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Abstract 

Performance testing generates vast amounts of data, making it challenging for human an-

alysts to process within a reasonable timeframe. Therefore, black-box machine learning models 

are often used to determine pass/fail status, but these models lack transparency and cannot ex-

plain why a test has failed, leading to a time-consuming manual analysis process. To address this 

issue, this thesis proposes using Explainable Artificial Intelligence (XAI) to improve the trust-

worthiness of black-box and interpretable models in performance testing. The proposed approach 

leverages the Shapley Additive Explanation (SHAP) algorithm as a surrogate model to help per-

formance analysts understand the decision-making process of black-box machine learning mod-

els. By wrapping SHAP around black-box models, analysts can gain explainability on why a 

model predicted a test's pass or fail status and identify the relative importance of performance 

data to machine learning models. The proposed approach was evaluated through several load text 

experiments on a real testbed, using industry-standard performance benchmarks, manually inject-

ing performance bugs into the system to synthesize ground truth and building machine learning 

models using a black box learner (Artificial Neural Network) and an interpretable learner (Ran-

dom Forest) to predict the test's pass or fail status. The results demonstrate that classical perfor-

mance measures such as precision, recall, F-measure, and accuracy are not sufficient to gauge the 

reliability and trustworthiness of machine learning models. Instead, the proposed approach 

stands out by providing the explanations behind the decisions made by learning algorithms and 

enhancing their trustworthiness. The proposed approach, though evaluated through load testing 

can be generalized to other domains and require little or no effort to operate. 
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Chapter 1: Introduction 

 Companies are faced with immensely large volumes of data which outpace humans’ ability 

to absorb and interpret the data, making it increasingly difficult to make informed business deci-

sions from such data. Therefore, being able to efficiently utilize big data to draw insights and 

inform decisions can give companies a competitive edge [1]. This has caused massive growth in 

the field of artificial intelligence (AI), which is able to recognize patterns, forecast events, classify 

data, and much more even on a large scale. This growth in AI development has led towards the 

usage of AI in nearly every domain, and we see this in the form of social media engines, chatbots, 

navigational devices, etc. 

 One domain which can greatly benefit from the usage of AI is load testing analysis of large-

scale systems (LSS). Due to the rapid growth in size, complexity, and demand for practical perfor-

mance monitoring solutions, the performance monitoring of LSS has become increasingly critical 

and challenging. Due to the predictive power of modern-day AI, applying AI to analyze the per-

formance of large-scale systems has become increasingly useful. Such AI systems can monitor 

systems 24/7 to identify the performance of the system, and this can also be useful for the analysis 

of load testing, which is assessing the performance of a system under a given load. The load refers 

to the rate at which transactions are submitted to the system.  

 Despite the usefulness of AI in solutions towards load testing and other domains, there has 

been rising concern regarding the trustworthiness of AI. As AI continues to improve and evolve, 

the underlying machine learning (ML) algorithms which make up AI applications have grown in 

complexity. Some modern ML algorithms, such as the artificial neural network (ANN) and the 

random forest, are able to learn patterns in specific data sets. Although this has increased the pre-

dictive power of these ML algorithms, they have become much less interpretable. This leaves users 
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with only a few methods of ensuring the quality of AI model. One method is to hire a domain 

specialist to analyze the AI model. Although this method is useful, it is a costly and time-consum-

ing process, and depending on the domain, domain-specialists may be hard to find. Another method 

is to compare model predictions to the ground truth, i.e., comparing current predictions to past 

historical data. However, this method requires much domain knowledge from the user and can 

require the analysis of vast quantities of data. The third method is evaluating the AI with perfor-

mance metrics, such as the prediction accuracy, the amount of error present in predictions, etc. 

This is often how users evaluate the quality of AI. However, this method is not case specific, and 

it does not explain what went wrong when AI provides an unsatisfactory prediction.  

1.1 Problem Statement 

 Performance testing, particularly load testing of large-scale systems, can generate a signif-

icant volume of performance data, including CPU utilization, memory consumption, network uti-

lization, disk Input/Output operations per second, and packet latency from hundreds of machines. 

With such a vast amount of data, it becomes impossible for human performance analysts to skim 

through thousands of metrics. Besides, performance testing is often the last step in an already 

delayed release schedule, leaving analysts with minimal time to complete their work. Conse-

quently, analysts typically use black-box machine learning models to quickly determine whether 

hundreds of performance tests pass or fail. However, if the test fails, it is crucial to understand the 

reason for the failure to repeat it successfully. While the black-box model can determine with a 

certain degree of accuracy and precision whether a test passes or fails, it cannot provide an expla-

nation for why it failed or passed. Therefore, analysts must manually analyze the failed load test 

to understand the root cause of its failure, which is a tedious task. As a result, there is an immense 
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and utmost need for intelligent techniques that can explain the opaque black-box model’s decision 

to analysts and speed up the load testing process.  

1.2 Solution Overview 

To address the problem identified in Section 1.1, this thesis aims to explore the concept of 

using XAI to improve the trustworthiness of both black-box and interpretable models, particularly 

in the context of load testing analysis of numeric performance data—such as percent processor 

time, available megabytes of memory, milliseconds of latency, etc.—and for most of the black-box 

machine learning models. The thesis proposes using the Shapley Additive Explanation (SHAP), 

which is an XAI technique based on cooperative game theory, as a surrogate model to help analysts 

understand the decision-making process of their underlying complex black-box machine learners, 

such as Neural Networks, Support Vector Machines, and Naïve Bayes. 

By using the proposed approach, i.e., SHAP as a wrapper around black-box models, the 

performance analysts can gain explainability on why their black-box model predicted the passing 

or failing of a test. Moreover, it facilitates the performance analysts in explaining the reasoning 

behind the decisions made by the underlying machine learning algorithms by pinpointing the rel-

ative importance of the performance data to the results and prediction of their machine learning 

opaque models. The proposed approach is expected to enhance the trustworthiness of the black-

box models used for performance testing and help analysts quickly identify the root cause of the 

failure, thereby speeding up the load testing process. Chapter 4 provides the details of the proposed 

solution. 
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1.3 Contribution of the Thesis 

 The aim of this thesis is to demonstrate how the XAI algorithm SHAP can improve the 

trustworthiness of black-box classifiers that identify failures in load tests of large-scale systems. 

This thesis makes several contributions to the field of XAI and performance testing: 

 

1) The thesis contributes to the XAI literature by demonstrating the successful application of 

SHAP in the performance testing domain. 

2) The thesis is the first to demonstrate that using SHAP as a surrogate model can enable 

performance analysts to explain the reasoning behind the decisions made by underlying 

machine learning algorithms regarding the passing or failing of load tests. 

3) Unlike previous studies that used synthetic data or log traces from the internet, this thesis 

conducts experiments on a testbed that uses industry-standard performance benchmarks. 

4) Rather than simulating failures to match real-world performance problems, we use open-

source tools and manually inject faults into the system to evaluate the trustworthiness of 

proposed techniques.  

5) To ensure the replicability and fair comparison of our results, each experiment is presented 

as a Jupyter Notebook that is accessible to the research community upon request. 

 

Overall, this thesis provides practical insights into how XAI can be used to improve the trans-

parency and reliability of black-box classifiers in the performance testing domain, which can ben-

efit both the research and industrial communities. 
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1.4 Organization of Thesis 

This thesis is organized into a total of 6 chapters: 

I. Chapter 1 introduces the thesis topic and discusses the objective and contributions of this 

work.  Along with this, it outlines the organization of this thesis.  

II. Chapter 2 provides background knowledge on the topics of artificial intelligence, machine 

learning, and black-box models. Along with this, it provides an overview of XAI and dis-

cusses its importance. One XAI method, SHAP, is selected to use in the experiment per-

formed in Chapter 4, so an overview of the workings of SHAP is also provided.   

III. Chapter 3 discusses the load testing of large-scale systems. This includes details of how 

performance monitoring of large-scale systems is completed, and the many difficulties 

faced.  

IV. Chapter 4 details an experiment which demonstrates the usage of SHAP for explaining 

black-box classifier predictions. The classifier models are used to identify faults during the 

load testing of large-scale systems. 

V. Chapter 5 discusses several limitations of this work, such as those presented by the test 

environment utilized in the experiment in Chapter 4. 

VI. Chapter 6 briefly summarizes the thesis work and conclusions.  
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Chapter 2: Background Knowledge 

2.1 Artificial Intelligence 

Companies are currently faced with a wider variety and larger volume of data than ever 

before, and being able to efficiently manage and utilize big data can give a company a great com-

petitive edge [1]. Analyzing big data allows companies to draw insights from past events and rec-

ords, and these insights can be used to inform better future investments and business decisions of 

any kind. However, properly utilizing and learning from such enormous amounts of data is no 

simple task. With modern demands, the immense quantities of data far outpace humans’ ability to 

absorb interpret such vast data quantities [1].  

Therefore, the usage of artificial intelligence has become foundational in nearly every in-

dustry. Artificial intelligence (AI) is the ability of a computer to replicate, enhance, or even surpass 

human intellect [2], and it can be used to process large amounts of data to accomplish many dif-

ferent tasks such as recognizing patterns, forecasting events and probabilities, and even classifying 

data. 

There are several factors which have driven the adoption and development of AI across 

different industries. AI’s ability to provide insights on vast quantities of data to inform business 

objectives has been the driving factor of its popularity. With the modern amounts of processing 

power and storage that is widely available, AI can help businesses to make better decisions faster 

through observations made on immense amounts of data. Also, AI has become useful in increasing 

business efficiency in other contexts as well. AI is being used to amplify the worker’s capabilities, 

to automate mundane tasks, and to provide 24/7 monitoring of activities.  

