Amyotrophic Lateral Sclerosis (ALS), more commonly referred to as Lou Gehrig’s disease, is a progressively degenerative neuromuscular disorder affecting both the upper and lower motor neurons and preferentially affecting males in their forties to seventies. Although the pathology of ALS has been clearly elucidated elsewhere, the precise mechanisms by which the disease progresses and the means by which it is acquired are still poorly understood areas of medicine. Current genomic and proteomic studies in human and animal models have yielded exciting and promising new findings that may help elucidate this pathology. It is the purpose of this review article to discuss the most relevant proposed mechanisms in current medical literature available from NCBI’s PubMed database as well as to highlight past, present, and future pharmacologic intervention therapies which have experienced varying degrees of success. This is by no means an exhaustive assessment of the current literature available, however it should suffice as a thorough review of the most salient points of modern ALS research.

Conflict(s) of Interest

The author has no conflict of interest to disclose.

References with DOI

1. Baumann F, Henderson RD, Gareth Ridall P, Pettitt AN, McCombe PA. Quantitative studies of lower motor neuron degeneration in amyotrophic lateral sclerosis: evidence for exponential decay of motor unit numbers and greatest rate of loss at the site of onset. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology. 2012;123(10):2092-8. https://doi.org/10.1016/j.clinph.2012.03.007

2. Rowland LP. Amyotrophic lateral sclerosis: theories and therapies. Annals of neurology. 1994;35(2):129- 30. https://doi.org/10.1002/ana.410350202

3. Turner MR, Verstraete E. What does imaging reveal about the pathology of amyotrophic lateral sclerosis? Current neurology and neuroscience reports. 2015;15(7):45. https://doi.org/10.1007/s11910-015-0569-6

4. Ravits JM, La Spada AR. ALS motor phenotype heterogeneity, focality, and spread: deconstructing motor neuron degeneration. Neurology. 2009;73(10):805-11. https://doi.org/10.1212/wnl.0b013e3181b6bbbd

5. Byrne S, Elamin M, Bede P, Hardiman O. Absence of consensus in diagnostic criteria for familial neurodegenerative diseases. Journal of neurology, neurosurgery, and psychiatry. 2012;83(4):365-7. https://doi.org/10.1136/jnnp-2011-301530

6. Kwee LC, Liu Y, Haynes C, Gibson JR, Stone A, Schichman SA, et al. A high-density genome-wide association screen of sporadic ALS in US veterans. PloS one. 2012;7(3):e32768. https://doi.org/10.1371/journal.pone.0032768

7. Weikamp JG, Schelhaas HJ, Hendriks JC, de Swart BJ, Geurts AC. Prognostic value of decreased tongue strength on survival time in patients with amyotrophic lateral sclerosis. Journal of neurology. 2012;259(11):2360-5. ttps://doi.org/10.1007/s00415-012-6503-9

8. Fujimura-Kiyono C, Kimura F, Ishida S, Nakajima H, Hosokawa T, Sugino M, et al. Onset and spreading patterns of lower motor neuron involvements predict survival in sporadic amyotrophic lateral sclerosis. Journal of neurology, neurosurgery, and psychiatry. 2011;82(11):1244-9. https://doi.org/10.1136/jnnp-2011-300141

9. Poujois A, Schneider FC, Faillenot I, Camdessanche JP, Vandenberghe N, Thomas-Anterion C, et al. Brain plasticity in the motor network is correlated with disease progression in amyotrophic lateral sclerosis. Human brain mapping. 2013;34(10):2391-401. https://doi.org/10.1002/hbm.22070

10. Mohammadi B, Kollewe K, Samii A, Dengler R, Munte TF. Functional neuroimaging at different disease stages reveals distinct phases of neuroplastic changes in amyotrophic lateral sclerosis. Human brain mapping. 2011;32(5):750-8. https://doi.org/10.1055/s-0030-1250904

11. Tarasiuk J, Kulakowska A, Drozdowski W, Kornhuber J, Lewczuk P. CSF markers in amyotrophic lateral sclerosis. Journal of neural transmission. 2012;119(7):747-57. https://doi.org/10.1212/wnl.0b013e3181d72c31

