Spring 4-20-2012

Testing a model for the well-posedness of the Cauchy-characteristic problem in Bondi coordinates

Maria Babiuc-Hamilton
Marshall University, babiuc@marshall.edu

Jeff Winicour

Follow this and additional works at: http://mds.marshall.edu/physics_faculty

Part of the [Physics Commons](http://mds.marshall.edu/physics_faculty)

Recommended Citation

Testing a model for the well-posedness of the Cauchy-characteristic problem

Maria C. Babiuc, Marshall University, Huntington, WV
Jeff Winicour, Pittsburgh University, Pittsburgh, PA

15th Annual East Coast Gravity Meeting and Josh Goldberg Fest
Syracuse University, Syracuse, NY, April 20-22, 2012
What can we see with gravitational waves:
- Colliding black holes and galaxies,
- The birth of a black hole in a supernova
- The growth pains of our universe
- Gravitational waves are unambiguous measured only at future null infinity

Background

Babiuc and Winicour, Testing a model for the well-posedness of the Cauchy-characteristic problem
Cauchy-characteristic method covers all spacetime by combining 2 regions
1. A timelike (Cauchy) close to BBH
2. A null (characteristic) far field.

- Cauchy-characteristic initial-value
- Outward radial evolution
- Compactified radial coordinate
- Accurate gravitational radiation.

Formulation

Babiuc and Winicour, Testing a model for the well-posedness of the Cauchy-characteristic problem
Is the null-timelike problem well-posed?

“As a general rule, it is considerably more difficult in the null case to write down formulae which say what one wants to say.”

R. Geroch, *Asymptotic Structure of Spacetime*

Question

Babiuc and Winicour, Testing a model for the well-posedness of the Cauchy-characteristic problem
Timelike & null initial boundary
Split the problem into:
- Cauchy problem
- Half-plane (strip) problem
Show that each individual problem is well posed.
Analyze stability against lower order perturbations.

Approach

Babiuc and Winicour, Testing a model for the well-posedness of the Cauchy-characteristic problem
- **Real thing:** solve Einstein Equation of general relativity in Bondi-Sachs metric coordinates and calculate the gravitational waves.
- **Model:** solve the quasilinear wave equation in null-timelike compactified coordinates, on an asymptotically flat background with source, gived data on the timelike and initial boundary.

\[g^{ab} \nabla_a \nabla_b \Phi = S(\Phi, \partial_c \Phi, x^c) \]

Description

Babiuc and Winicour, Testing a model for the well-posedness of the Cauchy-characteristic problem
Change of variables: \(\Phi = e^{ax} \Psi, \ a > 0 \)

1+1 wave equation in characteristic coordinates:

\[
\begin{align*}
 t &= \tilde{t} - \tilde{x}, \ x = \tilde{t} + \tilde{x} \\
 \partial_t \partial_x \Phi &= S \rightarrow \partial_t (\partial_x + a) \Psi = F, \ F = e^{-ax} S, \ \Psi(0, x) = e^{-ax} f(x)
\end{align*}
\]

Energy estimates weighted norm is well-posed:

\[
E = \frac{1}{2} \int dx e^{-2ax} \left((\partial_x \Phi)^2 + a^2 \Phi^2 \right)
\]
Discretization of the wave equation:

\[\partial_t (D_{0x} U + a U) = LOT + S(t, x, y) \]
\[U_0 = F(x, y), \quad (x, y) \in [0, 2\pi), \quad U(x, y) = U(x + 2\pi, y + 2\pi) \]

Discrete Fourier Transform:

\[U(t, x, y) = \frac{1}{N} \sum_{0}^{N-1} \sum_{0}^{N-1} \hat{U}(t, \omega_1, \omega_2) e^{i(\omega_1 x + \omega_2 y)} \]
\[\hat{U}(t, \omega_1, \omega_2) = \frac{1}{N} \sum_{0}^{N-1} \sum_{0}^{N-1} U(t, x, y) e^{-i(\omega_1 x + \omega_2 y)} \]

Equation to evolve:

\[\partial_t \hat{U} = p \cdot \hat{U} + \hat{S} / d \]

Algorithm

Babiuc and Winicour, Testing a model for the well-posedness of the Cauchy-characteristic problem
- When $\text{Re}(p)<0$, the solution decays exponentially fast
- When $\text{Re}(p)>0$, the solution grows exponentially fast
- When $\text{Im}(p)\neq 0$, the solution has oscillatory growing modes
- Even for $\text{Re}(p)<0$, time integration stability

\[
\text{Re}(p) = -\frac{a\omega_{21}^2 + 2b\omega_{10}\omega_{20} + \ldots}{a^2 + \omega_{10}^2}, \quad \text{Im}(p) = -\frac{-\omega_{10}\omega_{21}^2 + 2ab\omega_{20} + \ldots}{a^2 + \omega_{10}^2}
\]

Stability

Babiuc and Winicour, Testing a model for the well-posedness of the Cauchy-characteristic problem
Babiuc and Winicour, Testing a model for the well-posedness of the Cauchy-characteristic problem
Start Variable

Evolved Variable

Pulse

Babiuc and Winicour, Testing a model for the well-posedness of the Cauchy-characteristic problem
Babiuc and Winicour, Testing a model for the well-posedness of the Cauchy-characteristic problem
Goal: prove well-posedness of quasilinear equation in the null-characteristic domain

- Prove well-posedness of Cauchy problem
- Study the effect of lower order perturbations
- Apply boundary on the initial characteristics
- Restrict the problem to timelike-null domain
- Extend the analysis to the quasilinear wave

Checklist

Babiuc and Winicour, Testing a model for the well-posedness of the Cauchy-characteristic problem
Thank You

Babiuc and Winicour, Testing a model for the well-posedness of the Cauchy-characteristic problem