Given the difficulty of surgical resection of brain neoplasms located adjacent to vital structures of the brain as well as the challenges posed by the blood-brain-barrier for the efficacy of chemotherapeutic agents, whole brain radiation therapy (WBRT) and stereotactic radiosurgery (SRS) are often turned to for patients with brain metastases as well as primary brain neoplasms. Though radiation therapy may be successful in local control of these tumors, many patients experience treatment-related neurocognitive issues later in life. In this review, we examine cognitive dysfunction in brain tumor patients following radiation therapy, with an emphasis on the pediatric population. Articles were found using NCBI’s PubMed and relevant search terms. We first review the hypotheses regarding the biological mechanisms underlying these neurologic manifestations such as neuroinflammation, extracellular matrix disruption, and inhibition of angiogenesis. Cognitive defects and related effects on health-related quality of life in brain tumor patients treated with radiotherapy are then discussed. We also address novel treatment strategies aimed at minimizing neurocognitive delays such as hippocampal-sparing radiotherapy planning, intensive chemotherapy regimens, and the growing field of proton therapy. Possible molecular therapeutic targets are discussed as well as preclinical studies examining human embryonic and neural stem cell transplantations. Finally, we examine the role of aerobic exercise, multidisciplinary rehabilitation, and other interventions that may help to curb the negative effects of radiotherapy on cognitive development and function.

Conflict(s) of Interest


References with DOI

1. American Brain Tumor Association. “Brain Tumor Statistics”. http://www.abta.org/about-us/news/brain- tumor-statistics . Accessed November 23 2015.

2. Cohadon F. Indications for surgery in the management of gliomas. Adv Tech Stand Neurosurg 1990;17:189-234.https://doi.org/10.1007/978-3-7091-6925-4_6

3. Buckner JC, Brown PD, O'Neill BP, Meyer FB, Wetmore CJ, Uhm JH. Central nervous system tumors. Mayo Clin Proc. 2007 Oct;82(10):1271-86. https://doi.org/10.4065/82.10.1271

4. Khuntia D, Brown P, Li J, Mehta MP. Whole-brain radiotherapy in the management of brain metastasis. J. Clin. Oncol. 2006;24:1295–1304. https://doi.org/10.1200/jco.2005.04.6185

5. Kantor G, Laprie A, Huchet A, Loiseau H, Dejean C, Mazeron JJ. Radiation therapy for glial tumors: technical aspects and clinical indications. Cancer Radiother. (2008);12:687–694. https://doi:10.1016/j.canrad.2008.09.004.

6. Ostrom, QT, Gittleman, G, Fulop, J, et al. CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2008–2012, Neuro Oncol (2015) 17 (suppl 4): iv1-iv62 https://doi:10.1093/neuonc/nov189.

7. Kurita H, Kawahara N, Asai A, Ueki K, Shin M, Kirino T. Radiation-induced apoptosis of oligodendrocytes in the adult rat brain. Neurol Res. 2001 Dec; 23(8):869-74. https://doi.org/10.1179/016164101101199324

8. Shi L, Linville MC, Iversen E, Molina DP, Yester J, Wheeler KT, Robbins ME, Brunso-Bechtold JK. Maintenance of white matter integrity in a rat model of radiation-induced cognitive impairment. J Neurol Sci. 2009 Oct 15; 285(1-2):178-84. https://doi.org/10.1016/j.jns.2009.06.031

9. Greene-Schloesser D, Robbins ME, Peiffer AM, Shaw EG, Wheeler KT, Chan MD. Radiation-induced brain injury: A review. Front Oncol. 2012 Jul 19;2:73. https://doi.org/10.3389/fonc.2012.00073 . eCollection 2012.

10. Monje ML, Palmer T. Radiation injury and neurogenesis. Curr Opin Neurol. 2003 Apr;16(2): 129-34. https://doi.org/10.1097/00019052-200304000-00002

11. Hong J. H., Chiang C. S., Campbell I. L., Sun J. R., Withers H. R., McBride W. H. Induction of acute phase gene ex-pression by brain irradiation. Int. J. Radiat. Oncol. Biol. Phys. (1995);33:619–626. https://doi:10.1016/0360-3016(95)00279-8.

