Abstract-This thesis presents a path planning framework for a very-large-scale robotic

(VLSR) system in an known obstacle environment, where the time-varying distributions of agents

are applied to represent the multi-agent robotic system (MARS). A novel family of the

multivariate skew-normal (MVSN) distributions is proposed based on the Bernoulli random field

(BRF) referred to as the Bernoulli-random-field based skew-normal (BRF-SN) distribution. The

proposed distributions are applied to model the agents’ distributions in an obstacle-deployed

environment, where the obstacle e↵ect is represented by a skew function and separated from the

no-obstacle agents’ distributions. First, the obstacle layout is represented by a Hilbert occupancy

classification, which can be modeled by a Bernoulli random field and approximated from

observation data. Then, we construct the BRF-SN distributions from the approximated BRF and

the agents’ no-obstacle distributions, which can be modeled by a parametric distribution, e.g., the

multivariate normal distributions or Gaussian mixture distributions. To learn unknown

parameters from given samples, an Expectation-Maximization (EM) approach was used to

minimize the upper bound of the negative log likelihood (NLL) function. Finally, to implement a

time-varying path planning framework, two path-planning method are applied, an artificial

potential field (APF) method for the macroscopic distribution trajectory was proposed based on

`2 norm function and Cauchy-Schwarz Divergence, also a displacement interpolation (DI) method

is applied for the BRF-SN distribution.

This thesis involves no human subjects, surveys, or interviews, proposed framework

performance is demonstrated in a simulated virtual environment.

Index Terms – Skew normal mixture model, Bernoulli-random-field based skew-normal,

path-planning, multi-agent robotic system, expectation-maximization, artificial potential field.

ix

CHAPTER 1

INTRODUCTION

The advancement of intelligent controls has revolutionized the way we interact with

robotics systems, particularly for very-large-scale robotic (VLSR) applications. With the help of

artificial intelligence and machine learning algorithms, these systems are capable of performing

complex tasks with unprecedented speed and accuracy. This has led to the development of

sophisticated control systems that enable these robots to operate autonomously. These

advancements have opened up a range of possibilities for industries that rely on VLSR, including

search and rescue applications [1][2]. To construct and control a VLSR system or robotic swarms,

e.g., guiding or tracking robotic swarms in heavy obstacle deployed environments, a family of

intelligent control approaches is proposed based on the time-varying robots or agents’ spatial

distributions, for example, the distributed optimal control (DOC) based approaches [3], [4], [5],

[6]. In these approaches, the time-varying probability density functions (PDFs) of the

robots/agents in the environments are generated as the macroscopic control of the agents

trajectory, which are controlled to guide the robots/agents’ microscopic control. in this thesis we

propose novel statistical models to represent agents’ distributions based on the multivariate

skew-normal (MVSN) distribution. The formal definition of the univariate skew-normal family

was provided by Azzalini in 1985 [11]. After that, many di↵erent definitions of multivariate

skew-normal distributions were proposed [9], [10], [12], [13] and [14]. The key common of these

skew-normal distributions is that these PDFs are all proportional to the product between the

Gaussian PDF and a skewing function, where the skewing function is a probability function or a

cumulative density function (CDF). In applying a skewing function to the Gaussian distribution,

the interactions between the agents’ distributions and obstacles is considered, a novel

skew-normal (SN) distribution intoduced to model the agents’ macroscopic distributions. In

addition, to allow felixibility in representing the probabilistic models, skew-normal mixture

models (SNMM) are introduced. Then, a parameter learning algorithm is developed to estimate

unknown parameters of the SNMM from the agents’ positions. The simulation results shows that

the proposed algorithm can estimate the parameters of the SNMM, and the SNMM can provide

1

better macroscopic representation of agents in cluttered obstacle-deployed environments.Two

path-planning algorithms are developed to generate the trajectories of the agents probability

density functions (PDFs). To demonstrate the applications of the SNMM in the VLSR systems

problem, two SNMM-based path planning algorithms are developed to guide a group of agents to

traverse an artificial forest environment. The simulations also prove the e↵ectiveness of these two

path planning algorithms.

2

CHAPTER 2

PROBLEM FORMULATION

The Gaussian mixture model (GMM) is widely utilized to model the macroscopic states

because of its fewer parameters and rich representation ability. However, in this thesis, we expose

the GMM’s limitations and disadvantages when the interactions between agents and obstacles

matters significantly. Specifically, for high-density obstacles cluttered environments where the

individual obstacle’s scale is relatively small but the number of obstacles is relatively large, e.g.,

the forest [5], it is improper to specify the agents’ distribution by GMMs. There are no clear and

simple boundaries between agents and obstacles. Where applying GMM principles, will create a

burden of computational complexity, as the system requires a very large number of components to

successfully navigate the workspace area. It can be seen that the GMM’s limitation results from

its components, Gaussian or normal distributions. As one of the most popular and simple

continuous distributions, the normal distributions have been applied widely to describe data

statistical properties in scientific and engineering areas. But normal distribution’s mathematical

simplicity limits its flexibility and adaptivity. To describe the agents’ distributions more properly

to interact with complex environments, consider the problem of path planning trajectory of a

VLSR system compromised of N -cooperative agents, deployed according to a known normal

distribution. All agents share the task of navigating through the region of interest (ROI),

compromised of a high-density obstacle workspace W such that W 2 R2. The agents’ positions

are denoted by x 2W, and are modeled as multivariate random variables X⇤. The random

variables are defined as skew-normal distributions, such that X⇤ ⇠ FUSN(µ,⌃, Q) generated

from a normal distribution X ⇠ N(µ,⌃), here Q is interpreted as a skewing function, µ and ⌃ are

the mean and covariance, respectively. On the other hand, let B 2 W, denote the set of locations

occupied by obstacles in the workspace. In a setup, where the region of interest (ROI) is a

high-density obstacle workspace-deployed area, adopting a GMM technique will be

computationally expensive to accurately model the data, as the increased number of components

introduces a challenging factor in capturing complex distributions.

3

CHAPTER 3

BACKGROUND

3.1 GAUSSIAN DISTRIBUTION

The normal distribution is a type of probability distribution that describes the likelihood

of obtaining a particular set of two-dimensional data. It is also known as a bivariate normal

distribution.

3.1.1 NORMAL DISTRIBUTION

In a 2D environment, data is represented as a set of pairs of two-dimensional coordinates,

often denoted as (x, y). A normal distribution in this context is characterized by two parameters:

the mean vector µ, which represents the central tendency of the data, and the covariance matrix

⌃, which describes the spread and correlation between the x and y values. The shape of a normal

distribution in a 2D environment is elliptical, with the contours of the distribution oriented along

the direction of the covariance between x and y. The higher the covariance between the x and y

values, the more elongated the elliptical shape of the distribution. When the covariance between x

and y is zero, the normal distribution in the 2D environment reduces to a circular shape. The

normal distribution in a 2D environment is widely used in statistical analysis and modeling of

bivariate data. It allows researchers to describe the relationship between two variables and make

predictions about future observations.

A multivariate normal distribution is a generalization of the univariate normal

distribution to higher dimension d, which can mathematically be denoted as N(µ,⌃) ✓ Rd where

µ 2 Rd is a column vector of means and ⌃ 2 Rd⇥d is a positive definite covariance matrix. The

probability density function (PDF) of the Gaussian distribution can be expressed as:

f(x) = 2⇡�d/2 det (⌃)�1/2e�
1
2 (x�µ)T⌃�1(x�µ) (3.1)

the Gaussian distribution PDF can be representated in terms of µ and ⌃ as

fX(x) , �X(x|µ,⌃) (3.2)

4

Here the random variable X = [x1,x2], represents the dimension of components within the

distribution such that X ⇠ N(µ,⌃).

3.1.2 GAUSSIAN MIXTURE MODEL

Gaussian Mixture Models (GMM) are widely used and flexible probabilistic models for

representing complex data distributions. The basic idea behind GMMs is to model the data as a

mixture of multiple Gaussian distributions [10], each with its own mean, covariance matrix, and

mixing coe�cient. These models are particularly useful in situations where the data distribution

is multimodal, meaning that it has multiple distinct clusters or modes. By modeling each mode as

a separate Gaussian Distribution, GMMs allows for the representation of complex, multi-peaked

distributions that would be di�cult to model using a single Gaussian distribution. GMM is a type

of generative model, which means that it can be used to generate new data points from the

learned distribution. To do this, one first samples a Gaussian component from the mixture

according to the mixing coe�cients, and then generates a new data point from the chosen

Gaussian. This allows for the generation of synthetic data that resembles the original data

distribution, which can be useful for data augmentation and other applications. The probability

density function (PDF) of the Gaussian Mixture Model (GMM) can be expressed as the weighted

sum of Nc Gaussian distributions:

fX(x) =
NcX

i=1

!i�(x|µi,⌃i) (3.3)

where µi and ⌃i are the mean vector and the covariance matrix for the ith Gaussian component,

respectively. The GMM PDF represents the probability density of observing a data point x given

the GMM model parameters. The GMM model parameters can be estimated using the

Expectation-Maximization (EM) algorithm, which iteratively updates the mean vectors,

covariance matrices, and mixing coe�cients to maximize the likelihood of the observed data given

the model.

5

3.2 SKEW NORMAL DISTRIBUTION

Skew Normal Distribution [12][14] is a probability distribution that is a generalization of

the Normal Distribution but with an additional skewness parameter. It is often used in statistical

modeling to capture data with non-symmetric and skewed distributions. The probability density

function (PDF) of the Skew Normal Distribution is given by:

f(x) = 2�(x)�(�x) (3.4)

where �(x) is the PDF of the Gaussian distribution defined in (3.2) and �(x) is the cumulative

distribution function (CDF), while � is the skewness parameter, the CDF of the distribution is

defined as follow

�(�x) , F (x) =
1

2


1 + erf

✓
�(x� µ)

�
p
2

◆�
(3.5)

the function erf(z) = 2p
⇡

R z
0 e�t2dt is the error function for the continuous probability

distribution. The skew normal distribution is a generalization of the normal distribution that

allows for skewness (as indicated by the parameter �). If � = 0, the skew normal distribution

reduces to the normal distribution with mean µ and standard deviation �. When � > 0, the

distribution is skewed to the right, and when � < 0, the distribution is skewed to the left, where

the distribution is often skewed due to the presence of outliers and extreme events. According to

[12], many di↵erent families of skew-normal distributions can be contained.

3.2.1 FUNDAMENTAL SKEW NORMAL DISTRIBUTION

The Fundamental Skew Normal Distribution (FUSN) is a generalization of the Skew

Normal Distribution (SN) that allows for more flexible skewness patterns and can model both

positive and negative skewness [12]. A FUSN is defined and a modified version is provided as

follows: Consider two random vectors, X 2 Rn and Z 2 Rm, where the random vector X is

multivariate normal distribution, such that X 2 N(µ,⌃). The random variable, X⇤ = [X|X < ⇠],

has a fundamental skew-normal (FUSN) distribution denoted by X⇤ ⇠ FUSNn,m(µ,⌃, QZ), with

6

a probability density function (PDF) is given by:

fX⇤(x) = K�1
Z �X(x|µ,⌃)QZ(x) (3.6)

where �x(x|µ,⌃) is the PDF of the multivariate normal random vector X,

QZ(x) , P (Z < ⇠|X = x) (3.7)

and

KZ , P (Z < ⇠) (3.8)

The term Kz is a normalizing constant defined in (3.8) as the CDF of Z, ⇠ is a probability

setpoint such that 0  ⇠  1, here Q(x) can be interpreted as a skewing function. According to

(3.7), the skewing function can be expressed by

QZ(x) = P (Z < ⇠|X = x)

=

Z ⇠

�1
�Z(z|Dx+ ⌫,⌦)dz

=

Z ⇠�(Dx+⌫)

�1
�Z(z|0,⌦)dz

= �Z (⇠ � (Dx+ ⌫)|0,⌦)

(3.9)

where �Z and �Z indicate the PDF and CDF of the multivariate normal random vector Z,

respectively. Besides, the normalizing constant KZ can be expressed by

KZ = P (Z < ⇠) = �Z(⇠|Dµ+ ⌫,D⌃DT + ⌦) (3.10)

Therefore, by substituting (3.9) and (3.10) in (3.8) we obtain a FUSN associated with the

following PDF

fX⇤(x) =
�X(x|µ,⌃)�Z(⇠ � (Dx|0,⌦))
�Z(⇠|Dµ+ ⌫,D⌃D+ ⌦))

(3.11)

7

If assuming that µ = 0, ⌫ = 0, ⇠ = 0, ⌃ = Ip, ⌦ = Iq, and D = �⇤, where Ip and Iq are identity

matrices, respectively, we can obtain the following PDF

fX⇤(x) =
�X(x|0, In)�Z(⇤x|0, Ip)

�Z(0|0,⇤⇤T + Iq)
(3.12)

which is equivalent to the multivariate skew normal distribution considered in (3.6) and (3.7).