12. Oeckl P, Steinacker P, Lehnert S, Jesse S, Kretzschmar HA, Ludolph AC, et al. CSF concentrations of cAMP and cGMP are lower in patients with Creutzfeldt-Jakob disease but not Parkinson's disease and amyotrophic lateral sclerosis. PloS one. 2012;7(3):e32664. https://doi.org/10.1371/journal.pone.0032664

13. Gurney ME. The use of transgenic mouse models of amyotrophic lateral sclerosis in preclinical drug studies. Journal of the neurological sciences. 1997;152 Suppl 1:S67-73. https://doi.org/10.1016/s0022-510x(97)00247-5

14. Shelton GD, Johnson GC, O'Brien DP, Katz ML, Pesayco JP, Chang BJ, et al. Degenerative myelopathy associated with a missense mutation in the superoxide dismutase 1 (SOD1) gene progresses to peripheral neuropathy in Pembroke Welsh corgis and boxers. Journal of the neurological sciences. 2012;318(1-2):55- 64. https://doi.org/10.1016/j.jns.2012.04.003

15. Boccitto M, Lamitina T, Kalb RG. Daf-2 signaling modifies mutant SOD1 toxicity in C. elegans. PloS one. 2012;7(3):e33494. https://doi.org/10.1371/journal.pone.0033494

16. Stalekar M, Yin X, Rebolj K, Darovic S, Troakes C, Mayr M, et al. Proteomic analyses reveal that loss of TDP-43 affects RNA processing and intracellular transport. Neuroscience. 2015;293:157-70. https://doi.org/10.1016/j.neuroscience.2015.02.046

17. Chang XL, Tan MS, Tan L, Yu JT. The Role of TDP-43 in Alzheimer's Disease. Molecular neurobiology. 2015. https://doi.org/10.1007/s12035-015-9264-5

18. Ling JP, Pletnikova O, Troncoso JC, Wong PC. NEURODEGENERATION. TDP-43 repression of nonconserved cryptic exons is compromised in ALS-FTD. Science. 2015;349(6248):650-5. https://doi.org/10.1126/science.aab0983

19. Smethurst P, Sidle KC, Hardy J. Review: Prion-like mechanisms of transactive response DNA binding protein of 43 kDa (TDP-43) in amyotrophic lateral sclerosis (ALS). Neuropathology and applied neurobiology. 2015;41(5):578-97. https://doi.org/10.1111/nan.12206

20. Liu Y, Duan W, Guo Y, Li Z, Han H, Zhang S, et al. A new cellular model of pathological TDP-43: The neurotoxicity of stably expressed CTF25 of TDP-43 depends on the proteasome. Neuroscience. 2014;281C:88-98. https://doi.org/10.1016/j.neuroscience.2014.09.043

21. Farrawell NE, Lambert-Smith IA, Warraich ST, Blair IP, Saunders DN, Hatters DM, et al. Distinct partitioning of ALS associated TDP-43, FUS and SOD1 mutants into cellular inclusions. Scientific reports. 2015;5:13416. https://doi.org/10.1038/srep13416

22. Budini M, Romano V, Avendano-Vazquez SE, Bembich S, Buratti E, Baralle FE. Role of selected mutations in the Q/N rich region of TDP-43 in EGFP-12xQ/N-induced aggregate formation. Brain research. 2012;1462:139-50. https://doi.org/10.1016/j.brainres.2012.02.031

23. Nakamura M, Kaneko S, Wate R, Asayama S, Nakamura Y, Fujita K, et al. Regionally different immunoreactivity for Smurf2 and pSmad2/3 in TDP-43-positive inclusions of amyotrophic lateral sclerosis. Neuropathology and applied neurobiology. 2013;39(2):144-56. https://doi.org/10.1111/j.1365-2990.2012.01270.x