12. Gaber MW, Sabek OM, Fukatsu K, Wilcox HG, Kiani MF, Merchant TE. Differences in ICAM-1 and TNF-alpha expression between large single fraction and fractionated irradiation in mouse brain. Int J Radiat Biol. 2003 May; 79(5):359-66. https://doi.org/10.1080/0955300031000114738

13. Lee WH, Warrington JP, Sonntag WE, Lee YW. Irradiation alters MMP-2/TIMP-2 system and collagen type IV degradation in brain. Int J Radiat Oncol Biol Phys. 2012 Apr 1; 82(5):1559-66. https://doi.org/10.1016/j.ijrobp.2010.12.032

14. Baker DG, Krochak RJ. The response of the microvascular system to radiation: a review. Cancer Invest. 1989; 7(3):287-94. https://doi.org/10.3109/07357908909039849

15. Warrington JP, Csiszar A, Mitschelen M, Lee YW, Sonntag WE. Whole brain radiation-induced impairments in learning and memory are time-sensitive and reversible by systemic hypoxia. PLoS One. 2012; 7(1):e30444. https://doi.org/10.1371/journal.pone.0030444

16. Lee WH, Cho HJ, Sonntag WE, Lee YW. Radiation attenuates physiological angiogenesis by differential expression of VEGF, Ang-1, tie-2 and Ang-2 in rat brain. Radiat Res. 2011 Dec; 176(6):753-60. https://doi.org/10.1667/rr2647.1

17. Monje ML, Mizumatsu S, Fike JR, Palmer TD. Irradiation induces neural precursor-cell dysfunction. Nat Med. 2002 Sep;8(9):955-62. Epub 2002 Aug 5. https://doi.org/10.1038/nm749

18. Suc E, Kalifa C, Brauner R, Habrand JL, Terrier-Lacombe MJ, Vassal G, Lemerle J. Brain tumours under the age of three. The price of survival. A retrospective study of 20 long-term survivors. Acta Neurochir (Wien). 1990;106(3-4):93-8. https://doi.org/10.1007/bf01809448

19. Aarsen FK, Paquier PF, Arts WF, Van Veelen ML, Michiels E, Lequin M, Catsman-Berrevoets CE. Cognitive deficits and predictors 3 years after diagnosis of a pilocytic astrocytoma in childhood. J Clin Oncol. 2009 Jul 20;27(21):3526-32. https://doi: 10.1200/JCO.2008.19.6303. Epub 2009 May 11.

20. Reeves CB, Palmer SL, Reddick WE, Merchant TE, Buchanan GM, Gajjar A, Mulhern RK. Attention and memory functioning among pediatric patients with medulloblastoma. J Pediatr Psychol. 2006 Apr;31(3):272-80. Epub 2005 Mar 23. https://doi.org/10.1093/jpepsy/jsj019

21. Hoppe-Hirsch E, Brunet L, Laroussinie F, Cinalli G, Pierre-Kahn A, Rénier D, Sainte-Rose C, Hirsch JF. Intellectual outcome in children with malignant tumors of the posterior fossa: influence of the field of irradiation and quality of surgery. Childs Nerv Syst. 1995 Jun;11(6):340-5; discussion 345-6. https://doi.org/10.1007/bf00301666

22. Shortman RI, Lowis SP, Penn A, McCarter RJ, Hunt LP, Brown CC, Stevens MC, Curran AL, Sharples PM. Cognitive function in children with brain tumors in the first year after diagnosis compared to healthy matched controls. Pediatr Blood Cancer. 2014 Mar;61(3):464-72. https://doi:10.1002/pbc.24746. Epub 2013 Aug 29.

23. Duffner PK, Cohen ME, Thomas P. Late effects of treatment on the intelligence of children with posterior fossa tumors. Cancer. 1983 Jan 15;51(2):233-7. https://doi.org/10.1002/1097-0142(19830115)51:23.0.co;2-8

24. Margelisch K, Studer M, Ritter BC, Steinlin M, Leibundgut K, Heinks T. Cognitive dysfunction in children with brain tumors at diagnosis. Pediatr Blood Cancer. 2015 Oct;62(10):1805-12. https://doi:10.1002/pbc.25596. Epub 2015 Jun 5.

25. Palmer SL, Goloubeva O, Reddick WE, Glass JO, Gajjar A, Kun L, Merchant TE, Mulhern RK. Patterns of intellectual development among survivors of pediatric medulloblastoma: a longitudinal analysis. J Clin Oncol. 2001 Apr 15;19(8):2302-8. https://doi.org/10.1016/s0887-6177(00)80260-7

26. Copeland DR, deMoor C, Moore BD 3rd, Ater JL. Neurocognitive development of children after a cerebellar tumor in infancy: A longitudinal study. J Clin Oncol. 1999 Nov;17(11):3476-86.