Furthermore, considering the case of m = 1 and ⇤ = �T , where � 2 E is a column vector, we can

have

fX⇤(x) = 2�X(x|0, Iq)�Z(�
Tx|0, 1) (3.13)

which is equivalent to the SN in (3.3), by considering p = q = 1, the FUSN PDF can be expressed

by

fX⇤(x) = 2�X(x|0, 1)�Z(�x|0,1) (3.14)

Therefore, the SN is a special case of the FUSN, where the skewness is restricted to a linear

function of the data. In contrast, the FUSN allows for more complex and non-linear skewness

patterns, making it more flexible and applicable to a wider range of data distributions. The

FUSN has many applications in statistical modeling and in image processing, where it has been

used to model the distribution with complex skewness patterns.

3.2.2 SKEW NORMAL MIXTURE MODEL

The Fundamental Skew Normal Mixture Model (FUSNMM) is an extension of the

Fundamental Skew Normal Distribution (FUSN), which models a mixture of FUSN distributions

[13]. The FUSNMM can capture complex patterns of skewness and multimodality in the data,

making it a powerful tool for modeling various types of data distributions. The probability

density function (PDF) of the FSNMM is given by:

f(x) =
NcX

i=1

!ifi(x), (3.15)

where !i is the mixing weight for the Ncth component such that
PK

i=1 !i = 1, and fi(x) is the

PDF of the ith component, which is a FUSN distribution with parameters (µi,�i,�i). The

8

parameters of the FUSNMM can be estimated using the Expectation-Maximization (EM)

algorithm or other optimization methods. The FSNMM has many applications in statistical

modeling, such as in finance, where it can be used to model financial returns with complex

patterns of skewness and multimodality. It can also be used in image processing and computer

vision, where it has been used to model the distribution of image intensities with multiple modes

and varying degrees of skewness. The FSNMM is a more flexible model than the FUSN, as it

allows for the modeling of more complex data distributions with multiple modes and varying

degrees of skewness. The FUSNMM can be viewed as a generalization of the FUSN, where the

FUSN is a special case of the FUSNMM with only one component. The FUSNMM can be used to

model a wide range of data distributions, making it a powerful tool for statistical modeling and

analysis.

3.3 BERNOULLI RANDOM FIELD BASED HILBERT OCCUPANCY

Bernoulli random field-based Hilbert occupancy (BHF) is a method of modeling the

occupancy of an environment using a Hilbert curve and a Bernoulli random field. In this method,

the environment is divided into a grid of cells, and each cell is assigned a binary value to indicate

whether it is occupied (1) or free (0). The goal is to estimate the occupancy status of each cell

based on measurements of the environment. The BHF method uses a Hilbert curve to traverse

the grid of cells in a space-filling order. The Hilbert curve provides a way to visit all the cells in a

particular order that preserves spatial locality. This property is useful for modeling environments

where adjacent cells are likely to have similar occupancy statuses.

3.3.1 HILBERT OCCUPANCY CLASSIFICATION

Hilbert occupancy classification is a way to represent an environment using Hilbert curve

[17], the occupancy represents the status (occupied/free) of a continuous function over a

workspace W 2 Rd. The Hilbert map represents a probability map learned from local ordering

data points on W [16]. Let x 2 W be any point in W and Y 2 {0, 1} be defined as a categorical

9

random variable such that the Hilbert occupancy classification map at the position x is defined as

P (Y = 1|x) = p(x)

P (Y = 0|x) = 1� p(x)
(3.16)

considering the data sample D = {xi}Nn=1, here x 2 W represents auxiliary data points on the

workspace with the resolution �x and �y, while n = 1, ..., N is the environment auxiliary data

points collected. The probability P (Y |x) can be updated in terms of the Hilbert function defined

on W as follows

P (Y = 1|x) = p(x) =
ef(x)

1 + ef(x)

P (Y = 0|x) = 1� p(x) =
1

1 + ef(x)

(3.17)

3.3.2 BERNOULLI RANDOM FIELD

A Bernoulli random field is a type of spatial stochastic process that models binary-valued

data [20] (i.e., data that can take only two values, such as presence or absence). In a Bernoulli

random field, each point is associated with a binary variable that takes a value of 0 or 1,

depending on whether the point is in a particular state or not. A Bernoulli random field is

characterized by a probability distribution that specifies the probability of observing a particular

configuration of binary variables in the field. The probability of a configuration is determined by

a set of parameters that capture the spatial dependence structure of the field. Let B 2 W denote

the set of the locations occupied in the workspace, and let Y (x) a Bernoulli random variable such

that

Y : W ! {0, 1}

x 7! Y (x) =

8
>><

>>:

0 if x /2 B

1 if x 2 B

(3.18)

then, we obtain the random field Y defined by

Y , {Y (x) : x 2 W} (3.19)

10

3.4 PARAMETER LEARNING

Parameter learning is a process of estimating the parameters of a statistical or machine

learning model from data. The parameters of a model are values that determine the behavior of

the model and are typically unknown a priori. Parameter learning involves finding the values of

these parameters that best fit the data, so that the model can be used to make accurate

predictions or inferences. There are several methods for parameter learning, depending on the

type of model and the available data. Some common methods include:

Maximum Likelihood Estimation (MLE) [25] is a statistical method used to estimate the

parameters of a probability distribution that best explains a given set of observations or

data. The goal of MLE is to find the values of the parameters that maximize the likelihood

of observing the data, assuming a certain probability distribution.

Gradient descent [16] is an optimization algorithm used to find the minimum of a function

by iteratively adjusting the parameters of the function. The basic idea behind gradient

descent is to start with an initial guess for the parameter values and then move iteratively

in the direction of the negative gradient of the function with respect to those parameters.

This direction is known as the steepest descent, and the size of each step is determined by a

learning rate.

Expectation-Maximization (EM) method [28] is explained in (textbfsection3.4.1.

3.4.1 EXPECTATION-MAXIMIZATION METHOD

The Expectation-Maximization (EM) algorithm is a powerful and widely used method for

estimating the parameters of statistical models that involve latent variables, i.e., variables that

are not observed in the data [26]. The EM algorithm is an iterative procedure that alternates

between two steps: the E-step and the M-step. In the E-step, the algorithm estimates the values

of the latent variables given the current estimates of the model parameters. This is done using

Bayes’ rule, which computes the conditional probability distribution of the latent variables given

the observed data and the current estimates of the parameters. The E-step results in a set of

expected values of the latent variables, hence the name ”Expectation” step. In the M-step, the

11

algorithm updates the estimates of the model parameters based on the expected values of the

latent variables obtained in the E-step. This is done by maximizing a likelihood function that

incorporates the expected values of the latent variables. The M-step results in a new set of

parameter estimates, hence the name ”Maximization” step. The EM algorithm iterates between

the E-step and the M-step until convergence is reached, i.e., until the change in the estimated

parameters between successive iterations falls below a predefined threshold. The EM algorithm is

particularly useful in situations where some of the variables are unobserved or missing, and need

to be estimated from the available data.

3.5 PATH-PLANNING BASED ARTIFICIAL POTENTIAL FIELD

Artificial Potential Field (APF) is a widely used approach for path planning in robotics

and autonomous systems [27]. The basic idea of APF is to model the environment as a potential

field, where each point in the space is assigned a scalar value that represents its potential. The

robot is then guided to move along the gradient of the potential field, which corresponds to the

direction of decreasing potential. In this way, the robot can avoid obstacles and reach its goal

while minimizing its energy consumption. In an APF-based path planning system, the

environment is typically represented by two types of potential fields: the attractive potential field

and the repulsive potential field. The attractive potential field is centered at the goal location and

encourages the robot to move towards it. The repulsive potential field, on the other hand, is

centered on obstacles and repels the robot away from them. The total potential field is computed

as a sum of the attractive and repulsive potentials, and the robot is guided to move along the

negative gradient of the total potential field. The resulting path is a smooth and continuous

trajectory that avoids obstacles and reaches the goal, such that

U total =
NX

n=1

Uattractive
n + U repulsive

n (3.20)

where n = 1, ..., N denotes the total number of robots or agents, Uattractive and U repulsive

represent the attractive and repulsive potentials, respectively.

12

3.5.1 L-2 NORM FUNCTION

The L2-norm function, also known as the Euclidean norm or the `2-norm, is a

mathematical function that measures the length or magnitude of a vector in Euclidean space [21].

The L2-norm is defined as the square root of the sum of the squares of the vector’s components.

Mathematically, the L2-norm of a vector xn = [x1,x2, ...,xN] is given by:

||x|| =
q
(x2

1 + x2
2 + ...+ x2

N)

=

vuut
NX

n=1

x2
n

(3.21)

Geometrically, the L2-norm of a vector represents the distance of the vector from the origin of the

coordinate system to its endpoint, which is also known as the vector’s magnitude or length. The

L2-norm is commonly used in various applications, such as machine learning, signal processing,

and optimization, where it is used to measure the similarity or distance between two vectors or to

regularize the objective function in optimization problems. One useful property of the L2-norm is

that it satisfies the triangle inequality, which means that the length of the sum of two vectors is

always less than or equal to the sum of their lengths. Another useful property is that it is

di↵erentiable with respect to its components, which makes it convenient for optimization

algorithms that require gradient-based optimization. The L2-norm is just one of many di↵erent

norm functions that can be used to measure the length or distance of a vector.

3.5.2 CAUCHY-SCHWARZ DIVERGENCE

The Cauchy-Schwarz Divergence (CSD) is a measure of the dissimilarity or distance

between two probability distributions [21]. It is based on the Cauchy-Schwarz inequality , which

is a fundamental inequality in mathematics that relates the inner product of two vectors to their

norms. The CSD is often used in machine learning and information theory, where it is used to

compare di↵erent models or to measure the quality of a generative model. Mathematically, the

13

CSD between two probability distributions p and q is defined as:

D(p||q) = � log

R
p(x)q(x)dxqR

p(x)dx
R
q(x)dx

(3.22)

where D(p||q) denotes the CSD between p and q, and the integral is taken over the entire space of

possible events or outcomes. The numerator of the equation represents the inner product between

p and q, and the denominator is the product of their L2-norms. The logarithm is used to convert

the ratio into a distance measure. The CSD has several useful properties, such as being a

symmetric and non-negative measure of divergence, and satisfying the data processing inequality,

which means that the divergence between two distributions can only decrease or remain the same

after a data processing step. The CSD can also be used as a building block for other divergence

measures, such as the Total Variation (TV) distance [29], Kullback-Leibler divergence [30] and the

Jensen-Shannon (JS) divergence [31] .

3.6 PATH-PLANNING BASED DISPLACEMENT INTERPOLATION

Path-planning based displacement interpolation is a technique used in computer graphics

and animation to generate smooth and natural-looking motion paths for objects or characters.

The goal of displacement interpolation is to generate a sequence of intermediate positions and

orientations for an object or character, based on a given set of keyframes or control points.

Path-planning based displacement interpolation approaches this problem by first generating a

smooth path that connects the keyframes or control points. This path is typically represented as

a sequence of positions or waypoints that the object or character must follow.

Once the path is generated, the next step is to interpolate the object or character’s position and

orientation along the path to generate a sequence of intermediate frames. This is done by

computing the displacement vector between each pair of consecutive waypoints on the path, and

then using this displacement vector to compute the object or character’s position and orientation

at each intermediate frame. The displacement vector can be computed using various techniques,

such as linear interpolation, cubic spline interpolation, or other interpolation methods. It is

commonly used in computer animation and game development to create realistic and fluid

14

character animations. By using path-planning algorithms and interpolation techniques,

displacement interpolation can generate smooth and natural-looking motion paths. More details

are provide in Chapter 5 sections 5.1.1 and 5.2.1.

