Author Credentials

Cornelius W. Thomas MD




The Diagnostic and Statistical Manual of Mental Disorders (DSM-5) criteria for post-traumatic stress disorder (PTSD) consist of over twenty possible symptoms that can be divided into six broad categories. These categories correlate with specific brain networks that regulate emotions, behaviors, and autonomic function. Normal functioning of these networks depends on two key regions; the prefrontal cortex and the amygdala. The prefrontal cortex provides top-down executive control over amygdala, whereas the amygdala is critical for threat detection and activation of the ‘fight or flight’ response. Events that trigger extreme and/or prolonged fear can cause persisting dysregulation within the prefrontal-amygdala circuit; resulting in PTSD symptomatology. Studies indicate that effective treatment of PTSD, either psychotherapy or medications, reverses this prefrontal-amygdala dysregulation. This review article summarizes current knowledge and theories available in the medical literature from NCBI’s PubMed database regarding the underlying brain networks involved in PTSD.

Conflict(s) of Interest

There are no conflicts of interest associated with this manuscript.

References with DOI

1. American Psychiatric Association. (1952). Diagnostic and statistical manual of mental disorders (1st ed.; DSM–I) https://doi.org/10.1093/jama/9780195176339.022.529

2. American Psychiatric Association. (1980). Diagnostic and statistical manual of mental disorders (3rd ed.; DSM–III) https://doi.org/10.1093/jama/9780195176339.022.529

3. American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.; DSM-5). American Psychiatric Publishing https://doi.org/10.1093/jama/9780195176339.022.529

4. Janak PH, Tye KM. From circuits to behaviour in the amygdala. Nature. 2015;517(7534):284-92. https://doi.org/10.1038/nature14188

5. Arruda-Carvalho M, Clem RL. Prefrontal-amygdala fear networks come into focus. Front Syst Neurosci. 2015;9:145. https://doi.org/10.3389/fnsys.2015.00145

6. Likhtik E, Paz R. Amygdala-prefrontal interactions in (mal)adaptive learning. Trends Neurosci. 2015;38(3):158-66. https://doi.org/10.1016/j.tins.2014.12.007

7. Volman I, Toni I, Verhagen L, Roelofs K. Endogenous testosterone modulates prefrontal-amygdala connectivity during social emotional behavior. Cereb Cortex. 2011;21(10):2282-90. https://doi.org/10.1093/cercor/bhr001

8. Siddiqui SV, Chatterjee U, Kumar D, Siddiqui A, Goyal N. Neuropsychology of prefrontal cortex. Indian J Psychiatry. 2008;50(3):202-8. https://doi.org/10.4103/0019-5545.43634

9. Maroun M. Medial prefrontal cortex: multiple roles in fear and extinction. Neuroscientist. 2013;19(4):370-83. https://doi.org/10.1177/1073858412464527

10. Vouimba RM, Maroun M. Learning-induced changes in mPFC-BLA connections after fear conditioning, extinction, and reinstatement of fear. Neuropsychopharmacology. 2011;36(11):2276-85. https://doi.org/10.1038/npp.2011.115

11. Marek R, Strobel C, Bredy TW, Sah P. The amygdala and medial prefrontal cortex: partners in the fear circuit. J Physiol. 2013;591(10):2381-91. https://doi.org/10.1113/jphysiol.2012.248575

12. Francati V, Vermetten E, Bremner JD. Functional neuroimaging studies in posttraumatic stress disorder: review of current methods and findings. Depress Anxiety. 2007;24(3):202-18. https://doi.org/10.1002/da.20208

13. Hughes KC, Shin LM. Functional neuroimaging studies of post-traumatic stress disorder. Expert Rev Neurother. 2011;11(2):275-85. https://doi.org/10.1586/ern.10.198

14. Koenigs M, Grafman J. Posttraumatic stress disorder: the role of medial prefrontal cortex and amygdala. Neuroscientist. 2009;15(5):540-8. https://doi.org/10.1177/1073858409333072

15. Wolf RC, Herringa RJ. Prefrontal-Amygdala Dysregulation to Threat in Pediatric Posttraumatic Stress Disorder. Neuropsychopharmacology. 2016;41(3):822-31. https://doi.org/10.1038/npp.2015.209

16. Nutt DJ, Malizia AL. Structural and functional brain changes in posttraumatic stress disorder. J Clin Psychiatry. 2004;65 Suppl 1:11-7.

