- |Δ(
*B*)| = 1 for each_{i}*i*= 1,2,…,*t.* - max(
*B*_{i}) < min(*B*_{i}_{+1}) for each*i*= 1,2,…, t − 1, and - max(
*B*) − min(_{i}*B*) ≤ max(_{i}*B*) − max(_{i+1}*B*) for each_{i+1}*i*= 1, 2,…,*t*− 1.

Let *f*(*m ,r, t*) be the smallest such *n* so that all colorings Δ are (*m, r, t*)-permissible. In this paper, we show that *f*(*2, 2, t*) = 5*t* − 4.