15

CHAPTER 4

MULTIVARIATE SKEW-NORMAL MIXTURE MODEL

A fundamental skew normal distribution (FUSN) was defined in (3.8), building o↵ of that

definition, a modified version of SN based Bernoulli Random Field distribution is introduced to

better understand the SND behavior in a binary environment.

4.1 BERNOULLI RANDOM FIELD SKEW-NORMAL DISTRIBUTION

Consider the Bernoulli Random Field (BRF) defined in (3.18) and (3.19) where

Y , {Y (x) : x 2 Ed}, which is specified by a paramater function q(x) defined by

q : Rd ! [0, 1]

x 7! E[Y (x)] = P (Y (x = 1)) (4.1)

Then given a multivariate normal random variable, X ⇠ N(µ,⌃), and a shape parameter

⇣ 2 [0, 1]. The random variable X⇤ , [X|q < ⇣], here the random variable q , q(X) and X⇤ has

a Bernoulli random field skew normal (BRF-SN) distribution denoted by X⇤ ⇠ BRFSN(µ,⌃, q)

with a given PDF

fX⇤(x) = K�1
q �x(x|µ,⌃)Qq(x)

=
�x(x|µ,⌃)Qq(x)

EX⇠�X,i [Qq(X)]

(4.2)

where Qq(x) , P (q < ⇣|X = x) and Kq , P (q < ⇣) = Ex[Qq(x)] Since q is a deterministic

binary function the range of Qq is {0, 1} such that

Qq(x) = P (q < ⇣|X = x) =

8
>><

>>:

0 if q(x) � ⇣

1 if q(x) < ⇣

(4.3)

Thus, the BRFSN distribution can be interpreted as a truncated and normalized normal

distribution using the skewing function Qq. To obtain a smooth skew function, referring to the

16

FUSN in section (3.2.1), we introduce an observation random vector Z(x) 2 Rm in the statistical

model of multi-agent exploration. Assume that the random vector [Z(x)|Y (x) = y] is the

multivariate normal distribution, and the corresponding PDF is specified by

�Z|Y (z|y) =

8
>><

>>:

�Z(z|⌫0,⌦0) if y = 0

�Z(z|⌫1,⌦1) if y = 1

(4.4)

here, ⌫i 2 Rm and ⌃i are mean and covariance matrices, respectively, for i = 1, 2, which are all

determined by the obstacle observation model. The random vector Z(x) can be interpreted as a

two-component Gaussian mixture model (GMM), and its PDF can be expressed by

fZ(z) =
X

i={0,1}

P (Y (x = i)�Z|Y (z|Y (x) = i) (4.5)

Thus, we obtain another random field, Z, referred to as the Gaussian-mixture-random-field

(GMRF), which is defined by

Z , {Z(x) : x 2 W} (4.6)

as Z is specified by the parameter function q, the mean vectors ⌫i and the covariance matrices ⌦i,

for i = 1, 2. Furthermore, consider the two-component random field defined in (4.6) with the PDF

of the two-component Gaussian mixture random variable Z(x) 2 Rm is provided by

fZ(z) = (1� !)�Z(z|⌫0,⌦0) + ⇡�Z(z|⌫1,⌦1) (4.7)

where, ! is the evaluation of the parameter function, such that ⇡ = q(x) 2 [0, 1], and

⇡ = [⇡ (1� ⇡))T indicated the weights of the Gaussian components. Then given the multivariate

normal random vector, X ⇠ N(µ,⌃), and a parameter vector, ⇣ 2 Rm, a random vector

X⇤ , [X|Z < ⇣], can be constructed. The random variable X⇤ is a skew-normal (SN) distribution,

with a PDF dentoted by

fX⇤(x) = K�1
Z �X(x|µ,⌃)QZ(x) (4.8)

17

4.2 BERNOULLI RANDOM FIELD SKEW-NORMAL MIXTURE MODEL

To describe a more complex agents’ distribution, rather than the normal distribution, we

extend the BRF-SN (4.2) distribution to the Bernoulli random field skew-normal mixture model

(BRF-SNMM) associated with the following PDF,

'X⇤(x) ,
NcX

i=1

!ifX⇤(x|µi,⌃i)

=
NcX

i=1

!i
�x,i(x|µi,⌃i)QY x)

EX⇠�X,i [QY (X)]

(4.9)

Which consists of Nc BRF-SN components, {�x,i}Nc
i=1 defined in (4.1) associated with the

corresponding weights, {!i}Nc
i=1, given the skewing function QY (x). The BRF-SNMM is specified

by 2 components, the component parameters, ⇥i = (µi,⌃i), for i = 1, ..., Nc, and the weight

parameters, ! = [!1...!Nc], such that
PNc

i=1 !i = 1 and !i > 0 for all i, which are also denoted for

short as

⇥1:Nc = {(!i,⇥i)}Nc
i=1 (4.10)

4.3 PARAMETERS LEARNING FOR SKEW-NORMAL MIXTURE MODEL

Consider that there are N samples, D = {xn}Nn=1, which are all independently sampled

according to the BRF-SN distribution associated with the PDF fX⇤(x|µ,⌃). To specify the

unknown underlying parameters, ⇥ = (µ,⌃) from the samples, we can construct the following

negative log-likelihood (NLL) cost function,

J(⇥) = �ln
NY

n=1

fX⇤(xn|µ,⌃)

=
NX

n=1

L(xn, µ,⌃)

(4.11)

18

where the term, (xn|µi,⌃i) is defined by

L(xn|µ,⌃) , �lnfX⇤(xi|µ,⌃)

= �ln

�Xn(x|µi,⌃i)Q(xn)

EX⇠�X [Q(X)]

�

= �ln[�Xn(x|µi,⌃i)]� ln[Q(xn)] + ln[EX⇠�XQ(X)]

= �ln[�Xn(x|µi,⌃i)]� ln[Q(xn)] + ln[

Z
�Xn(x|µi,⌃i)Q(X)]

(4.12)

4.3.1 PARAMETER LEARNING FOR BRF-SN

In order to minimize the cost function, we compile the derivative to the parameters,

µ and ⌃, which can be expressed by

@J(⇥)

@µ
=

NX

n=1

@

@µ
L(xn, µ,⌃) (4.13)

@J(⇥)

@⌃
=

NX

n=1

@

@⌃
L(xn, µ,⌃) (4.14)

where

@

@µ
L(xn, µ,⌃) = ⌃�1


EX⇠�x [XQ(X)]

EX⇠�x [Q(X)]
� xi

�
(4.15)

and

@

@⌃
L(xn, µ,⌃) =

1

2
⌃�1


EX⇠�x [Q(X)(X� µ)(X� µ)T]

EX⇠�x [Q(X)]
� (xn � µ)(xn � µ)T

�
⌃�1 (4.16)

The derivation of (4.15) and (4.16) are provided in Appendix B.

By substituting (4.15) into (4.13) we get

@J(⇥)

@µ
= N⌃�1

"
EX⇠�x [XQ(X)]

EX⇠�x [Q(X)]
�
PN

n=1 xn

N

#

= N⌃�1


EX⇠�x [XQ(X)]

EX⇠�x [Q(X)]
� µ̂

� (4.17)

19

Now, substituting (4.16) into (4.14) we get

@J(⇥)

@⌃
=

N

2
⌃�1

"
EX⇠�x [Q(X)(X� µ)(X� µ)T]

EX⇠�x [Q(X)]
�
PN

n=1(xn � µ)(xn � µ)T

N

#
⌃�1

=
N

2
⌃�1


EX⇠�x [Q(X)(X� µ)(X� µ)T]

EX⇠�x [Q(X)]
� ⌃̂(µ)

�
⌃�1

(4.18)

where µ̂ and ⌃̂(µ) are estimated parameters from the sample data set D, such that

µ̂ =

PN
n=1 xn

N
(4.19)

and

⌃̂(µ) =

PN
n=1(xn � µ)(xn � µ)T

N
(4.20)

It is noteworthy that ⌃̂(µ) is not the estimated covariance from the samples, D. The term, ⌃̂(µ),

is also a function with the argument of µ.

PARAMETER LEARNING BASED ON EM METHOD

Given the partial derivatives in (4.17) and (4.18), the underlying multivariate normal

distribution’s parameters, ⇥ = (µ,⌃), can be updated iteratively. However, to evaluate the partial

derivatives one has to calculate these expectations, which are expressed in terms of the skewing

function Q. Considering that the skewing function is determined by the occupied obstacles

location in the workspace such that B 2 W. Since the skewing function is an arbitrary function,

one cannot implement the expectations in closed-forms. Therefore, we propose a sampling-based

expectation-maximization method to implement the parameter learning and approximate the

expected value. The first step is generating an auxiliary data set of M samples, Dl
A = {⇣j}Mj=1, on

the grids of the workspace with the resolution of �x and �y, where the subscript ”A” indicated

the auxiliary date set and the superscript ”l” indicates the iteration index. The second step is to

approximate the partial derivatives of the cost function with respect to the current parameters,

⇥l, in (4.17) and (4.18), respectively, by summing over the auxiliary sample data set, such that

@J(⇥l)

@µl
⇡ N(⌃l)�1

"PM
j=1[⇣jQ(⇣j)�X(⇣j |⇥l)]
PM

j=1[Q(⇣j)�X(⇣j |⇥l)]
� µ̂

#
(4.21)

20

and

@J(⇥)

@⌃
⇡ N

2
(⌃l)�1

"PM
j=1

⇥
�X(⇣j |⇥)[Q(⇣j)(⇣j � µl)(⇣j � µl)T]

⇤

PM
j=1[�x(⇣j |⇥l)[Q(⇣j)]]

� ⌃̂(µl)

#
(⌃l)�1 (4.22)

The workspace resolution terms �x and �y exist in both the numerator and denominator

canceling each other out.

After obtaining the partial derivatives, we can update the parameter to the next iteration

l + 1 to obtain ⇥l+1 = (µl+1,⌃l+1) by

µl+1 = µl � �µ
@J(⇥l)

@µl
(4.23)

⌃l+1 = µl � �⌃
@J(⇥l)

@⌃l
(4.24)

here �µ, �⌃ 2 R+ are both positive scalars indicating the learning rates. Final step, is updating

the cost function J(⇥l+1) which is evaluated at the (l + 1)th iteration. The repeated procedure is

determined when the index is larger than a user-defined maximum iteration number, L¡ or the

evaluation of the cost function is less than a user-defined minimum threshold of the cost function,

Jth. Furthermore, using the auxiliary data, DA, the NLL cost function based on (4.11) can be

approximated as

J(⇥l) ⇡ N ln

2

4
MX

j=1

�X(⇣j |⇥l)Q(⇣j)�x�y

3

5�
NX

n=1

ln[�X(xn|µl,⌃l)]�
NX

n=1

ln[Q(xn)] (4.25)

The proposed pseudo summarizes the parameter learning method adopted in Algorithm 1.

However, to overcome the constraint of maintaining a positive definite for the covariance matrix

⌃. The Cholesky decomposition of the inverse of the covariance matrix is introduced to the NLL

cost function, such that

⌃�1 = LLT (4.26)

21

Algorithm 1 Parameter Learning for BRF-SN based µ and ⌃

Require:
Sample data set: D = {xn}Nn
Auxiliary sample data set: DA = {⇣j}Mj
Skewing function Q defined on W 2 Rnx

Initial parameters µ0 2 Rnx and ⌃0 2 Rnx⇥nx

Initial iteration index: l 0
Approximate the calculation of the cost function: J(⇥0) according to (4.11)
Set the termination parameters: L and Jth
Set the learning rates: �µ and �⌃

while (l  L) and
�
J(⇥l) > Jth

�
do

Approximate the partial derivatives, @J(⇥)
@µ and @J(⇥)

@⌃ , based on DA according to (4.21) and
(4.22).
Update the parameters ⇥l+1, according to (4.23) and (4.24)
Evaluate the approximation of the cost function, J(⇥l+1) according to (4.25)
Update the iteration index: l l + 1

end while

Where L is a lower triangular matrix. Thus, the L(xn, µ,⌃), can be rewritten as

L(xn, µ,L) = �ln[�X(xn|µ,LLT)]� ln[Q(xn)] + ln

Z
�X(x|µ,LLT)Q(X)

�
(4.27)

in order to update the cost function with respect to L, we start by expressing (4.27) derivative

with respect to L such that

@

@L
L(xn, µ,L) =


(xn � µ)(xn � µ)T �

EX⇠�X [(X� µ)(X� µ)TQ(X)]

EX⇠�X [Q(X])

�
L (4.28)

The development for (4.28) is provided in Appendix C. With that, the partial derivative of the

cost function with respect to L can be expressed as

@J(⇥l)

@L
=

NX

n=1

@

@Ll
L(xn, µ

l,Ll) =
NX

n=1


(xi � µl)(xi � µl)T �

EX⇠�X [(X� µl)(X� µl)TQ(X)]

EX⇠�X [Q(X)]

�
Ll

(4.29)

Therefore, based on (4.17) and (4.29), given the parameters at the lth iteration,

⇥l = (µl,⌃l) =
⇣
µl, (LlLlT)�1

⌘
. The parameter Ll+1 = L� �L

@J(⇥l)
@Ll , where �L 2 R is a small

positive scalar-valued learning rate. By applying all the necessary changes mentioned above to

22

the proposed Algorithm 1, an updated algorithm is proposed in Algorithm 2.