17. Rajmohan V, Mohandas E. The limbic system. Indian J Psychiatry. 2007;49(2):132-9.

18. Bhattacharyya KB. James Wenceslaus Papez, His Circuit, and Emotion. Ann Indian Acad Neurol. 2017;20(3):207-210.

19. Bizley JK, Cohen YE. The what, where and how of auditory-object perception. Nat Rev Neurosci. 2013;14(10):693-707. https://doi.org/10.1038/nrn3565

20. Kravitz DJ, Saleem KS, Baker CI, Mishkin M. A new neural framework for visuospatial processing. Nat Rev Neurosci. 2011;12(4):217-30. https://doi.org/10.1038/nrn3008

21. Squire LR, Bayley PJ. The neuroscience of remote memory. Curr Opin Neurobiol. 2007;17(2):185-96.

22. McGaugh JL, Cahill L, Roozendaal B. Involvement of the amygdala in memory storage: interaction with other brain systems. Proc Natl Acad Sci U S A. 1996;93(24):13508-14. https://doi.org/10.1073/pnas.93.24.13508

23. Sah P, Faber ES, Lopez De Armentia M, Power J. The amygdaloid complex: anatomy and physiology. Physiol Rev. 2003;83(3):803-34. https://doi.org/10.1152/physrev.00002.2003

24. Tramoni E, Felician O, Barbeau EJ, Guedj E, Guye M, Bartolomei F, Ceccaldi M. Long-term consolidation of declarative memory: insight from temporal lobe epilepsy. Brain. 2011;134(Pt 3):816-31. https://doi.org/10.1093/brain/awr002

25. Gardner AJ, Griffiths J. Propranolol, post-traumatic stress disorder, and intensive care: incorporating new advances in psychiatry into the ICU. Crit Care. 2014;18(6):698. https://doi.org/10.1186/s13054-014-0698-3

26. Wartman BC, Holahan MR. The impact of multiple memory formation on dendritic complexity in the hippocampus and anterior cingulate cortex assessed at recent and remote time points. Front Behav Neurosci. 2014;8:128. https://doi.org/10.3389/fnbeh.2014.00128

27. Restivo L, Vetere G, Bontempi B, Ammassari-Teule M. The formation of recent and remote memory is associated with time-dependent formation of dendritic spines in the hippocampus and anterior cingulate cortex. J Neurosci. 2009;29(25):8206-14. https://doi.org/10.1523/jneurosci.0966-09.2009

28. Lin WJ, Horner AJ, Burgess N. Ventromedial prefrontal cortex, adding value to autobiographical memories. Sci Rep. 2016;6:28630. https://doi.org/10.1038/srep28630

29. Macrae CN, Moran JM, Heatherton TF, Banfield JF, Kelley WM. Medial prefrontal activity predicts memory for self. Cereb Cortex. 2004;14(6):647-54. https://doi.org/10.1093/cercor/bhh025

30. Summerfield JJ, Hassabis D, Maguire EA. Cortical midline involvement in autobiographical memory. Neuroimage. 2009;44(3):1188-200. https://doi.org/10.1016/j.neuroimage.2008.09.033

31. Bryant RA, Kemp AH, Felmingham KL, Liddell B, Olivieri G, Peduto A, Gordon E, Williams LM. Enhanced amygdala and medial prefrontal activation during nonconscious processing of fear in posttraumatic stress disorder: an fMRI study. Hum Brain Mapp. 2008;29(5):517-23. https://doi.org/10.1002/hbm.20415

32. Diano M, Celeghin A, Bagnis A, Tamietto M. Amygdala Response to Emotional Stimuli without Awareness: Facts and Interpretations. Front Psychol. 2017;7:2029. https://doi.org/10.3389/fpsyg.2016.02029

33. Whalley MG, Kroes MC, Huntley Z, Rugg MD, Davis SW, Brewin CR. An fMRI investigation of posttraumatic flashbacks. Brain Cogn. 2013;81(1):151-9. https://doi.org/10.1016/j.bandc.2012.10.002

34. Powers MB, Halpern JM, Ferenschak MP, Gillihan SJ, Foa EB. A meta-analytic review of prolonged exposure for posttraumatic stress disorder. Clin Psychol Rev. 2010;30(6):635-41. https://doi.org/10.1016/j.cpr.2010.04.007

35. King AP, Block SR, Sripada RK, Rauch SA, Porter KE, Favorite TK, Giardino N, Liberzon I. A Pilot Study of Mindfulness-Based Exposure Therapy in OEF/OIF Combat Veterans with PTSD: Altered Medial Frontal Cortex and Amygdala Responses in Social-Emotional Processing. Front Psychiatry. 2016;7:154. https://doi.org/10.3389/fpsyt.2016.00154

36. Neylan TC. Frontal Lobe Moderators and Mediators of Response to Exposure Therapy in PTSD. Am J Psychiatry. 2017;174(12):1131-1133. https://doi.org/10.1176/appi.ajp.2017.17091056

37. Mutz J, Javadi A. Exploring the neural correlates of dream phenomenology and altered states of consciousness during sleep. Neuroscience of Consciousness. 2017;2017(1). https://doi.org/10.1093/nc/nix009

38. Germain A. Sleep disturbances as the hallmark of PTSD: where are we now? Am J Psychiatry. 2013;170(4):372- 82. https://doi.org/10.1176/appi.ajp.2012.12040432

39. van Liempt S. Sleep disturbances and PTSD: a perpetual circle? Eur J Psychotraumatol. 2012;3. https://doi.org/10.3402/ejpt.v3i0.19142

40. Davis JL, Rhudy JL, Pruiksma KE, Byrd P, Williams AE, McCabe KM, Bartley EJ. Physiological predictors of response to exposure, relaxation, and rescripting therapy for chronic nightmares in a randomized clinical trial. J Clin Sleep Med. 2011;7(6):622-31. https://doi.org/10.5664/jcsm.1466

41. Long ME, Hammons ME, Davis JL, Frueh BC, Khan MM, Elhai JD, Teng EJ. Imagery rescripting and exposure group treatment of posttraumatic nightmares in Veterans with PTSD. J Anxiety Disord. 2011;25(4):531-5. https://doi.org/10.1016/j.janxdis.2010.12.007

42. Ulrich-Lai YM, Herman JP. Neural regulation of endocrine and autonomic stress responses. Nat Rev Neurosci. 2009;10(6):397-409. https://doi.org/10.1038/nrn2647

43. Yehuda R, LeDoux J. Response variation following trauma: a translational neuroscience approach to understanding PTSD. Neuron. 2007;56(1):19-32. https://doi.org/10.1016/j.neuron.2007.09.006

44. Pineles SL, Suvak MK, Liverant GI, Gregor K, Wisco BE, Pitman RK, Orr SP. Psychophysiologic reactivity, subjective distress, and their associations with PTSD diagnosis. J Abnorm Psychol. 2013;122(3):635-44. https://doi.org/10.1037/a0033942

45. Ongür D, An X, Price JL. Prefrontal cortical projections to the hypothalamus in macaque monkeys. J Comp Neurol. 1998;401(4):480-505. https://doi.org/10.1002/(sici)1096-9861(19981130)401:4<480::aid-cne4>3.3.co;2-6

46. Ongür D, Price JL. The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb Cortex. 2000;10(3):206-19. https://doi.org/10.1093/cercor/10.3.206

47. Spencer SJ, Buller KM, Day TA. Medial prefrontal cortex control of the paraventricular hypothalamic nucleus response to psychological stress: possible role of the bed nucleus of the stria terminalis. J Comp Neurol. 2005;481(4):363-76. https://doi.org/10.1002/cne.20376

48. Reppucci CJ, Petrovich GD. Organization of connections between the amygdala, medial prefrontal cortex, and lateral hypothalamus: a single and double retrograde tracing study in rats. Brain Struct Funct. 2016;221(6):2937-62. https://doi.org/10.1007/s00429-015-1081-0

49. Williams LM, Liddell BJ, Kemp AH, Bryant RA, Meares RA, Peduto AS, Gordon E. Amygdala-prefrontal dissociation of subliminal and supraliminal fear. Hum Brain Mapp. 2006;27(8):652-61. https://doi.org/10.1002/hbm.20208

50. Naegeli C, Zeffiro T, Piccirelli M, Jaillard A, Weilenmann A, Hassanpour K, Schick M, Rufer M, Orr SP, Mueller-Pfeiffer C. Locus Coeruleus Activity Mediates Hyperresponsiveness in Posttraumatic Stress Disorder. Biol Psychiatry. 2018;83(3):254-262. https://doi.org/10.1016/j.biopsych.2017.08.021

51. Berridge CW, Schmeichel BE, España RA. Noradrenergic modulation of wakefulness/arousal. Sleep Med Rev. 2012;16(2):187-97. https://doi.org/10.1016/j.smrv.2011.12.003

52. Uematsu A, Tan BZ, Johansen JP. Projection specificity in heterogeneous locus coeruleus cell populations: implications for learning and memory. Learn Mem. 2015;22(9):444-51. https://doi.org/10.1101/lm.037283.114

53. Jodo E, Chiang C, Aston-Jones G. Potent excitatory influence of prefrontal cortex activity on noradrenergic locus coeruleus neurons. Neuroscience. 1998;83(1):63-79. https://doi.org/10.1016/s0306-4522(97)00372-2

54. Pietrzak RH, Gallezot JD, Ding YS, Henry S, Potenza MN, Southwick SM, Krystal JH, Carson RE, Neumeister A. Association of posttraumatic stress disorder with reduced in vivo norepinephrine transporter availability in the locus coeruleus. JAMA Psychiatry. 2013;70(11):1199-205. https://doi.org/10.1001/jamapsychiatry.2013.399

55. Naegeli C, Zeffiro T, Piccirelli M, Jaillard A, Weilenmann A, Hassanpour K, Schick M, Rufer M, Orr SP, Mueller-Pfeiffer C. Locus Coeruleus Activity Mediates Hyperresponsiveness in Posttraumatic Stress Disorder. Biol Psychiatry. 2018;83(3):254-262. https://doi.org/10.1016/j.biopsych.2017.08.021

56. Boehnlein JK, Kinzie JD. Pharmacologic reduction of CNS noradrenergic activity in PTSD: the case for clonidine and prazosin. J Psychiatr Pract. 2007;13(2):72-8. https://doi.org/10.1097/01.pra.0000265763.79753.c1

57. Hilton L, Maher AR, Colaiaco B, Apaydin E, Sorbero ME, Booth M, Shanman RM, Hempel S. Meditation for posttraumatic stress: Systematic review and meta-analysis. Psychol Trauma. 2017;9(4):453-460. https://doi.org/10.7249/rr1356

58. Leung MK, Lau WKW, Chan CCH, Wong SSY, Fung ALC, Lee TMC. Meditation-induced neuroplastic changes in amygdala activity during negative affective processing. Soc Neurosci. 2017;Apr 10:1-12. https://doi.org/10.1080/17470919.2017.1311939

59. Doll A, Hölzel BK, Mulej Bratec S, Boucard CC, Xie X, Wohlschläger AM, Sorg C. Mindful attention to breath regulates emotions via increased amygdala-prefrontal cortex connectivity. Neuroimage. 2016;134:305-313. ttps://doi.org/10.1016/j.neuroimage.2016.03.041

60. De Oca BM, DeCola JP, Maren S, Fanselow MS. Distinct regions of the periaqueductal gray are involved in the acquisition and expression of defensive responses. J Neurosci. 1998;18(9):3426-32. https://doi.org/10.1523/jneurosci.18-09-03426.1998

61. Rabellino D, Densmore M, Frewen PA, Théberge J, Lanius RA. The innate alarm circuit in post-traumatic stress disorder: Conscious and subconscious processing of fear- and trauma-related cues. Psychiatry Res. 2016;248:142- 50. https://doi.org/10.1016/j.pscychresns.2015.12.005

62. Lee Y, López DE, Meloni EG, Davis M. A primary acoustic startle pathway: obligatory role of cochlear root neurons and the nucleus reticularis pontis caudalis. J Neurosci. 1996;16(11):3775-89. https://doi.org/10.1523/jneurosci.16-11-03775.1996

63. Shalev AY, Peri T, Brandes D, Freedman S, Orr SP, Pitman RK. Auditory startle response in trauma survivors with posttraumatic stress disorder: a prospective study. Am J Psychiatry. 2000;157(2):255-61. https://doi.org/10.1176/appi.ajp.157.2.255

64. Tovote P, Esposito MS, Botta P, Chaudun F, Fadok JP, Markovic M, Wolff SB, Ramakrishnan C, Fenno L, Deisseroth K, Herry C, Arber S, Lüthi A. Midbrain circuits for defensive behaviour. Nature. 2016;534(7606):206-12. https://doi.org/10.1038/nature17996

65. Davis M, Walker DL, Lee Y. Roles of the amygdala and bed nucleus of the stria terminalis in fear and anxiety measured with the acoustic startle reflex. Possible relevance to PTSD. Ann N Y Acad Sci. 1997;821:305-31. https://doi.org/10.1111/j.1749-6632.1997.tb48289.x

66. Barrett DW, Gonzalez-Lima F. Prefrontal-limbic Functional Connectivity during Acquisition and Extinction of Conditioned Fear. Neuroscience. 2018;376:162-171. https://doi.org/10.1016/j.neuroscience.2018.02.022

67. Basar K, Sesia T, Groenewegen H, Steinbusch HW, Visser-Vandewalle V, Temel Y. Nucleus accumbens and impulsivity. Prog Neurobiol. 2010;92(4):533-57. https://doi.org/10.1016/j.pneurobio.2010.08.007

68. Shiflett MW, Balleine BW. At the limbic-motor interface: disconnection of basolateral amygdala from nucleus accumbens core and shell reveals dissociable components of incentive motivation. Eur J Neurosci. 2010;32(10):1735-43. https://doi.org/10.1111/j.1460-9568.2010.07439.x

69. Finch DM. Neurophysiology of converging synaptic inputs from the rat prefrontal cortex, amygdala, midline thalamus, and hippocampal formation onto single neurons of the caudate/putamen and nucleus accumbens. Hippocampus. 1996;6(5):495-512. https://doi.org/10.1002/(sici)1098-1063(1996)6:5<495::aid-hipo3>3.3.co;2-i

70. Burns LH, Annett L, Kelley AE, Everitt BJ, Robbins TW. Effects of lesions to amygdala, ventral subiculum, medial prefrontal cortex, and nucleus accumbens on the reaction to novelty: implication for limbic-striatal interactions. Behav Neurosci. 1996;110(1):60-73. https://doi.org/10.1037//0735-7044.110.1.60

71. Zald DH. The human amygdala and the emotional evaluation of sensory stimuli. Brain Res Brain Res Rev. 2003;41(1):88-123. https://doi.org/10.1016/s0165-0173(02)00248-5

72. Meyer HC, Bucci DJ. Imbalanced Activity in the Orbitofrontal Cortex and Nucleus Accumbens Impairs Behavioral Inhibition. Curr Biol. 2016;26(20):2834-2839. https://doi.org/10.1016/j.cub.2016.08.034

73. Dolan RJ. The human amygdala and orbital prefrontal cortex in behavioural regulation. Philos Trans R Soc Lond B Biol Sci. 2007;362(1481):787-99. https://doi.org/10.1098/rstb.2007.2088

74. Blair RJ. The roles of orbital frontal cortex in the modulation of antisocial behavior. Brain Cogn. 2004;55(1):198-208. https://doi.org/10.1016/s0278-2626(03)00276-8

75. Davidson RJ, Putnam KM, Larson CL. Dysfunction in the neural circuitry of emotion regulation--a possible prelude to violence. Science. 2000;289(5479):591-4. https://doi.org/10.1126/science.289.5479.591

76. Hakamata Y, Matsuoka Y, Inagaki M, Nagamine M, Hara E, Imoto S, Murakami K, Kim Y, Uchitomi Y. Structure of orbitofrontal cortex and its longitudinal course in cancer-related post-traumatic stress disorder. Neurosci Res. 2007;59(4):383-9. https://doi.org/10.1016/j.neures.2007.08.012

77. Sadeh N, Spielberg JM, Hayes JP. Impulsive responding in threat and reward contexts as a function of PTSD symptoms and trait disinhibition. J Anxiety Disord. 2018;53:76-84. https://doi.org/10.1016/j.janxdis.2017.11.001

78. Thomaes K, Dorrepaal E, Draijer N, de Ruiter MB, van Balkom AJ, Smit JH, Veltman DJ. Reduced anterior cingulate and orbitofrontal volumes in child abuse-related complex PTSD. J Clin Psychiatry. 2010;71(12):1636-44. https://doi.org/10.4088/jcp.08m04754blu

79. Jackowski AP, Araújo Filho GM, Almeida AG, Araújo CM, Reis M, Nery F, Batista IR, Silva I, Lacerda AL. The involvement of the orbitofrontal cortex in psychiatric disorders: an update of neuroimaging findings. Rev Bras Psiquiatr. 2012;34(2):207-12. https://doi.org/10.1016/s1516-4446(12)70040-5

80. Gu X, Hof PR, Friston KJ, Fan J. Anterior insular cortex and emotional awareness. J Comp Neurol. 2013;521(15):3371-88. https://doi.org/10.1002/cne.23368

81. Mesulam MM, Mufson EJ. Insula of the old world monkey. III: Efferent cortical output and comments on function. J Comp Neurol. 1982;212(1):38-52. https://doi.org/10.1002/cne.902120104

82. Critchley HD, Harrison NA. Visceral influences on brain and behavior. Neuron. 2013;77(4):624-38. https://doi.org/10.1016/j.neuron.2013.02.008

83. Shura RD, Hurley RA, Taber KH. Insular cortex: structural and functional neuroanatomy. J Neuropsychiatry Clin Neurosci. 2014;26(4):276-82. https://doi.org/10.1176/appi.neuropsych.260401

84. Shiba Y, Oikonomidis L, Sawiak S, Fryer TD, Hong YT, Cockcroft G, Santangelo AM, Roberts AC. Converging Prefronto-Insula-Amygdala Pathways in Negative Emotion Regulation in Marmoset Monkeys. Biol Psychiatry. 2017;82(12):895-903. https://doi.org/10.1016/j.biopsych.2017.06.016

85. Stein MB, Simmons AN, Feinstein JS, Paulus MP. Increased amygdala and insula activation during emotion processing in anxiety-prone subjects. Am J Psychiatry. 2007;164(2):318-27. https://doi.org/10.1176/appi.ajp.164.2.318

86. Bruce SE, Buchholz KR, Brown WJ, Yan L, Durbin A, Sheline YI. Altered emotional interference processing in the amygdala and insula in women with Post-Traumatic Stress Disorder. Neuroimage Clin. 2012;2:43-9. https://doi.org/10.1016/j.nicl.2012.11.003

87. Amodio DM, Frith CD. Meeting of minds: the medial frontal cortex and social cognition. Nat Rev Neurosci. 2006;7(4):268-77. https://doi.org/10.1038/nrn1884

88. Meyer ML, Lieberman MD. Why People Are Always Thinking about Themselves: Medial Prefrontal Cortex Activity during Rest Primes Self-referential Processing. J Cogn Neurosci. 2018;30(5):714-721. https://doi.org/10.1162/jocn_a_01232

89. Salzman CD, Fusi S. Emotion, cognition, and mental state representation in amygdala and prefrontal cortex. Annu Rev Neurosci. 2010;33:173-202. https://doi.org/10.1146/annurev.neuro.051508.135256

90. Quirk GJ, Beer JS. Prefrontal involvement in the regulation of emotion: convergence of rat and human studies. Curr Opin Neurobiol. 2006;16(6):723-7. https://doi.org/10.1016/j.conb.2006.07.004

91. McLean CP, Foa EB. Emotions and emotion regulation in posttraumatic stress disorder. Curr Opin Psychol. 2017;14:72-77. https://doi.org/10.1016/j.copsyc.2016.10.006

92. Boden MT, Westermann S, McRae K, Kuo J, Alvarez J, Kulkarni MR, Gross JJ, Bonn-Miller MO. Emotion Regulation and Posttraumatic Stress Disorder: A Prospective Investigation. Journal of Social and Clinical Psychology. 2013;32(3):296-314. https://doi.org/10.1521/jscp.2013.32.3.296

93. Fonzo GA, Goodkind MS, Oathes DJ, Zaiko YV, Harvey M, Peng KK, Weiss ME, Thompson AL, Zack SE, Mills-Finnerty CE, Rosenberg BM, Edelstein R, Wright RN, Kole CA, Lindley SE, Arnow BA, Jo B, Gross JJ, Rothbaum BO, Etkin A. Selective Effects of Psychotherapy on Frontopolar Cortical Function in PTSD. Am J Psychiatry. 2017;174(12):1175-1184. https://doi.org/10.1176/appi.ajp.2017.16091073

94. MacNamara, A., Rabinak, C. A., Kennedy, A. E., Fitzgerald, D. A., Liberzon, I., Stein, M. B., & Phan, K. L. Emotion Regulatory Brain Function and SSRI Treatment in PTSD: Neural Correlates and Predictors of Change. Neuropsychopharmacology. 2016;41(2):611–618. https://doi.org/10.1038/npp.2015.190

95. Terasawa Y, Shibata M, Moriguchi Y, Umeda S. Anterior insular cortex mediates bodily sensibility and social anxiety. Soc Cogn Affect Neurosci. 2013;8(3):259-66. https://doi.org/10.1093/scan/nss108

96. Brunet A, Thomas É, Saumier D, Ashbaugh AR, Azzoug A, Pitman RK, Orr SP, Tremblay J. Trauma reactivation plus propranolol is associated with durably low physiological responding during subsequent script driven traumatic imagery. Can J Psychiatry. 2014;59(4):228-32. https://doi.org/10.1177/070674371405900408

97. Shin LM, Rauch SL, Pitman RK. Amygdala, medial prefrontal cortex, and hippocampal function in PTSD. Ann N Y Acad Sci. 2006;1071:67-79. https://doi.org/10.1196/annals.1364.007

98. Liberzon I, Sripada CS. The functional neuroanatomy of PTSD: a critical review. Prog Brain Res. 2008;167:151-69. https://doi.org/10.1016/s0079-6123(07)67011-3

99. Naumann RK, Ondracek JM, Reiter S, Shein-Idelson M, Tosches MA, Yamawaki TM, Laurent. G The reptilian brain. Curr Biol. 2015;25(8):R317-R321. https://doi.org/10.1016/j.cub.2015.02.049

100. Steimer T. The biology of fear- and anxiety-related behaviors. Dialogues Clin Neurosci. 2002;4(3):231-249.

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.