24. Yamashita T, Hideyama T, Teramoto S, Kwak S. The abnormal processing of TDP-43 is not an upstream event of reduced ADAR2 activity in ALS motor neurons. Neuroscience research. 2012;73(2):153-60. https://doi.org/10.1016/j.neures.2012.02.015

25. Dewey CM, Cenik B, Sephton CF, Johnson BA, Herz J, Yu G. TDP-43 aggregation in neurodegeneration: are stress granules the key? Brain research. 2012;1462:16-25. https://doi.org/10.1016/j.brainres.2012.02.032

26. Ludolph AC, Brettschneider J. TDP-43 in amyotrophic lateral sclerosis - is it a prion disease? European journal of neurology : the official journal of the European Federation of Neurological Societies. 2015;22(5):753-61. https://doi.org/10.1111/ene.12706

27. Grad LI, Fernando SM, Cashman NR. From molecule to molecule and cell to cell: prion-like mechanisms in amyotrophic lateral sclerosis. Neurobiology of disease. 2015;77:257-65. https://doi.org/10.1016/j.nbd.2015.02.009

28. Furukawa Y, Kaneko K, Watanabe S, Yamanaka K, Nukina N. A seeding reaction recapitulates intracellular formation of Sarkosyl-insoluble transactivation response element (TAR) DNA-binding protein-43 inclusions. The Journal of biological chemistry. 2011;286(21):18664-72. https://doi.org/10.1074/jbc.m111.231209

29. Walker AK, Spiller KJ, Ge G, Zheng A, Xu Y, Zhou M, et al. Functional recovery in new mouse models of ALS/FTLD after clearance of pathological cytoplasmic TDP-43. Acta neuropathologica. 2015. https://doi.org/10.1007/s00401-015-1460-x

30. Aggad D, Veriepe J, Tauffenberger A, Parker JA. TDP-43 toxicity proceeds via calcium dysregulation and necrosis in aging Caenorhabditis elegans motor neurons. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2014;34(36):12093-103. https://doi.org/10.1523/jneurosci.2495-13.2014

31. Chou CC, Alexeeva OM, Yamada S, Pribadi A, Zhang Y, Mo B, et al. PABPN1 suppresses TDP-43 toxicity in ALS disease models. Human molecular genetics. 2015. https://doi.org/10.1093/hmg/ddv238

32. Polymenidou M, Lagier-Tourenne C, Hutt KR, Bennett CF, Cleveland DW, Yeo GW. Misregulated RNA processing in amyotrophic lateral sclerosis. Brain research. 2012;1462:3-15. https://doi.org/10.1016/j.brainres.2012.02.059

33. Bilican B, Serio A, Barmada SJ, Nishimura AL, Sullivan GJ, Carrasco M, et al. Mutant induced pluripotent stem cell lines recapitulate aspects of TDP-43 proteinopathies and reveal cell-specific vulnerability. Proceedings of the National Academy of Sciences of the United States of America. 2012;109(15):5803-8. https://doi.org/10.1073/pnas.1202922109

34. Herman AM, Khandelwal PJ, Rebeck GW, Moussa CE. Wild type TDP-43 induces neuro-inflammation and alters APP metabolism in lentiviral gene transfer models. Experimental neurology. 2012;235(1):297- 305. https://doi.org/10.1016/j.expneurol.2012.02.011

35. Mosca L, Lunetta C, Tarlarini C, Avemaria F, Maestri E, Melazzini M, et al. Wide phenotypic spectrum of the TARDBP gene: homozygosity of A382T mutation in a patient presenting with amyotrophic lateral sclerosis, Parkinson's disease, and frontotemporal lobar degeneration, and in neurologically healthy subject. Neurobiology of aging. 2012;33(8):1846 e1-4. https://doi.org/10.1016/j.neurobiolaging.2012.01.108

36. Okamoto K, Amari M, Fujita Y, Makioka K, Fukuda T, Suzuki K, et al. Cytoplasmic TDP-43 accumulation in cells of the adrenal medulla in individuals with or without amyotrophic lateral sclerosis.
Neuropathology : official journal of the Japanese Society of Neuropathology. 2014;34(6):535-40. https://doi.org/10.1111/neup.12139