Algorithm 2 Parameter Learning for BRF-SN based µ and L

Require:
Sample data set: D = {xn}Ni
Auxiliary sample data set: DA = {⇣j}Mj
Skewing function Q defined on W 2 Rnx

Initial parameters µ0 2 Rnx and ⌃0 2 Rnx⇥nx

Initial iteration index: l 0
Approximate the calculation of the cost function: J(⇥0) according to (4.25)
Set the termination parameters: L and Jth
Set the learning rates: �µ and �L

while (l  L) and
�
J(⇥l) > Jth

�
do

Obtain L according to (4.26)

Approximate the partial derivatives, @J(⇥)
@µ and @J(⇥)

@L , based on DA according to (4.21) and
(4.29).
Update the parameters ⇥l+1, according to (4.23), (4.24) and (4.26)
Evaluate the approximation of the cost function, J(⇥l+1) according to (4.25)
Update the iteration index: l l + 1

end while

4.3.2 PARAMETER LEARNING FOR BRF-SNMM

We extend the BRF-SN distribution to the Bernoulli random field-skewed normal mixture

model (BRF-SNMM) associated with the PDF according to (4.9), with component parameters

denoted in (4.10). Because the BRF-SNMM is similarly structured to a GMM, we use the EM

method to learn parameters from given samples. First, we consider an Nc-dimensional categorical

random variable, C 2 {1, ..., Nc}, indicating the label of the BRF-SNMM components. Given the

data samples D = {xn}Nn=1 and the parameters, ⇥1:Nc , the conditional distribution can be

specified by the component weight !, such that !i = P (C = i|⇥1:Nc), for i = 1, ..., Nc. Thus, the

BRF-SN distribution, fX⇤(x|µi,⌃i), can be interpreted as the conditional distribution of the

random variable X⇤, given X⇤ is associate with the ith BRF-SN component, such that

'X⇤|C(x|C = 1,⇥1:Nc) = fX⇤(x|µi,⌃i) (4.30)

23

Similarly, to (4.11), the cost function can be expressed by

J(⇥) = �ln
NY

n=1

'X⇤(xn|µ,⌃)

=
NX

i=1

L(xn,⇥1:Nc)

(4.31)

where the term, L(Xi,⇥1:Nc) is defined by

L(Xi,⇥1:Nc) , � ln['X⇤(x|⇥1:Nc)]

= � ln

"
NcX

i=1

!ifX⇤(x|µi,⌃i)

(4.32)

thus, the PDF of the BRF-SNMM defined in (4.30) can be interpreted as the marginal of the joint

PDF such that

'X⇤(x|⇥1:Nc) =
NcX

i=1

P (C = i|⇥1:Nc)'X⇤|C(x|C = i,⇥1:Nc)

= 'X⇤,C(x, C = i,⇥1:Nc)

(4.33)

then, the complete likelihood can be interpreted in terms of the expectation with respect to Nc,

such that

L(xn,⇥1:Nc) = � ln ['X⇤(x|⇥1:Nc)]

= � ln ['X⇤,C(xi, C = i|⇥1:Nc)]

= � ln

⇢
EC|xi


'X⇤,C(xn, C = i|⇥1:Nc)

P (C = i|xi)

��
(4.34)

Instead of minimizing the NLL of the data sample D, like the GMM approach, we solve the

parameter learning problem by minimizing the upper bound of the NLL which is denoted by

Ĵ(�,⇥1:Nc) ,
NX

n=1

L̂(xn, �i,⇥1:Nc) (4.35)

24

Here �i , P (C = i|xi) and � = [�n,i]
N,Nc
n=1,i=1 is a N ⇥Nc matrix. We use the EM method to solve

the optimization problem. In the E-step, we calculate the distribution P (C|xi) for every sample

xn, given the parameters, ⇥l
1:Nc

, at the l-th iteration, such that

�n,i = 'C|X⇤(C = i|xn,⇥
l
1:Nc

)

=
'X⇤(xn, C = i|⇥l

1:Nc
)

PNc
i=1 'X⇤(xn, C = i|⇥l

1:Nc
)

=
!l
ifX⇤(x|µl

i,⌃
l
i)PNc

i=1 !
l
ifX⇤(x|µl

i,⌃
l
i)

(4.36)

where the superscript l indicated that the distributions, P (C|xn) for n = 1, ..., N , specified by

�l = [�n,i]
N,Nc
n=1,i=1 are all obtained based on ⇥l

1:Nc
. In the M-step, fixing �l obtained in the E-step,

we need to minimize Ĵ(�l,⇥1:Nc) with respect to the parameters for the (l + 1)th iteration, such

that

⇥l+1
1:Nc

= arg minĴ(�l,⇥1:Nc)

= arg min
NX

n=1

L̂(xn, �
l
i,⇥1:Nc)

= arg min
NX

n=1

NcX

i=1

�ln,i ln
�ln,Nc

!ifX⇤(x|µi,⌃i)

= arg min
NX

n=1

NcX

i=1

n
��ln,i [ln{!i}+ ln fX⇤(x|µi,⌃i)]

o

(4.37)

Referring back to section (3.2.2),
PNc

i=1 !i = 1 and !i > 0 for all Nc, with the weight component

!l+1
i = [!l+1

1 , ...,!l+1
Nc

] can be obtained by

!l+1
i =

PN
i=1 �

l
n,i

N
, for i = 1, ..., Nc (4.38)

In order to obtain the parameters for ⇥l+1
i = (µl+1

i ,⌃l+1
i , first we calculate the derivatives of

Ĵ(�l,⇥1:Nc) with respect to µi and Li, since we established the need to use Cholesky

decomposition to maintain a positive definite covariance matrix ⌃, the partial derivatives are

denoted as follows. According to (4.17), the BRF-SNMM will incorporate the weight components

25

such that the partial derivative with respect to µ

@

@µi
Ĵ(�l,⇥1:Nc) = !l+1

i N⌃�1
i

EX⇠�xn
[XQ(X)]

EX⇠�xn
[Q(X)]

� µ̂i

�
(4.39)

Now, According to (4.29), the BRF-SNMM will incorporate the weight components such that the

partial derivative with respect to Li

@

@Li
Ĵ(�l,⇥l

i) = !l+1
i

NX

n=1


(xn � µ)(xn � µ)T �

EX⇠�X [(X� µ)(X� µ)TQ(X)]

EX⇠�XQ(X)

�
L (4.40)

Furthermore, summing over the auxiliary sample, to (4.39) and (4.40) respectively, we obtain

@

@µi
Ĵ(�l,⇥1:Nc) ⇡ N(⌃l)�1

"PM
j=1[⇣jQ(⇣j)�X(⇣j |⇥l)]
PM

j=1[Q(⇣j)�X(⇣j |⇥l)]
� µ̂i

#
(4.41)

@

@Li
Ĵ(�l,⇥i) ⇡ N

"
⌃̂i(µ

l
i)�

PM
j=1

⇥
Q(⇣j)(⇣j � µl)(⇣j � µl)T�X(⇣j |⇥l)

⇤

EX⇠�XQ(X)
Ll

#
(4.42)

here, µ̂i and ⌃̂i(µi) are defined in (4.18) and (4.19), respectively, for all i. Furthermore, the cost

function J(⇥1:Nc) and its upper nound Ĵ(�,⇥1:Nc) can be expressed and approximated,

respectively, by

J(⇥1:Nc) = � ln
Y

'X⇤(xn|⇥1:Nc)

= �
NX

n=1

ln[
NcX

i=1

!ifX⇤(x|µi,⌃i)]

= �
NX

n=1

ln

"
NcX

i=1

!i
�X,i(xn|µi,⌃i)Q(xi)

EX⇠�X,i [Q(xn)]

#

⇡ �
NX

n=1

ln

"
NcX

i=1

!i
�X,i(xn|µi,⌃i)Q(xn)PM

j=1 �X(⇣j |⇥l
i)Q(⇣j)�x�y

#

(4.43)

26

and

Ĵ(�,⇥1:Nc) =
NX

n=1

NcX

i=1

n
��ln,i [ln!i + ln fX⇤(xn|µi,⌃i)]

o

= N
NcX

i=1

!l+1
i �

NX

n=1

NcX

i=1

��ln,i ln fX⇤(xn|µi,⌃i)

=
NcX

i=1

!l+1
i Ĵi(�

l
i,⇥

l
i)

(4.44)

where

Ĵi(�
l
i,⇥

l
i) = N ln

2

4
MX

j=1

�X(⇣j |⇥l
i)Q(⇣j)�x�y

3

5�N ln!i �
N

PN
n=1 �

l
n,i

ln [�X(x|⇥i)Q(xn)] (4.45)

Finally, we can update the parameters to obtain ⇥l1+1
i = (µl1+1

i ,⌃l1+1
i) for i = 1, ..., Nc, such that

µl+1
i = µl

i � �µ
@Ĵ(⇥l)

@µi
(4.46)

Ll+1
i = Ll

i � �L
@Ĵ(⇥l)

@Li
(4.47)

⌃l+1
i =

⇣
Ll+1
i Ll+1

i
T
⌘�1

(4.48)

Applying the BRF-SNMM, in Algorithm 3, there are 2 while loops associated with 2 iteration

indices, l1 and l2, respectively. The iterations associated with the index l1 is applied to learn the

parameter !, while with the fixed !, the iteration associated with the index l2 are applied to learn

the parameters, ⇥i separately, for i = 1, ..., Nc.

27

Algorithm 3 Parameter Learning for BRF-SNMM based µ and L

Require:
Sample data set: D = {xn}Nn
Auxiliary sample data set: DA = {⇣j}Mj
Skewing function Q defined on W 2 Rnx

Set the number of mixture components: Nc

Initial iteration index: l1 0 and l2 0
Initial parameters ⇥l1

1:Nc
= {(!l1

i ,⇥
l2
i)}

Nc
i=1

Approximate the upper bound of the cost function: Ĵi(�l
i,⇥

l
i) according to (4.44)

Set the termination parameters: L1, L2 and �Jth
Set the learning rates: �µ and �L

while (l1  L1) and J(⇥l1
1:Nc

> Jth) do

Generate the matrix �l1 = [�l1n,i]
N,Nc
n=1,i=1 according to (4.36) given ⇥l1

1:Nc
and DA

Calculate component weights, !l1+1, according to (4.38)
Update parameters: ⇥l1+1

1:Nc
= {(!l1+1

i ,⇥l2
i)}

Nc
i=1

for i = 1, ..., Nc do
Reset the iteration index l2 0
while (l2 < L2) and Ĵi(�

l1
i ,⇥

l2
i) > �Jth do

Obtain Ll2
i based on ⌃l2

i , according to (4.26)

Approximate @

@µ
l2
i

Ĵ(�l1 ,⇥l2
1:Nc

) and @

@L
l2
i

Ĵ(�l1 ,⇥l2
i), according to (4.39) and (4.40), respec-

tively.
Update ⇥l2+1

i = (µl2+1
i ,⌃l2+1

i) according to (4.46) and (4.47)

Update parameters: ⇥l2
i ⇥l2+1

i
end while

end for
Update the iteration index: l l + 1

end while

28

CHAPTER 5

PATH-PLANNING BASED ON SKEW-NORMAL MIXTURE MODEL

In this section, we apply the proposed BRF-SNMM to solve the path-planning problems

for VLSR systems in a known obstacle deployed environment. In the VLSR systems, the

macroscopic state is represented bt the agents’ PDF. Then, in the macroscopic scale, the

path-planning task of the VLSR systems can be formulated as the distributions path-planning

problem, where a trajectory of agents’ PDF in the workspace over a time interval [t0, tf] is

obtained, to guide the agents’ microscopic controls. Specifically, the agents’ PDF at time

t 2 [t0, tf] is described by a time-varying BRF-SNMM, '(x, t) = 'x⇤(x|⇥1:Nc(t)) defined in (4.9),

which is specified by a time-varying parameter set ⇥1:Nc(t). In this path-planning problem, for

simplicity, we make these 3 assumptions:

The number of the BRF-SN component Nc and the component weights ! are all known

constants.