AI has seen such rapid development, and it now sees usage not only in the workplace but 

also in many day-to-day activities. Many applications such as social media engines, text editors, 
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chatbots, navigational applications, web searching applications, self-driving vehicles, etc. have 

taken advantage of an AI component. Because of this, AI has become a prevalent part of the eve-

ryday life of many individuals.  

2.2 Machine Learning 

 Despite the widespread usage of AI in many domains and in everyday life, knowledge of 

the underlying algorithms that make up AI are not often understood by the average end users of AI 

systems. These underlying algorithms are part of the field of machine learning. Machine learning 

(ML) is a subcategory of AI that uses statistical algorithms to imitate the human learning process 

[2]. This learning process of humans typically consists of several steps. When faced with a problem 

and a choice, humans will use their own knowledge in an attempt to choose the best possible 

solution. Sometimes they are successful, and sometimes they are not. After seeing the outcome of 

their decision, humans can determine whether or not that decision was correct in solving the prob-

lem. If not, they must adjust their approach to the problem using their newfound knowledge from 

the failed attempt.  

Similar to the human learning process, ML algorithms consist of several parts [3], referred 

to as the (1) decision algorithm, (2) error function, (3) model optimization process, as shown in 

Figure 1. 
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Figure 1: Learning Process of Supervised ML Algorithms 

 

1. Decision Algorithm: Given a data sample, the decision algorithm attempts to make a 

correct decision through utilizing a statistical algorithm. This algorithm views the prob-

lem and produces its best solution (the predicted output).  

2. Error Function:  The error function evaluates the solution proposed by the decision 

algorithm by determining the difference between the ground truth and the proposed 

solution.  

3. Model Optimization Process: The model optimization process adjusts the decision 

algorithm based on the result of the error function. This process aims to reduce the 

amount of error present in the decision algorithm.  

Through these steps, the ML algorithm can learn how to find the best solution to the prob-

lem through a series of trial-and-error.   

2.3 Black-Box Models 

 Although the general learning process of ML algorithms is a simple concept to understand, 

the specifics of each step in the process can become increasingly complex depending on the type 
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of ML algorithm being used. Since ML algorithms make up the AI being used in data analytics, 

decision making, and automation in many industries, the boundaries of what these ML algorithms 

can accomplish are constantly being pushed to new heights, and developing the most efficient and 

powerful ML algorithms has become a primary focus of data analytics research. This has resulted 

in many positives. Modern ML algorithms can produce predictions with high accuracy, and they 

can do so even with little or no human interference. This is due to highly complex decision algo-

rithms that are able to adjust themselves to learn specific data sets.  

 Despite the overall gains achieved from these complex decision algorithms, they have also 

produced an issue. The complexity of a decision algorithm can exceed explainability once it has 

learned a specific set of data. Most people—even those with high-levels of knowledge of machine 

learning algorithms—cannot always explain the rationale, i.e., why the decision algorithm makes 

a specific prediction. AI models which utilize unexplainable ML algorithms are referred to as 

black-box models. These models take input(s) and provide output(s). However, the inner mecha-

nisms used to reach to the output (i.e., decision) are not seen or understood. Figure 2 illustrates 

this concept of a black-box model.  

 

 

Figure 2: Black-Box Model 
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The term "black box" suggests that the model's internal processes are opaque, and the out-

put is solely dependent on the input. In the context of machine learning, a black box model refers 

to a model whose internal workings are not transparent or easily interpretable by humans. Espe-

cially when the black box model is composed of several machine learning techniques or surrogate 

models that work with some degree of interdependency among them to produce output, i.e., result 

or prediction. Even if some of these complex models can be interpreted it will take quite a human 

effort which some time is infeasible in large environments where these models are continuously 

evolving over time. 

In other words, we know what goes into the model and what comes out of it, but we do not 

know what happens inside the model. This makes it difficult to understand how the model makes 

decisions, and to analyze and interpret the reasons behind its predictions or recommendations. 

 To better understand what makes a black-box model unexplainable, consider an example. 

One type of black-box ML model is an artificial neural network (ANN). ANNs are designed to 

mimic the human brain, and they are composed of many neurons. These neurons are arranged into 

several layers, and each neuron has connections—each represented by a numeric value called a 

weight—to neurons in the previous layer. An example of an ANN architecture with 3 layers is 

shown in Figure 3. 
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Figure 3: Example of an Artificial Neural Network Architecture 

 

 

 Inputs are given to the neurons in the input layer. The data is processed with a mathematical 

function within each neuron, and the results are passed onto the next layer through the connections. 

The weight of each connection transforms the results as they are passed to the next layer. When 

the next layer receives the data, the process repeats. The neurons in this layer perform a mathe-

matical function and pass the results to the next layer through the connections, and once again, the 

weights affect the value of the data being passed. This process repeats at each layer until reaching 

the end of the network, and the values output by the neurons in the final layer are considered to be 

the predicted output of the ANN’s decision algorithm. 

 This predicted output is then analyzed with an error function, which determines the degree 
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of error between the predicted output and the ground truth. Once the error is calculated, the model 

optimization process alters the numeric values of the weights such that the predicted output be-

comes closer to the ground truth. In this way, we can understand the workings of an ANN.  

However, consider a trained ANN that has updated its weights many times through the 

process of learning on a specific data set. Although humans may understand the learning process 

that the ANN utilizes, humans are not able to explain the reasoning behind the numeric weight 

values of the trained ANN. During training, the network has identified patterns which relate inputs 

to outputs in the data, making it challenging to understand how neurons interact with input data 

patterns. Therefore,  ANNs are considered black-box models.  

There are many ML algorithms that exhibit this opaqueness like the ANN. To provide fur-

ther examples, a few commonly used ML algorithms are listed and classified as black-box or not  

in Table 1. 
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ML Algorithm Description Black-Box (Yes/No)? 

Linear Regression Linear regression predicts an output 

value using a linear equation that re-

lates input independent variables to 

output-dependent variables. 

No. Linear regression identifies 

the strength of independent var-

iables' effect on the predicted 

dependent variable through co-

efficients in the linear equation. 

Logistic Regression Logistic regression predicts an output 

using a logistic equation that relates 

input independent variables to the 

output-dependent variables. 

No. Logistic regression identi-

fies the strength of independent 

variables' effect on the pre-

dicted dependent variable 

through coefficients in the lo-

gistic equation. 

Decision Tree A decision tree predicts a value by 

splitting all the data across features to 

minimize a cost function. This is ac-

complished through a graph data 

structure that represents choices and 

their results as a tree; nodes represent 

attributes in a group, and branches 

represent values that the node can 

take [4]. 

No. The decision-making pro-

cess is outlined in the graph-

structure of a decision tree. One 

can follow the exact process 

through the graph to understand 

why specific decisions are 

made. 

Neural Network 

(ANN, CNN, RNN) 

A neural network is a model that at-

tempts to identify underlying rela-

tionships in a data set through a pro-

cess mimicking how the human brain 

learns information [4]. 

Yes. The weights of a neural 

network cannot be understood 

after training. The values were 

set from data patterns identified 

by the network. 

Weighted Random 

Forest 

A weighted random forest is a model 

that generates a number of decision 

trees (each with weight(s)), and each 

tree produces a prediction on input 

data; the result is a combination of all 

predictions (considering weighting) 

into a final prediction [3]. 

Yes. After a weighted random 

forest has been trained, the 

logic behind the weight values 

is not understandable. 

Table 1: Examples of Common ML Algorithms  
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2.4 Explainable Artificial Intelligence 

Due to the predictive power of black-box models, ML algorithms such as the ANN continue 

to see more widespread use and implementation into AI applications. Since AI has become more 

instrumental in many industries and more prevalent in everyday life through its usage in applica-

tions (such as social media platforms, web-searching applications, email services, advertisements, 

etc. [5]), this has led to a major concern. Although many people are accustomed to using applica-

tions with AI, many users have limited understanding of the decision-making process of this AI 

that they interact with each day. Some users may lack knowledge of AI implementation entirely, 

but even domain specialists and programmers alike cannot explain the decision-making process of 

black-box models. This can hamper the trust between the AI and the user. 

Although this issue is a cause for concern in all cases involving AI decisions, the severity 

can vary depending on the specific situation. In many common cases of end-user to AI interac-

tion—such as allowing AI from Netflix to decide which movie recommendations should be 

shown—lacking an understanding of the decision-making process behind-the-scenes has little im-

portance to the end user. This is because an incorrect decision by the AI will have little or no 

consequence or impact on the end user.  

However, there are many scenarios where AI decisions impact an individual’s life much 

more. Consider an AI decision made in the field of healthcare. A doctor may utilize AI to help 

determine an important disease diagnosis. In this case, an incorrect diagnosis by the AI could in-

correctly inform the doctor, which can result in improper treatment of the patient. An event such 

as this could majorly impact the patient’s life for the worse. In this scenario, the doctor will likely 

exhibit concern towards the AI's decision-making process, and he/she may doubt the trustworthi-

ness of the AI system.  
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Typically, the doctor could take several approaches towards evaluating the AI system to 

ensure that it is trustworthy. One approach is to hire a domain specialist to analyze the model and 

the incorrect prediction in question. The domain specialist may examine past predictions and pa-

tient diagnoses to determine what may have caused the AI to give the incorrect prediction in this 

case. However, this is a lengthy and costly process, and domain specialists may be in high demand 

depending on the field.  

Another method is to utilize evaluation metrics such as accuracy or loss. The accuracy of 

tells the ratio of correct to incorrect decisions made, and the loss gives the magnitude of error 

present in predictions. These two metrics are often used to show the precision of an AI model, and 

showing high precision intends to help users trust the predictions.  

However, these approaches may not be sufficient at ensuring user trust in an AI system.   