37. Johansson AS, Vestling M, Zetterstrom P, Lang L, Leinartaite L, Karlstrom M, et al. Cytotoxicity of superoxide dismutase 1 in cultured cells is linked to Zn2+ chelation. PloS one. 2012;7(4):e36104. https://doi.org/10.1371/journal.pone.0036104

38. Mulligan VK, Kerman A, Laister RC, Sharda PR, Arslan PE, Chakrabartty A. Early steps in oxidation- induced SOD1 misfolding: implications for non-amyloid protein aggregation in familial ALS. Journal of molecular biology. 2012;421(4-5):631-52. https://doi.org/10.1016/j.jmb.2012.04.016

39. Brotherton TE, Li Y, Cooper D, Gearing M, Julien JP, Rothstein JD, et al. Localization of a toxic form of superoxide dismutase 1 protein to pathologically affected tissues in familial ALS. Proceedings of the National Academy of Sciences of the United States of America. 2012;109(14):5505-10. https://doi.org/10.1073/pnas.1115009109

40. Mera-Adasme R, Mendizabal F, Gonzalez M, Miranda-Rojas S, Olea-Azar C, Sundholm D. Computational studies of the metal-binding site of the wild-type and the H46R mutant of the copper, zinc superoxide dismutase. Inorganic chemistry. 2012;51(10):5561-8. https://doi.org/10.1021/ic202416d

41. Pan L, Yoshii Y, Otomo A, Ogawa H, Iwasaki Y, Shang HF, et al. Different human copper-zinc superoxide dismutase mutants, SOD1G93A and SOD1H46R, exert distinct harmful effects on gross phenotype in mice. PloS one. 2012;7(3):e33409. https://doi.org/10.1371/journal.pone.0033409

42. Guareschi S, Cova E, Cereda C, Ceroni M, Donetti E, Bosco DA, et al. An over-oxidized form of superoxide dismutase found in sporadic amyotrophic lateral sclerosis with bulbar onset shares a toxic mechanism with mutant SOD1. Proceedings of the National Academy of Sciences of the United States of America. 2012;109(13):5074-9. https://doi.org/10.1073/pnas.1115402109

43. Shan X, Vocadlo DJ, Krieger C. Reduced protein O-glycosylation in the nervous system of the mutant SOD1 transgenic mouse model of amyotrophic lateral sclerosis. Neuroscience letters. 2012;516(2):296-301. https://doi.org/10.1016/j.neulet.2012.04.018

44. Alexander GM, Erwin KL, Byers N, Deitch JS, Augelli BJ, Blankenhorn EP, et al. Effect of transgene copy number on survival in the G93A SOD1 transgenic mouse model of ALS. Brain research Molecular brain research. 2004;130(1-2):7-15. https://doi.org/10.1016/j.molbrainres.2004.07.002

45. Drechsel DA, Estevez AG, Barbeito L, Beckman JS. Nitric oxide-mediated oxidative damage and the progressive demise of motor neurons in ALS. Neurotoxicity research. 2012;22(4):251-64. https://doi.org/10.1007/s12640-012-9322-y

46. Pokrishevsky E, Grad LI, Yousefi M, Wang J, Mackenzie IR, Cashman NR. Aberrant localization of FUS and TDP43 is associated with misfolding of SOD1 in amyotrophic lateral sclerosis. PloS one. 2012;7(4):e35050. https://doi.org/10.1371/journal.pone.0035050

47. Kanouchi T, Ohkubo T, Yokota T. Can regional spreading of amyotrophic lateral sclerosis motor symptoms be explained by prion-like propagation? Journal of neurology, neurosurgery, and psychiatry. 2012;83(7):739-45. https://doi.org/10.1136/jnnp-2011-301826

48. Farg MA, Soo KY, Walker AK, Pham H, Orian J, Horne MK, et al. Mutant FUS induces endoplasmic reticulum stress in amyotrophic lateral sclerosis and interacts with protein disulfide-isomerase. Neurobiology of aging. 2012;33(12):2855-68.\ https://doi.org/10.1016/j.neurobiolaging.2012.02.009

49. Thau N, Jungnickel J, Knippenberg S, Ratzka A, Dengler R, Petri S, et al. Prolonged survival and milder impairment of motor function in the SOD1 ALS mouse model devoid of fibroblast growth factor 2. Neurobiology of disease. 2012;47(2):248-57. https://doi.org/10.1016/j.nbd.2012.04.008

50. Yu Y, Reed R. FUS functions in coupling transcription to splicing by mediating an interaction between RNAP II and U1 snRNP. Proceedings of the National Academy of Sciences of the United States of America. 2015;112(28):8608-13. https://doi.org/10.1073/pnas.1506282112

51. Sama RR, Ward CL, Bosco DA. Functions of FUS/TLS from DNA repair to stress response: implications for ALS. ASN neuro. 2014;6(4). https://doi.org/10.1177/1759091414544472

52. Zhou Y, Liu S, Ozturk A, Hicks GG. FUS-regulated RNA metabolism and DNA damage repair: Implications for amyotrophic lateral sclerosis and frontotemporal dementia pathogenesis. Rare diseases. 2014;2:e29515. https://doi.org/10.4161/rdis.29515

53. Tarlarini C, Lunetta C, Mosca L, Avemaria F, Riva N, Mantero V, et al. Novel FUS mutations identified through molecular screening in a large cohort of familial and sporadic amyotrophic lateral sclerosis. European journal of neurology : the official journal of the European Federation of Neurological Societies. 2015. https://doi.org/10.1111/ene.12772

54. Yang L, Zhang J, Kamelgarn M, Niu C, Gal J, Gong W, et al. Subcellular localization and RNAs determine FUS architecture in different cellular compartments. Human molecular genetics. 2015. https://doi.org/10.1093/hmg/ddv239

55. Takanashi K, Yamaguchi A. Aggregation of ALS-linked FUS mutant sequesters RNA binding proteins and impairs RNA granules formation. Biochemical and biophysical research communications. 2014;452(3):600-7. https://doi.org/10.1016/j.bbrc.2014.08.115

56. Schwartz JC, Podell ER, Han SS, Berry JD, Eggan KC, Cech TR. FUS is sequestered in nuclear aggregates in ALS patient fibroblasts. Molecular biology of the cell. 2014;25(17):2571-8. https://doi.org/10.1091/mbc.e14-05-1007

57. Xia R, Liu Y, Yang L, Gal J, Zhu H, Jia J. Motor neuron apoptosis and neuromuscular junction perturbation are prominent features in a Drosophila model of Fus-mediated ALS. Molecular neurodegeneration. 2012;7:10. https://doi.org/10.1186/1750-1326-7-10

58. Kino Y, Washizu C, Kurosawa M, Yamada M, Miyazaki H, Akagi T, et al. FUS/TLS deficiency causes behavioral and pathological abnormalities distinct from amyotrophic lateral sclerosis. Acta neuropathologica communications. 2015;3:24. https://doi.org/10.1186/s40478-015-0202-6

59. Sephton CF, Tang AA, Kulkarni A, West J, Brooks M, Stubblefield JJ, et al. Activity-dependent FUS dysregulation disrupts synaptic homeostasis. Proceedings of the National Academy of Sciences of the United States of America. 2014;111(44):E4769-78. https://doi.org/10.1073/pnas.1406162111

60. Lenzi J, De Santis R, de Turris V, Morlando M, Laneve P, Calvo A, et al. ALS mutant FUS proteins are recruited into stress granules in induced pluripotent stem cell-derived motoneurons. Disease models & mechanisms. 2015;8(7):755-66. https://doi.org/10.1242/dmm.020099

61. Deng Q, Holler CJ, Taylor G, Hudson KF, Watkins W, Gearing M, et al. FUS is phosphorylated by DNA- PK and accumulates in the cytoplasm after DNA damage. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2014;34(23):7802-13. https://doi.org/10.1523/jneurosci.0172-14.2014