The desited agents’ distribution is a BRF-SN, ' = fX⇤(x|⇥f), specified by the parameter

set, ⇥f = (µf ,⌃f)

The obstacles deployed in the workspace can all be presented geometrically by convex

polygons, circles or ovals.

5.1 PATH-PLANNING FOR SKEWED NORMAL DISTRIBUTION

In this section, we only focus on the macroscopic scale path-planning task and propose

twp approaches to generate the BRF-SNMM trajectory of agents from the initial distribution,

'(x, t0), to the desired distribution, 'f .

5.1.1 PATH-PLANNING OF DISTRIBUTIONS BASED ON DISPLACEMENT IN-

TERPOLATION FOR SND

Given the skewing function QY , the time-varying BRFSND fX⇤(x, t) is specified by the

parameter set ⇥i(t) = (µi(t),⌃i(t)), which can also specify a time-varying Gaussian distribution,

29

such that

g(x, t) ,
NcX

i=1

�X(x|µi(t),⌃i(t)) (5.1)

Similarly, the parameter set of the desired BRF-SN, ⇥f , can specify a desired normal PDF,

gf = �X(x|µf ,⌃f). Thus, it is reasonable to obtain a trajectory of the time-varying Gaussian

distribution from the start, g(x, t0), to the desired normal distribution, gf , in the obstacle-free

workspace first, then form the time-varying BRF-SND trajectory with the obtained time-varying

parameter set, ⇥i(t). Now, we apply the displacement interpolation (DI) between g(x, t0) and gf

to specify the time-varying parameter set, ⇥i(t) = (µi(t),⌃i(t)) for i = 1, . . . , Nc [16], such that

µi(t) =
tf � t� t0
tf � t0

µi(t0) +
t� t0
tf � t0

µf (5.2)

⌃i(t) = ⌃i(t0)
�1/2

✓
tf � t� t0
tf � t0

⌃i(t0) +
t

t� t0
.
h
⌃i(t0)

1/2⌃f⌃i(t0)
1/2
i◆

⌃i(t0)
�1/2 (5.3)

Although the obtained Gaussian distribution trajectory, g(x, t|⇥i(t)), is a geodesic path, which

provides the shortest `2 Wasserstein distance [17], it is not guaranteed that the obtained

BRF-SNMM trajectory can give `2 Wasserstein distance since the time-varying parameter set is

obtained without considering the obstacles.

5.1.2 PATH-PLANNING OF DISTRIBUTIONS BASED ON ARTIFICIAL POTEN-

TIAL FIELD FOR SND

Considering that the environment information is embedded in the BRF-SN the APF

approach can be applied to solve the path-planning. Two APF methods are developed and theit

derivatives with respect to the parameter set ⇥i(t) = (µ(i(t),⌃i(t)) for i = 1, ..., Nc are

approximated to generate the BRF-SN trajectory.

POTENTIAL FIELD BASED L-2 NORM

First, to reduce the di↵erence between the current agents’ distribution and the desired

distribution, the following potential field based on the swaure of the `� 2 norm is applied, such

that

USN (µ,⌃) , 1

2

Z

W

h
fX⇤(x|µ,⌃)� fX⇤

T
(x|µT ,⌃T)

i2
dx (5.4)

30

Now, we derive with respect to µ

@

@µ
USN (µ,⌃) =

1

2

Z

W

@

@µ

h
fX⇤(x|µ,⌃)� fX⇤

T
(x|µT ,⌃T)

i2
dx

=

Z

W

h
fX⇤(x|µ,⌃)� fX⇤

T
(x|µT ,⌃T)

i @fX⇤(x|µ,⌃)
@µ

dx

(5.5)

Here, because = expln(x) and L(x, µ,⌃) = � ln [fX⇤(x|µ,⌃)] defined previously in (4.12) the

derivative term can be expressed by

@fX⇤(x|µ,⌃)
@µ

=
@

@µ
eln[fX⇤ (x|µ,⌃)]

= eln[fX⇤ (x|µ,⌃)] @

@µ
ln[fX⇤(x|µ,⌃)]

= �fX⇤(x|µ,⌃)] @
@µ

L(x, µ,⌃)

= �⌃�1fX⇤(x|µ,⌃)]

EX⇠�x [XQ(X)]

EX⇠�x [Q(X)]
� x

�

(5.6)

By substituting (5.6) in (5.5), we have

@

@µ
USN (µ,⌃) = �⌃�1

Z

W

h
fX⇤(x|µ,⌃)� fX⇤

T
(x|µT ,⌃T)

i
fX⇤(x|µ,⌃)]


EX⇠�x [XQ(X)]

EX⇠�x [Q(X)]
� x

�
dx

(5.7)

Furthermore, considering the Cholesky decomposition defined in (4.26) such that, ⌃�1 = LLT ,

the derivative with respect to L can be expressed by

@

@L
Usn(µ,⌃) =

Z

W

1

2

Z

W

@

@L

h
fX⇤(x|µ,⌃)� fX⇤

T
(x|µT ,⌃T)

i2
dx

=

Z

W

h
fX⇤(x|⇥)� fX⇤

T
(x|⇥)

i @fX⇤(x|⇥)

@L
dx

=

Z

W

h
fX⇤(x|⇥)� fX⇤

T
(x|⇥)

i
.fX⇤(x|⇥)

@

@L
L(x, µ,⌃)dx

(5.8)

Considering (4.28) where we solved for @
@LL(x, µ,⌃), replacing (4.28) in (5.1) we obtain

@

@L
Usn(µ,⌃) =

Z

W

h
fX⇤(x|⇥)� fX⇤

T
(x|⇥)

i
.fX⇤(x|⇥)

.


(xi � µ)(xi � µ)T �

EX⇠�X [(X� µ)(X� µ)TQ(X)]

EX⇠�X [Q(X)]

�
L

(5.9)

31

Finally, to approximate the partial derivatives based on the auxiliary samples, DA, such

that

@

@µ
USN (µ,⌃) ⇡ �⌃�1

MX

j=1

h
fX⇤(⇣j |⇥)� fX⇤

T
(⇣|⇥T)

i
fX⇤(⇣j |⇥)(⇣j � x̃)�x�y (5.10)

and

@

@L
USN (µ,⌃) =

MX

j=1

h
fX⇤(⇣j |⇥)� fX⇤

T
(⇣j |⇥T)

i
.fX⇤(⇣|⇥)

h
(⇣j � µ)(⇣j � µ)T � ⌃̃

i
L�x�y (5.11)

Where,
EX⇠�x [XQ(X)]

EX⇠�x [Q(X)]
⇡ x̃ ,

PN
j=1 �X(⇣j |⇥)⇣jQ(⇣j)
PM

j=1 �X(⇣j |⇥)Q(⇣j)
(5.12)

and

EX⇠�x [(X� µ)(X� µ)TQ(X)]

EX⇠�x [Q(X)]
⇡ ⌃̃ ,

PN
j=1 �X(⇣j |⇥)(⇣j � µ)(⇣ � µ)TQ(⇣j)

PM
j=1 �X(⇣j |⇥)Q(⇣j)

(5.13)

POTENTIAL FIELD BASED CS-DIVERGENCE

Using CS-divergence between the current distribution and the target distribution as the

cost function, compared to the traditional optimization of the cost function method, have 2 major

advantages, 1) the integration resolution will a↵ect the results, 2) the stop-criterion is not easy to

set since the cost function is not normalized, the CS-divergence cost function is obtained such

that,

UCS(µ,⌃) , (fX⇤ ||fX⇤
T
)

= � ln

R
W fX⇤(x|µ,⌃)fX⇤

T
(x|µT ,⌃T)dxqR

W fX⇤(x|µ,⌃)fX⇤
T
(x|µT ,⌃T)dx

(5.14)

32

The derivative of UCS with respect to µ and ⌃ can be expressed as

@

@µ
UCS(µ,⌃) =

1

2

@

@µ
ln

Z

W
f2
X⇤(x|µ,⌃)dx�

@

@µ
ln

Z

W
fX⇤(x|µ,⌃)fX⇤

T
(x|µT ,⌃T)dx

=
1

2
R

W f2
X⇤(x|µ,⌃)dx

@

@µ

Z

W
f2
X⇤(x|µ,⌃)dx

�

� 1R
W fX⇤(x|µ,⌃)fX⇤

T
(x|µT ,⌃T)dx

@

@µ

Z

W
fX⇤(x|µ,⌃)fX⇤

T
(x|µT ,⌃T)dx

�

=

Z

W


fX⇤(x|µ,⌃)

c1
�

fX⇤
T
(x|µT ,⌃T)

c2

�
@fX⇤(x|µ,⌃)

@µ
dx

(5.15)

and

@

@L
UCS(µ,⌃) =

Z

W


fX⇤(x|µ,⌃)

c1
�

fX⇤
T
(x|µT ,⌃T)

c2

�
@fX⇤(x|µ,⌃)

@L
dx (5.16)

where

c1 =

Z

W
f2
X⇤(x|µ,⌃)dx (5.17)

c2 =

Z

W
fX⇤(x|µ,⌃)fX⇤

T
(x|µT ,⌃T)dx (5.18)

The two partial derivatives, @fX⇤ (x|µ,⌃)
@µ dx and @fX⇤ (x|µ,⌃)

@L dx, were solved in (4.17) and in (4.28),

respectively. Substituting the derivative in (5.15) and (5.16) we obtain the following

@

@µ
UCS(µ,⌃) = ⌃�1

Z

W


fX⇤(x|µ,⌃)

c1
�

fX⇤
T
(x|µT ,⌃T)

c2

� 
EX⇠�x [XQ(X)]

EX⇠�x [Q(X)]
� x

�
dx (5.19)

and

@

@L
UCS(µ,⌃) =

Z

W


fX⇤(x|µ,⌃)

c1
�

fX⇤
T
(x|µT ,⌃T)

c2

�
.


(xi � µ)(xi � µ)T �

EX⇠�X [(X� µ)(X� µ)TQ(X)]

EX⇠�X [Q(X)]

�
Ldx

(5.20)

33

Furthermore, consider that

Z

W


fX⇤(x|µ,⌃)

c1
�

fX⇤
T
(x|µT ,⌃T)

c2

�
fX⇤(x|µ,⌃)dx

=

R
W f2

X⇤(x|µ,⌃)dx
c1

�
R

W fX⇤
T
(x|µT ,⌃T)fX⇤(x|µ,⌃)dx

c2

=
c1
c1
� c2

c2

= 0

(5.21)

and the terms,
EX⇠�x [XQ(X)]
EX⇠�x [Q(X)] and

EX⇠�X
[(X�µ)(X�µ)TQ(X)]

EX⇠�X
[Q(X)] in (5.19) and (5.20), are both constants.