27. Grill J, Renaux VK, Bulteau C, Viguier D, Levy-Piebois C, Sainte-Rose C, Dellatolas G, Raquin MA, Jambaqué I, Kalifa C. Long-term intellectual outcome in children with posterior fossa tumors according to radiation doses and volumes. Int J Radiat Oncol Biol Phys. 1999 Aug 1;45(1):137-45. https://doi.org/10.1016/s0360-3016(99)00177-7

28. Mulhern RK. Correlation of the Health Utilities Index Mark 2 cognition scale and neuropsychological functioning among survivors of childhood medulloblastoma. Int J Cancer Suppl. 1999;12:91–94. https://doi.org/10.1002/(sici)1097-0215(1999)83:12+3.0.co;2-o

29. Ribi K, Relly C, Landolt MA, et al. Outcome of medulloblastoma in children: Long-term complications and quality of life. Neuropediatrics. 2005; 36:357–365. https://doi.org/10.1055/s-2005-872880

30. Koch SV, Kejs AM, Engholm G, Johansen C, Schmiegelow K. Educational attainment among survivors of childhood cancer: a population-based cohort study in Denmark. Br J Cancer. 2004 Aug 31;91(5):923-8. https://doi.org/10.1038/sj.bjc.6602085

31. Lancashire ER, Frobisher C, Reulen RC, Winter DL, Glaser A, Hawkins MM. Educational attainment among adult survivors of childhood cancer in Great Britain: a population-based cohort study. J Natl Cancer Inst. 2010 Feb 24;102(4):254-70. https://doi:10.1093/jnci/djp498. Epub 2010 Jan 27.

32. Frobisher C, Lancashire ER, Winter DL, Jenkinson HC, Hawkins MM; British Childhood Cancer Survivor Study. Long-term population-based marriage rates among adult survivors of childhood cancer in Britain. Int J Cancer. 2007 Aug 15;121(4):846-55.

33. Pastore G, Mosso ML, Magnani C, Luzzatto L, Bianchi M, Terracini B. Physical impairment and social life goals among adult long-term survivors of childhood cancer: a population-based study from the childhood cancer registry of Piedmont, Italy. Tumori. 2001 Nov-Dec;87(6):372-8.

34. Zeltzer LK, Recklitis C, Buchbinder D, Zebrack B, Casillas J, Tsao JC, Lu Q, Krull K. Psychological status in childhood cancer survivors: a report from the Childhood Cancer Survivor Study. J Clin Oncol. 2009 May 10;27(14):2396-404. https://doi:10.1200/JCO.2008.21.1433. Epub 2009 Mar 2.

35. Schultz KA, Ness KK, Whitton J, Recklitis C, Zebrack B, Robison LL, Zeltzer L, Mertens AC. Behavioral and social outcomes in adolescent survivors of childhood cancer: a report from the childhood cancer survivor study. J Clin Oncol. 2007 Aug 20;25(24):3649-56. https://doi.org/10.1200/jco.2006.09.2486

36. Merchant TE, Kiehna EN, Li C, Shukla H, Sengupta S, Xiong X, Gajjar A, Mulhern RK. Modeling radiation dosimetry to predict cognitive outcomes in pediatric patients with CNS embryonal tumors including medulloblastoma. Int J Radiat Oncol Biol Phys. 2006 May 1;65(1):210-21. Epub 2006 Feb 10. https://doi.org/10.1016/j.ijrobp.2005.10.038

37. Mulhern RK, Kepner JL, Thomas PR, Armstrong FD, Friedman HS, Kun LE. Neuropsychologic functioning of survivors of childhood medulloblastoma randomized to receive conventional or reduced- dose craniospinal irradiation: a Pediatric Oncology Group study. J Clin Oncol. 1998 May;16(5):1723-8.

38. Redmond KJ, Mahone EM, Terezakis S, Ishaq O, Ford E, McNutt T, Kleinberg L, Cohen KJ, Wharam M, Horska A. Association between radiation dose to neuronal progenitor cell niches and temporal lobes and performance on neuropsychological testing in children: a prospective study. Neuro Oncol. 2013 Mar;15(3):360-9. https://doi:10.1093/neuon/nos303 Epub. 2013 Jan 14.

39. Aoyama H, Tago M, Kato N, Toyoda T, Kenjyo M, Hirota S, Shioura H, Inomata T, Kunieda E, Hayakawa K, Nakagawa K, Kobashi G, Shirato H. Neurocognitive function of patients with brain metastasis who received either whole brain radiotherapy plus stereotactic radiosurgery or radiosurgery alone. Int J Radiat Oncol Biol Phys. 2007 Aug 1;68(5):1388-95. https://doi.org/10.1016/j.ijrobp.2007.03.048

40. Chang EL, Wefel JS, Hess KR, Allen PK, Lang FF, Kornguth DG, Arbuckle RB, Swint JM, Shiu AS, Maor MH, Meyers CA. Neurocognition in patients with brain metastases treated with radiosurgery or radiosurgery plus whole-brain irradiation: a randomised controlled trial. Lancet Oncol. 2009 Nov;10(11):1037-44. https://doi:10.1016/S1470-2045(09)70263-3. Epub 2009 Oct 2.

41. Brown PD, Asher AL, Farace E, et al. NCCTG N0574 (Alliance): A phase III randomized trial of whole brain radiation therapy (WBRT) in addition to radiosurgery (SRS) in patients with 1 to 3 brain metastases. J Clin Oncol 33, 2015 (suppl; abstr LBA4)

42. Gondi V, Tolakanahalli R, Mehta MP, Tewatia D, Rowley H, Kuo JS, Khuntia D, Tomé WA. Hippocampal-sparing whole-brain radiotherapy: a "how-to" technique using helical tomotherapy and linear accelerator-based intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys. 2010 Nov 15;78(4):1244-52. https://doi:10.1016/j.ijrobp.2010.01.039

43. Lin SY, Yang CC, Wu YM, Tseng CK, Wei KC, Chu YC, Hsieh HY, Wu TH, Pai PC, Hsu PW, Chuang CC. Evaluating the impact of hippocampal sparing during whole brain radiotherapy on neurocognitive functions: A preliminary report of a prospective phase II study. Biomed J. 2015 Sep-Oct;38(5):439-49. https://doi:10.4103/2319-4170.157440

44. Gondi V, Pugh SL, Tome WA, Caine C, Corn B, Kanner A, Rowley H, Kundapur V, DeNittis A, Greenspoon JN, Konski AA, Bauman GS, Shah S, Shi W, Wendland M, Kachnic L, Mehta MP. Preservation of memory with conformal avoidance of the hippocampal neural stem-cell compartment during whole-brain radiotherapy for brain metastases (RTOG 0933): a phase II multi-institutional trial. J Clin Oncol. 2014 Dec 1;32(34):3810-6. https://doi:10.1200/JCO.2014.57.2909 Epub 2014 Oct 27.

45. Goldwein JW, Radcliffe J, Johnson J, Moshang T, Packer RJ, Sutton LN, Rorke LB, D'Angio GJ. Updated results of a pilot study of low dose craniospinal irradiation plus chemotherapy for children under five with cerebellar primitive neuroectodermal tumors (medulloblastoma). Int J Radiat Oncol Biol Phys. 1996 Mar 1;34(4):899-904. https://doi.org/10.1016/0360-3016(95)02080-2

46. Allen JC, Donahue B, DaRosso R, Nirenberg A. Hyperfractionated craniospinal radiotherapy and adjuvant chemotherapy for children with newly diagnosed medulloblastoma and other primitive neuroectodermal tumors. Int J Radiat Oncol Biol Phys. 1996 Dec 1;36(5):1155-61. https://doi.org/10.1016/s0360-3016(96)00450-6

47. Duffner PK, Horowitz ME, Krischer JP, Friedman HS, Burger PC, Cohen ME, Sanford RA, Mulhern RK, James HE, Freeman CR, et al. Postoperative chemotherapy and delayed radiation in children less than three years of age with malignant brain tumors. N Engl J Med. 1993 Jun 17;328(24):1725-31. https://doi.org/10.1056/nejm199306173282401

48. Ris MD, Packer R, Goldwein J, Jones-Wallace D, Boyett JM. Intellectual outcome after reduced-dose radiation therapy plus adjuvant chemotherapy for medulloblastoma: a Children's Cancer Group study. J Clin Oncol. 2001 Aug 1;19(15):3470-6.

49. Grundy RG, Wilne SA, Weston CL, Robinson K, Lashford LS, Ironside J, Cox T, Chong WK, Campbell RH, Bailey CC, Gattamaneni R, Picton S, Thorpe N, Mallucci C, English MW, Punt JA, Walker DA, Ellison DW, Machin D; Children's Cancer and Leukaemia Group (formerly UKCCSG) Brain Tumour Committee. Primary postoperative chemotherapy without radiotherapy for intracranial ependymoma in children: the UKCCSG/SIOP prospective study. Lancet Oncol. 2007 Aug;8(8):696-705.

50. Grundy RG, Wilne SH, Robinson KJ, Ironside JW, Cox T, Chong WK, Michalski A, Campbell RH, Bailey CC, Thorp N, Pizer B, Punt J, Walker DA, Ellison DW, Machin D; Children's Cancer and Leukaemia Group Brain Tumour Committee. Primary postoperative chemotherapy without radiotherapy for treatment of brain tumours other than ependymoma in children under 3 years: results of the first UKCCSG/SIOP CNS 9204 trial. Eur J Cancer. 2010 Jan;46(1):120-33. https://doi:10.1016/j.ejca.2009.09.013

51. Fangusaro J, Finlay J, Sposto R, Ji L, Saly M, Zacharoulis S, Asgharzadeh S, Abromowitch M, Olshefski R, Halpern S, Dubowy R, Comito M, Diez B, Kellie S, Hukin J, Rosenblum M, Dunkel I, Miller DC, Allen J, Gardner S. Intensive chemotherapy followed by consolidative myeloablative chemotherapy with autologous hematopoietic cell rescue (AuHCR) in young children with newly diagnosed supratentorial primitive neuroectodermal tumors (sPNETs): report of the Head Start I and II experience. Pediatr Blood Cancer. 2008 Feb;50(2):312-8. https://doi.org/10.1002/pbc.21307

52. Dhall G, Grodman H, Ji L, Sands S, Gardner S, Dunkel IJ, McCowage GB, Diez B, Allen JC, Gopalan A, Cornelius AS, Termuhlen A, Abromowitch M, Sposto R, Finlay JL. Outcome of children less than three years old at diagnosis with non-metastatic medulloblastoma treated with chemotherapy on the "Head Start" I and II protocols. Pediatr Blood Cancer. 2008 Jun;50(6):1169-75. https://doi:10.1002/pbc.21525

53. Venkatramani R, Ji L, Lasky J, Haley K, Judkins A, Zhou S, Sposto R, Olshefski R, Garvin J, Tekautz T, Kennedy G, Rassekh SR, Moore T, Gardner S, Allen J, Shore R, Moertel C, Atlas M, Dhall G, Finlay J. Outcome of infants and young children with newly diagnosed ependymoma treated on the "Head Start" III prospective clinical trial. J Neurooncol. 2013 Jun;113(2):285-91. https://doi:10.1007/s11060-013-1111-9. Epub 2013 Mar 19.

54. Syrjala KL, Artherholt SB, Kurland BF, Langer SL, Roth-Roemer S, Elrod JB, Dikmen S. Prospective neurocognitive function over 5 years after allogeneic hematopoietic cell transplantation for cancer survivors compared with matched controls at 5 years. J Clin Oncol. 2011 Jun 10;29(17):2397-404. https://doi:10.1200/JCO.2010.33.9119. Epub 2011 May 2.

55. Scherwath A, Schirmer L, Kruse M, Ernst G, Eder M, Dinkel A, Kunze S, Balck F, Bornhäuser M, Ehninger G, Dolan K, Gramatzki M, Kolb HJ, Heußner P, Wilhelm H, Beelen DW, Schulz-Kindermann F, Zander AR, Koch U, Mehnert A. Cognitive functioning in allogeneic hematopoietic stem cell transplantation recipients and its medical correlates: a prospective multicenter study. Psychooncology. 2013 Jul;22(7):1509-16. https://doi:10.1002/pon.3159. Epub 2012 Sep 4.

56. Weber DC, Ares C, Lomax AJ, et al. Radiation therapy planning with photons and protons for early and advanced breast cancer: An overview. Radiat Oncol. 2006; 1:22

57. Blomstrand M, Brodin NP, Munck Af Rosenschöld P, Vogelius IR, Sánchez Merino G, Kiil-Berthlesen A, Blomgren K, Lannering B, Bentzen SM, Björk-Eriksson T. Estimated clinical benefit of protecting neurogenesis in the developing brain during radiation therapy for pediatric medulloblastoma. Neuro Oncol. 2012 Jul;14(7):882-9. https://doi:10.1093/neuonc/nos120. Epub 2012 May 17.

58. Kuhlthau KA, Pulsifer MB, Yeap BY, et al. (2012) Prospective study of health-related quality of life for children with brain tumors treated with proton radiotherapy. J Clin Oncol 30:2079–2086 https://doi.org/10.1200/jco.2011.37.0577

59. Ramanan S, Kooshki M, Zhao W, Hsu FC, Riddle DR, Robbins ME. The PPARalpha agonist fenofibrate preserves hippocampal neurogenesis and inhibits microglial activation after whole-brain irradiation. Int J Radiat Oncol Biol Phys. 2009 Nov 1;75(3):870-7. https://doi:10.1016/j.ijrobp.2009.06.059.

60. Schnegg CI, Greene-Schloesser D, Kooshki M, Payne VS, Hsu FC, Robbins ME. The PPARδ agonist GW0742 inhibits neuroinflammation, but does not restore neurogenesis or prevent early delayed hippocampal-dependent cognitive impairment after whole-brain irradiation. Free Radic Biol Med. 2013 Aug;61:1-9. https://doi:10.1016/j.freeradbiomed.2013.03.002. Epub 2013 Mar 14.

61. Jenrow KA, Brown SL, Lapanowski K, Naei H, Kolozsvary A, Kim JH. Selective inhibition of microglia- mediated neuroinflammation mitigates radiation-induced cognitive impairment. Radiat Res. 2013 May;179(5):549-56. https://doi:10.1667/RR3026.1. Epub 2013 Apr 5.

62. Jenrow KA, Liu J, Brown SL, Kolozsvary A, Lapanowski K, Kim JH. Combined atorvastatin and ramipril mitigate radiation-induced impairment of dentate gyrus neurogenesis. J Neurooncol. 2011 Feb;101(3):449- 56. https://doi:10.1007/s11060-010-0282-x. Epub 2010 Jul 9.

63. Jenrow KA, Brown SL, Liu J, Kolozsvary A, Lapanowski K, Kim JH. Ramipril mitigates radiation-induced impairment of neurogenesis in the rat dentate gyrus. Radiat Oncol. 2010 Feb 1;5:6. https://doi:10.1186/1748- 717X-5-6.

64. Monje ML, Toda H, Palmer TD. Inflammatory blockade restores adult hippocampal neurogenesis. Science. 2003 Dec 5;302(5651):1760-5. Epub 2003 Nov 13. https://doi.org/10.1126/science.1088417

65. Plotnikova ED, Levitman MK, Shaposhnikova VV, Koshevoj JV, Eidus LK. Protection of microvasculature in rat brain against late radiation injury by gammaphos. Int J Radiat Oncol Biol Phys. 1988 Nov; 15(5):1197-201. https://doi.org/10.1016/0360-3016(88)90204-0

66. Lyubimova N, Hopewell JW. Experimental evidence to support the hypothesis that damage to vascular endothelium plays the primary role in the development of late radiation-induced CNS injury. Br J Radiol. 2004 Jun; 77(918):488-92. https://doi.org/10.1259/bjr/15169876

67. Kim JA, Ha S, Shin KY, Kim S, Lee KJ, Chong YH, Chang KA, Suh YH. Neural stem cell transplantation at critical period improves learning and memory through restoring synaptic impairment in Alzheimer's disease mouse model. Cell Death Dis. 2015 Jun 18;6:e1789. https://doi:10.1038/cddis.2015.138.

68. Goldberg NR, Caesar J, Park A, Sedgh S, Finogenov G, Masliah E, Davis J, Blurton-Jones M. Neural Stem Cells Rescue Cognitive and Motor Dysfunction in a Transgenic Model of Dementia with Lewy Bodies through a BDNF-Dependent Mechanism. Stem Cell Reports. 2015 Nov 10;5(5):791-804. https://doi:10.101/j.stemcr.2015.09.008. Epub 2015 Oct 17.

69. Zhang Q, Wu HH, Wang Y, Gu GJ, Zhang W, Xia R. Neural stem cell transplantation decreases neuroinflammation in a transgenic mouse model of Alzheimer's disease. J Neurochem. 2015 Nov 3. https://doi:10.1111/jnc.13413. [Epub ahead of print]

70. Lee IS, Jung K, Kim IS, Lee H, Kim M, Yun S, Hwang K, Shin JE, Park KI. Human neural stem cells alleviate Alzheimer-like pathology in a mouse model. Mol Neurodegener. 2015 Aug 21;10:38. https://doi:10.1186/s13024-015-0035-6.

71. Bekinschtein P, Cammarota M, Katche C, Slipczuk L, Rossato JI, Goldin A, Izquierdo I, Medina JH. BDNF is essential to promote persistence of long-term memory storage. Proc Natl Acad Sci U S A. 2008 Feb 19;105(7):2711-6. https://doi:10.1073/pnas.0711863105. Epub 2008 Feb 8.

72. Bekinschtein P, Cammarota M, Igaz LM, Bevilaqua LR, Izquierdo I, Medina JH. Persistence of long-term memory storage requires a late protein synthesis- and BDNF- dependent phase in the hippocampus. Neuron. 2007 Jan 18;53(2):261-77. https://doi.org/10.1016/j.neuron.2006.11.025

73. Alonso M, Vianna MR, Depino AM, Mello e Souza T, Pereira P, Szapiro G, Viola H, Pitossi F, Izquierdo I, Medina JH. BDNF-triggered events in the rat hippocampus are required for both short- and long-term memory formation. Hippocampus. 2002;12(4):551-60. https://doi.org/10.1002/hipo.10035

74. Acharya MM, Rosi S, Jopson T, Limoli CL. Human neural stem cell transplantation provides long-term restoration of neuronal plasticity in the irradiated hippocampus. Cell Transplant. 2015;24(4):691-702. https://doi:10.3727/096368914X684600. Epub 2014 Oct 6.

75. Acharya MM, Christie LA, Hazel TG, Johe KK, Limoli CL. Transplantation of human fetal-derived neural stem cells improves cognitive function following cranial irradiation. Cell Transplant. 2014;23(10):1255-66. https://doi:10.3727/096368913X670200. Epub 2013 Jul 17.

76. Acharya MM, Martirosian V, Christie LA, Limoli CL. Long-term cognitive effects of human stem cell transplantation in the irradiated brain. Int J Radiat Biol. 2014 Sep;90(9):816-20. https://doi:10.3109/09553002.2014.927934. Epub 2014 Jun 25.

77. Acharya MM, Martirosian V, Christie LA, Riparip L, Strnadel J, Parihar VK, Limoli CL. Defining the optimal window for cranial transplantation of human induced pluripotent stem cell-derived cells to ameliorate radiation-induced cognitive impairment. Stem Cells Transl Med. 2015 Jan;4(1):74-83. https://doi:10.5966/sctm.2014-0063. Epub 2014 Nov 12.

78. Piao J, Major T, Auyeung G, Policarpio E, Menon J, Droms L, Gutin P, Uryu K, Tchieu J, Soulet D, Tabar V. Human embryonic stem cell-derived oligodendrocyte progenitors remyelinate the brain and rescue behavioral deficits following radiation. Cell Stem Cell. 2015 Feb 5;16(2):198-210. https://doi:10.1016/j.stem.2015.01.004.

79. Wong-Goodrich SJ, Pfau ML, Flores CT, Fraser JA, Williams CL, Jones LW. Voluntary running prevents progressive memory decline and increases adult hippocampal neurogenesis and growth factor expression after whole-brain irradiation. Cancer Res. 2010 Nov 15;70(22):9329-38. https://doi.org/10.1158/0008-5472.can-10-1854 . Epub 2010 Sep 30.

80. Ji JF, Ji SJ, Sun R, Li K, Zhang Y, Zhang LY, Tian Y. Forced running exercise attenuates hippocampal neurogenesis impairment and the neurocognitive deficits induced by whole-brain irradiation via the BDNF- mediated pathway. Biochem Biophys Res Commun. 2014 Jan 10;443(2):646-51. https://doi.org/ 10.1016/j.bbrc.2013.12.031. Epub 2013 Dec 11.

81. Ji S, Tian Y, Lu Y, Sun R, Ji J, Zhang L, Duan S. Irradiation-induced hippocampal neurogenesis impairment is associated with epigenetic regulation of bdnf gene transcription. Brain Res. 2014 Aug 19;1577:77-88. https://doi.org/10.1016/j.brainres.2014.06.035. Epub 2014 Jul 11.

82. Wolfe KR, Madan-Swain A, Hunter GR, Reddy AT, Baños J, Kana RK. An fMRI investigation of working memory and its relationship with cardiorespiratory fitness in pediatric posterior fossa tumor survivors who received cranial radiation therapy. Pediatr Blood Cancer. 2013 Apr;60(4):669-75. https://doi.org/10.1002/pbc.24331. Epub 2012 Oct 5.

83. Wolfe KR, Hunter GR, Madan-Swain A, Reddy AT, Baños J, Kana RK. Cardiorespiratory fitness in survivors of pediatric posterior fossa tumor. J Pediatr Hematol Oncol. 2012 Aug;34(6):e222-7. https://doi.org/10.1097/MPH.0b013e3182661996.

84. Piscione PJ, Bouffet E, Mabbott DJ, Shams I, Kulkarni AV. Physical functioning in pediatric survivors of childhood posterior fossa brain tumors. Neuro Oncol. 2014 Jan;16(1):147-55. https://doi.org/10.1093/neuonc/not138. Epub 2013 Dec 4.

85. Winter C, Müller C, Hoffmann C, Boos J, Rosenbaum D. Physical activity and childhood cancer. Pediatr Blood Cancer. 2010 Apr; 54(4):501-10. https://doi.org/10.1002/pbc.22271

86. Gehring K, Sitskoorn MM, Gundy CM, Sikkes SA, Klein M, Postma TJ, van den Bent MJ, Beute GN, Enting RH, Kappelle AC, Boogerd W, Veninga T, Twijnstra A, Boerman DH, Taphoorn MJ, Aaronson NK. Cognitive rehabilitation in patients with gliomas: a randomized, controlled trial. J Clin Oncol. 2009 Aug 1;27(22):3712-22. https://doi.org/10.1200/JCO.2008.20.5765. Epub 2009 May 26.

87. Han EY, Chun MH, Kim BR, Kim HJ. Functional Improvement After 4-Week Rehabilitation Therapy and Effects of Attention Deficit in Brain Tumor Patients: Comparison With Subacute Stroke Patients. Ann Rehabil Med. 2015 Aug;39(4):560-9. https://doi.org/10.5535/arm.2015.39.4.560. Epub 2015 Aug 25.

88. Gehring K, Sitskoorn MM, Gundy CM, Sikkes SA, Klein M, Postma TJ, van den Bent MJ, Beute GN, Enting RH, Kappelle AC, Boogerd W, Veninga T, Twijnstra A, Boerman DH, Taphoorn MJ, Aaronson NK. Cognitive rehabilitation in patients with gliomas: a randomized, controlled trial. J Clin Oncol. 2009 Aug 1;27(22):3712-22. https://doi.org/10.1200/JCO.2008.20.5765. Epub 2009 May 26.

89. Hassler MR, Elandt K, Preusser M, Lehrner J, Binder P, Dieckmann K, Rottenfusser A, Marosi C. Neurocognitive training in patients with high-grade glioma: a pilot study. J Neurooncol. 2010 Mar;97(1):109-15. https://doi.org/10.1007/s11060-009-0006-2. Epub 2009 Sep 10.

90. Khan F, Amatya B, Drummond K, Galea M. Effectiveness of integrated multidisciplinary rehabilitation in primary brain cancer survivors in an Australian community cohort: a controlled clinical trial. J Rehabil Med. 2014 Sep;46(8):754-60. https://doi.org/10.2340/16501977-1840.

91. Khan F, Amatya B, Ng L, Drummond K, Galea M. Multidisciplinary rehabilitation after primary brain tumour treatment. Cochrane Database Syst Rev. 2015 Aug 23;8:CD009509. https://do.org/:10.1002/14651858.CD009509.pub3.

92. Meyers CA, Weitzner MA, Valentine AD, Levin VA. Methylphenidate therapy improves cognition, mood, and function of brain tumor patients. J Clin Oncol. 1998 Jul;16(7):2522-7.

93. Butler JM Jr, Case LD, Atkins J, Frizzell B, Sanders G, Griffin P, Lesser G, McMullen K, McQuellon R, Naughton M, Rapp S, Stieber V, Shaw EG. A phase III, double-blind, placebo-controlled prospective randomized clinical trial of d-threo-methylphenidate HCl in brain tumor patients receiving radiation therapy. Int J Radiat Oncol Biol Phys. 2007 Dec 1;69(5):1496-501. Epub 2007 Sep 14. https://doi.org/10.1016/j.ijrobp.2005.07.138

94. Brown PD, Pugh S, Laack NN, Wefel JS, Khuntia D, Meyers C, Choucair A, Fox S, Suh JH, Roberge D, Kavadi V, Bentzen SM, Mehta MP, Watkins-Bruner D; Radiation Therapy Oncology Group (RTOG). Memantine for the prevention of cognitive dysfunction in patients receiving whole-brain radiotherapy: a randomized, double-blind, placebo-controlled trial. Neuro Oncol. 2013 Oct;15(10):1429-37. htpps://doi.org/10.1093/neuonc/not114. Epub 2013 Aug 16.

95. Attia A, Rapp SR, Case LD, D'Agostino R, Lesser G, Na

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.