Many AI users are currently reassessing the basis for trust in AI, as there is growing concern about 

incorrect AI decisions and their potential consequences. Even seemingly correct decisions are now 

being scrutinized for potential model bias and ethical concerns, particularly in opaque models 

where discrimination and other issues may go unnoticed. For instance, decision-making processes 

that have a history of prejudice, such as the determination of bail [6], have been the focus of ex-

tensive efforts to eliminate racial discrimination through AI. However, there is a concern that these 

systems may unintentionally perpetuate discrimination due to biased data used for their training. 

Due to these rising concerns about trust in AI, there has been much growth in interest in 

explainable artificial intelligence throughout academia, industry, and government. Explainable ar-

tificial intelligence (XAI) proposes creating ML techniques that can produce more explainable and 

transparent models while maintaining high performance, and it also aims to provide diverse meth-

ods of post-hoc explainability to existing ML.  
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2.4.1 SHAP Framework 

 Regarding post-hoc explanations of the decision-making process of black-box models, the 

field of XAI considers many different approaches. Some approaches utilize specific examples from 

the overall data to try and explain the behavior of an ML model. Other methods can try to explain 

the model’s decisions by perturbing input data to see how the model reacts. Among these methods, 

two popular approaches are sensitivity analysis (analyzing how ANN output is affected by pertur-

bations of inputs or model weights [7]) and feature importance (permuting inputs to determine the 

contribution of different features of data towards predictions [7]). The approach of feature im-

portance has seen rising popularity, as this approach often produces visual explanations that can 

be easily understood by humans. Within this approach, there are several different XAI methods 

which can be applied, such as Local Interpretable Model-agnostic Explanations (LIME), and 

SHAP.  

This thesis will utilize SHapley Additive exPlanations (SHAP), which is both a post-hoc 

and model-agnostic method of explaining individual predictions. SHAP aims to provide a linear 

model which explains the marginal contribution of each feature towards a model prediction. SHAP 

proposes that the SHAP values (representing the marginal contribution) for each feature of a data 

instance x can be represented as a linear model g [8]. The linear model is shown in Equation 1. ϕj 

represents the SHAP value for feature j, and M represents the total number of different features in 

the feature space.  

𝑔(𝑥′) = 𝜙0 + ∑ 𝜙𝑗

𝑀

𝑗=1

  

Equation 1: Linear Explanation Model for SHAP  
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Although explanations from the SHAP framework are in the form of a linear model of 

Shapley values—as shown in Equation 1—the SHAP framework considers that the decision-

making process of many modern ML algorithms will identify complex patterns and utilize non-

linear statistical methods. For explaining these models, the KernelSHAP technique is used. This 

technique is based on both Shapley values and LIME. The goal is to weight the perturbed in-

stances by their proximity to the original instance being explained and then to fit a weighted lin-

ear model through linear regression to arrive at the final explanation.  

2.4.2 Shapley Values 

The logic utilized by SHAP is based on the concept of Shapley values, which were intro-

duced by Lloyd Shapley in 1951 [9]. Shapley values were proposed as a solution in cooperative 

game theory in order to find the marginal contribution of different team members towards an out-

come, and we can apply the concepts employed by Shapley to find the mean marginal contribution 

of each feature in the feature space towards a model’s predictions [10].  

The calculation of a Shapley values can be a complex process which involves multiple 

integrations [8]. By definition, a Shapley value is the mean marginal contribution of a feature 

towards the predicted outcome, weighted and summed over all possible combinations of features 

[8]. To better illustrate the concept of Shapley values, consider a simplified example similar to the 

experiment discussed in Chapter 3. In this simplified example, a random forest classifier, denoted 

by f, is used to identify abnormal computer behavior, such as a memory leak or excessive CPU 

stress. The random forest classifier monitors the computer by receiving 4 metrics as inputs: (1) 

total CPU time, (2) disk idle time, (3) amount of memory consumption, (4) internal temperature. 
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At one point in time—we will refer to this as instance x—the computer logs the metrics: 

• CPU Time: 84% 

• Memory Consumption: 2378 MB 

• Disk Idle Time: 94% 

• Internal Temperature: 82° F 

The random forest predicts a probability of 0.87 towards identifying abnormal behavior for 

instance x, and it alerts the user of the computer that abnormal behavior is present. In this instance, 

the user may not notice any abnormal behavior from the computer, so he/she wants to know why 

the random forest classifier came to its conclusion by seeing the marginal contribution of each 

feature.  

For this example, we can demonstrate the steps finding a Shapley value for one feature—

total CPU time. We start by demonstrating how the contribution of the total CPU time feature is 

calculated. Consider Figure 4, where the total CPU time is removed from the coalition. We can see 

the classifier’s prediction changes from 0.87 to 0.74 when the total CPU time is removed, so for 

this specific coalition, the contribution of the total CPU time is the difference between predictions, 

0.87 - 0.74 = 0.13.  
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Figure 4: Calculating the Contribution of the Total CPU Time Feature 

 

 The process of removing a feature value is not simply setting the value to 0; rather, the 

feature value for the total CPU time was replaced by the feature value of another random sample 

in the sample space. If we represent the random instance as r, examples of replacing some feature 

values in x is shown in Figure 5. 
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Figure 5: Replacing Feature Values in x with Feature Values from r 

 

 In this way, we can replace features values in x with feature values from r. Now, reconsider 

the definition of Shapley values. To find a Shapley value, all possible combinations need to be 

considered, so we need to calculate the contribution of total CPU time for every possible coalition. 

This is accomplished by taking the difference between predictions with the total CPU time feature 

value present and replaced, and this difference is calculated for each possible coalition. The pos-

sible coalitions are shown in Figure 6. 
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Figure 6: Possible Coalitions When Calculating the Shapley Value for Total CPU Time 

 

 Now, we have seen the process of calculating the contribution of total CPU time for every 

coalition between x and a random instance r, but for the Shapley value to be representative of the 

entire data space, this process should be repeated with every other data instance in the data space 

sampled for r. Then, the Shapley value is simply found as the mean of all the contributions.  

2.4.3 Advantages and Disadvantages of Shapley Values 

The Shapley value has several advantages which distinguish it from other explainable AI 

methods, such as Local Interpretable Model-Agnostic Explanations (LIME). One primary ad-

vantage is the efficiency property of Shapley values, which guarantees that the difference between 

a model prediction and the average prediction is fairly distributed among all the features in the 

instance [8]. The efficiency property is shown in Equation 2. 

 

∑ 𝜙𝑗 = 𝑓(𝑥) − 𝐸𝑋(𝑓(𝑋))

𝑀

𝑗=1
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Equation 2: Efficiency Property of Shapley Values 

 

Here, f(x) is the model prediction for instance x, and 𝐸𝑋(𝑓(𝑋)) is the mean model predic-

tion over all instances in the instance space X. Therefore, the efficiency property of Shapley values 

ensures that the feature contributions for x add up to the difference of predictions between x and 

the average prediction overall. Due to this property, explanations utilizing Shapley values have 

developed a reputation for being the most trustworthy explanation methods, and they have become 

the focus point of using XAI in legal situations—such as providing trustworthiness for AI in com-

pliance with EU’s Artificial Intelligence Act [11].   

Despite the usefulness and advantages of Shapley values, there are several disadvantages 

of using Shapley values. The most important disadvantage to consider is the computing time and 

resources necessary for calculating Shapley values. In Section 1.4.2, we saw the calculation of the 

contributions of one feature using only one random sample. This process would have to be com-

pleted for all features and considering all instances for sampling. In many real-world situations 

with many features and instances to consider, calculating Shapley values takes too much time,  

Shapley values can be approximated to save computing time and resources [8]. This helps improve 

runtime but can compromise the accuracy of Shapley values. For Shapley values to be precise, as 

many random instances from the data space should be sampled and used as possible.  

Another disadvantage of Shapley values is that they cannot provide selective explanations  

[8]. To uphold the efficiency property, Shapley values always consider all features in the feature 

space. In scenarios with many features, this can affect how interpretable Shapley values are to 

humans. Many humans will prefer a selective explanation, showing the most influential features 

rather than all features. In these cases, it may be best to use another XAI method such as LIME or 

SHAP (based on Shapley values but can allow for explanations with few features).  
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Another disadvantage is the necessity of access to the data. When calculating Shapley 

values for an instance, the instance is compared to other coalitions using feature values from 

other random instances. Some methods of estimating Shapley values may include creating in-

stances similar to those in the data if the data is not directly available. For example, one may use 

Monte Carlo Sampling to create random instances whose features can be used for substitution.  
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Chapter 3: Load Testing of Large-Scale Systems 

3.1 Performance Monitoring of Large-Scale Systems 

Today's large-scale systems (LSS), which consist of data centers and server farms, have 

undergone a significant increase in size and complexity. For instance, Google alone has over a 

million servers in its data center, while Facebook has doubled the size of its data center within a 

year, from 60,000 to 120,000 servers. Similarly, Microsoft, eBay, Yahoo, and Amazon collectively 

have over 550,000 servers. 

LSS must be monitored continuously to ensure high availability and peak performance. 

These systems represent large capital investments for service providers, and any performance is-

sues can result in significant monetary losses. For example, a PayPal outage of just one hour may 

prevent up to $7.2 million in customer transactions [12]. Therefore, operators of LSS closely mon-

itor their systems to detect performance problems before they violate service level agreements 

(SLAs) or cause unplanned system downtime that can cost as much as $550,000 per hour [13], 

[14]. 

Performance problems in LSS can manifest as high response times, increased latency, low 

throughput underload, or not meeting desired SLAs. The occurrence of performance bugs in these 

complex systems has become a common issue, rather than an exception. Service providers, like 

AT&T and Research in Motion, have also reported concerns about performance degradation and 

resource saturation. For example, a robust performance monitoring system could have alerted the 

operators of Skype before a system overload caused a 48-hour service disruption for millions of 

users. 