One can have

@

@µ
UCS(µ,⌃) = ⌃�1

Z

W


fX⇤(x|µ,⌃)

c1
�

fX⇤
T
(x|µT ,⌃T)

c2

�
fX⇤(x|µ,⌃)xdx (5.22)

and

@

@L
UCS(µ,⌃) =

Z

W


fX⇤(x|µ,⌃)

c1
�

fX⇤
T
(x|µT ,⌃T)

c2

�
fX⇤(x|µ,⌃)

⇥
(x� µ)(x� µ)T

⇤
dxL (5.23)

According to the definition of the SND in section (3.2.1), we have

fX⇤(x|µ,⌃)fX⇤(x|µ,⌃)
c1

=
f2
X⇤(x|µ,⌃)

c2

=
f2
X⇤(x|µ,⌃)R

W f2
X⇤(x|µ,⌃)dx

=
[�X(x|⇥)Q(x)]2R

W[�X(x|⇥)Q(x)]2dX

, p1(x)

(5.24)

and

fX⇤(x|µ,⌃)fX⇤
T
(x|µT ,⌃T)

c2
=

fX⇤(x|µ,⌃)fX⇤
T
(x|µT ,⌃T)R

W fX⇤(x|µ,⌃)fX⇤
T
(x|µT ,⌃T)dx

=
�X(x|⇥)�X(x|⇥T)Q(x)R

W �X(x|⇥)�X(x|⇥T)Q(x)dx

, p2(x)

(5.25)

34

Both these functions p1(x) and p2(x), are both PDFs defined on the workspace W. Finally, the

derivatives can be expressed by

@

@µ
UCS(µ,⌃) = ⌃�1

Z

W
[p1(x)� p2(x)]xdx (5.26)

and

@

@L
UCS(µ,⌃) = �

Z

W
[p1(x)� p2(x)]

⇥
(x� µ)(x� µ)T

⇤
dxL (5.27)

Similarly, these two derivatives with respect to µ and L can both be approximated based on the

auxiliary samples, DA, such that

@

@µ
UCS(µ,⌃) ⇡ ⌃�1

MX

j=1

[p̂1(⇣j)� p̂2(⇣j)]xn (5.28)

and

@

@L
UCS(µ,⌃) ⇡ ⌃�1

MX

j=1

[p̂1(⇣j)� p̂2(⇣j)]
⇥
(⇣j � µ)(⇣j � µ)T

⇤
L (5.29)

Here, the two functions, p̂1(⇣j) and p̂2(⇣j) are applied to approximate p1(⇣j) and p2(⇣j)

respectively, such that

p1(⇣j) ⇡ p̂1(⇣j) ,
[�X(⇣j |⇥)Q(⇣j)]2PM
j=1[�X(⇣j |⇥)Q(⇣j)]2

(5.30)

and

p2(⇣i) ⇡ p̂2(⇣j) ,
�X(⇣j |⇥)�X(⇣j |⇥T)Q(x)

PM
j=1 �X(⇣j |⇥)�X(⇣j |⇥T)Q(⇣j)

(5.31)

The trajectory of the SND is generated from the initial distribution, fX⇤(x|⇥0), until the

target distribution fX⇤(x|⇥T). Where the sequence of the parameters ⌧⇥ = {⇥0, ...,⇥T }, is

generated by

µi+1 = µi � �µ
@UCS

@µ
(5.32)

Li+1 = Li � �L
@UCS

@L
(5.33)

⌃i+1 = Li+1L
T
i+1 (5.34)

where the subscript ⌧ indicates a time indice such that ⌧ = 0, 1, ...Tf .

35

5.2 PATH-PLANNING BASED ON SNMM

In this section, consider the PDF path-planning problem where the start distribution is

described by a skewed normal mixture model (SNMM), 'X⇤ , defined in (3.15), such that

'X⇤(x|⇥1:Nc) ,
NcX

i=1

!ifX⇤
i
(x|µi,⌃i) (5.35)

and the target distribution is still a SND, fX⇤(x|µT ,⌃T). Since there is only one SD component

in the target distribution, we only need to find the PDF trajectories for each SN component

fX⇤(x|µi,⌃i) to the target SND fX⇤(x|µT ,⌃T).

5.2.1 PATH-PLANNING BASED ON DISPLACEMENT INTERPOLATION FOR

SNMM

Given the skewing function QY , the time-varying BRF-SNMM '(x, t) is specified by the

parameter set ⇥1:Nc(t) = (!i, µi(t),⌃i(t)), which can also specify a time-varying GMM, such that

g(x, t) ,
KX

i=1

!i�X,i(x|µi(t),⌃i(t)) (5.36)

Similarly, the parameter set of the desired BRF-SN, ⇥f , can specify a desired normal PDF,

gf = �X(x|µf ,⌃f). Thus, it is reasonable to obtain a trajectory of the time-varying GMM from

the start GMM, g(x, t0), to the desired normal distribution, gf , in the obstacle-free workspace

first, then form the time-varying BRF-SNMM trajectory with the obtained time-varying

parameter set, ⇥1:Nc(t). Now, we apply the displacement interpolation (DI) between g(x, t0) and

gf to specify the time-varying parameter set, ⇥i(t) = (µi(t),⌃i(t)) for i = 1, . . . , Nc [16], such that

µi(t) =
tf � t� t0
tf � t0

µi(t0) +
t� t0
tf � t0

µf (5.37)

⌃i(t) = ⌃i(t0)
�1/2

✓
tf � t� t0
tf � t0

⌃i(t0) +
t

t� t0
.
h
⌃i(t0)

1/2⌃f⌃i(t0)
1/2
i◆

⌃i(t0)
�1/2 (5.38)

Although the obtained GMM trajectory, g(x, t|⇥1:Nc(t)), is a geodesic path, which provides the

shortest `2 Wasserstein distance [17], it is not guaranteed that the obtained BRF-SNMM

36

trajectory can give `2 Wasserstein distance since the time-varying parameter set is obtained

without considering the obstacles.

5.2.2 PATH-PLANNING BASED ON ARTIFICIAL POTENTIAL FOR SNMM

This section will be a continuity of section 5.1.2.

POTENTIAL FIELD BASED L-2 NORM FOR BRF-SNMM

First, consider the potential is defined by

USN (⇥1:Nc) ,
1

2

Z

W
['X⇤(x)� fX⇤(x|µT ,⌃T)]

2 dx (5.39)

then, the derivative with respect to µi can be expressed by

@USN (⇥1:Nc)

@µi
= �⌃�1

Z

W

h
'X⇤(x)� fX⇤

T
(x|µT ,⌃T)

i
fX⇤(x|µ,⌃)]


EX⇠�x [XQ(X)]

EX⇠�x [Q(X)]
� x

�
dx

(5.40)

which, can be approximated based on the auxiliary samples, DA, such that

@(⇥1:Nc)

@µi
USN ⇡ !i⌃

�1
MX

j=1

h
'X⇤(⇣j)� fX⇤

T
(⇣|⇥T)

i
fX⇤(⇣j |⇥i)(⇣j � x̃i)�x�y

= !i⌃
�1

MX

j=1

↵i,j(⇣j � x̃i)

(5.41)

where, x̃i is defined in (5.12)

↵i,j =
h
'X⇤(⇣j)� fX⇤

T
(⇣j |µT ,⌃T)

i
fX⇤(⇣j |µi,⌃i)�x�y (5.42)

similarly, the derivative with respect to Li can be expressed by

@

@L
USN (⇥1:Nc) = !i

Z

W

h
'X⇤(x)� fX⇤

T
(x|⇥)

i
.fX⇤

i
(x|⇥i)

.


(x� µi)(x� µi)

T �
EX⇠�X [(X� µi)(X� µi)TQ(X)]

EX⇠�X [Q(X)]

�
Li

(5.43)

37

which, can be approximated based on the auxiliary samples, DA, such that

@

@L
USN (⇥1:Nc) ⇡ !i

MX

j=1

h
'X⇤(⇣j)� fX⇤

T
(⇣j |⇥T)

i
.fX⇤

i
(⇣|⇥i)

h
(⇣j � µi)(⇣j � µi)

T � ⌃̃i

i
Li�x�y

= !i

2

4
MX

j=1

↵̃i,j(⇣j � µi)(⇣j � µi)
T

3

5Li

(5.44)

where,

↵̃i,j =

0

@
MX

j=1

↵i,j

1

A �X(⇣j |⇥i)Q(⇣j)PM
j=1 �X(⇣j |⇥i)Q(⇣j)

� ↵i,j (5.45)

Furthermore, we can have the novel potential by considering the log operation, such that

UlogSN (⇥1:Nc) ,
1

2
ln

Z

W
['X⇤(x)� fX⇤(x|µT ,⌃T)]

2 dx (5.46)

Then, we can generate the derivatives based on the data samples, such that

@(⇥1:Nc)

@µ
UlogSN ⇡ !i⌃

�1
MX

j=1

i,j(⇣j � x̃n) (5.47)

where, ↵i,j defined in (5.42) and

i,j =
↵i,j

PM
j=1

h
'X⇤(⇣j)� fX⇤

T
(⇣j |⇥T)

i2
�x�y

(5.48)

also,

@(⇥1:Nc)

@L
UlogSN ⇡ !i

2

4
MX

j=1

̃i,j(⇣j � µi)(⇣j � µi)
T

3

5Li (5.49)

where, ↵̃i,j defined in (5.45) and

̃i,j =
↵̃i,j

PM
j=1

h
'X⇤(⇣j)� fX⇤

T
(⇣j |⇥T)

i2
�x�y

(5.50)

38

POTENTIAL FIELD BASED CS-DIVERGENCE NORM FOR BRF-SNMM

also, the artificial potential for the path-planning from the current SNMM, 'X⇤ to the

target SND, fX⇤(x|⇥T), can be expressed by

UCS('X⇤ , fX⇤
T
) , !i

NcX

i=1

UCS

⇣
fX⇤

i
(x|⇥1:Nc)||fX⇤

T
(x|⇥1:Nc)

⌘
(5.51)

where the component weights ! = [!1, ...,!i, ...,!Nc], are fixed when the SNMM, 'X⇤ , is given for

i = 1, ..., Nc. Furthermore, we notice that the potential, USN (t), provides larger force when the

agents’ distribution is close to the desired distribution due to the logarithm function, while the

potentla, UCS(t) can contribute larger force at the initial stage of the distribution path-planning

problem. Therefore, we combine the two potentials to create a novel potential to generate the

trajectory of agents’ distributions, such that

U(t) , �SNUSN (t) + �CSUCS(t) (5.52)

where, �SN ,�CS 2 R+ are user defined parameters.

5.3 PATH-PLANNING FOR GAUSSIAN MIXTURE MODEL

Considering the GMM can be treated as a special SNMM where the skewing function is

always set to 1. Then the potentials, USN and UCS can be applied directly by substituting

Q(X) = 1. The GMM defined in (3.3) can also be expressed as

'X(x|⇥1:Nc) =
NcX

i=1

!i�X(x|µi,⌃i) (5.53)

Furthermore, because the skewing function is independent with µ and L, the corresponding

derivatives can be easily obtained based on the auxiliary samples, DA, such that

@

@µ
USN (⇥i:Nc) ⇡ !i⌃

�1
MX

j=1

h
'X(⇣j)� �X⇤

T
(⇣|⇥T)

i
�X(⇣j |⇥i)(⇣j � µi)�x�y (5.54)

39

and

@

@Li
USN (⇥1:Nc) ⇡ !i

MX

j=1

h
'X(⇣j)� �X⇤

T
(⇣j |⇥T)

i
.�X⇤

i
(⇣|⇥i)

⇥
(⇣j � µi)(⇣j � µi)

T � ⌃i
⇤
Li�x�y

(5.55)

Similarly, we generate the for CS-divergence for the GMM, based on the auxiliary samples DA

such that

UCS('X,�X⇤
T
) , !i

NcX

i=1

UCS (�Xi(x|⇥1:Nc)||�XT (x|⇥1:Nc)) (5.56)

Since the obstacle information is not embedded in the GMM distributions, a repulsive potential

against the skewing function Q(X), is applied

URep(⇥1:Nc) =

Z

W
'X(x|⇥1:Nc [1�Q(x)]dx

=
NcX

i=1

!i

Z

W
�X(x|⇥1:Nc)[1�Q(x)]dx

(5.57)

Similarly, the derivative of the repulsive potential with respect to µi and ⌃i, based on the

auxiliary data samples, DA, can be expressed by

@URep(⇥1:Nc)

@µi
= !i

MX

j=1

�X(⇣j |µi,⌃i)(⇣j � µi)[1�Q(⇣j)]�x�y (5.58)

and

@URep(⇥1:Nc)

@Li
= �!i

MX

j=1

�X(⇣j |µi,⌃i)
⇥
(⇣j � µi)(⇣j � µi)

T � (LiL
T
i)

�1
⇤
.Li[1�Q(⇣j)]�x�y

(5.59)

Furthermore, let’s consider the logarithm version of (5.57), such that

UlogRep(⇥1:Nc) = ln
NcX

i=1

!i

Z

W
�X(x|⇥1:Nc)[1�Q(x)]dx (5.60)

40

then, the derivatives of the repulsive potential with respect to µi and ⌃i, can be expressed by

@UlogRep(⇥1:Nc)

@µi
⇡ !i⌃

�1
i

MX

j=1

�i,j(⇣j � µi) (5.61)

and
@UlogRep(⇥1:Nc)

@Li
⇡ !i⌃

�1
i

MX

j=1

�i,j
⇥
(⇣j � µi)(⇣j � µi)

T � (LiL
T
i)

�1
⇤
Li (5.62)

where

�i,j =
�X(⇣j |µi,⌃i)[1�Q(⇣j)]PM
j=1 'X(⇣j |⇥1:Nc)[1�Q(⇣j)]

(5.63)

To finally conclude the total artificial potential field for the GMM can be expressed as

UGMM (t) , �SNUSN (t) + �CSUCS(t) + �RepUlogRep(t) (5.64)

where, �SN ,�CS ,�Rep 2 R+ are all user defined parameters.