62. Suzuki H, Matsuoka M. Overexpression of nuclear FUS induces neuronal cell death. Neuroscience. 2015;287:113-24. https://doi.org/10.1016/j.neuroscience.2014.12.007

63. Lee S, Kim HJ. Prion-like Mechanism in Amyotrophic Lateral Sclerosis: are Protein Aggregates the Key? Experimental neurobiology. 2015;24(1):1-7. https://doi.org/10.5772/30897

64. Maniecka Z, Polymenidou M. From nucleation to widespread propagation: A prion-like concept for ALS. Virus research. 2015;207:94-105. https://doi.org/10.1016/j.virusres.2014.12.032

65. Verma A. Protein aggregates and regional disease spread in ALS is reminiscent of prion-like pathogenesis. Neurology India. 2013;61(2):107-10. https://doi.org/10.4103/0028-3886.111109

66. Li YR, King OD, Shorter J, Gitler AD. Stress granules as crucibles of ALS pathogenesis. The Journal of cell biology. 2013;201(3):361-72. https://doi.org/10.1083/jcb.201302044

67. Patel AN, Sampson JB. Cognitive Profile of C9orf72 in Frontotemporal Dementia and Amyotrophic Lateral Sclerosis. Current neurology and neuroscience reports. 2015;15(9):582. https://doi.org/10.1007/s11910-015-0582-9

68. Cooper-Knock J, Higginbottom A, Stopford MJ, Highley JR, Ince PG, Wharton SB, et al. Antisense RNA foci in the motor neurons of C9ORF72-ALS patients are associated with TDP-43 proteinopathy. Acta neuropathologica. 2015;130(1):63-75. https://doi.org/10.1007/s00401-015-1429-9

69. Majounie E, Renton AE, Mok K, Dopper EG, Waite A, Rollinson S, et al. Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study. The Lancet Neurology. 2012;11(4):323-30.

70. Millecamps S, Boillee S, Le Ber I, Seilhean D, Teyssou E, Giraudeau M, et al. Phenotype difference between ALS patients with expanded repeats in C9ORF72 and patients with mutations in other ALS- related genes. Journal of medical genetics. 2012;49(4):258-63.https://doi.org/10.1136/jmedgenet-2011-100699

71. Sabatelli M, Conforti FL, Zollino M, Mora G, Monsurro MR, Volanti P, et al. C9ORF72 hexanucleotide repeat expansions in the Italian sporadic ALS population. Neurobiology of aging. 2012;33(8):1848 e15-20. https://doi.org/10.1016/j.neurobiolaging.2012.02.011

72. Mok KY, Koutsis G, Schottlaender LV, Polke J, Panas M, Houlden H. High frequency of the expanded C9ORF72 hexanucleotide repeat in familial and sporadic Greek ALS patients. Neurobiology of aging. 2012;33(8):1851 e1-5. https://doi.org/10.1016/j.neurobiolaging.2012.02.021

73. Ozoguz A, Uyan O, Birdal G, Iskender C, Kartal E, Lahut S, et al. The distinct genetic pattern of ALS in Turkey and novel mutations. Neurobiology of aging. 2015;36(4):1764 e9-18.

74. Vrabec K, Koritnik B, Leonardis L, Dolenc-Groselj L, Zidar J, Smith B, et al. Genetic analysis of amyotrophic lateral sclerosis in the Slovenian population. Neurobiology of aging. 2015;36(3):1601 e17-20. https://doi.org/10.1016/j.neurobiolaging.2014.12.032

75. Abramycheva NY, Lysogorskaia EV, Stepanova MS, Zakharova MN, Kovrazhkina EA, Razinskaya OD, et al. C9ORF72 hexanucleotide repeat expansion in ALS patients from the Central European Russia population. Neurobiology of aging. 2015. https://doi.org/10.1016/j.neurobiolaging.2015.07.004

76. He J, Tang L, Benyamin B, Shah S, Hemani G, Liu R, et al. C9orf72 hexanucleotide repeat expansions in Chinese sporadic amyotrophic lateral sclerosis. Neurobiology of aging. 2015;36(9):2660 e1-8. https://doi.org/10.1016/j.neurobiolaging.2015.06.002

77. Wang C, Chen Z, Yang F, Jiao B, Peng H, Shi Y, et al. Analysis of the GGGGCC Repeat Expansions of the C9orf72 Gene in SCA3/MJD Patients from China. PloS one. 2015;10(6):e0130336. https://doi.org/10.1371/journal.pone.0130336

78. Rademakers R. C9orf72 repeat expansions in patients with ALS and FTD. The Lancet Neurology. 2012;11(4):297-8. https://doi.org/10.1016/s1474-4422(12)70046-7

79. Cooper-Knock J, Bury JJ, Heath PR, Wyles M, Higginbottom A, Gelsthorpe C, et al. C9ORF72 GGGGCC Expanded Repeats Produce Splicing Dysregulation which Correlates with Disease Severity in Amyotrophic Lateral Sclerosis. PloS one. 2015;10(5):e0127376. https://doi.org/10.1371/journal.pone.0127376

80. Xi Z, Zhang M, Bruni AC, Maletta RG, Colao R, Fratta P, et al. The C9orf72 repeat expansion itself is methylated in ALS and FTLD patients. Acta neuropathologica. 2015;129(5):715-27. https://doi.org/10.1007/s00401-015-1401-8

81. Russ J, Liu EY, Wu K, Neal D, Suh E, Irwin DJ, et al. Hypermethylation of repeat expanded C9orf72 is a clinical and molecular disease modifier. Acta neuropathologica. 2015;129(1):39-52. https://doi.org/10.1007/s00401-014-1365-0

82. Hukema RK, Riemslagh FW, Melhem S, van der Linde HC, Severijnen LA, Edbauer D, et al. A new inducible transgenic mouse model for C9orf72-associated GGGGCC repeat expansion supports a gain-of- function mechanism in C9orf72-associated ALS and FTD. Acta neuropathologica communications. 2014;2:166. https://doi.org/10.1186/s40478-014-0166-y

83. Mizielinska S, Isaacs AM. C9orf72 amyotrophic lateral sclerosis and frontotemporal dementia: gain or loss of function? Current opinion in neurology. 2014;27(5):515-23. https://doi.org/10.1097/wco.0000000000000130

84. Cooper-Knock J, Kirby J, Highley R, Shaw PJ. The Spectrum of C9orf72-mediated Neurodegeneration and Amyotrophic Lateral Sclerosis. Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics. 2015;12(2):326-39. https://doi.org/10.1007/s13311-015-0342-1

85. Mendez EF, Sattler R. Biomarker development for C9orf72 repeat expansion in ALS. Brain research. 2015;1607:26-35. https://doi.org/10.1016/j.brainres.2014.09.041

86. Tokutake Y, Gushima K, Miyazaki H, Shimosato T, Yonekura S. ALS-associated P56S-VAPB mutation restrains 3T3-L1 preadipocyte differentiation. Biochemical and biophysical research communications. 2015;460(3):831-7. https://doi.org/10.1016/j.bbrc.2015.03.118

87. Stoica R, De Vos KJ, Paillusson S, Mueller S, Sancho RM, Lau KF, et al. ER-mitochondria associations are regulated by the VAPB-PTPIP51 interaction and are disrupted by ALS/FTD-associated TDP-43. Nature communications. 2014;5:3996. https://doi.org/10.1038/ncomms4996

88. Kuijpers M, van Dis V, Haasdijk ED, Harterink M, Vocking K, Post JA, et al. Amyotrophic lateral sclerosis (ALS)-associated VAPB-P56S inclusions represent an ER quality control compartment. Acta neuropathologica communications. 2013;1:24. https://doi.org/10.1186/2051-5960-1-24

89. Moumen A, Virard I, Raoul C. Accumulation of wildtype and ALS-linked mutated VAPB impairs activity of the proteasome. PloS one. 2011;6(10):e26066. https://doi.org/10.1371/journal.pone.0026066

90. Suzuki H, Kanekura K, Levine TP, Kohno K, Olkkonen VM, Aiso S, et al. ALS-linked P56S-VAPB, an aggregated loss-of-function mutant of VAPB, predisposes motor neurons to ER stress-related death by inducing aggregation of co-expressed wild-type VAPB. Journal of neurochemistry. 2009;108(4):973-85. https://doi.org/10.1111/j.0022-3042.2008.05857.x

91. Tokutake Y, Yamada K, Ohata M, Obayashi Y, Tsuchiya M, Yonekura S. ALS-Linked P56S-VAPB Mutation Impairs the Formation of Multinuclear Myotube in C2C12 Cells. International journal of molecular sciences. 2015;16(8):18628-41. https://doi.org/10.3390/ijms160818628

92. Qiu L, Qiao T, Beers M, Tan W, Wang H, Yang B, et al. Widespread aggregation of mutant VAPB associated with ALS does not cause motor neuron degeneration or modulate mutant SOD1 aggregation and toxicity in mice. Molecular neurodegeneration. 2013;8:1. https://doi.org/10.1186/1750-1326-8-1

93. Aliaga L, Lai C, Yu J, Chub N, Shim H, Sun L, et al. Amyotrophic lateral sclerosis-related VAPB P56S mutation differentially affects the function and survival of corticospinal and spinal motor neurons. Human molecular genetics. 2013;22(21):4293-305. https://doi.org/10.1093/hmg/ddt279

94. Tran D, Chalhoub A, Schooley A, Zhang W, Ngsee JK. A mutation in VAPB that causes amyotrophic lateral sclerosis also causes a nuclear envelope defect. Journal of cell science. 2012;125(Pt 12):2831-6. https://doi.org/10.1242/jcs.102111

95. Genevini P, Papiani G, Ruggiano A, Cantoni L, Navone F, Borgese N. Amyotrophic lateral sclerosis-linked mutant VAPB inclusions do not interfere with protein degradation pathways or intracellular transport in a cultured cell model. PloS one. 2014;9(11):e113416. https://doi.org/10.1371/journal.pone.0113416

96. Ingre C, Pinto S, Birve A, Press R, Danielsson O, de Carvalho M, et al. No association between VAPB mutations and familial or sporadic ALS in Sweden, Portugal and Iceland. Amyotrophic lateral sclerosis & frontotemporal degeneration. 2013;14(7-8):620-7. https://doi.org/10.3109/21678421.2013.822515

97. Maruyama H, Morino H, Ito H, Izumi Y, Kato H, Watanabe Y, et al. Mutations of optineurin in amyotrophic lateral sclerosis. Nature. 2010;465(7295):223-6.

98. Del Bo R, Tiloca C, Pensato V, Corrado L, Ratti A, Ticozzi N, et al. Novel optineurin mutations in patients with familial and sporadic amyotrophic lateral sclerosis. Journal of neurology, neurosurgery, and psychiatry. 2011;82(11):1239-43. https://doi.org/10.1136/jnnp.2011.242313

99. Ying H, Yue BY. Optineurin: The autophagy connection. Experimental eye research. 2015.

100. Wong YC, Holzbaur EL. Optineurin is an autophagy receptor for damaged mitochondria in parkin- mediated mitophagy that is disrupted by an ALS-linked mutation. Proceedings of the National Academy of Sciences of the United States of America. 2014;111(42):E4439-48. https://doi.org/10.1073/pnas.1405752111

101. Korac J, Schaeffer V, Kovacevic I, Clement AM, Jungblut B, Behl C, et al. Ubiquitin-independent function of optineurin in autophagic clearance of protein aggregates. Journal of cell science. 2013;126(Pt 2):580-92. https://doi.org/10.1242/jcs.114926

102. Paulus JD, Link BA. Loss of optineurin in vivo results in elevated cell death and alters axonal trafficking dynamics. PloS one. 2014;9(10):e109922. https://doi.org/10.1371/journal.pone.0109922

103. Yamashita S, Kimu

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.