Availability or performance issues can have a significant impact on business-customer re-
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lationships. In the growing market of Software as a Service (SaaS), competitors can quickly capi-

talize on dissatisfaction and lure customers away. In some cases, costly lawsuits or even the break-

down of the business model can result from a lack of trust in the quality of service (QoS). To 

maintain customer trust, these LSS must be continuously monitored and actions must be taken 

immediately when low availability or poor performance threatens QoS. 

Due to the rapid growth in size, complexity, and demand for practical performance moni-

toring solutions, the performance monitoring of LSS has become increasingly critical and chal-

lenging. Despite limited progress in research on automatic performance monitoring and analysis, 

load testing remains the most important part of performance testing for LSS. Research on large 

industrial projects has shown that the primary problems in the field are performance-related. Per-

formance analysts use load testing to detect early performance problems in the system before they 

become critical field problems. 

During a load test, which may last several days, one or more load generators simulate thou-

sands of concurrent transactions. The application under test is closely monitored, and a large vol-

ume of performance counter data is logged. This information, such as CPU utilization, disk I/O, 

queues, and network traffic, is used to observe the system's behavior under load. This behavior is 

then compared to documented behavior from past similar tests, or it is used to inform decisions on 

expected behavior based on domain knowledge and experience. However, current load test analy-

sis practices are labor-intensive, time-consuming, and prone to errors. While there has been some 

research on automatically generating load test suites, little attention has been given to effectively 

analyzing the results of load tests. 
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3.2 Load Testing 

Load testing is a crucial process in assessing the performance of a system under a given 

load. The load refers to the rate at which transactions are submitted to the system. It helps to iden-

tify any residual functional and performance issues that may have escaped the functional testing 

process. 

Functional problems can be bugs such as deadlocks and memory leaks, whereas perfor-

mance problems can result in the system freezing, crashing, or becoming unresponsive during a 

load test. Symptoms of performance problems include high response time and low throughput 

underload. Performance analysts and developers spend significant time fixing these issues, which 

can have a major impact on the overall functioning of the system. 

For example, post-release problems such as performance degradation and resource satura-

tion are a common concern among companies such as AT&T and Research In Motion. These prob-

lems can result in a subsystem of the system failing, potentially leading to monetary losses. For 

instance, a PayPal outage that lasted an hour during periodic maintenance could have prevented 

up to $7.2 million in customer transactions. 

Load testing is an effective tool to uncover such functional and performance problems by 

simulating thousands of concurrent transactions to an application under test using one or more load 

generators. The application is closely monitored during the load test, which may span several days, 

and a vast amount of performance counter data is recorded. This data includes important infor-

mation such as CPU utilization, disk I/O, queues, and network traffic, which is analyzed to observe 

the system's behavior underload. The performance data is compared to the documented behavior 

of the application/system or to the expected behavior, providing invaluable insights for the perfor-

mance analysts. 
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3.2.1 Steps Involved in Load Testing 

The typical process of load testing consists of four phases, including environment setup, 

load test execution, load test analysis, and report generation as shown in Figure 7. 

 

 

Figure 7: Steps Involved in Load Testing 

 

Environment Setup 

Environment setup is a crucial phase in load testing as it is where most failures occur due 

to improper setup. The environment setup involves installing the application and load testing tools, 

including configuring the load generators to emulate user interactions with the system, and match-

ing the real workload. 

Load Test Execution 

The load test execution phase involves starting the system components under load test, 

including the services, hardware resources, and tools, such as load generators and performance 

monitors. The application or system under test is monitored closely, and performance counters are 

recorded in performance logs. 

Load Test Analysis 

Load test analysis involves comparing the results of a load test to another load test result 

or pre-defined thresholds. Unlike functional and unit testing, load testing requires additional quan-

titative metrics, such as response time, throughput, and hardware resource utilization to summarize 
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results. The performance analyst selects a few important performance counters among the thou-

sands collected, compares them with those of past runs, and looks for evidence of performance 

deviation using plots and correlation tests. 

Report Generation 

The report generation phase involves filing any performance deviations found based on the 

personal judgment of the analyst. The results in the performance report are usually verified by an 

experienced analyst. Based on the extent of performance deviation and its relevance to the subsys-

tem handling team, such as the database, application, or web system, a performance report is gen-

erated. 

3.2.2 The Current Practice of Load Test Analysis in LSS 

In LSS, it is challenging to find an analyst who has complete and up-to-date knowledge of 

the underlying systems involved in a load test. To compensate for this, analysts use a variety of 

methods to assist them in a timely analysis. 

Rule of Thumb 

Analysts often rely on "rules of thumb," which are important performance counters recom-

mended by domain experts and gurus, to quickly identify performance problems in a load test. 

However, in large projects, it is rare to have gurus who can provide these "rules of thumb" for 

every type of load test [15] [16]. 

History 

In the absence of domain experts, performance analysts often use historical information 

stored in performance test repositories to uncover the test signature, or important performance 

counters, for a quick load test analysis [17]. However, this method requires well-maintained per-

formance repositories, systematic retrieval techniques, and established traceability between bugs 
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and test cases. 

Self-Judgment 

When other options are not available, performance analysts often rely on their personal 

judgment to analyze load test results. Based on their individual judgment, they determine whether 

changes compared to the baseline or past runs are significant enough to file defect reports. 

2.2.3 Challenges of the Current Practices for Analyzing Load Tests 

Large Volume of Data 

The results of the load test conducted on LSS encompass a vast amount of performance 

data obtained from various subsystems that were tested, including numerous applications, data-

bases, web servers, as well as a variety of network components like routers, switches, firewalls, 

and multiple interface controllers and adapters. This presents several challenges related to organ-

izing and presenting the data in a methodical manner, as well as dealing with time constraints. 

Methodological Challenge 

Within the domain of load testing, the amount of performance data gathered during a load 

test can be quite substantial. This data can vary in size from a few hundred megabytes to multiple 

terabytes, as seen in examples such as Yahoo and Twitter's testing, where they collected 5 petabytes 

and over 12 terabytes of logs respectively over the course of several days [18]. It is often imprac-

tical to repeatedly read such massive amounts of data for each load test in order to evaluate it 

against a model, such as a baseline load test. 

Presentation Challenge 

Load tests can range in duration from a few hours to several days and tend to generate a 

significant amount of performance counter data, often in terabytes. Performance analysts fre-

quently utilize graphs to detect performance deviations or anomalies, particularly when plotting 



 

30 

performance counters to identify fluctuations. For instance, an upward trend in memory usage 

during a load test may indicate a memory leak. However, an excessive number of performance 

counters can lead to graphs that are overcrowded and challenging to evaluate. Consequently, ana-

lyzing such a substantial amount of performance data represents a significant challenge in the load 

testing process [19]. 

Time Pressure Challenge 

Typically, load testing occurs at the conclusion of a development cycle and often serves as 

the final step in a release schedule that has already experienced delays. As a result, load testers 

typically feel immense pressure to complete testing and certify the software for release. Although 

load tests can span many hours or days, there is often limited time allocated for analysis. Given 

the extensive volume of performance counter data and the limited amount of time that testers and 

analysts have to report their findings from a load test, even experienced analysts can find conduct-

ing a comprehensive analysis to detect performance deviations challenging. 

Information Extraction Challenge 

When analyzing a load test, practitioners often seek out similar historical load tests that 

were conducted with comparable workloads to the current test. These past load tests can provide 

practitioners with several benefits, including the ability to quickly identify performance counters 

used in previous tests, point them towards potential performance issues (such as those experienced 

in the past), assist in understanding the root cause of any issues, and occasionally even offer a 

solution that saves time and effort otherwise required to analyze a load test. Nevertheless, there 

are several challenges associated with extracting the necessary information from past test results 

due to: 
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Unstructured Performance Repositories 

Regrettably, performance repositories are primarily designed to archive performance tests 

for record-keeping purposes, rather than for conducting analysis. Therefore, the retrieval of perti-

nent information regarding similar load test operations and signature profiles is not extensively 

explored. The process of locating the most relevant test case is manual and laborious due to the 

lack of systematic techniques for retrieving and utilizing the information stored in performance 

repositories to analyze the outcomes of future tests [20]. 

Consistency Challenge 

The terminology used by analysts/testers to describe a performance problem in a load test 

performance report can vary. For instance, heavy memory usage may be reported as 'memory bug,' 

'memory leak,' 'memory overload,' 'out of memory,' or 'low mem.' Analysts usually perform a string 

search to find past tests with similar performance problems to those observed in the current load 

test. For example, they may use keywords related to performance problem symptoms, such as 

"memory leak," to search for related test reports from the past. However, inconsistent documenta-

tion of performance problems can result in many false positives [21], which can waste the time 

and effort of analysts. 

Inadequate Test Report Information 

Analysts in LSS may vary in the level of granularity they use to report load test findings. 

Due to their busy schedules, they often report only the minimum required information in their 

reports, which is enough for the report to be deemed complete and placed in a performance repos-

itory but may not be sufficient for conducting root cause analysis. Figure 8 provides an example 

of a performance report obtained from a large LSS's performance repository.  The original de-
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scriptors, machine names, and counter names have been redacted due to a Non-Disclosure Agree-

ment (NDA). All the mandatory fields of the report (shown in bold) are completed by the analyst, 

making the report appear complete. However, the information provided may not be sufficient for 

conducting a root cause analysis. 

 

Figure 8: A Sample Test Report 

 

In the result description section of the performance report in Figure 8, the analyst reports 

that certain performance counters, such as 'Trans committed/min', 'Trans Roll_Back/min', 'Re-

sponse time', and 'Database spool agent private bytes growth', were significantly higher compared 

to the baseline test, which is a similar test conducted on the previous bundle of the enterprise 

software. However, the analyst does not provide any explanation for why the load test passed de-

spite these deviations. It is unclear whether: 
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These differences were expected or normal for the new version under test. 