41

CHAPTER 6

SIMULATIONS AND RESULTS

Two experiments are provided in this section to demonstrate the e↵ectiveness of the

proposed parameter learning algorithms proposed in Chapter 4 and the BRF-SNMM based

path-planning approach in Chapter 5.

6.1 LEARNING PARAMETER COST FUNCTION COMPARISON

To evaluate the learning ability of Algorithm1, N = 300 samples, D = {xn}Nn=1, are

generated according to the BRF-SN distribution, fX⇤(x|µ,⌃), and deployed with the obstacle, as

shown in Figure 1. For simplicity, a binary skewing function, QY (x) 2 {0, 1}, is applied to

indicate if the obstacle in Figure 1 occupies the location. The parameters of the BRF-SN are set

to µ = [10 12] and ⌃ =

2

64
1 0.3

0.3 0.7

3

75. although the sample data set, D, is generated according to

Figure 1: Samples (N = 300) generated according to the BRF-SN distribution are deployed with
the obstacle in the workspace. The red points indicate the samples, and the gray rectangle indicates
the obstacle.

the BRF-SN, only the sample data set are available to estimate the parameters. Thus, the

samples are assumed to be generated by a BRF-SNMM, and the parameters, NC and

⇥1:NC = {(!i,⇥i)}NC
i=1, all need to be estimated. In this experiment, three values of NC are

42

considered, NC = 1, 2, 3, 4, 5, 6 to run Algorithm 1, respectively. The learning performance of

Algorithm1 is compared with the other two approaches.

GMM approach: assume that the samples are generated by the GMM and estimate the

GMM’s parameters from D.

SNMM-GMM approach: assume that the samples are generated by BRF-SNMM but the

parameters ⇥1:NC are estimated using the GMM’s parameter learning algorithm. For a fair

comparison, in Algorithm 1, the SNMM is also initialized by GMM’s parameters.

The NLLs of the samples generated by di↵erent approaches are plotted in Figure 2 (Top). It can

be seen that only our algorithm can provide the smallest NLL for NC = 1, which shows that up to

6 components are requested to describe the samples if we use GMM or SNMM-GMM approaches

to estimate the parameters, respectively. Furthermore, the CS-divergences between the

ground-truth distribution and the estimated distributions are plotted in Figure 2 (Bottom),

where the dash curves represent the CS-divergence between the ground-truth PDF and the

approximated PDFs from samples via Kernel Density Estimate method. It also shows that our

algorithm can provide the best performance.

43

Figure 2: Comparison of parameter learning performances. (top) The NLL for di↵erent approaches
and di↵erent values of NC , and (bottom) the CS-divergences between the ground-truth distribution
and the estimated distributions (solid curves) and the CS-divergences between the groundtruth PDF
and the approximated PDFs from samples via the KDE method (dash curves).

6.2 SIMULATION OF MULTI-AGENT PATH-PLANNING BASED BRF-SNMM

To evaluate the proposed path planning algorithms, first we create a simple artificial

environment (Forest-I) shown in Figure 3 (a) left, where 14 black circles indicate the trees in the

artificial forest. In this experiment, a VLSR system compromised of N = 300 agents is tested.

Given the agents’ initial positions in the artificial forest, the red points in Figure 3 (a) Left, the

goal of the path-planning task is to guide all of the agents to traverse the artificial forest and

avoid collisions with the obstacles ”trees”, while achieving the target distribution, 'f , showing in

Figure 3 (b) Right. The white circles shown in Figure 3 (b) Right indicated the area s where

QY = 0, which refers to a location in the area that agents are not allowed to occupy because of

obstacles. The SNMM-DI and the SNMM-APF path-planing algorithms are first executed to

generate the trajectories of the agents’ PDFs, where NC is set to 2. The snapshots of trajectories

of agents and corresponding PDFs generated by SNMM-DI and SNMM-APF path-planning

algorithms are presented in Figure 4 and Figure 5, respectively. These snapshots show that

44

both path-planning algorithms can provide acceptable performance, altough di↵erent trajectories

of agents’ PDFs are generated. It can also be observed that the time-varying agents’ distributions

are split by the obstacles due to the skewing function, QY , which is the expected advantage of the

SNMM over GMM. To demonstrate the advantage of SNMM over GMM in path-planning

problems, a GMM-based approach is also applied to the same problem for comparison. Because

the GMM is a special case of the SNMM where QY (X) ⌘ 1 according to (5.3) for all x 2 W.

Since the obstacles information is not embedded in the GMM distributions, '(x, t), a repulsive

potential against skewing function is added to the potential defined in (5.57), such that

URep(t|⇥1:NC) =

Z

W
'X(x|⇥1:NC)[1�Q(x)]dx (6.1)

Where the repulsive potential is zero-ed if QY (x) = 1 for all x 2 W, which represents the

no-obstacle scenario. The range of the repulsive potential is Urep 2 [0, 1]. Thus, the potential for

the GMM-based approach can be expressed by

UGMM (t) , �SNUSN [t|Q(x ⌘ 1)] + �CSUCS [t|Q(x ⌘ 1)] + �RepUlogRep [t|Q(x ⌘ 1)] (6.2)

Finally, similarly to the SNMM-APF, the trajectory of agents’ PDFs is obtained by minimizing

the potential, UGMM (t) with repsect to the parameters denoted in (5.61) and (5.62). For

distinction, this GMM-based approach is referred to as the GMM-APF approach. The same

user-designed parameter as the SNMM-APF are applied to the GMM-APF, for a fair

comparison,and the parameter �Rep is set to 5%. The snapshots of trajectories of agents and

corresponding PDFs generated by GMM-APF path-planning algorithms are presented in

Figure 6.

45

Table 1: Performance Comparison

Environment Method Time (min) Length (m)

ForestI
SNMM-DI 1.55 19.75± 0.92
SNMM-APF 54.69 27.17± 1.74
GMM-APF 64.25 33.46± 2.58

ForestII
SNMM-DI 1.55 22.68± 1.25
SNMM-APF 57.18 30.15± 1.56

(a) Left (b) Right

Figure 3: The path-planning problem for VLSR systems in the artificial forest environment. (a)
Left - The red points indicate the initially deployed agents, and the black circles represent the
“trees” in the forest. (b) Right - The desired agents’ PDF is shown, where the white areas are
occupied by “trees”.

The numerical comparison results are tabulated in Table 1 denoted by the experiment of

ForestI. All of the simulations are conducted by MATLAB on the same computer. The column

”Time” indicates the computational time for obtaining the optimal agents’ PDFs. The column

”Length” indicated the static results of the length N = 300 agents’ trajectories in the form of

”mean ± standard deviation”. It can be seen that the proposed two SNMM-based approaches can

outperform the GMM-based approach in terms of computational time and trajectory length. In

addition, because the the SNMM-DI approach does not need to solve the optimization problem, it

can obtain the agents’ PDFs in a short period. However, it is also noteworthy that the absence of

optimization in the SNMM-DI approach will result in a non-continuous OSD trajectory when the

VLSR system travels a huge obstacle. Furethermore, to demonstrate the e↵ectiveness of the

proposed SNMM-based approaches for the cluttered environments, a complex artifical forest

environments (ForestII) is also considered, where 50 smaller circles are deployed randomly in the

46

workspace to represent the trees in a forest. Then, assuming the same agents’ initial and the

desired ditributions, we re-conduct the simulation. Results from the simulation show success

using the proposed SNMM-based approaches, while the GMM-based approach fails, when only

two components NC = 2 are applied. The agents’ trajectories generated by the two SNMM-based

approaches are plotted in both Figure 8 and Figure 9.

(a) Top - Left (b) Top - Right

(c) Bottom - Left (d) Bottom - Right

Figure 4: Snapshots of the trajectory of agents and corresponding PDFs generated by the SNMM-
DI approach.

47

(a) Top - Left (b) Top - Right

(c) Bottom - Left (d) Bottom - Right

Figure 5: Snapshots of the trajectory of agents and corresponding PDFs generated by the SNMM-
APF approach.

48

(a) Top - Left (b) Top - Right

(c) Bottom - Left (d) Bottom - Right

Figure 6: Snapshots of the trajectory of agents and corresponding PDFs generated by the GMM-
APF approach.

(a) Left (b) Right

Figure 7: The path-planning problem for VLSR systems in the complex artificial forest environment.
(a) Left - The red points indicate the initially deployed agents, and the black circles represent the
“trees” in the forest. (b) Right - The desired agents’ PDF is shown, where the white areas are
occupied by “trees”.

49

Figure 8: Trajectories of agents in di↵erent colors generated by the SNMM-DI approach in the
Forest-II simulation.

Figure 9: Trajectories of agents in di↵erent colors generated by the SNMM-APF approach in the
Forest-II simulation.

50

CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 CONCLUSION AND DISCUSSION

The two proposed novel Bernoulli-random-field based multivariate skew-normal

distribution and the skew-normal mixture model, represent the macroscopic states of the VLSR

systems. In addition, a parameter learning algorithm is provided to estimate the model

parameters for the BRF-SNMM. Furthermore, two path-planning algorithms are also developed

based on the SNMM to guide the VLSR systems to traverse cluttered environments. The

simulations in the artificial forest environments demonstrate the e↵ectiveness of these two

path-planning algorithms and the superiority of the SNMM-based approaches over the

GMM-based approach, especially in cluttered environments.

7.2 FUTURE WORK

The proposed BRF-SNMM provides a novel research direction for VLSR system problems

in cluttered environments, including robotic swarm path planning and tracking. More research on

BRF-SNMM is requested, including generating microscopic states of the agents within the

macroscopic distributions and adopting an infromation-sharing communication strategy to

optimize energy consumption and model agents optimal trajectory in an unknown environment.

51

REFERENCES

[1] Li, Bingxi, Sharvil Patankar, Barzin Moridian, and Nina Mahmoudian. Planning large-scale

search and rescue using team of uavs and charging stations. In 2018 IEEE international

symposium on safety, security, and rescue robotics (SSRR), pp. 1-8. IEEE, 2018.

[2] Tadokoro, Satoshi, ed. Rescue robotics: DDT project on robots and systems for urban search

and rescue. Springer Science & Business Media, 2009.

[3] Steinberg, Marc, Jason Stack, and Terri Paluszkiewicz, Long duration autonomy for maritime

systems: Challenges and opportunities, Autonomous Robots, MR vol. 40, no. 7, pp.

1119–1122, 2016.

[4] Hüttenrauch, Maximilian, Sosic Adrian, and Gerhard Neumann, Deep reinforcement learning

for swarm systems, Journal of Machine Learning Research, vol. 20, no. 54, pp. 1–31, 2019.

[5] Hernandez-Leal, Pablo, Bilal Kartal, and Matthew E. Taylor, A survey and critique of

multiagent deep reinforcement learning, Autonomous Agents and Multi-Agent Systems, vol.

33, no. 6, pp. 750–797, 2019.

[6] Foderaro, Greg, Silvia Ferrari, and Thomas A. Wettergren, Distributed optimal control for

multi-agent trajectory optimization, Automatica, vol. 50, no. 1, pp. 149–154, 2014.

