Characterization of the 5'-flanking region and regulation of expression of human anion exchanger SLC26A6

Document Type


Publication Date



SLC26A6 (putative anion transporter 1, PAT1) has been shown to play an important role in mediating the luminal Cl−/OH−(HCO−3) exchange process in the intestine. Very little is known about the molecular mechanisms involved in the transcriptional regulation of intestinal SLC26A6 gene expression in the intestine. Current studies were, therefore, designed to clone and characterize the 5′-regulatory region of the human SLC26A6 gene and determine the mechanisms involved in its regulation. A 1,120 bp (p−964/+156) SLC26A6 promoter fragment cloned upstream to the luciferase reporter gene in pGL2-basic exhibited high promoter activity when transfected in Caco2 cells. Progressive deletions of the 5′-flanking region demonstrated that −214/−44 region of the promoter harbors cis-acting elements important for maximal SLC26A6 promoter activity. Since, diarrhea associated with inflammatory bowel diseases is attributed to increased secretion of pro-inflammatory cytokines, we examined the effects of IFNγ (30 ng/ml, 24 h) on SLC26A6 function, expression and promoter activity. IFNγ decreased both SLC26A6 mRNA and function and repressed SLC26A6 promoter activity. Deletion analysis indicated that IFNγ response element is located between −414/−214 region and sequence analysis of this region revealed the presence of potential Interferon Stimulated Responsive Element (ISRE), a binding site (−318/−300 bp) for interferon regulatory factor-1 transcription factor (IRF-1). Mutations in the potential ISRE site abrogated the inhibitory effects of IFNγ. These studies provided novel evidence for the involvement of IRF-1 in the regulation of SLC26A6 gene expression by IFNγ in the human intestine.


The version of record is available at https://dx.doi.org/10.1002%2Fjcb.21842. Copyright © 2008 Wiley‐Liss, Inc.