• The SLAs were maintained or satisfied even though the reported performance counters 

fluctuated. 

• These were the only four performance counters collected and analyzed for this load test, or 

whether there are other counters that showed deviations. 

Performance Fix Traceability Challenge 

The load test analysis activity involves not only detecting performance problems during 

the course of a load test but also identifying the root cause of the problem. If the identified problem 

is similar to a previously seen problem, a known solution can be applied, which can prevent time-

consuming escalations. However, performance test reports of previously solved problems rarely 

reflect the fix because there is a traceability gap in LSS between the performance problem identi-

fied in a performance report and the documented fix in the bug or defect repositories. Therefore, 

past tests with a similar problem may not necessarily expedite the resolution of a current problem. 

Judgement Bias 

The current method of relying on personal judgment in load test analysis is prone to errors 

since it is heavily dependent on an analyst's knowledge and past experience. For instance, one 

analyst may consider a 5% rise in the number of database transactions per second as a cause for 

concern, while another may dismiss the increase, citing experimental measurement error. 
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Chapter 4: Explaining Performance Monitoring Classifiers With SHAP 

For monitoring the performance of large-scale systems (LSS), many organizations have 

begun to integrate AI into their software application performance monitoring environment. To 

demonstrate an application of XAI, an experiment which utilizes SHAP to explain AI which mon-

itors an LSS was completed. In this experiment, a simulation of an e-commerce software system 

was constructed, and AI was used to monitor the software system during load tests to signal if any 

faults—behavior interfering and/or differing with the normal operation of the system—were pre-

sent. Since the underlying machine learning algorithms used to develop the AI for this task were 

black-box algorithms, the objectives of this experiment are to: (1) use SHAP to explain the black-

box models’ decision making, (2) determine how the explanations can be used to help improve the 

models, (3) demonstrate how the explanations can increase user trust in the system. 

4.1 Subject of Study and Environment Setup 

The section describes the studied system to perform the load test experiments as well as 

the environment of the system under study. 

4.1.1 The Open-Source System 

The Dell DVD Store (DS2) application [22] is the system being examined in this study. It's 

an open-source simulation of an e-commerce website that's used for benchmarking Dell hardware. 

DS2 includes standard e-commerce features like user registration, login, product search, and pur-

chase. The application is made up of a web application component, a back-end database compo-

nent, and driver programs (load generator). DS2 has different versions to support various program-

ming languages such as PHP, JSP, or ASP, and databases like MySQL, Microsoft SQL server, and 
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Oracle. For this study, the PHP distribution and a MySQL database were used. A mix of transac-

tions, including user registration, product search, and purchases were used as the load.  

4.1.2 Testbed  

To replicate the load testing process of large-scale software systems, a system of three ma-

chines was used as a testbed for the open-source system, i.e., Dell DVD Store. One machine was 

used as a web server running Apache web service to host the web application for browsing and 

purchasing DVDs. The second machine was the database server; it hosted a MySQL database to 

hold the store inventory and customer account information. The third machine acted as a load 

generator, i.e., generating concurrent load on the servers mimicking real-world users. The ma-

chines were all connected to one another physically in a LAN. The hardware specifications of the 

machines are shown in Table 2. 

Machine CPU Cores RAM Disk Type Disk Size 

Web Server 2 4 GB HDD 300 GB 

Database Server 2 4 GB HDD 300 GB 

Load Generator 4 8 GB HDD 500 GB 

Table 2: Hardware Specifications of the Ecommerce Service System 

 

Set-up Process of Testbed 

To ensure a sterile testing environment without interference from other software applica-

tions, the disks on both the database and web servers were reformatted to NTFS format before 
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any software installation was completed. Windows 7 Home Premium along with the .NET 

Framework 4.5.2 and Visual C++ Redistributable 2015-2022 were installed on both the servers. 

For the web server, XAMPP was installed to serve the PHP 5 e-commerce website. The 

server was configured to allow many concurrent user connections, and the site was served using 

Apache Web Service. For the database server, MySQL Community Edition 5.7 was installed and 

configured to allow many concurrent connections. The installed database stored all data regard-

ing the DVD store inventory, customer account information, and purchase history. The initial da-

tabase held 20,000 customers, 1,000 orders per month, and 10,000 DVDs in the store inventory. 

Parameter Value 

Testing duration 1 hour 

Number of driver (load generator) threads 15 

Startup request rate (load ramp-up rate) 25 

Think time (time it takes a customer to complete an or-

der) 

30 sec 

Database size 100 MB 

Percentage of new customers 10% 

Average number of searches per order 5 

Average number of items returned in each search 5 

Average number of items per order 5 

Table 3: Baseline Load Test Configuration for Dell DVD Store (DS2) 
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4.1.3 Description of Load 

A load generation script from the DS2 package was configured and executed from the 

load generator machine to simulate many users accessing the e-commerce web service to browse 

inventory, purchase DVDs, and access their accounts. Table 3 lists the configuration of the DS2 

load generator for the baseline load test in the experiments. 

 

4.1.4 Fault Injection 

To test our methodologies in practical scenarios, we need to assess them in the presence 

of typical faults. This involves selecting a fault category, such as software failures, hardware fail-

ures, or human/operator errors, and determining the corresponding failure triggers, such as re-

source depletion, logical errors, or system overload for each category. In a study conducted by 

Pretet et al. [23] on an enterprise web service system, it was found that 80% of the failures were 

due to software and human errors. Therefore, in our experiments, we use these categories of 

faults. Pretet et al. also identified the seven most common triggers for software and human er-

rors. We selected four failure triggers from their list that were suitable for our load testing experi-

ments and are listed in Table 4. In the following paragraphs, we will explain why we chose these 

specific failure triggers and how they relate to load testing. 

For each release or build of an application, performance analysts typically need to con-

duct a multitude of tests with specific workloads under particular hardware and software condi-

tions  [24]. It is crucial for them to meticulously analyze each test to ensure that the system is not 

being overwhelmed and is meeting its intended service level agreement (SLA), such as response 

time or latency. 
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I. System Overload: Load test failures can often be attributed to a misconfiguration of ei-

ther the system under test or its execution environment. In some cases, this may result 

from time pressure or the complexity of the configuration itself. For instance, a database 

or web server could be misconfigured due to a rushed setup or incomplete understanding 

of the required settings. Similarly, load generators may not be correctly configured, re-

sulting in inaccurate or unreliable test results. It's crucial to ensure that each component is 

set up and configured correctly to obtain accurate and reliable results from load testing. 

II. Configuration Errors: According to Pretet et al., the second most common reason for 

failures in the operator error category is procedural errors. These types of errors occur 

when analysts or testers do not follow the established guidelines and processes for con-

ducting a load test. In load testing, procedural errors can take various forms. For instance, 

a tester may forget to restart a web service or initialize database tables, leading to inaccu-

rate or unreliable test results. 

III. Procedural errors:  Procedural errors are also prevalent in large-scale systems where 

multiple processes may be running in the background [23]. In such cases, a tester may 

overlook or forget to adjust the schedule of interfering loads. For example, starting an an-

tivirus or database replication during the course of a load test can cause procedural errors 

and lead to invalid test results. To minimize procedural errors in load testing, it's crucial 

to establish clear guidelines and procedures for each step of the testing process. These 

guidelines should cover not only the technical aspects of the testing but also the docu-

mentation and communication requirements. Testers should also receive adequate train-

ing and resources to ensure they understand the guidelines and can execute the tests cor-

rectly. 
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Additionally, it's important to have a standardized process for capturing and reporting proce-

dural errors when they occur. This can help identify trends and patterns in the types of errors that 

are happening, and allow for targeted training or process improvement efforts to address the un-

derlying causes. By addressing procedural errors and minimizing their occurrence, load testing can 

be conducted more efficiently and effectively, providing accurate and reliable performance insights 

for the system under test. 

4.1.5 Experiment Design 

 We designed a total of 5 different performance tests experiments. Each test lasted for a 

duration of 1 hour and was repeated 3 times to ensure consistency among our findings and to gain 

statistical confidence on the results. The ramp-up and ramp-down (warm-up and cool-down) peri-

ods were excluded from the load test analysis, as the system usually is not stable at these periods. 

We used perfmon [25], a native windows operating system tool to collect the performance data 

periodically every 3seconds (sampling interval). This means that all the experiments conducted on 

the DS2 benchmark application are one hour long and contain 1,200 observations per performance 

counter. In total 90,000 observations of counters were collected across all experiments (including 

repetitions). 

 For both the webserver and the database server, the following performance data was col-

lected: 

• Available Megabytes of Memory  

• Network Packets Received per Second 

• Network Packets Sent per Second 

• Logical Disk Idle Time 

• Percent Processor Time 
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In Table 4, we outline the types of faults which were injected during the different experiments.  

 

Category Failure Trigger Faults Exp. Id 

Software Failures Resource Exhaustion CPU Stress 3 

Memory Stress 4 

Procedural Errors Unscheduled Replication 5 

Interfering Workload 6 

Table 4: Faults Injected into the Load Test Experiments 

 

 For the injection of these faults, two different software applications were used: HeavyLoad 

and Packet Sender. HeavyLoad [26] is a system utilities benchmarking application created by Jam 

Software. It provides several utilities for resource utilization. In these experiments, HeavyLoad 

was used to purposefully consume different resources such as CPU, memory, and disk.  

 Packet Sender [27] is an open-source application for creating and handling network re-

quests, and it was created by NagleCode LLC. In these experiments, the intense traffic generator 

feature of Packet Sender was used. This feature creates packets at a defined rate to flood the net-

work port of a specified machine.   

Description of Each Experiment 

I. Experiment #1: The experiment's purpose was to simulate the system's performance be-

fore any load was applied. This was done to capture a baseline state for the system. Typi-

cally, during this pre-load state, the system performance counters show low utilization of 

resources such as CPU, memory, and network. 
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II. Experiment #2: The second experiment’s purpose was to measure the performance of the 

software system under a normal operating load. Many user’s may utilizing the software 

system to create accounts, browse inventory, purchase DVDs, etc. To simulate these ac-

tions, the load generation script from DS2 was used to push the load defined by Table 3.  

  

Figure 9: Timeline of Experiment #2 

 

III. Experiment #3: Servers may experience resource exhaustion when too many processes 

are running or if a process requires many resources for execution. In a production environ-

ment, there may be additional processes being executed by other departments and users. 

This can greatly affect the software system’s performance. Users sending requests to the 

DVD store website may experience delays, or in extreme cases, they may experience a 

failure of the system to process the request. Simulating scenarios such as this is the purpose 

of experiment 3. In this experiment, the load generation script from DS2 was used to push 

to load defined by Table 3 for 1 hour; however, the HeavyLoad application was run on the 

web server over two 15-minute intervals to utilize the web server’s CPU. During the first 

15-minute interval, HeavyLoad was executed using one core of the CPU; during the second 

15-minute interval, HeavyLoad was executed using both cores of the CPU. The timeline 

of experiment 3 is shown in Figure 10. 
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Figure 10: Timeline of Experiment #3 

 

IV. Experiment #4: As discussed in experiment 3, resource exhaustion can greatly affect the 

performance of a software system and inhibit its ability to function properly. The purpose 

of experiment 4 is to simulate scenarios where many concurrent applications interfere with 

the system performance by over-utilizing the available memory, leaving only a limited 

amount for normal operation. The load generation script from DS2 was used to push the 

load defined by Table 3 for 1 hour. During this time, the HeavyLoad application was exe-

cuted on the web server over two 15-minute intervals to consume any remaining memory 

on the web server. Within each 15-minute interval, it took 7.3 minutes on average for 

HeavyLoad to consume all unused megabytes of memory. At the end of each 15-minute 

interval, HeavyLoad was stopped, and the memory it was consuming was freed immedi-

ately. The timeline of experiment 4 is shown in Figure 11. 

 

Figure 11: Timeline of Experiment #4 
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V. Experiment #5: Resource exhaustion is not the only factor which can affect the perfor-

mance of a software system. Sometimes other users and applications can affect the perfor-

mance even when not directly utilizing the computing resources of CPU or RAM. One way 

this occurs is through disk utilization. If many users are accessing data stored on the same 

disk, each may need to wait for the previous transaction to complete. Experiment 5 simu-

lates this scenario. The load generation script of DS2 was used to push the load defined by 

Table 3 for 1 hour. During this time, the HeavyLoad application was used to continuously 

write a temporary file to the disk on the database server over two 15-minute intervals. 

Within each 15-minute interval, transactions from the DVD store web site were delayed, 

causing slower responses to users even when resource exhaustion of the web server was 

not present. A timeline of experiment 5 is shown in Figure 12. 

  

Figure 12: Timeline of Experiment #5 

 

VI. Experiment #6: Another scenario that can affect the performance of the software system 

is an interfering workload. These workloads can utilize the resources of the software sys-

tem to interfere with its performance as simulated in the other experiments. However, 

sometimes the interfering workloads may not over-utilize system resources. This does not 

mean that performance is unaffected though. These workloads may still slow the system 

down by adding additional congestion to the network due to a high amount of requests. 
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Experiment 6 simulates this scenario. The load generation script from DS2 was used to 

push the load defined by Table 3 for 1 hour. During the two 15-minute intervals, the Packet 

Sender application was used to continuously generate and send requests to the software 

system. In the first 15-minute interval, requests are sent to port 80 of the web server. In the 

second 15-minute interval, requests are sent to port 3306 of the database server. A timeline 

of experiment 6 is shown in Figure 13. 

 

Figure 13: Timeline of Experiment #6 

 

4.1.6 Organizing Load Test Results 

 After each load test was executed, the resulting log files from the test were saved to an 

external disk. For each test, there are a total of 2 log files. For the database and web server, there 

is one log generated by perfmon to record the performance of each server during the tests. The 

perfmon log contains timestamped data which was logged every 3 seconds. The second log file 

was the result of printing the command line output from the load generation script; this command 

line output logged the average amount of latency that the user’s would experience over the last 10-

second interval. 

 It is not always possible to have the clock of all machines synced together. Many times, 
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even synced, over some time a natural drift occurs resulting in some difference or deviations be-

tween the 2 timestamps of a same event on different machines. To eliminate and difference or 

deviations between the time stamps between the 2 logs per each test, a Python script is produced 

to conjoin all files into one comma separated file. This script read the perfmon logs, synced both 

such that the timestamps matched, and then added the latency from the load generation log file to 

each row.  

The recorded latency was applied to each perfmon recording which occurred within each 

10-second time interval, so each 3-4 perfmon instances, falling within the 1—second interval, 

would receive the same value.  

To better understand the behavior of the software system, we added an additional column 

called "Fault Presence" to the dataset. This column contains binary values, with '0' indicating nor-

mal system behavior and '1' indicating the presence of a fault at the time of logging. Since we knew 

the specific times when faults were being injected during the experiments, we manually inserted 

the values of 0 or 1 into the column based on the corresponding timestamp. 

Once the log files were merged, and the additional features were added, we saved 11 col-

umns from the conjoined log into a comma-separated file for each test. These 11 features are sum-

marized in Table 5, providing a comprehensive overview of the recorded instances. 
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Feature Name Domain Description 

WS Available Megabytes (0, 3370) Amount of memory (in Megabytes) in the web-

server not being utilized by any application 

WS Packets Received per Second (0, 160) Amount of network packets received each second 

by the network adapter in the web server 

WS Packets Sent per Second (0, 160) Amount of network packets sent each second by 

the network adapter in the web server 

WS Percent Processor Time Total (0, 100) The percentage of elapsed time that the CPU of 

the web server spends executing threads 

WS Logical Disk Percent Idle Time (0, 100) The percentage of elapsed time that the disk of 

the web server is not executing read or write com-

mands 

DB Available Megabytes (0, 2850) Amount of memory (in Megabytes) in the data-

base server not being utilized by any application 

DB Packets Received per Second (0, 215) Amount of network packets received each second 

by the network adapter in the database server 

DB Packets Sent per Second (0, 215) Amount of network packets sent each second by 

the network adapter in the database server 

DB Percent Processor Time Total (0, 25) The percentage of elapsed time that the CPU of 

the database server spends executing threads 

DB Logical Disk Percent Idle Time (0, 100) The percentage of elapsed time that the disk of 

the database server is not executing read or write 

commands 

Latency (0, 3060) The average amount of time (in milliseconds) us-

ers must wait for the software system to respond 

to a request 

Fault Presence (0, 1) A binary number representing whether a fault was 

being injected into the software system at the 

point in time that this instance was logged; 1 rep-

resents a fault being present; 0 indicates no fault 

Table 5: Features of the Experiment Data Sets 
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4.2 Classifier Models 

After the completion of all load tests, two classifier models were developed to monitor the 

system and identify the presence of faults—specifically the 4 types of faults, typical to software 

systems, listed in Table 4. 

Since the tests were conducted in a controlled environment and the times when faults were 

present in the system were known, we decided to use supervised learning algorithms to analyze 

the data. The machine learning algorithms chosen for this purpose were artificial neural networks 

(ANN) and random forest. Both algorithms are considered black-box machine learning models 

and have gained significant popularity in recent years. The ANN and random forest models are 

powerful tools for identifying patterns in complex datasets and have been widely adopted in vari-

ous fields. With their ability to handle high-dimensional datasets and perform nonlinear transfor-

mations, they were deemed suitable for this study. 

For the ANN model, it was decided to use TensorFlow for much of the implementation; 

TensorFlow is a popular open-source library that implements machine learning algorithms [28]. It 

is particularly well-known for its implementation of deep learning models. The Sequential model 

from TensorFlow Keras API was used to compile a simple classification ANN with a 3-layer ar-

chitecture:  

1. Input Layer: brings the input data into the ANN system for further processing by sub-

sequent layers 

2. Hidden Layer: utilizes an activation function and learned weights to produce outputs  

3. Output Layer: receives outputs from the hidden layer and chooses which classification 

to output as the final prediction  
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Figure 14: Architecture of the ANN classifier 

 

 

This architecture is shown in Figure 14. This implementation utilized an S-shaped curve 

for the activation function of the hidden layer. This allows for the ANN to learn non-linear rela-

tionships between the input features. For the output layer, a linear activation function was chosen. 

This means that the output layer chooses between the two possible classifications—normal system 

behavior or the presence of a fault—depending on which receives the highest output from the 

hidden layer.  

For the other classifier model, a random forest algorithm was chosen. Since decision tree 

algorithms are not well supported by TensorFlow for a Windows 7 operating system, another li-

brary—Scikit Learn—was chosen; Scikit Learn is another popular library implemented in Python 

to provide machine learning and data analysis tools [29]. This model utilized an ensemble of 100 

decision trees. To give a visual representation of the random forest classifier, 2 random trees from 
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the ensemble were selected and displayed in Figure 15. 

 

Figure 15: Two Decision Trees from the Random Forest Classifier 

 

4.2.1 Classifier Model Training and Testing 

 Once the machine learning models were developed, it was time to see if they could identify 

faults in the software system’s performance. To accomplish this, both models must first learn how 

to identify faults, so they needed to be trained on the data gathered from all of the load test exper-

iments. This training process occurred in several steps.  

First, the feature values of the data were all scaled into the range [0, 1] using the approxi-

mate measured ranges for each feature shown in Table 5. Machine learning models, such as ANN, 

can experience difficulty in learning data where features all occur on a different scale, so to ensure 

that the model treats all features with the same importance, this scaling is necessary. The scaling 

method used was min-max scaling, shown in Equation 3.  

𝑠(𝑗) − min (j) 

max(j) − min (𝑗)
 

Equation 3: Feature Scaling Into Range [0, 1] 
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In Equation 3,  j represents one feature of the data set—ex. logical disk idle time, latency, 

etc. s(j) represents the value of the feature in sample s. min(j) represents the minimum value that 

feature j experiences over the entire dataset; max(j) represents the maximum value that feature j 

experiences over the entire dataset. 

Second, all the data was divided into two different groups: a training group and a testing 

group. The training group consisted of a random 70% of the instances, and the remaining 30% 

were used for the testing group. This split was made to ensure that the classifier models do not get 

to see all of the data when being trained; this way, unseen data will be left over after the training 

which can be used to validate how well the models have learned from training.  

Third, the models were fit on the training data. For the ANN model, the training process 

utilized Adam, a popular algorithm for optimizing a neural network, to update the ANN weights 

based on the amount of loss. The loss was defined as the mean squared error (MSE) present be-

tween the model prediction and ground truth. For the random forest model, the training process 

utilized bagging. Bagging is a process that randomly selects a random subset of samples from the 

input data and creates a decision tree model to be trained on the subset. After training each indi-

vidual decision tree, the trees are all joined into one ensemble, which is the overall random forest 

model. This model can then make predictions on data by allowing all trees in the ensemble to vote 

on their own predicted classification.   

After the training of each model was completed, several metrics were calculated to evaluate 

the results of the training. For the ANN model, these metrics are 'Accuracy’ and ‘MSE Loss’. 

Accuracy tells you how many times the ANN model was correct overall. TensorFlow defines ac-

curacy as the mean accuracy of predictions of all instances in a data set.  The accuracy function in 

TensorFlow creates two local variables, total and count that are used to compute the frequency 
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with which predictions matches labels. This frequency is ultimately returned as accuracy: an idem-

potent operation that simply divides the total by count. 

Mean Squared Error loss (MSE) is calculated as the average of the squared differences 

between the predicted and actual values. In our training case, its average MSE present over all the 

predictions in the training set. For the random forest, mean accuracy was used. When predicting 

the class of all instances in the training set, the ANN model resulted in a mean MSE loss of 0.322 

and a mean accuracy of 99%; similarly, the random forest classifier also achieved a high accuracy 

of 100%.  

The models’ predictions were then evaluated on the testing set—a set of data instances 

that the models have not yet seen, i.e., the reaming 30% split. The ANN model resulted in a 

mean MSE loss of 0.325 and a mean accuracy of 99%. The random forest classifier achieved a 

mean accuracy of 99%.  

 

4.2.2 SHAP Values for the Classifier Models 

Using only the metrics of accuracy and loss recorded from the results of training and test-

ing, the classifier models appear to have learned the data well. Both models exhibited mean pre-

diction accuracies of 99% or greater even when making predictions on data not yet seen. How-

ever, high values of accuracy and loss are not sufficient to justify the trustworthiness of a model. 

When accuracy is very high, there is a possibility of model overfitting. Overfitting is when a ma-

chine learning model memorizes specific patterns in data rather than learning to generalize. This 

results in the network correctly memorizing a data set, but it often fails to make correct predic-

tions on unseen data. However, the testing accuracy of the ANN is also very high, so identifying 

overfitting here is not an easy problem.  
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Figure 16: Mean SHAP Values for ANN Model 

 

Figure 17: Mean SHAP Values for Random Forest Model 
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To understand the behavior of this black-box model, XAI can be applied to give insight 

into the decision-making process of the learners, i.e., ANN and Radom Forest in crafting the pre-

diction mode. SHAP was used to identify the contribution of each feature discussed in Table 5 to 

the model predictions. Utilizing KernelSHAP—a weighted linear regression to approximate the 

SHAP values of each feature using the linear equation shown in Equation 1—the average contri-

bution of each feature towards predictions of ‘Pass’ and ‘Fail’ on all instances in the testing set 

was computed. To visualize these values, the SHAP library for Python offers many plot types, 

the most common being a summary plot. The summary plot shows the mean SHAP values over 

an entire dataset towards each prediction class. A summary plot for the ANN model is shown in 

Figure 16, where ‘Class 1’ represents ‘Fail’ and ‘Class 0’ represents ‘Pass’. The same plot for the 

random forest model is shown in Figure 17. 

From observing Figure 16 and 17, an issue is immediately observed. The contribution of 

the variables is very unbalanced. Most SHAP values are near 0, which means that the corre-

sponding features have little or no contribution toward the predictions of the classifier model. In 

contrast, the SHAP value corresponding to the latency is very high. For both ‘Class 0’ (Pass) and 

‘Class 1’ (Fail), the SHAP value is greater than 0.35. Since the SHAP value for latency is propor-

tionally much greater than the other values, we can see that the ANN model is making decisions 

almost entirely based on the amount of latency present.  

To examine this, we can plot the SHAP values towards a class. i.e., Pass or Fail, for each 

sample before they were averaged into the mean SHAP values seen in Figure 16. In Figure 18, 

this plot is shown using a bee swarm plot—a variation on a scatter plot that allows individual 

points to be more visible. Here, the SHAP values towards ‘Class 1’ (Fail) are shown. Here, the 
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coloring from blue to red indicates the magnitude of the associated feature value to the SHAP 

value being plotted.   

 

Figure 18: SHAP Values Towards Predictions of Fault Identification 

 

 

 Figure 18 shows again that the latency contributes highly to predictions where the ANN 

model identifies a fault, i.e., Fail. When the magnitude of the latency is high, the marginal contri-

bution of latency is in the range 0.4 to 0.6. When the magnitude of the latency is low, then the 

marginal contribution is in the range -0.3 to -0.4.  

This behavior can cause an issue with trust in the models. Making predictions based 

solely on the magnitude of the latency is likely a method that would fail in a production environ-

ment. Since this variable is affected by many factors, it could be unreliable in different scenarios. 

Across all the load tests, the latency ranged from 0 to 3 seconds, and this was using the same 
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configuration for the load generation script. In a production environment, the load and the result-

ing latency could be much more varied. If a low number of users are using the system, then the 

latency may remain low, even if a fault is present.  

4.2.3 Updating the Classifier Models  

Using the insight obtained from KernelSHAP explanations, it was evident that a method 

which gives less contribution to the latency feature needed to be developed. To examine possible 

reasons that the classifier models learned to associate the latency with the class label so strongly, 

correlation heatmap of the features of all instances in the testing set is shown in Figure 19. 

 

Figure 19: Correlation Heatmap of Testing Set 

 

 

In Figure 19, we see a correlation of 0.91 between the class label and the latency. Since 

this correlation is very high, it was decided to retrain the models while the latency variable was 
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removed. This way, we can see if the models are able to identify patterns in the other features 

without the high correlation of latency providing a direct path to correct prediction.  

The training and testing of the new models followed the same process as was completed 

for the previous models; the only difference was that the latency feature value was removed for 

every instance in the data set. After the new training was complete, the mean accuracy and loss 

over the new training set were recorded. For the ANN model, the training accuracy was 98%, 

and the MSE loss was 5.35e-7. On the testing set, the mean testing accuracy was 97%, and the 

MSE loss was 3.73e-7. For the random forest model, the mean training accuracy was 99%, and 

the mean testing accuracy was 96%.  

Once again, we can use SHAP to examine the classifiers’ behavior to determine if it bet-

ter learned the importance of other features in the data set. Using KernelSHAP, a summary plot 

of the SHAP values for the updated ANN model over the testing set is shown in Figure 20. 

 

 



 

57 

 

Figure 20: Mean SHAP Values Over Testing Set for Updated ANN Model 

 

 

Figure 21: Mean SHAP Values Over Testing Set for Updated Random Forest Model 



 

58 

 These SHAP values show improved results over the original models. The network traffic 

to and from the web server is now considered to be the largest contributor on average; however, 

this contribution does not significantly outweigh the contribution of other factors. The updated 

models take several performance metrics into account, such as CPU and memory utilization. 

These factors should show some impact considering that resource exhaustion of CPU and 

memory are two of the faults injected during the load test experiments.  

To ensure that the importance of each feature is correctly understood by the models, we  

can show the specific SHAP values for instances recorded during specific experiments. If the 

model truly learned to generalize the data, then the SHAP values should point toward the root 

cause of the fault being identified.  

 

Figure 22: SHAP Values Towards Fault Identification During CPU Exhaustion 
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In Figure 22, we see the SHAP values towards ‘Class 1’ (Fail) for instances in experi-

ment 3 (resource exhaustion of CPU). The percent processor time of the web server has the high-

est contribution. When the CPU is being utilized heavily, the marginal contribution ranges from 

0.15 to 0.35; when the CPU is being utilized under normal load, the contribution ranges from -

0.35 to -0.65. This shows that the model clearly recognized how CPU utilization should contrib-

ute to a prediction. Along with this, we can see a high variance in SHAP values related to net-

work traffic (packets received/sent).  

 We can continue to examine summary plots for instances of each experiment to ensure 

that the model learned the importance of other features appropriately. Figure 23 shows the SHAP 

values towards the ‘Class 1’ for instances in experiment 4 (memory exhaustion). 

 

Figure 23: SHAP Values Towards Fault Identification During Memory Exhaustion 
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The updated ANN model demonstrates a better understanding of the importance of fea-

ture values. For instance, when detecting a fault during memory exhaustion, the model's predic-

tion is highly influenced by the low amount of available memory in the webserver. The contribu-

tion in these cases ranges from 0.25 to 0.45. Conversely, in cases where a normal amount of 

memory is available (considered to be a high feature value in the scaling), the contribution 

ranges from -0.25 to -0.4. Additionally, the ANN considers the magnitude of the network traffic 

in making predictions. Experiment 4 shows that not all predictions were solely based on the fea-

ture value for available memory in the webserver. 

Furthermore, SHAP values are instrumental in identifying faults in instances during ex-

periment 5, which involves unscheduled replication.  

 

Figure 24: SHAP Values Towards Fault Identification During Unscheduled Replication 
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In the case of unscheduled replication, the classifier demonstrates a solid understanding 

of the different features that contribute to fault prediction. Specifically, the percentage of time 

that the database server's disk is idle is the most significant factor in predicting a fault. When the 

idle time is low, indicating higher than normal disk utilization, the contribution to the prediction 

is between 0.25 to 0.4. Conversely, when the disk has a high percentage of idle time, as it would 

under normal operating conditions, the contribution is between -0.35 to -0.45. 

In the final experiment, which involves an interfering workload, SHAP values play a cru-

cial role in identifying faults. Figure 25 illustrates the SHAP values towards fault identification 

in this experiment. 

 

Figure 25: SHAP Values Towards Fault Identification During Interfering Workload   
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Detecting an interfering workload fault can be challenging, as shown in experiment 6, 

which greatly increased network traffic and connection latency without significantly affecting 

system resources. While the SHAP values indicate that the ANN model learned to identify this 

fault, its decision-making method may not always be reliable. For example, during an interfering 

workload, more network packets may be sent and received due to multiple job requests and exe-

cution. However, the SHAP values demonstrate that the model is more likely to identify an inter-

fering workload fault when the number of packets sent from the system is lower. A high number 

of packets, in fact, negatively contributes in all cases shown. 

Considering that the identification of a fault can include all types of faults induced during 

the experiments, it appears that the network may have over-generalized patterns related to the 

number of network packets being sent. For instance, memory exhaustion slows down system per-

formance as the system must wait for memory to become available to complete tasks. Therefore, 

even if the system receives a high number of packets, the number of packets sent out from the 

system should be low. Consequently, a lower number of network packets sent out makes sense as 

a contributing factor to the identification of a fault. 

To further examine the contribution of network packets sent and received to fault identifi-

cation during an interfering workload, we can plot the SHAP values for a random instance from 

experiment 6 where the model predicted a fault. Figure 26 illustrates this plot. 
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Figure 26: SHAP Values for a Random Instance During Interfering Workload 

 

Here, we use a waterfall plot. This type of plot shows the SHAP values for one sample. 

For our sample chosen, we see the final prediction towards the class of identifying a fault is 0.93. 

The model was confident that a fault was present, and the SHAP values show us why. Starting at 

the average prediction towards this class, 0.507 (represented by E[f(X)]), the SHAP values show 

how the prediction ended up at 0.93. The largest contributing factor was the number of network 

packets received by the web server. This makes sense considering we are identifying a fault of 

interfering workload where other systems send requests to the software system being examined. 

The number of packets received per second by the webserver was 95.515, which is higher than 

the software system would normally receive, as shown in Figure 27.   
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Figure 27: Boxplots of Network Traffic During Experiment 6 

 

 

 The next highest contributing factor in Figure 26 is the percent processor time of the web 

server. We see that the value was 17.612%, which is higher than the average percent processor 

time when no fault is injected—around 10 to 14%. We then see the contribution of packets re-

ceived by the database server as the third-highest contributing factor. However, it negatively 

contributed in this case. Looking at the feature value, we see that the packets received per second 

was 47.055, so it makes sense that this value supports the idea that a fault is not present. Looking 

at Figure 27, we see that this number of packets received is entirely normal behavior. On aver-

age, the system receives around 35 packets per second. When an interfering workload was intro-

duced, it introduced instances where the packets received per second by the database server 
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raised into the range of about 60 to 140 per second—in two rare instances we see the value climb 

above 200.  

 The fourth highest contributing factor is the number of packets sent from the webserver, 

which was 19.738. This provided a marginal contribution towards the prediction of a fault by 

0.09. This value supports the idea that the model over generalized this feature. From Figure 27, 

we see that a value of 19.738 is very low. On average, the number of packets sent by the web-

server was around 40. The introduction of interfering workload increased this value into the 

range of 50-125 packets per second. However, the ANN model identified a low number of pack-

ets sent as an indication of a fault, so this logic likely comes from how the network identifies 

other fault, such as memory exhaustion. This same logic can be applied to the fifth highest con-

tributing factor, which was packets sent per second from the database server.  

4.2.4 Resulting Explanation of the Classifier Models 

After reviewing the SHAP values, we can draw final conclusions about the classifier 

models that can be useful for users. The classifiers perform well under normal operating condi-

tions, with a high accuracy rate of about 97% in identifying normal behavior. For detecting 

faults, the models rely on several key factors, including the amount of network traffic, CPU and 

memory performance in the web server, and idle time of the database disk. 

For resource exhaustion, high CPU or memory utilization in the webserver is the most 

important contributing factor, while for unscheduled replication, the utilization of the database 

disk is the key factor. In these cases, the model provides trustworthy results in response to high 

utilization of these resources. 

However, when it comes to identifying interfering workload, predictions should be taken 

with caution. If the workload requires a high amount of network responses from the software 
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system, then the network may not always identify the fault correctly. This is because a low 

amount of response packets sent from the system is a key metric in cases of resource exhaustion. 

Therefore, the classifiers may fail to identify an interfering workload fault if the workload re-

quires a high amount of network responses.  
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Chapter 5: Limitations of Work 

 

The research presented in this thesis has several limitations. One limitation is the limited 

variety in the load test experiments. The classifier models were intended to predict whether or 

not a fault was present during any load test, so the output was binary. This output grouped all po-

tential faults into one class. This implementation was chosen intentionally to allow a proper 

demonstration and application of a SHAP explanation, but this resulted in the usage of classifiers 

that were limited in scope.  

Another limitation of this research is the computing time allowed for SHAP value calcu-

lation. Computing the SHAP values with KernelSHAP is very computationally expensive and 

time-consuming depending on the number of data instances used for background sampling. The 

more samples used, the more the SHAP values consider the marginal contribution in regard to 

the entire instance space; thus, making the SHAP values more precise. However, the amount of 

computational time is not always worth the slight boost in precision; estimating SHAP values 

with a subset of instances is often sufficient enough to provide a quality explanation of the 

model’s decision-making process through feature contribution. Therefore, random sampling was 

utilized for the calculation of SHAP values in this research. Along with this, 250 background 

samples was the number chosen for visual representations of SHAP values. This allowed for 

many data instances used in computations to not be shown within the visual representations, such 

as the bee swarm plots. However, this was necessary to keep the figures simple to understand 

and explain.   
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Chapter 6: Conclusions and Future Work 

6.1 Conclusion 

AI has transformed the way that data is analyzed and processed, and its rapid growth now 

allows for the quick analysis of vast amounts of data in nearly every industry, leading to the auto-

mation of many processes. As AI continues to see performance improvements and growing usage 

in many fields, implementations of the underlying ML algorithms have become increasingly com-

plex. Since many people cannot understand the reasoning behind AI predictions due to the opaque-

ness of modern-day ML algorithms, the field of Explainable AI (XAI) has gained significant at-

tention over the past years. This thesis intended to build upon the existing body of work in the field 

of XAI by demonstrating its application to a real-world issue. A post-hoc XAI algorithm, SHAP, 

was utilized to explain black-box classifiers which were used to identify load test failures in large 

scale software systems.  

This research concluded that SHAP was sufficient at providing an interpretable explanation of 

the classifier models using SHAP values (mean marginal contribution). Utilizing SHAP values 

allows for the models’ decision-making processes to be understood, and this informed the process 

of updating and improving the classifier models to be trustworthy.  

6.2 Future Work 

For this research, there is future work which could expand upon the current research. An in-

vestigation into other XAI techniques could potentially help to improve the quality and ease-of-

use of the resulting explanations being provided to performance analysts. For example, LIME 

considers interpretability when optimizing explanations, so it can utilize a variety of surrogate 

models and graphical explanations. Comparisons between the linear regression model used in 

this thesis and other surrogate models may help to find more interpretable explanations. Along 



 

69 

with this, LIME and SHAP both consider local explanations while the calculation of Shapley 

values must consider the entire feature space and instance space. As mentioned in Chapter 5, ran-

dom sampling of instances across the instance space was used, and a threshold was set to reduce 

the overall computation time. Making comparisons between true Shapley values and the esti-

mated SHAP values could also help to improve this research and justify the methodology of uti-

lizing linear regression as a surrogate model.  

Also, feature selection techniques could be implemented to examine new data. In this re-

search, one feature—latency—was removed due to its exceedingly high correlation to the predic-

tion class across the entire instance space. However, it should always be acknowledged that the 

addition of new data could cause potential changes in correlation. Therefore, a feature selection 

technique can be implemented to justify the removal of latency through future changes.  
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Appendix B: Acronyms 

 

AI  Artificial Intelligence 

ANN   Artificial Neural Network 

CNN  Convolution Neural Network 

CPU  Central Processing Unit 

DB  Database 

DS2  Dell DVD Store Application (Version 2) 

DVD  Digital Versatile Disk 

EU  European Union 

I/O  Input/Output 

LAN  Local Area Network 

LIME  Local Interpretable Model-agnostic Explanations 

LSS  Large-Scale System 

matplotlib  Matplot Library for Python 

MB  Megabyte 

ML  Machine Learning 

MSE  Mean Squared Error 

perfmon  Windows Performance Monitor 

QoS  Quality of Service 

RNN  Recurrent Neural Network 

SHAP   Shapley Additive exPlanations 

SLA  Service Level Agreement 

WS  Web Server 

XAI  eXplainable Artificial Intelligence 
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