[7] Ferrari, Silvia, Greg Foderaro, Pingping Zhu, and Thomas A. Wettergren, Distributed optimal

control of multiscale dynamical systems: a tutorial, IEEE Control Systems Magazine, vol. 36,

no. 2, pp. 102–116, 2016.

[8] Rudd, Keith, Greg Foderaro, Pingping Zhu, and Silvia Ferrari, A generalized reduced gradient

method for the optimal control of very-large-scale robotic systems, IEEE transactions on

robotics, vol. 33, no. 5, pp. 1226– 1232, 2017.

52

[9] Zhu, Pingping, Chang Liu, and Silvia Ferrari, Adaptive online distributed optimal control of

very-large-scale robotic systems, IEEE Transactions on Control of Network Systems, vol. 8, no.

2, pp. 678–689, 2021.

[10] Do, Chuong B. The multivariate Gaussian distribution. Section Notes, Lecture on Machine

Learning, CS 229, 2008.

[11] Soria, Enrica, Fabrizio Schiano, and Dario Floreano, Distributed predictive drone swarms in

cluttered environments, IEEE Robotics and Automation Letters, vol. 7, no. 1, pp. 73–80, 2021.

[12] Azzalini, Adelchi, A class of distributions which includes the normal ones, Scandinavian

journal of statistics, pp. 171–178, 1985.

[13] Azzalini, Adelchi and A. Dalla Valle, The multivariate skew-normal distribution, Biometrika,

vol. 83, no. 4, pp. 715–726, 1996.

[14] Gupta, Arjun K., Graciela González-Farıas, and J. Armando Domınguez-Molina, A

multivariate skew normal distribution, Journal of multivariate analysis, vol. 89, no. 1, pp.

181–190, 2004.

[15] Arellano-Valle, Reinaldo B., and Marc G. Genton, On fundamental skew distributions,

Journal of Multivariate Analysis, vol. 96, no. 1, pp. 93–116, 2005.

[16] Ramos, Fabio, and Lionel Ott, Hilbert maps: Scalable continuous occupancy mapping with

stochastic gradient descent, The International Journal of Robotics Research, vol. 35, no. 14,

pp. 1717–1730, 2016.

[17] Morelli, Julian, Pingping Zhu, Bryce Doerr, Richard Linares, and Silvia Ferrari, Integrated

mapping and path planning for very large-scale robotic (vlsr) systems, in 2019 International

Conference on Robotics and Automation (ICRA). IEEE, 2019, pp. 3356–3362.

[18] Zhu, Pingping, Silvia Ferrari, Julian Morelli, Richard Linares, and Bryce Doerr, Scalable gas

sensing, mapping, and path planning via decentralized hilbert maps, Sensors, vol. 19, no. 7, p.

1524, 2019.

53

[19] Durrett, Rick, Probability: theory and examples. Cambridge university press, 2019, vol. 49.

[20] Chen, Yongxin, Tryphon T. Georgiou, and Allen Tannenbaum, Optimal transport for

gaussian mixture models, IEEE Access, vol. 7, pp. 6269–6278, 2018.

[21] Kampa, Kittipat, Erion Hasanbelliu, and Jose C. Principe, Closed-form cauchyschwarz pdf

divergence for mixture of gaussians, in The 2011 International Joint Conference on Neural

Networks. IEEE, 2011, pp. 2578–2585.

[22] Petersen, Kaare Brandt, and Michael Syskind Pedersen, The Matrix Cookbook, 11-2012.

[23] Rue, Havard, and Leonhard Held. Gaussian Markov Random Fields: Theory and

Applications, Chapman and Hall/CRC. 2005.

[24] Michael Nielsen, Neural Networks and Deep Learning, Determination Press, 2015.

[25] Dutilleul, Pierre. The MLE algorithm for the matrix normal distribution. Journal of

statistical computation and simulation 64, no. 2 (1999): 105-123.

[26] Do, Chuong B., and Serafim Batzoglou. What is the expectation maximization algorithm?.

Nature biotechnology 26, no. 8 (2008): 897-899.

[27] Chen, Yong-bo, Guan-chen Luo, Yue-song Mei, Jian-qiao Yu, and Xiao-long Su. UAV path

planning using artificial potential field method updated by optimal control theory. International

Journal of Systems Science 47, no. 6 (2016): 1407-1420.

[28] Do, Chuong B., and Serafim Batzoglou. What is the expectation maximization algorithm?.

Nature biotechnology 26, no. 8 (2008): 897-899.

[29] Verdú, Sergio. Total variation distance and the distribution of relative information. In 2014

Information Theory and Applications Workshop (ITA), pp. 1-3. IEEE, 2014.

[30] Buchner, Johannes. An intuition for physicists: information gain from experiments.

(2022-04-29)

[31] Nielsen, Frank. On a generalization of the Jensen–Shannon divergence and the

Jensen–Shannon centroid. Entropy 22, no. 2 (2020): 221.

54

APPENDIX A

IRB APPROVAL LETTER

55

APPENDIX B

DERIVATIVE OF PARTIAL DERIVATIVES IN (4.13) and (4.14)

In this appendix, some matrix derivative properties are applied. First consider the partial

derivative with respect to u, which can be expressed by

@

@µ
L(xi, µ,⌃) = �

@

@µ
ln [�X(xi|µ,⌃)] +

@

@µ
lnEX⇠�X [Q(X)]

= � @

@µ
ln

✓
1

2⇡|⌃|1/2
exp


�1

2
(xi � µ)T⌃�1(xi � µ)

�◆
+

@

@µ
lnEX⇠�X [Q(X)]

=
1

2

@

@µ

�
(xi � µ)T⌃�1(xi � µ)

�
+

1

EX⇠�X [Q(X)]

Z
@�X(x)

@µ
Q(X)dx

= ⌃�1(µ� xi)� ⌃�1EX⇠�X [(µ� x)Q(X)]

EX⇠�X [Q(X)]

= ⌃�1

✓
EX⇠�X [XQ(X)]

EX⇠�X [Q(X)]
� xi

◆

(B.1)

Then consider the other partial derivative with respect to ⌃, which can be expressed by

@

@⌃
L(xi, µ,⌃) = �

@

@⌃
ln�X(xi|µ,⌃) +

@

@⌃
lnEX⇠�X [Q(X)]

= � @

@⌃
ln

✓
1

(2⇡|⌃|1/2
exp[�1

2
(xi � µ)T⌃�1(xi � µ)]

◆
+

@

@⌃
lnEX⇠�X [Q(X)]

=
1

2

@

@⌃
ln |⌃|+ 1

2

@

@⌃

�
(xi � µ)T⌃�1(xi � µ)

�
+

1

EX⇠�X [Q(X)]

Z
@�X(x)

@⌃
Q(x)dx

=
1

2
⌃�1 � 1

2
⌃�1(xi � µ)(xi � µ)T⌃�1 +

1

EX⇠�X [Q(X)]

Z
@�X(x)

@⌃
Q(x)dx

(B.2)

56

Here the partial derivative @�X(x)
@⌃ can be expressed by

@

@⌃
�X(x) =

@|⌃|�1/2

@⌃

exp
�
�1

2(x� µ)T⌃�1(x� µ)
�

2⇡
+

1

2⇡|⌃|1/2
@

@⌃
exp


�1

2
(x� µ)T⌃�1(x� µ)

�

= �1

2
⌃�1 exp

�
�1

2(x� µ)T⌃�1(x� µ)
�

2⇡|⌃|1/2
+

exp
�
�1

2(x� µ)T⌃�1(x� µ)
�

2⇡|⌃|1/2

.
@
�
�1

2(x� µ)T⌃�1(x� µ)
�

2⇡|⌃|1/2

= �1

2
�X⌃�1 +

1

2
�X
⇥
⌃�1(x� µ)(x� µ)T⌃�1

⇤

(B.3)

Thus, the integration can be expressed by

Z
@�X(x)

@⌃
Q(x)dx = �1

2
EX⇠�x [Q(X)]⌃�1 +

1

2
⌃�1EX⇠�x [Q(X)(X� µ)(X� µ)T]⌃�1 (B.4)

Finally by substituting (B.4) into (B.2), one can have

@

@⌃
L(xi, µ,⌃) =

1

2
⌃�1 � 1

2
⌃�1(xi � µ)(xi � µ)T⌃�1 � 1

2
⌃�1 +

1

2
⌃�1EX⇠�X

⇥
Q(X)(X� µ)(X� µ)T

⇤

EX⇠�x [Q(X)]
⌃�1

=
1

2
⌃�1

EX⇠�x

⇥
Q(X)(X� µ)(X� µ)T

⇤

EX⇠�x [Q(X)]
� (xi � µ)(xi � µ)T

!
⌃�1

(B.5)

57

APPENDIX C

DERIVATIVE OF PARTIAL DERIVATIVES IN (4.28)

The partial derivative of the cost function in (4.28) with respect to L can be expressed by

@

@L
L(xi, µ,L) = �

@ ln[�X(xi|µ,⌃)]
@L

+
@ lnEX⇠�X [Q(X)]

@L
(C.1)

The first section of (C.1) is expressed as

@ ln[�X(xi|µ,⌃)]
@L

=
@

@L
ln

⇢
1

2⇡|⌃|1/2
exp


�1

2
(xi � µ)T⌃�1(xi � µ)

��

=
1

2

@

@L
ln |⌃�1|� 1

2

@

@L

⇥
(xi � µ)T⌃�1(xi � µ)

⇤

=
1

2

@

@L
ln |(LLT)�1|� 1

2

@

@L

⇥
(xi � µ)T (LLT)�1(xi � µ)

⇤

=
1

2|LLT |
@

@L
|LLT � 1

2

@

@L
tr[LT (xi � µ)(xi � µ)TL]

= (LLT)�1L� (xi � µ)(xi � µ)TL

(C.2)

Now, the second section of (C.1) is expressed as

@ lnEX⇠�X [Q(X)]

@L
=

1

EX⇠�x [Q(X)]

Z
@�X(x)

@L
Q(x)dx (C.3)

Where the partial derivative
@�X(x)

@L can be expressed by

@�X(x)

@L
=

@

@L

⇢
1

2⇡|⌃|1/2
exp


�1

2
(xi � µ)T⌃�1(xi � µ)

��

=
1

2⇡

@|LLT |1/2

@L
. exp


�1

2
(xi � µ)T⌃�1(xi � µ)

�

+
1

2⇡|⌃|1/2
.
@

@L
. exp


�1

2
(xi � µ)T⌃�1(xi � µ)

�

=
1

2⇡
|LLT |1/2(LLT)�1L. exp


�1

2
(xi � µ)T⌃�1(xi � µ)

�

� 1

2
�X(x)

@

@L
tr
⇥
LT (xi � µ)(xi � µ)TL

⇤

= �x(x)
⇥
(LLT)�1 � (x� µ)(x� µ)T

⇤
L

(C.4)

58

Thus, replacing (C.4) in (C.3), the expression is denoted as

@ lnEX⇠�X [Q(X)]

@L
=

1

EX⇠�x [Q(X)]

Z
�x(x)Q(X)dx(L�1)T

� 1

EX⇠�x [Q(X)]

Z
�x(x)(x� µ)(x� µ)TQ(X)dx(L)

= (L�1)T �
EX⇠�x

⇥
Q(X)(X� µ)(X� µ)TQ(X)

⇤

EX⇠�x [Q(X)]
L

(C.5)

Finally, going back to (C.1) the partial derivative of the cost function with respect to L can be

expressed by

@

@L
L(xi, µ,L) = �

@ ln[�X(xi|µ,⌃)]
@L

+
@ lnEX⇠�X [Q(X)]

@L

= �(LLT)�1L� (xi � µ)(xi � µ)TL

+ (LLT)�1 �
EX⇠�x

⇥
Q(X)(X� µ)(X� µ)TQ(X)

⇤

EX⇠�x [Q(X)]
L

=

(
(xi � µ)(xi � µ)T �

EX⇠�x

⇥
Q(X)(X� µ)(X� µ)TQ(X)

⇤

EX⇠�x [Q(X)]

)
L

(C.6)

59

	A path planning framework for multi-agent robotic systems based on multivariate skew-normal distributions
	Recommended Citation

	tmp.1682343983.pdf.asYgC

	Date7_af_date: 4/16/2023
	Date6_af_date: 4/15/2023
	Date5_af_date:

