Document Type


Publication Date



An alternative 24-h statistical hurricane intensity model is presented and verified for 13 hurricanes during the 2004–05 seasons. The model uses a new method involving a discriminant function analysis (DFA) to select from a collection of multiple regression equations. These equations were developed to predict the future 24-h wind speed increase and the 24-h pressure drop that were constructed from a dataset of 103 hurricanes from 1988 to 2003 that utilized 25 predictors of rapid intensification. The accuracy of the 24-h wind speed increase models was tested and compared with the official National Hurricane Center (NHC) 24-h intensity forecasts, which are currently more accurate on average than other 24-h intensity models. Individual performances are shown for Hurricanes Charley (2004) and Katrina (2005) along with a summary of all 13 hurricanes in the study. The average error for the 24-h wind speed increase models was 11.83 kt (1 kt = 0.5144 m s-1) for the DFA-selected models and 12.53 kt for the official NHC forecast. When the DFA used the correctly selected model (CSM) for the same cases, the average error was 8.47 kt. For the 24-h pressure reduction models, the average error was 7.33 hPa for the DFA-selected models, and 5.85 hPa for the CSM. This shows that the DFA performed well against the NHC, but improvements can still be made to make the accuracy even better.


© Copyright 2007 American Meteorological Society (AMS). Permission to use figures, tables, and brief excerpts from this work in scientific and educational works is hereby granted provided that the source is acknowledged. Any use of material in this work that is determined to be “fair use” under Section 107 of the U.S. Copyright Act September 2010 Page 2 or that satisfies the conditions specified in Section 108 of the U.S. Copyright Act (17 USC §108, as revised by P.L. 94-553) does not require the AMS’s permission. Republication, systematic reproduction, posting in electronic form, such as on a web site or in a searchable database, or other uses of this material, except as exempted by the above statement, requires written permission or a license from the AMS. Additional details are provided in the AMS Copyright Policy, available on the AMS Web site located at ( or from the AMS at 617-227-2425 or Reprinted with permission.